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Abstract
In this study, a combination of active shape model (ASM) and active appearance model (AAM)
was used to segment the left and right ventricles of normal and Tetralogy of Fallot (TOF) hearts
on 4-D (3-D+time) MR images. For each ventricle, a 4-D model was first used to achieve robust
preliminary segmentation on all cardiac phases simultaneously and a 3-D model was then applied
to each phase to improve local accuracy while maintaining the overall robustness of the 4-D
segmentation. On 25 normal and 25 TOF hearts, in comparison to the expert traced independent
standard, our comprehensive performance assessment showed subvoxel segmentation accuracy,
high overlap ratios, good ventricular volume correlations, and small percent volume differences.
Following 4-D segmentation, novel quantitative shape and motion features were extracted using
shape information, volume-time and dV/dt curves, analyzed and used for disease status
classification. Automated discrimination between normal/TOF subjects achieved 90%–100%
sensitivity and specificity. The features obtained from TOF hearts show higher variability
compared to normal subjects, suggesting their potential use as disease progression indicators. The
abnormal shape and motion variations of the TOF hearts were accurately captured by both the
segmentation and feature characterization.
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Index Terms
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I. INTRODUCTION
Tetralogy of Fallot (TOF) is a common congenital heart disease characterized by four
typical features: right ventricular hypertrophy, right ventricular outflow tract (RVOT)
obstruction, ventricular septal defect (VSD), and overriding aorta. Initial management of
infants with TOF includes palliative surgery to augment the RVOT and close the VSD, but
patients often suffer from pulmonary valve insufficiency after surgery. This can over time
lead to right ventricular dilation and dysfunction eventually requiring pulmonary valve
replacement (PVR) in the adult years [1]–[3]. Although TOF patients often have similar life
expectancy as healthy people with an estimated prevalence of 80000 in the U.S. [4], they
need to be monitored throughout their lives to identify whether further surgery is required.
Cardiac magnetic resonance (MR) imaging has become essential for pre- and post-operative
management of TOF patients to determine the necessity and optimal timing of PVR [5]–[8].
It has been shown that RV dilation, RV systolic dysfunction and the left ventricle (LV)
systolic dysfunction are independent predictors of progressive LV dysfunction [9]. It has
also been suggested that unfavorable LV and RV interaction may be an important indicator
for poor post-operation outcome and for timing of PVR [9], [10].

The traditional functional indices measured in clinical analysis such as ventricular volumes
and ejection fraction may not be sufficient to allow timely patient management and prevent
long term sequelae [11], [12] because they do not fully utilize the rich information provided
by the MR data to describe the complex ventricular remodeling process. In addition, due to
the inevitable and large observer variability associated with the manual data analysis, it is
difficult to utilize these traditional indices in long-term patient care to produce reliable
prediction of disease progression. It has been found that the post-operative TOF RV with
near-normal ejection fraction exhibits unique abnormal ventricular remodeling
characteristics such as larger and rounder cross-sectional shape and more basal bulging [13],
but the quantitative relationships between these shape features and clinical outcomes are still
unknown.

To improve the quality of clinical analysis for TOF and other cardiac diseases, it is essential
to have quantitative indices that are capable of describing and measuring shape and motion
features. Furthermore, highly-automated and accurate methods must be developed to
perform 4-D (3-D+time) segmentation and reduce observer variability.

The cardiac image segmentation problem has been intensively studied by many groups in
the recent years. Although there are still some feature-based methods such as using
threshold and watershed [14], most groups acknowledged the necessity of using deformable
models or parametric models to incorporate anatomical knowledge into the segmentation.

The deformable model method often starts from an atlas (template mesh). The anatomic
knowledge is included in the atlas and its feasible deformation is learned from training or
clinical models. During segmentation, the atlas is deformed onto the target image using
registration or transform guided by image features. Lötjönen et al. [15] segmented all four
heart chambers in 3-D MR data using landmark probability distribution, probability atlas,
and nonrigid registration. Ecabert et al. [16] proposed a shape-constrained deformable model
for 3-D CT to combine the strengths of parametric and deformable models and to segment
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all four heart chambers using piecewise affine transform optimization. Bistoquet et al. [17]
introduced an incompressible myocardium model to improve the clinical feasibility of LV
and RV segmentations in 4-D MR data. Sermesant et al. [18] combined the intensity and
deformable models to achieve 3-D biventricular segmentations in multiple modalities.
Zheng et al. [19] constructed models of all four heart chambers with holes for inflow/
outflow tracts and achieved segmentation initialization through marginal space learning and
steerable features.

Active shape model (ASM) and active appearance model (AAM) are popular parametric
models. The statistical property of the target shape or appearance (combination of shape and
texture) is derived from a training set and denoted by compact modal indices. ASM and
AAM have been used for various applications such as: 2-D+time LV segmentation of
ultrasound data [20], 3-D LV or LV+RV segmentation of ultrasound and MR data [21], bi-
temporal LV segmentation of MR data [22], 3-D LV segmentation of MR and CT data [23],
4-D LV shape fitting of MR and CT data [24], and modeling four heart chambers of 4-D CT
data [25]. Andreopoulos et al. [26] achieved LV segmentation of 4-D MR images using 3-D
AAM followed by 2-D+time ASM and found time-dependent segmentation errors—larger
errors at end-systole than at enddiastole. Zhu et al. [27] performed LV segmentation of 4-D
MR data in a phase-by-phase manner where the statistical and dynamic models were
combined in 3-D segmentation. Several methods have been proposed to improve the quality
and capability of parametric models using independent component analysis for modeling
and segmentation [28], [29], enlarging ASM training sets [30], using sparse modeling with
orthomax criterion [31], improving landmark correspondence [32], [33], and modifying
ASM optimization [23], [34].

Most of the approaches to cardiac image processing, especially for MR, share several
common limitations.

• The manual tracing on short-axis MR data is often accepted as the independent
standard without considering the side effects due to breathing motion, anisotropic
voxel and inter-observer variability.

