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Detection and Localization of Ultrasound Scatterers
Using Convolutional Neural Networks

Jihwan Youn, Martin Lind Ommen, Matthias Bo Stuart, Erik Vilain Thomsen,
Niels Bent Larsen, Jørgen Arendt Jensen, Fellow, IEEE

Abstract—Delay-and-sum (DAS) beamforming is unable to
identify individual scatterers when their density is so high that
their point spread functions overlap each other. This paper
proposes a convolutional neural network (CNN)-based method
to detect and localize high-density scatterers, some of which are
closer than the resolution limit of DAS beamforming. A CNN was
designed to take radio frequency channel data and return non-
overlapping Gaussian confidence maps. The scatterer positions
were estimated from the confidence maps by identifying local
maxima. On simulated test sets, the CNN method with three
plane waves achieved a precision of 1.00 and a recall of 0.91.
Localization uncertainties after excluding outliers were ± 46 µm
(outlier ratio: 4%) laterally and ± 26 µm (outlier ratio: 1%)
axially. To evaluate the proposed method on measured data,
two phantoms containing cavities were 3-D printed and imaged.
For phantom study, training data were modified according
to the physical properties of the phantoms and a new CNN
was trained. On an uniformly spaced scatterer phantom, a
precision of 0.98 and a recall of 1.00 were achieved with the
localization uncertainties of ± 101 µm (outlier ratio: 1%) laterally
and ± 37 µm (outlier ratio: 1%) axially. On a randomly spaced
scatterer phantom, a precision of 0.59 and a recall of 0.63 were
achieved. The localization uncertainties were ± 132 µm (outlier
ratio: 0%) laterally and ± 44 µm with a bias of 22 µm (outlier
ratio: 0%) axially. This method can potentially be extended to
detect highly concentrated microbubbles in order to shorten data
acquisition times of super-resolution ultrasound imaging.

Index Terms—high-density scatterers, convolutional neural
network, super-resolution ultrasound imaging, ultrasound local-
ization microscopy

I. INTRODUCTION

DELAY-AND-SUM (DAS) beamforming [1] is simple
and effective for B-mode image generation, but the

spatial resolution is limited by wave diffraction. The reso-
lution of conventional ultrasound imaging depends on wave-
length, f-number, and excitation pulse bandwidth. Recently,
ultrasound localization microscopy (ULM) and the resulting
super-resolution ultrasound imaging (SRUS) were devised to
overcome the diffraction limit [2]–[6]. The microvasculature,
composed of vessels that are separated by less than a half-
wavelength, was mapped by deploying microbubbles (MBs)
as contrast agents. SRUS can be achieved by detecting and
tracking the centroids of individual MBs over time.

ULM-based SRUS, however, requires long data acquisition
times since the MB detection still relies on conventional
ultrasound images. The ultrasound images are generally DAS
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beamformed and diffraction-limited as a consequence. There-
fore, the MB concentration should be low to avoid overlapping
point spread functions (PSFs) for accurate and reliable MB
detection and localization. This constrains the number of
detectable MBs in a frame, and it leads to long data acquisition
times for mapping the entire target structure.

A novel method is proposed in this paper to detect and
localize high-density scatterers by using convolutional neural
networks (CNNs). Deep learning has had a profound impact
on processing complex data and making associated decisions.
By training deep neural networks with a large number of
examples, impressive improvements were achieved in various
challenging problems such as image classification [7]–[10],
object detection [11], [12], semantic segmentation [13]–[15],
and single-image super-resolution [16], [17]. It would be
nearly impossible to attain such improvements using tradi-
tional logic programming or model-based approaches. The
same principles can be applicable to ultrasound signals. It
is hypothesized that a data-driven CNN-based method can
identify scatterers laying closer than the resolution limit of
DAS beamforming directly from radio frequency (RF) channel
data.

In optics, where localization microscopy was firstly pro-
posed [18]–[20], several studies have been conducted to in-
corporate deep learning in super-resolution localization mi-
croscopy [21]–[23]. These studies used CNNs to localize
fluorescent molecules and showed that deep learning-based
methods can drastically reduce data acquisition times and data
processing times while achieving state-of-the-art performance.