• For parametric models, the curse of dimensionality due to a limited training set is
widely known, but its effects on modeling and segmentation have not been fully
evaluated.

• The method has not been developed for and tested on diseased hearts with large
shape and motion variations.

• The segmentation error is often measured by the point-to-surface (or contour)
distance between segmented mesh vertices and the independent standard. Such
measurements may not fully describe the segmentation accuracy. How the
segmentation error varies with respect to time in 4-D segmentation is often not
fully measured.

• Sometimes the traditional clinical indices are used as the main segmentation
performance metrics, but such indices cannot measure the quality of shape and
motion tracking.

• How the segmentation accuracy affects the outcome of computer-aided diagnosis
has not been discussed.

• The potential for using the proposed method in disease characterization has been
speculated on but not explored.

This study utilizes ASM and AAM to accomplish two main goals. 1) Develop an LV and
RV segmentation method that is highly automated, applicable in clinical environment and
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capable of producing accurate 4-D segmentations of clinical-quality MR data. 2) Derive
novel 4-D ventricular function indices and test their capabilities for distinguishing between
normal and TOF hearts, and assessing post-operative status. A complete cardiac MR
analysis pipeline was designed from defining an independent standard to disease
characterization.

The unique contributions of this study are as follows.

• The short-axis and long-axis MR images were corrected for breathing motion and
fused into a single 4-D dataset that has complete ventricle coverage, improved
quality and reduced ambiguity in base and apex locations.

• Manual tracing was performed on the fused dataset using a custom-designed
tracing application that provides better 4-D context to the user. In addition to
smooth shape and motion, consistent LV mass and equal stroke volumes for normal
hearts were utilized to produce an accurate independent standard.

• A template-based method was implemented with efficient algorithms for automatic
landmark generation.

• New strategies for model construction, segmentation and disease characterization
were designed to minimize the side effect of a limited training set. They include:
separately modeled and segmented individual ventricles from normal and TOF
hearts, preliminary segmentation followed by final segmentation, etc.

• The performance of landmarking, modeling, and segmentation was evaluated with
a large set of quantitative measures focusing on various aspects of accuracy.

• The proposed functional indices were derived from independent standard and
segmentation results to test their capabilities in disease characterization and the
effects of imperfect segmentations on disease characterization.

• The cardiac motion tracking capability of a 4-D hybrid ASM/AAM segmentation
was improved by our reversed ASM tuning technique where new candidate shape
is generated from shape modal indices and its quality tested by intensity-based
criterion.

II. ACTIVE SHAPE AND APPEARANCE MODELS
The point distribution model (PDM) [35] describes the shape variation of a training set of
objects. The coordinates of landmarks—a set of corresponding points representing the
boundary—are concatenated to form a shape vector s, whose statistical properties are
identified via principal component analysis (PCA) yielding

(1)

where s ̄ is the mean shape and matrix Φ contains PCA modes (a.k.a. eigenvectors or
components) ordered by their significance. After discarding less significant modes, the
weight vector b (referred to as the modal indices in this paper) is used as compact alternative
to approximate any shape s in the training set or synthesize a new feasible shape that is not
in the training set but still within the allowed range of variations. The application of PDM in
segmentation is ASM [36]. The local intensities along scan lines associated with landmarks
are modeled from the training set. During ASM segmentation, the landmarks are iteratively
updated based on image features and trained scan line models, then new modal indices are
computed and restricted within the allowed range.
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Similarly, the intensity pattern—the texture vector t—of the object can also be modeled by a
statistical texture model once the correspondence of all interior voxels is established.
Combining shape modal indices (bs) and texture modal indices (bt) with appropriate
weighting Ws results in an appearance vector a that can be statistically modeled by AAM

(2)

The AAM segmentation [37] is an iterative process often referred to as the model matching.
The appearance modal indices ba synthesize model texture and model shape. The model
shape is mapped to the target image as the target shape using an affine transform. Another
texture, the target texture, is sampled based on the target shape. The goal of the model
matching is to find the optimal model parameters d (ba and the affine transform parameters)
that minimize the differences between the model texture and the target texture. The classical
AAM implementation minimizes the root-mean-square of the texture difference. The model
parameters are iteratively updated using knowledge acquired from model training. The
training typically employs reduced-rank multivariate linear regression on a set of known
model parameters to find a Jacobian matrix R that is used to predict the model parameter
displacement Δd based on the texture difference r(d) as

(3)

ASM and AAM have their strengths and weaknesses. AAM is good at object tracking but it
may impose too stringent of constraints and the matching can be easily trapped at local
minima. ASM is good at finding local features but it requires a good initialization and can be
disturbed by neighboring nontarget objects. The strengths of AAM and ASM were
combined in a multistage hybrid approach proposed by Mitchell et al. [38]. Its usage in MR
ventricular segmentation yielded better results than AAM or ASM alone.

III. INDEPENDENT STANDARD CREATION
The short-axis (SA) MR images are typically traced in clinical analysis because they show
clearly-identifiable cross-sectional views of the doughnut-shaped LV and the crescent-
shaped RV depicted on 2-D slices. Due to the typically large slice thickness of 6–8 mm as
opposed to the in-plane resolution of 1.5–2.5 mm, identifying the traceable borders in the
last basal image is difficult and is the major source of volumetric measurement errors [39],
[40]. However, the consistency of ventricular coverage is often given a higher priority in
clinical practice. In the complementary set of standard MR images acquired from four
chamber long-axis (LA) planes, the ventricular bases and apexes are easy to identify, but
tracing LV endocardial borders is more troublesome due to difficulty of accurately
identifying papillary muscles which are commonly included in the LV blood pool. Several
proposed methods combined SA and LA tracings together to produce better LV shapes [41],
[42] using simple geometric assumptions that are not feasible for the RV due to its complex
shape. Cardiac MR images are also affected by the respiratory motion that can be simply
modeled as misalignment of the ventricles between slices. The motion correction that uses
only SA images [43] is feasible but not appropriate for shape analysis because it can
potentially change the actual orientation and shape of the heart.