Similar attempts also exist in SRUS. Van Sloun et al.
[24] proposed Deep-ULM that outputs high-resolution images
where the pixel values correspond to scattering intensities,
given image patches of contrast-enhanced ultrasound (CEUS)
acquisitions. This is similar to our approach in the sense that
it handles high-density scatterer detection using CNNs, but
Deep-ULM takes beamformed signals as input, whereas the
proposed method only uses RF channel data without beam-
forming. Allman et al. [25] tried to locate and classify sources
and artifacts from pre-beamformed photoacoustic channel data
using Faster R-CNN [26] with VGG16 [27]. However, only up
to 10 sources were considered, and classification for artifact
removal is not necessary for scatterer detection.

Deep learning techniques have been applied to achieve bet-
ter ultrasound image quality. A fully connected neural network
beamformer improved image contrast by suppressing off-axis
scattering [28]. Hyun et al. [29] proposed a CNN beamformer
that reduces speckle and eventually enhances contrast while
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Fig. 1. Overview of the proposed scatterer detection and localization method.

preserving resolution. Generative Adversarial Network (GAN)
[30], an architecture that generates output following the same
distribution as training data, were applied to improve image
quality without sacrificing frame rate. Multi-focus line-by-line
images were synthesized from single-focus line-by-line images
[31] and image quality comparable to using thirty one plane
waves was achieved using three plane waves [32].

In this work, CNNs were trained to learn a mapping from
RF channel data to confidence maps, and scatterer positions
were then estimated from the confidence maps by identifying
local maxima. The RF channel data were directly fed to the
CNNs without beamforming to avoid the information loss
caused by overlapping PSFs. The potential of the CNN-based
method using RF channel data has been shown in [33]. Previ-
ously, however, the training was performed at a fixed scatterer
density and its performance was not fully investigated. In this
paper, two CNNs were trained and evaluated using simulated
RF channel data generated using one plane wave or three plane
waves. The training sets were generated using four different
scatterer densities and the test sets were generated using ten
different scatterer densities. The evaluation was performed
with respect to three criteria, which are detection, localization,
and resolution. Additionally, two phantoms with water-filled
cavities were 3-D printed and imaged to examine the feasibility
of the CNN method on measured data. Lastly, a comparison
of the proposed method to Deep-ULM is discussed.

II. METHODS

Consider RF channel data x ∈ RNa×Nl×Nt induced by
scatterers p ∈ RNs×2, where Na is the number of samples
along the axial direction, Nl is the number of active elements
of a transducer in reception, Nt is the number of transmissions,
Ns is the number of scatterers, and 2 is the number of spatial
dimensions (in the lateral and axial positions). The nonlinear
mapping f : RNa×Nl×Nt → RNs×2 needs to be found to
estimate scatterer positions from the RF channel data, which
satisfies

p = f (x) . (1)

Here Ns varies depending on the given RF channel data x,
so the mapping f needs to adjust Ns adaptively, but this is
not straightforward. Therefore, the mapping f is decomposed
into two functions g and h to handle the varying Ns. The
mapping g : RNa×Nl×Nt → RNh×Nw forms a confidence
map c ∈ RNh×Nw , where Nh and Nw are the number of
samples in the axial and lateral directions, respectively. The

TABLE I
RF CHANNEL DATA SIMULATION PARAMETERS

Category Parameter Value
Transducer Transmission frequency 5.2MHz

Pitch 0.20mm

Element width 0.18mm

Element height 6mm

Number of elements 192
Imaging Number of TX elements 32

Number of RX elements (Nl) 64
Steered angles −15°, 0°, 15°

Environment Speed of sound (c) 1480m/s

Field II sampling frequency 120MHz

RF data sampling frequency 29.6MHz

Scatterer Number of scatterers (Ns) 20 · i, ∀i ∈ {1, 2, . . . , 10}
Lateral position range (−3.2, 3.2)mm

Axial position range (14.8, 21.2)mm

confidence map c represents a region of interest (ROI) where
the pixel values indicate confidences of scatterer presence in
each pixel. The mapping h : RNh×Nw → RNs×2 detects and
locates scatterers from the confidence map. The mapping in
(1) can be rewritten using g and h as follows:

p = f (x)

= h (g (x)) = h (c) , (2)

where
c = g (x) . (3)

The overview of the proposed method is illustrated in
Fig. 1. The mapping g was modeled by a fully CNN and the
mapping h corresponded to local maxima identification with
thresholding. The RF channel data simulation and confidence
map generation are explained in Section II-A and II-B, respec-
tively. The architecture of the proposed CNN is introduced in
Section II-C. Scatterer detection from the confidence maps is
explained in II-D and the phantom fabrication is described in
Section II-E. A baseline method for comparison is introduced
in Section II-F.

A. RF Channel Data Simulation

Field II pro [34]–[36] was used to simulate RF channel data
to generate data sets for training, validation, and evaluation.
The parameters for the simulation are listed in Table I. The
transducer was modeled after a commercial 5.2MHz 192-
element linear array transducer, and a measured impulse
response [37] was applied to make the simulated RF channel
data as close to measured data as possible [38].

For each frame, a certain number of point scatterers were
placed randomly within a region of 6.4mm× 6.4mm where
the center of the region was 18mm away from the transducer,
and three steered plane waves were transmitted using 32
elements. All the simulated scatterers had the same scattering
intensity. Motion and flow were not considered, therefore,
the scatterers used in each frame were static in the three
plane wave transmissions and the scatterer positions were
independent between frames. The aperture was shifted for each
steered angle to insonify only the ROI, as shown in Fig. 2. The
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Fig. 2. Illustration of the imaging scheme. Scatterers were placed in the
region of interest, and three steered plane waves were transmitted for each
frame. The aperture was shifted to insonify only the region of interest.

(a) (b)

Fig. 3. An example of simulated RF channel data with one plane wave without
steering. (a) is simulated raw RF channel data and (b) is delayed RF channel
data. Note that the delay here is different from the delay for beamforming.

elements used in transmission were the 105th to the 136th
(−15◦), the 81st to the 112nd (0◦), and the 57th to the 88th
(15◦) elements. Backscattered waves were received with 64
elements in the center of the transducer.

The simulated RF channel data were not beamformed but
delayed based on the time-of-flight calculated as

τi(x, z) =

(√
(x− xi)2 + z2 + z

)/
c. (4)

Here τi is the time-of-flight of the i-th transmission, (x, z) is
the data point, xi is the center of the i-th transmission aperture,
and c is the speed of sound. This preprocessing helped the
CNN solve the problem by making wavefronts appear more
like straight lines, instead of parabolas, as shown in Fig. 3, so
it is different from the delay for beamforming.

The input and output of the proposed CNN were required
to have the same number of samples along the axial direction.
Therefore, the delayed RF channel data were re-sampled to
match the same number of samples as confidence maps along
the axial direction (Na = Nh). Essentially, the sampling
frequency of the RF channel data was determined by the pixel
size of the confidence maps, and Na was determined by the
sampling frequency and the ROI. After preprocessing, the size
of RF channel data x for one frame was 256× 64× 3 before
being fed to the CNNs.

(a) (b)

Fig. 4. An example of cropped confidence maps. (a) is a binary confidence
map and (b) is a non-overlapping Gaussian confidence map created from (a).

(a) (b)

Fig. 5. A comparison of 1-D Gaussian confidence maps created by (a)
summation and (b) maximum operation. There are two scatterers y1 and y2,
and c1 and c2 are their confidence maps, respectively. The yellow line in (a)
is the sum of c1 and c2. The green line in (b) is the maximum of c1 and
c2. In (a), one scatterer ŷ is found at a wrong position, whereas in (b), two
scatterers ŷ1 and ŷ2 can be recovered at correct positions in the confidence
map.