A. Image Fusion
The complementary information present in the SA and LA MR data is fully utilized by our
image fusion technique. The motion correction method, although similar to Lötjönen’s
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approach [15], was developed independently. In addition, the motion-corrected data from
both orientations are fused into a single 4-D image with isotropic voxels and improved
quality as shown below.

The number of phases (time frames) acquired per cardiac cycle in the MR scan is
determined by the imaging protocol and the subject’s heart rate so it varies between 18 and
25. We first normalized our data to 16 phases per cycle using nearest neighbor (along time
axis) interpolation that prevents the cardiac motion from introducing artifacts in a phase-by-
phase fashion. The potential temporal motion change due to interpolation is very small in
practice and is only limited to a very small portion of the cardiac cycle. Without motion
correction, the end-diastolic isotropic 3-D images reconstructed by shifted linear
interpolation [44] from SA and LA MR data are shown in Fig. 1(a) and (b).

After establishing correspondence between SA and LA MR data using imaging plane
description in the DICOM file header, the motion in the SA MR data is corrected by
registering each SA MR data [bottom row of Fig. 1(a)] to its counterpart in the 3-D image
reconstructed from LA MR data [bottom row of Fig. 1(b)]. The registration is restricted to
translation only and the criterion is minimal intensity difference. The result of motion
correction is shown in Fig. 1(c). The motion correction of the LA MR data is then performed
in the same way utilizing information from the motion-corrected SA MR data. The two
images reconstructed from motion-corrected SA and LA MR data are fused into a single
image as shown in Fig. 1(d), where the average intensity of the two reconstructed images
was used in the overlapped region. The fused image has better coverage of the heart as well
as improved image quality—note the difference in LA slices of Fig. 1(c) and 1(d). For SA
MR data with d mm in-plane resolution, the isotropic voxel size of the fused image is d mm.

B. Manual Tracing
A custom-designed application is used for manual tracing of the fused image as shown in
Fig. 2. This tracing environment provides sufficient 4-D context such that the ventricular
apex and base locations, end-diastole and end-systole can be easily identified. The manual
tracing is performed on user-selected short-axis slices as 2-D contours defined by spline
control points. The control points are not used as landmarks and their number is determined
by the user such that the resulting contour correctly describes the ventricular border. The
contours are translated into 2-D distance maps. The 3-D shape on each phase is created by
distance-based shape interpolation [45] and is used as the independent standard. The colored
overlay shows the created shapes and provides the user with feedback regarding the tracing
accuracy.

IV. MODEL CONSTRUCTION
A. Landmark Generation

In order to automatically create landmarks on all sample shapes, a template-based general
framework proposed by Frangi et al. [46] is adapted but implemented differently as
illustrated in Fig. 3. The whole process is performed in a phase-by-phase manner treating a
4-D sample as 16 3-D shapes. It consists of the following steps.

• Template creation: The sample shapes of the training set are aligned to a common
reference frame using a set of affine transforms affine that are restricted to
rotation, translation, and scaling. The aligned shapes are blended to a template
shape using a distance-based method [45].

• Template landmarking: Create landmarks on the template shape. Apply individual

inverse transform  to map the landmarks back to the sample space as the
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transformed landmarks in Fig. 3 such that they are close to the original sample
shapes.

• Landmark propagation: Apply a set of elastic transforms elastic to propagate the
transformed landmarks onto the surfaces of the original sample shapes.

1) Template Creation—A customized iterative closest point algorithm is used to find the
optimal affine with anisotropic scaling such that later on the transformed landmarks are
brought as close to the sample shape as possible and the deformation associated with
landmark propagation is reduced.

2) Template Landmarking—The landmarks on the template shape are created by three
steps using VTK-designed filters: surface meshing to create dense triangular mesh on the
template surface [47], surface smoothing to remove possible sharp edges [48], and triangle
decimation to reduce the number of vertices and triangles [49]. The LV and RV are
landmarked individually in this study using their own templates as shown in Fig. 4. For LV,
its endocardial surface is landmarked first. To form landmarks for the epicardial surface, an
exact copy of the landmarked endocardial surface is created and its vertices are moved along
the surface normals to the epicardial surface. Both LV surfaces are therefore defined by the
same number of vertices and triangles and exhibit the same topology.

3) Landmark Propagation—Because the transformed land-marks are reasonably close to
the sample surface, an efficient method is designed. The landmarks, pi = (xi,yi,zi), are
iteratively updated by an implicit function that minimizes the cost that consists of a
similarity cost Cs and a regularization constraint Cr with appropriate weightings ws and wr.

(4)

The similarity cost Cs is defined as

(5)

where D is the distance map of the target sample shape L computed by distance transform D
 It can be derived that iteratively minimizing Cs is equivalent to iteratively moving pi

along the gradient direction of D(pi) as

(6)

Minimizing the similarity cost forces the landmarks onto the target surface. Because it is
performed on each landmark without considering neighboring structure of the mesh,
geometric and topological errors could be introduced. The regularization constraint Cr is
used to preserve the spatial smoothness of the deformation. It is defined as the Dirichlet
integral and can be calculated for the surface mesh by

(7)

where |aj | is the length of the jth edge, αj and βj are two angles associated with the edge.
Their definitions are shown in Fig. 5 where the jth edge is the edge between vertices
(landmarks) pi and qj. It can be shown that when Cr is minimized, vertex pi must satisfy [50]

Zhang et al. Page 7

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 April 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(8)

Combining the optimization of Cs and Cr together, the landmark pi is iteratively updated by

(9)

In this study, the regularization constraint is not used to produce a discrete minimal surface
as originally proposed [50], but instead to preserve the smoothness of the deformation. The
iterative deformation defined by (9) therefore cannot introduce abrupt changes to the relative
sizes and shapes of the triangles associated with any mesh vertex. The proper weightings, ws
and wr are empirical values related to number of iterations. In this study, 200 iterations of
landmark propagation are performed with ws = 0.03, wr = 0.01.