B. Non-overlapping Gaussian Confidence Map

Initially, binary confidence maps were created, where pixel
values indicated presence (1) or absence (0) of a scatterer in
the corresponding location, as shown in Fig. 4a. However,
CNNs were not able to be trained using such confidence
maps because most of their pixel values were zero. The sparse
confidence maps provided small gradients during optimization
and made the CNNs prone to converging to the wrong optimal
solutions, returning only zero confidence maps regardless of
input.

A non-overlapping Gaussian confidence map (Fig. 4b) was
proposed to solve the imbalance problem of the binary confi-
dence maps. Applying 2-D Gaussian filtering to sparse labels
can improve training stability and guide CNNs to correct
solutions [21], [24], [39]. But simply applying 2-D Gaussian
filtering is problematic because the scatterer positions cannot
be recovered in the confidence maps when the scatterers are
closely spaced, as shown in Fig. 5a. To keep peaks at scatterer
positions in the confidence maps, the Gaussian filter was
applied one by one at each scatterer position in the binary
confidence maps. Notably, when the Gaussian filter values
induced by different scatterers were overlapped, the maximum
values were taken instead of summation. By doing so, clearly
separated peaks can be obtained at the true scatterer positions,
as shown in Fig. 5b.

The parameters for non-overlapping Gaussian confidence
maps are listed in Table II. The 2-D Gaussian filter is defined
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TABLE II
CONFIDENCE MAP PARAMETERS

Parameter Value
Pixel size 25 µm
Confidence map size (Nh ×Nw) 256× 256

Gaussian filter size 21 pixels
Gaussian filter standard deviation 5 pixels

by

G(u, v;σ) =
1

2πσ2
e−

u2+v2

2σ2 , (5)

where u and v are the pixel distances from the scatterer
position in the lateral and axial directions, respectively, and σ
is the standard deviation. The filter size was fixed to 4σ+1 and
the standard deviation was chosen by cross-validation among
3, 5, and 7 pixels. The scatterer positions were quantized
according to pixel size since the confidence maps are on
discrete grids. Here the pixel size was set to 25 µm (≈ λ/10);
the lateral and axial localization uncertainties are ±12.5 µm
in an ideal situation. The confidence map size was 256× 256
(Nw = Nh = 256) given the pixel size and the area of the
ROI.

C. Convolutional Neural Network Architecture

The proposed CNN has an encoder-decoder structure with
pooling and unpooling, similar to U-Net [13] but without skip
connections. The encoder-decoder structure was adopted to
transform the input in the channel data domain to the confi-
dence map in the ultrasound image domain. In the encoding
path, information is extracted from the RF channel data, and
in the decoding path, the confidence maps are reconstructed
based on the extracted information.

The overview of the CNN architecture and its components
are shown in Fig. 6. It mainly consists of four down-blocks,
one conv-block, and four up-blocks. In the down-blocks, the
feature map size is decreased by strided convolution to reduce
the amount of parameters, and in the up-blocks, the feature
map size is increased to the confidence map size by pixel
shuffle [40]. An 11 × 1 convolution layer prior to the encoding
path extracts per-channel features, and two convolution layers
after the decoding path refine the feature maps and return the
confidence maps.

The pre-activation residual units [9] (Fig. 6a) were used in-
stead of common convolution and rectified linear unit (ReLU)
layers to improve the network performance. Batch normaliza-
tion (BN) in the residual units helped ease the optimization,
limited covariate shift, and had the effect of regularization
[41]. Dropout [42] was additionally attached after the shortcut
for further regularization. Leaky ReLU [43] and Sigmoid were
chosen as non-linear activation. CoordConv [44] was added to
transfer spatial information over convolution layers.

The same CNN architecture was used for both one and three
plane wave data. For three plane waves, the preprocessed RF
channel data from each transmission in a frame were stacked
along the third dimension before applied to a CNN.

BN
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n
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Fig. 6. The proposed CNN architecture and its components: (a) residual unit,
(b) down-block, (c) conv-block, (d) up-block, and (e) the network overview.
The n and s in the parenthesis are the number of kernels and stride. In (e),
the sets of three numbers are the feature map size between two blocks, and
the asterisk indicates that CoordConv was applied at the first convolution in
the block.