B. Texture Mapping
In this study, we use virtual surfaces to restrict the size of the texture vector such that it only
contains intensity information that is useful for the segmentation. Two virtual surfaces are
defined for each ventricle: one by enlarging the outermost surface (scaling it with respect to
its centroid by 1.2), the other by shrinking the innermost surface (using a scale of 0.8). The
vertices of the virtual surfaces are not used in the shape model as landmarks, but whenever
the actual ventricular surface is changed during model matching, its associated virtual
surfaces are recomputed and the corresponding texture vectors are re-sampled accordingly.
In the 3-D space where the landmarking template is defined, uniformly spaced voxels
between the two virtual surfaces are used to define texture mapping. The voxel
correspondences are established using a barycentric coordinate system, where a voxel’s
barycentric coordinates are defined by the vertices (landmarks) of the tetrahedron it resides
in. Because all the virtual and actual surfaces of a ventricle are designed to have the same
topology, building the tetrahedrons for texture mapping becomes trivial—connecting the
vertices of the two corresponding triangles from the neighboring surfaces defines three
tetrahedrons.

V. VENTRICULAR SEGMENTATION
The basic approach of the multistage hybrid ASM/AAM method proposed by Mitchell et al.
[38] is adapted and implemented with additional new improvements. An AAM is first used
to produce a shape sa. Then an ASM starts from sa and produces another shape ss. These two
shapes are combined with an appropriate weight w as

(10)

The new combined shape s is then used to compute the new appearance modal indices using
(2) to start a new AAM model matching until convergence. This hybrid approach provides
extra momentum to bring model matching out of local minima and thus increases the chance
of finding a global minimum. However, the appearance modal indices are associated with
both shape and texture variations and the improvements in segmentation accuracy embedded
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in the combined shape s may not be fully incorporated into the resulting new appearance
modal indices. In addition, an improved shape computed from updated appearance modal
indices may be rejected as a better segmentation because the simultaneously updated texture
modal indices may lead to increased matching error. To decouple this tie between shape and
texture in the appearance model, a special segmentation fine tuning mechanism—brute-force
reversed ASM—is designed as follows.

1. Starting from the current shape modal indices bo, compute shape and texture in the
target image space and then compute the model matching error eo—root-mean-
square error of texture difference r(d) in (3)—without changing texture modal
indices. Set the number of shape modal indices to fine tune as J and i = 1.

2. Displace the ith shape modal index centered at bo within [−σi, σi] and each time by

(1/K)σi, where σi = , and λi is the eigenvalue associated with the ith shape
mode. The displaced shape modal indices are bn and the new matching error is
computed as en. If en < eo, then b = bn and e = en.

3. If i < J, increment i and goto step 2 with bo = b and eo = e.

4. The new segmentation result is computed from b.

The traditional ASM first updates landmarks using image features and then applies the
model constraints. Our method first creates a new shape by directly updating the shape
modal indices and then tests whether the new shape fits the target image better based on the
texture. Therefore, it is a reversed ASM method. Although it preforms a brute-force search
in the model space and is more computationally expensive than traditional ASM, when used
to fine tune the AAM segmentation in practice, it only uses 5%–10% of the total running
time.

The full process of our hybrid ASM/AAM method is as follows.

1. Initializing the affine transform that fits the mean shape onto the target image.

2. Setting the total number of passes as P, setting p = 1.

3. Optimizing the affine transform parameters using Jacobian matrices provided by
the model training as in (3).

4. Performing a hybrid ASM/AAM segmentation to compute the new appearance
modal indices ba.

5. Optimizing the first M appearance modal indices individually, starting from the
most significant one, using trained Jacobian matrices as in (3).

6. Optimizing the remaining less significant appearance modal indices simultaneously
with the first M modal indices fixed.

7. If p < P, incrementing p and proceeding with step 3.

8. Performing another hybrid ASM/AAM segmentation.

9. Employing the reversed ASM fine tuning to optimize the first J shape modal
indices.

VI. EXPERIMENTAL METHODS
A. Study Population and Independent Standard

Balanced steady-state free precession cardiac MR imaging was performed on 25 patients
with repaired TOF and resultant pulmonic regurgitation (12 males, 13 females; ages: 18–60,
median = 30). The study population also included 25 normal subjects (13 males, 12 females;
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ages: 22–38, median = 29). The normal subjects were scanned on a Siemens Avanto scanner
(in-plane resolution 2.05 ±0.15 mm). TOF patients were scanned on a GE Signa scanner (in-
plane resolution 1.48 ± 0.19 mm). The slice thickness was 6–8 mm and the slice gap was 0–
2 mm. The acquired SA slices covered the whole heart and LA slices covered at least 70%
of the heart. To prevent body fat from influencing motion correction, the MR data were
cropped using two manually defined rectangular regions that enclosed the complete LV and
RV on short-axis and long-axis views, respectively. The cropped MR data were motion
corrected and fused into 4-D datasets as described in Section III-A.

The fused 4-D datasets were manually traced by a cardiologist on short-axis slices using our
tracing application. Three ventricular borders were traced: LV endocardium, LV epicardium,
and RV epicardium. The papillary muscles were included in the LV blood pool enclosed by
the LV endocardial border. The manually traced slices were not limited to slices present in
the original MR imaging planes and not all the interpolated slices were traced. When the
ventricles exhibited small shape changes between slices, the distance between traced slices
was about 6–8 mm. In the basal region, where the ventricles often show sudden 2-D shape
changes, the traced slices were often 2–4 mm apart. After the initial pass of manual tracing,
the tracings were repeatedly edited. The ventricular shapes were created and loaded into the
tracing application as shown in Fig. 2, and the quantitative volume measurements of all
cardiac phases were recorded. Working in consensus with a second cardiologist, the expert
who performed the tracing then checked the volume measures and observed the resulting
shapes to make appropriate small changes on the tracings until the ventricular shapes
showed correctly identified end-diastole, end-systole, base and apex locations, and smooth
3-D shape and motion. Extra effort was made to guarantee correct depiction of the LV
myocardial motion and the constancy of LV mass throughout the cardiac cycle. For normal
subjects, stroke volumes of the LV and RV were expected to be approximately the same.