D. Scatterer Detection from Confidence Maps

The scatterer positions can be found by locating the pixels
whose confidences are one in the true confidence map c.
However, the estimated confidence map ĉ = g (x) acquired
from a trained CNN is an approximation of c. It is not
guaranteed that the confidences are one where scatterers are
located in ĉ. Therefore, the algorithm relied on the fact that
pixels containing scatterers are local peaks. The scatterer
positions were recovered by finding the local maxima whose
confidence is larger than a certain decision value. The chosen
decision value was 0.9 in this work.

E. Phantom Fabrication

Two PEGDA 700 g/mol hydrogel phantoms were 3-D
printed [45], [46] to assess the CNN method on measured data.
The phantoms contained water-filled cavities which acted as
scatterers. The volume of each cavity was 45 µm×1000 µm×
45 µm. The cavities were designed to be elongated in the
elevation direction to increase the intensity of received signals.

In the first phantom, 100 cavities were placed on a 10× 10
grid with a spacing of 518 µm in the lateral direction and
342 µm in the axial direction, as illustrated in Fig. 7. This grid
scatterer phantom had the spacing larger than the resolution
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Fig. 7. Fabricated 3-D phantom with uniformly spaced cavities: (a) photo-
graph of the phantom and (b) 100 cavities placed on a 10× 10 grid.

limit of DAS to show that the CNN method works on measured
data. The second phantom, on the other hand, had 100 cavities
randomly distributed with a minimum spacing of 190 µm to
demonstrate that the CNN method can resolve targets closer
than the conventional resolution limit. The minimum spacing
between cavities were constrained due to the cavity size and
the 3-D printer voxel size.

F. Baseline Method

Local peak detection on the beamformed images was chosen
as a baseline method for comparison. RF channel data were
DAS beamformed in the region of interest with the same
pixel size as the confidence map, and, for three plane wave
transmissions, beamformed images in a frame were coherently
compounded [47]. The baseline method detected and located
scatterers in the envelope detected and log-compressed B-
mode images with a dynamic range of 40 dB. The B-mode
images were smoothed to avoid more than one pixel corre-
sponding to a peak, and scatterer positions were estimated by
finding local maxima.

Deconvolution using an estimated PSF is one of the com-
monly used techniques for microbubble localization [5]. How-
ever, it was not considered in this work since its performance
has been found to be sensitive to parameters when the PSFs
were highly overlapped, and the spatially varying PSF of
ultrasound imaging resulted in imprecise scatterer localization.

III. EXPERIMENTS

A. Training Details

CNNs, which correspond to the mapping g in (2), were
trained to return the corresponding confidence map ci given
RF channel data xi by minimizing the mean squared error
(MSE), given by

LMSE (xi, ci; g) =
1

N

N∑
i=1

‖ci − g (xi)‖2F , (6)

where N is the number of samples and ‖·‖F is the Frobenius
norm.

One data set consisted of frames simulated at the same
scatterer density, and four training sets and four validation
sets were generated at the scatterer densities of 0.49mm−2,
0.98mm−2, 2.44mm−2, and 4.88mm−2, i.e., the numbers of
scatterers were 20, 40, 100, and 200 in one frame, respectively.

Each training set and validation set had 10 240 and 1280
frames, respectively.

The kernel weights were initialized by orthogonal ini-
tialization [48] and optimized with ADAM [49] by setting
β1 = 0.9, β2 = 0.999, and ε = 10−7. Firstly, the training
was performed using only the training set at the scatterer
density of 2.44mm−2. The initial learning rate was 10−4

and it was halved every 100 epochs. After 600 epochs, the
learning rate was set to 10−5 and the training continued
using all the training sets while the learning rate was halved
every 50 epochs. The mini-batch size was 32, and each batch
was composed of frames from all four training sets after
600 epochs. The CNN was implemented in Python using
Tensorflow [50], and were trained on a server equipped with
a NVIDIA TESLA V100 16 GB PCIe graphics card. The
total number of training epochs was 800, and the training took
approximately 40 hours.