B. Two-Step Segmentation
To minimize the loss of segmentation accuracy due to a small training set and large shape
variability, the normal and TOF hearts as well as the LV and RV were modeled and
segmented separately. The LV or RV was segmented using a two-step approach. In the first
step, the preliminary segmentation was performed using a 4-D model. It was manually
initialized by fitting the 4-D mean shape onto the target image. The fitting was visually
inspected and adjusted mainly on the first cardiac phase, which corresponds to the peak of
R-wave in EKG-gated MR acquisition. The full hybrid ASM/AAM process listed in Section
V was applied with M = 10 and J = 10. In the second step, the preliminary segmentation was
used as initialization of the final segmentation which was performed in a phase-by-phase
manner using a single 3-D model that was created from 3-D shape/texture samples of all
cardiac phases. The reversed ASM fine tuning was not performed in the final segmentation
and M = 20 was used. In both steps, P = 1 and w = 0.35 were used.

C. Performance Assessment
The segmentation performance was assessed using a hold-out validation strategy. All of the
25 4-D datasets in the normal or TOF population were randomly divided into five groups
each containing five datasets. The datasets in any group were segmented using models
created and trained from datasets in the other four groups. The sizes of the training sets were
therefore 20 for 4-D models and 320 for 3-D models. This approach guarantees that a
complete independence of the training and testing sets is maintained throughout the
multistage process. The ventricle (VE, either LV or RV) produced by any stage was
compared to the independent standard (IS) using labeled image—a voxel is labeled as
background or one of the several objects—that has the same resolution as the 4-D fused
image.
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The following measurements were computed on individual cardiac phases of all datasets.

• Average signed and absolute surface positioning errors in voxels and millimeters
using 3-D distance transform [51]. For a voxel on the resulting ventricular surface,
a negative signed error indicates it is inside the surface of the independent standard.

• Milliliter volumes of LV blood pool, LV myocardium (LV mass), combined LV
blood pool and mass, and RV.

• Overlap ratio and percent volume difference as

(11)

(12)

The following metrics were derived to assess the performance.

• Mean and standard deviation (σ) of average surface positioning errors, overlap
ratios and percent volume differences.

• Equation and correlation coefficient R of linear regressions of VE versus IS
performed on all volumes, end-diastole volume (EDV) and end-systole volume
(ESV) of LV and RV.

• p-value of paired t-tests that compare the distributions of volumetric measurements
computed from VE and IS.

To visualize the time-dependence of the performance, the following plots were used.

• Normalized volume-time curves (nVTC) of all datasets. The LV and RV volumes
were normalized by their EDVs, the LV masses were normalized by its average
over the cardiac cycle.

• Scatter plots of percent volume differences and temporal curves of mean and mean
± σ of percent volume differences of individual phases.

D. Disease Characterization
The objective of this task is to identify quantitative features that are unique to TOF and its
progression. The shape and motion features were derived from the labeled images of the
ventricles. The cardiac motion features were derived from the volumetric measurements.
The independent standard and the final segmentation were analyzed to test whether they can
extract the same or similar disease features.

The 4-D PDMs of the LV, RV, and LV+RV combined—by concatenating shape vectors of
LV and RV—were constructed using all 50 datasets as the training set. The ventricular
landmarks were generated again from the labeled volumes of the independent standard or
the final segmentation. Having a single training set that contains an equal number of normal
and TOF hearts is suitable to identify TOF features in the context of normal ventricles. The
shape modal indices were computed and analyzed.

The nVTCs of the LV, RV, and LV+RV were used to represent the cardiac motion. Each
nVTC was treated as a vector including ventricular volumes of all cardiac phases. The
normalization by EDV removes the overall size variation and therefore performs a similar
task to the Procrustes Analysis in PDM construction. In addition, dV/dt curves were also
computed from the nVTCs and analyzed. The nVTCs and dV/dt curves do not include any
shape knowledge. The nVTCs contain information about ejection fraction while dV/dt
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curves include no direct ejection fraction knowledge and focus on the rate of volume
changes between phases. Extracting modal indices from nVTCs of all datasets was
performed by PCA.

The modal indices extracted from the shape model or volume-based curve model were fed
into a classifier using linear discriminative analysis to separate TOF patients from normal
subjects. The classification performance was evaluated by leave-one-out validation and
measured by specificity and sensitivity. In this binary classification of positive TOF and
negative normal hearts, the results are represented by numbers of true positive (TP), false
positive (FP), true negative (TN), and false negative (FN). The specificity and sensitivity
were computed by

(13)

The classifications were performed using one to five strongest modal indices and the best
combination of specificity and sensitivity achieved was reported as the final classification
performance.

VII. RESULTS
A. Quality of the Independent Standard

The motion correction and image fusion were performed on all datasets and assessed by
visual inspection. The resulting fused images had no remaining motion artifact and no image
quality degradation. Due to the time-consuming nature of the manual tracing, observer
variability was not assessed. Again, 50 fused 4-D images were traced by a cardiologist and
further inspected and approved by a senior cardiology expert. The total time spent on tracing
and editing on each 4-D dataset by the two experts was about 6–8 h and at least 50% of the
time was spent on the initial contour drawing.

B. Quality of the Landmarking
The numbers of landmarks used for 3-D ventricular surfaces were: 400 for LV endocardium,
400 for LV epicardium, and 800 for RV epicardium. The total running time of all automated
land-marking steps performed on all 50 LVs and 50 RVs was approximately one hour on a
PC with Intel Core 2 Duo E6400 processor and 2 GB of RAM. The landmarking error
measured by average landmark-to-surface distance was 0.00 ± 0.02 voxels, but it does not
necessarily mean that the landmark-defined surfaces accurately represent the actual
ventricular shapes. The performance metrics defined in Section VI-C were used to assess the
land-marking quality by comparing the landmark-defined ventricles and the independent
standard. The results are shown in Fig. 6(b) and Table I and Table II. The average surface
positioning errors show subvoxel accuracy in mean and standard deviation. The signed
errors and volume-based metrics show a weak trend towards underestimation. The volume
curves in Fig. 6(b) are almost the same as those of the independent standard in Fig. 6(a) to a
naked eye, and there are slightly more pronounced fluctuations in the distribution of the LV
mass curves. The mean percent volume differences of LV and LV mass begin to show a
time-dependent pattern even though they are almost constant within the cardiac cycle and
the standard deviations are very small.

C. Quality of the Appearance Modeling
The inherent consequence of using a small number of modal indices to represent complex
shape and motion is the inevitable loss of detail. When the training set is small, such loss

Zhang et al. Page 12

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 April 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



could affect the expected best segmentation accuracy. Using the same hold-out strategy as
used in the segmentation, the appearance modal indices of all datasets were computed and
used to synthesize the ventricular shapes approximated by the model. This procedure can be
thought of as an ideal segmentation when all the model parameters that need to be optimized
are known. The synthesized shapes were compared with the independent standard and the
results are shown in Fig. 6(c) and (d) in Table I and Table II.

From 4-D to 3-D modeling, the standard deviations of average positioning errors decrease
by 0.1–0.3 voxels. The means of absolute errors decrease by 0.3 voxels in normal hearts and
0.5 voxels in TOF hearts. Such improved accuracy of the 3-D modeling is also shown in the
volumetric metrics where the mean overlaps increase by 2%–4% and the standard deviations
of percent volume differences decrease by 4%–6%. The important improvements introduced
by these relatively small numbers can be seen in Fig. 6(c) and (d). The 4-D modeling results
show more clustered distribution of nVTCs and wider spread of percent volume differences
than for the landmarking results, while the distributions of nVTCs and percent volume
differences for the 3-D modeling results are very similar to those for the landmarking
results.

D. Segmentation Performance
Training Jacobian Matrices for the 3-D or 4-D AAM of 20 hearts on the same PC used for
the landmarking took approximately one hour for normal LV or RV and 90 min for TOF LV
or RV. The manual segmentation initializations for LV and RV took less than 5 min, and
consisted of the user adjusting the transform parameters to align the transformed mean shape
onto the first phase of the target 4-D image such that the base and apex locations were
correctly defined and the ventricular sizes were approximated. The preliminary LV or RV
segmentation in 4-D took approximately 2–3 min. The final segmentation in 3-D took
approximately 5 min for normal LV or RV and 10 min for TOF LV or RV. The total time
used to segment a 4-D dataset was approximately 15 min for a normal heart and 30 min for a
TOF heart. The TOF segmentation had longer running time mainly because the texture
vector of the enlarged RV—even sampled at similar grid density as the normal RV—is
substantially longer.

The performance assessments of preliminary and final segmentations are shown in Fig. 6(e)
and (f) and Table I and Table II. Compared with their corresponding theoretical optima
suggested by the modeling quality assessment, the means of the absolute positioning errors
are off by 0.2–0.3 voxels for normal and TOF hearts, the standard deviations are off by 0.1–
0.2 voxels for normal hearts and 0.2–0.3 voxels for TOF hearts.

The final segmentation produced better accuracy than the preliminary segmentation. The
means of the absolute positioning errors are reduced by 0.1 voxels for normal hearts and
0.1–0.4 voxels for TOF hearts. The overlap ratios show increased mean and decreased
standard deviation. In the volumetric metrics for LV and RV, better agreement with the
independent standard is shown in increased slopes and decreased interceptions of linear
regressions, increased correlation coefficients, and closer-to-zero means and decreased
standard deviations of percent volume differences. The LV and RV nVTCs of the final
segmentation also show improvements in motion tracking over the preliminary
segmentation, especially in the rapid-fill diastole stage where the LV undergoes rapid
expansion after reaching end-systole. However, the final segmentation show decreased LV
mass accuracy.

Fig. 7 shows the independent standard and segmentation result on a normal heart and a TOF
heart at cardiac phases 0, 3, 7, and 11. Both preliminary and final segmentations produced
smooth and accurate ventricular shapes for the normal heart. The final segmentation
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recovered some shape details that were not captured by the preliminary segmentation, and
produced better RV short-axis borders. However, the final segmentation showed reduced
accuracy in myocardial thickness on phases 3 and 7 due to inaccurate LV epicardial
tracking.

The TOF-affected heart in Fig. 7 has a unique motion pattern. It almost reaches end-systole
early at phase 3, then expands quickly and reaches the end of rapid-filling diastole at phase
7. The preliminary segmentation could not fully capture this unique motion pattern as in Fig.
7(d). The final segmentation achieved correct cardiac motion tracking as in Fig. 7(f), where
the LV endocardial surface is accurately identified. However, the final segmentation also
introduced an underestimated LV myocardium at phase 3 of Fig. 7(f). Note that the user
accidentally missed one apex SA slice that should have been traced on phase 3, but the
AAM segmentations identified the correct apex location.

Fig. 8 shows the volume curves of the independent standard, preliminary segmentation, and
final segmentation of two TOF hearts. The final segmentation’s capability of producing
better cardiac motions is demonstrated in Fig. 8(a) for LV motion and Fig. 8(b) for RV
motion.

To test the benefits of the reversed ASM fine tuning, the preliminary segmentation was
performed without the reversed ASM step. The resulting nVTCs of the segmented volumes
shown in Fig. 9 are significantly different from those in Fig. 6(c). Note that the segmentation
tightly follows the mean motion pattern not allowing for subject-specific differences.
Consequently, disease patterns may be masked by this strong influence of the underlying
motion pattern.

E. Disease Characterization
Table III lists the classification performance achieved using modal indices of 4-D shapes,
nVTCs and dV/dt curves derived from ventricular volumes of different stages. The 4-D
shape model analyzes both ventricular shape and motion variations and captures the
difference between normal and TOF ventricles even for the LV whose shape is often not
severely affected by TOF. The shape model analysis of the final segmentation achieved
almost the same classification performance as that of the independent standard.