During training, the RF channel data and confidence maps
were flipped along the lateral direction at random with a
probability of 0.5 to augment the training sets. White Gaussian
noise was added to the RF channel data for generalization
along with BN and dropout. The signal-to-noise ratio after
noise addition was 6 dB, and the dropout rate was 0.3. The
RF channel data and confidence maps were then normalized
to be in the range [−1, 1] and [0, 1], respectively. Validation
was performed every epoch to monitor the training, and also
for cross-validation to choose hyper-parameters.

For both simulation and phantom experiment, two CNNs
were trained and compared: one CNN acting on the data from
one plane wave (0◦) and the other CNN acting on the data
from three plane waves (−15◦, 0◦, 15◦).

B. Simulation Experiment

The CNNs were evaluated on simulated test sets firstly.
One test set consisted of 3840 frames simulated at the same
scatterer density, and ten test sets were created at scatterer
densities from 0.49mm−2 to 4.88mm−2 by varying the
number of scatterers from 20 to 200 with intervals of 20.
The parameters in Table I were used again, apart from the
number of scatterers. The evaluation was performed on the
frames simulated at various scatterer densities to evaluate how
the performance changes over different scatterer densities and
how well the CNNs were generalized in terms of scatterer
density.

C. 3-D Printed Phantom Experiment

1) RF Channel Data Acquisition: The 3-D printed phan-
toms were scanned using the 5.2MHz 192-element linear
array transducer which has the same parameters as in Table I.
The raw RF channel data were acquired by the synthetic
aperture real-time ultrasound system (SARUS) experimental
ultrasound scanner [51]. The same imaging scheme and pro-
cessing as in the simulation were applied.

The experimental setup is shown in Fig. 8. The transducer
was fixed, and a water tank containing the phantom was
placed on a motion stage. The phantom was aligned with
the transducer by the motion stage, capable of translating
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Fig. 8. Illustration of the experimental setup for phantom measurement.

in the x- and y-axis, and rotating around the z-axis. During
measurement, the motion stage was translated along the x-
axis in steps of 50 µm between frames, and 33 frames were
acquired for each phantom experiment.

2) Training Set Modification: The training sets were modi-
fied and new CNNs were trained from scratch for the phantom
experiment. Transfer learning was also considered but it did
not show as good performance as training from scratch. In the
simulation, it was assumed that scatterers were infinitesimally
small points. However, the cavities in the phantoms were
squares, as shown in Fig. 7b, if the elevation direction is
ignored. Scattering, therefore, happens twice at each cavity:
once when a wave goes into the cavity and the other when the
wave comes out of the cavity. Additionally, the first scattering
experiences a phase reversal because the acoustic impedance
of the phantoms is higher than that of water.

RF channel data for training were accordingly re-simulated
by modeling each scatterer using two points separated by
the cavity size axially and with a phase reversal. To remain
consistent, the same scatterer positions of the original training
set were used.

3) Depth Correction: The speed of sound in the phantoms
is higher than in water. The axial positions of the estimated
scatterers were corrected to compensate for the different speed
of sound in the phantoms by

ẑ∗ = (ẑ − dpht) ·
cwater

cpht
+ dpht, (7)

where ẑ and ẑ∗ are the axial position before and after
correction, cwater and cpht are the speed of sound in water and
in the phantoms, respectively, and dpht is the distance from the
transducer to the surface of the phantoms.

D. Evaluation Metrics

Three evaluation criteria were considered to assess the
CNNs: detection, localization, and resolution. The positive and
negative detections were determined by pairing estimated scat-
terers with true scatterers based on their pair-wise distances,
as stated in Algorithm 1. Namely, to be a positive detection,
an estimated scatterer should be exclusively matched with
a true scatterer within a certain localization precision. This
localization precision can be translated to the target resolution
of ULM without tracking. It was set to be half of the full
width at half maximum (FWHM) in this work. Specifically, an