When the ventricular motion patterns are partially described by the nVTCs, the difference
between normal and TOF hearts begins to diminish. Lower classification performance was
achieved by using nVTCs of the independent standard. The dV/dt curves measure the rate of
cardiac contraction and expansion but exclude the ejection fraction knowledge. Using the
independent standard, the dV/dt model achieved better classification performance than the
nVTC model.

Fig. 10 shows the shape variations at phases 0 and 7 introduced by varying the value of the
first modal index of the LV+RV 4-D shape model derived from the independent standard.
The first shape mode is associated with variations in LV myocardium thickness, LV
orientation, bulging of apex, ventricular height along the long axis, and severity of RV
enlargement. In this example, increasing the value of the first modal index introduces more
TOF-related shape features to the heart. Very similar shape variation patterns were observed
in the shape model derived from the final segmentation.

Fig. 11 shows the distributions of the first two modal indices of 4-D shape models of LV,
RV, and LV+RV derived from the independent standard and the final segmentation. The
strongest mode captures the main difference between normal and TOF hearts, which also
agrees with the visualization in Fig. 10. In the shape model space, the normal and TOF
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hearts have clear differences in clustering of modal index distribution. Although the normal
and TOF clusters have slightly different distribution patterns using models derived from the
independent standard and the final computerized segmentation, such small differences have
almost no effect on the classification performances listed in Table III.

Fig. 12 shows the nVTC variations associated with varying the first three modal indices
within [−2σ, 2σ] together with the mean nVTCs. In spite of the difference in classification
performance, the patterns of nVTC variations captured by the models derived from the
independent standard and the final segmentation are almost the same. The first mode is
mainly associated with different diastolic motion and the second mode with systolic motion.
Detailed observations showed that the ranges of variations embedded in the final
segmentations were slightly smaller than those in the independent standard.

VIII. DISCUSSION
Although our image fusion and customized tracing application reduced observer variability,
the manual tracings are still subject to inevitable uncertainties and inconsistencies. The
results produced by varying the base and apex locations identified on LA views by one or
even two voxels can still be deemed as clinically plausible due to lack of certainty about
location of the atrio-ventricular valves, but the resulting fluctuation of the ventricular
volume is large. The ventricular border tracings on the SA slices are affected by inconsistent
criteria used across different hearts and cardiac phases. Such observer variability also exists
when comparing the computer segmentation with the independent standard and contributes
to imperfect accuracy indicated by validation metrics such as the overlap ratio.

Representing 3-D shapes by landmarks always introduces loss of detail. Our quality testing
showed that such a loss yields only very small landmarking errors and the important
ventricular shape features are intact. Therefore, the landmarked surfaces provide sufficiently
accurate representations of the ventricular shapes. An alternative landmark generation
approach is to generate landmarks on the first phase of the 4-D datasets and then propagate
the landmarks throughout the cardiac cycle. We did not use this approach because small
geometric errors introduced by one propagation will be accumulated and potentially
amplified in other cardiac phases.

One consequence of a small training set is that the model-synthesized shape could be
significantly different from the independent standard because the model cannot fully capture
the variability of the training set and cannot approximate data that are not in the training set.
Our intensive quality testing revealed that the 3-D modeling has only slightly worse
accuracy than the landmarking, while it achieves better accuracy, especially in motion
tracking, than 4-D modeling. Because 4-D modeling has a limited motion tracking capability
as shown in Fig. 6(c), using 3-D models for final segmentation seems preferable. Fig. 6(d)
also shows the potential error patterns of the segmentations such as underestimation of LV
EDV, overestimation of LV ESV and reduced LV mass at end-systole.

Another consequence of a small training set is the under-trained model matching that
produces imperfect segmentation. The training set contains insufficient information to
produce Jacobian matrices that can generate parameter displacement with correct sign and
enough magnitude to guide the model matching. The model matching therefore can be easily
trapped at local minima and lead to imperfect segmentation. This under-training problem is
more serious in the preliminary segmentation as shown in Fig. 9. The preliminary
segmentation benefits from the reversed ASM fine tuning that provides some extra
momentum during the model matching, but it still cannot achieve good cardiac motion
tracking since the full motion variation is not captured by the 4-D modeling. Although it has
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been shown that the ASM training can be improved by an artificially enlarged training set
[30], applying a similar technique to our approach is not appropriate because the clinical
validity of the training set is critical.

To achieve accurate segmentation and minimize side effects of a small training set by
reducing shape variations to be included in the models, the LV and RV as well as normal
and TOF hearts are modeled with anisotropic scaling and segmented separately. Manual
initialization was chosen due to its robustness and efficient utilization of expert knowledge.
The combination of manual initialization and preliminary segmentation is necessary in our
approach because it utilizes learned motion patterns and reduces human effort in manual
initialization, which is also made more intuitive when anisotropic scaling is used. Without
preliminary segmentation, the subsequent final segmentation using 3-D phase-by-phase
approach either requires more human interaction or does not offer a comparable
performance. When constructing the shape model used for disease characterization, isotropic
scaling is used to preserve all potential disease features. The possible very small
intersections and holes in the septal region—because the septum is included in both LV and
RV—were corrected during segmentation and we found that they have no influence on our
disease characterization.

Our final segmentation uses the same single 3-D model of all cardiac phases. Using multiple
3-D models—one model for one or several phases—is possible in principle, but such
approach uses a smaller training set than the single-model approach and tracking severe
irregular ventricular motion [Fig. 8(a)] and its associated appearance variations [Fig. 7(b)]
becomes more difficult. The single-model final segmentation achieved improved accuracy
and motion tracking compared to the preliminary segmentation. However, the segmentation
performance is still bounded by the inherent limitations of the classical model matching
approach because it cannot guarantee that 1) the accurate segmentation corresponds to the
minimum intensity-based matching error, 2) the simplified multi-variable optimization using
Jacobian matrices will find the global minimum, and 3) different but equally plausible
initializations will converge to the same solution. The final LV endocardium and RV
segmentations are improved because temporal motion constraints that may be too stringent
are excluded from the 3-D model. The segmentation of LV epicardial surface with weak
intensity evidence suffers from losing constraints on myocardium thickness and results in
temporal fluctuation of LV mass. Due to this problem with the epicardium, the reversed
ASM fine tuning was not performed in the final segmentation.

The 4-D ventricular shape and motion are complicated and so is the validation, where a
single metric only partially describes the accuracy. For example, a segmentation that is a
slightly shifted version of the independent standard but accurately captures the actual shape
and motion features will correspond to reduced overlap. Our validation was performed on a
large set of metrics to provide a comprehensive interpretation of segmentation accuracy. We
believe that the ultimate segmentation performance assessment is reflected by the
performance of disease characterization—whether the segmentation captures the same
disease features as the independent standard. Our results show that the reported
segmentation errors have almost no effect on the distribution and classification of the 4-D
shape modal indices. The volume-based models built from segmentation produce slightly
different classification results than those from the independent standard, but Fig. 12 shows
that they contain the same types of motion variation with only slightly smaller ranges of
modal indices.

The current running time of a full segmentation process, 15–30 min, is comparable to that of
a reported 3-D ASM using fuzzy interface [23], if it is used for full cardiac cycle
segmentation. The segmentation can be further optimized with a multi-resolution approach
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and the final segmentation can benefit from parallel computing. With the latest development
in hardware, the human interaction can further be streamlined by utilizing virtual reality
[52]. It is expected that the fully optimized and integrated application will need less than 10
min to produce comprehensive quantitative morphology and function results for clinical
analysis.

IX. CONCLUSION
In this paper, a complete cardiac MR image processing pipeline was designed and
implemented, from creating the independent standard to disease characterization. The
pipeline was carefully designed to meet the requirement of clinical applicability where many
practical limitations must be overcome.

Based on knowledge learned from quality assessment of modeling and model training, the
segmentation was designed as a two-stage process with goal-oriented modeling and
segmentation strategies. The preliminary segmentation utilizes a 4-D hybrid ASM/AAM
algorithm with special reversed-ASM fine tuning. The final segmentation step was designed
to achieve better cardiac motion tracking as well as improved shape details. The human
intervention was minimized to manual initialization on only one cardiac phase. The
comprehensively assessed segmentation accuracy showed that even when trained on a small
population, the AAM-based segmentation method achieved very good performance.

In the final stage, a set of novel shape and motion features were designed using 4-D shape
model and volume-based curves. The normal/TOF classification of these features achieved
90%–100% sensitivity and specificity using both segmetation result and independent
standard, which further proves the high quality of the segmentation. We also showed that the
features extracted from the independent standard and from the segmentation result represent
very similar disease characteristics in shape and motion. In addition, the TOF hearts exhibit
less clustered distributions in the feature space, suggesting these features can potentially be
used as disease status and/or disease progression indicators.

In conclusion, the left and right ventricles of normal and TOF hearts can be accurately
segmented by our AAM-based method, and the extracted shape model and volume-based
features can correctly identify the unique characteristics of TOF and potentially its
progression.
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Fig. 1.
Image fusion process illustrated by selected LA (top row) and SA (bottom row) slices of
end-diastolic isotropic 3-D images reconstructed (a) from SA MR data before motion
correction, (b) from LA MR data before motion correction, and (c) from motion-corrected
SA MR data. (d) End-diastole of the final fused image; note the improved image consistency
in both SA and LA panels.
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Fig. 2.
Screen shot of the manual tracing application.
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Fig. 3.
Flowchart of automated landmark generation.
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Fig. 4.
Template landmark meshes of LV and RV.
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Fig. 5.
Surface vertex pi and its associated neighboring vertices qj.

Zhang et al. Page 25

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 April 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
Motion tracking capability of each process stage are visualized by nVTCs of normal
(column 1) and TOF (column 3) hearts and percent volume differences of normal (column
2) and TOF (column 4) hearts. The mean and mean ± σ curves are shown in percent volume
difference plots. In each plot, shown from top to bottom are measurements for LV, LV mass,
and RV; the horizontal axis depicts cardiac phases 0–15 representing the entire cardiac
cycle.
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Fig. 7.
Segmentation of a normal heart and a TOF heart at cardiac phases 0, 3, 7, and 11. The line
segments mark the locations of slices. (a) Normal: independent standard. (b) TOF:
independent standard; (c) normal: preliminary segmentation. (d) TOF: preliminary
segmentation. (e) Normal: final segmentation. (f) TOF: final segmentation.
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Fig. 8.
Examples of improved motion tracking in the final segmentation shown by volume curves of
LV (top row) and RV (bottom row) of two TOF hearts. (IS: independent standard, Preli:
preliminary segmentation.)
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Fig. 9.
Distributions of nVTCs of preliminary segmentations without reversed ASM. In each plot,
shown from top to bottom are curves for LV, LV mass, and RV; the horizontal axis depicts
cardiac phases 0–15 representing the entire cardiac cycle.

Zhang et al. Page 29

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 April 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 10.
Shape variations at phases 0 (top row) and 7 (bottom row) introduced by varying the first
modal index of the LV+RV 4-D shape model derived from the independent standard. The
values of the first modal index are: − 2σ, 0 (mean shape), and 2σ.
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Fig. 11.
Distributions of the two strongest modal indices of 4-D shape models of (from left to right)
LV, RV, and LV+RV combined derived from (a) the independent standard and (b) the final
segmentation.
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Fig. 12.
The nVTC variations associated with varying first three modal indices (showing from top to
bottom) by ±2σ (dashed lines) and the mean nVTCs (solid lines) of models derived from the
independent standard (IS) and final segmentation. (a) IS LV nVTC. (b) IS RV nVTC. (c)
final seg. LV nVTC. (d) final seg. RV nVTC.
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