Algorithm 1 Algorithm for determining positive or negative
detections
Input: p ∈ RNs×2 and p̂ ∈ RN̂s×2, where p is true scatterer

positions and p̂ is estimated scatterer posions
Output: Positive or negative detection a ∈ RN̂s×1

1: a← 0 ∈ RN̂s×1

2: D ←
{
(dij) ∈ RNs×N̂s

∣∣∣ dij = ‖pi − p̂j‖2}
3: for j = 1 to N̂s do
4: î← argminD∗,j

5: if j = argminDî,∗ and (pî1−p̂j1)
2

(FWHMx/2)2
+

(pî2−p̂j2)
2

(FWHMz/2)2
< 1

then
6: aj ← 1
7: else
8: aj ← 0
9: end if

10: end for

ellipse whose major axis and minor axis were half of FWMHx

and half of FWMHz , respectively, was used as the desired
localization precision, where FWMHx is the lateral FWHM
and FWMHz is the axial FWHM. This bi-directional matching
process was extended from the left-right consistency check
[52], [53] for stereo matching in computer vision. It conforms
to the uniqueness constraint; one true scatterer can be paired
with at most one estimated scatterer.

Detection capability was assessed by quantifying wrong
detections and missed detections using precision, recall, and
F1 score, which are defined as follows:

Precision =
TP

TP + FP
, (8)

Recall =
TP

TP + FN
, (9)

and

F1 score = 2× Precision× Recall
Precision + Recall

, (10)

where TP is the number of true positives (correct detections),
FP is the number of false positives (wrong detections), and
FN is the number of false negatives (missed detections).

Localization uncertainties were measured by calculating the
lateral and axial position errors. Only positive detections were
considered for the localization assessment.

Spatial resolution, meaning the ability to separate two points
that are close together, was investigated statistically. For two
isolated true scatterers, it was checked whether they were
detected. A pair of scatterers was set to resolved if both
scatterers were detected. It was set to non-resolved if only
one of them was detected. And it was not considered if none
of them were detected, as this would be a detection problem.
The resolved rates were calculated in 20 µm× 20 µm bins by

Resolved rate =
Nres

Nres +Nnon-res
, (11)

where Nres is the number of resolved pairs and Nnon-res is the
number of non-resolved pairs in a bin.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9. A comparison of scatterer detection between baseline method and CNN method on a simulated test frame. (a) and (c) are DAS beamformed B-mode
images with one and three plane waves, respectively. (b) and (d) are estimated confidence maps by CNNs with one and three plane waves, respectively. (e) -
(h) show true scatterers and estimated scatterers from their corresponding results above in the same column in the green box region.

TABLE III
PRECISION, RECALL, AND F1 SCORE COMPARISON ON THE SIMULATED

TEST SETS

Method
One plane wave Three plane waves

Precision Recall F1 Precision Recall F1

Baseline 0.83 0.51 0.63 0.93 0.62 0.75
CNN 0.99 0.83 0.90 1.00 0.91 0.96

IV. RESULTS

The CNN method results on the simulated data and the
measured data of the 3-D printed phantoms presented in this
Section. Quantitative evaluation comparing one plane wave
and three plane waves was performed as specified in Section
III-D. The results of the baseline method on the same test data
are also presented for comparison.

A. Simulation Experiment

The qualitative comparison between the baseline and CNN
methods is shown in Fig 9. The proposed CNN method suc-
cessfully detected and localized high-density scatterers when
the baseline method failed due to overlapping PSFs.

The detection results on the simulated test sets are shown
in Table III. The CNN method achieved the better precision,
recall, and F1 score for both one and three plane transmissions.
Also, when the higher number of transmissions was involved,
the detection performance was improved for both methods.
The detection capabilities over different scatterer densities
were investigated, as shown in Fig. 10. The recalls dropped
as the scatterer density increased while the precisions were
relatively kept high. In addition, the recalls of the baseline

(a) (b)

(c)

Fig. 10. Detection capabilities of the baseline and CNN methods over different
scatterer densities on the simulated test sets with one and three plane waves:
(a) precision, (b) recall, and (c) F1 score.

method decreased more drastically as the scatterer density
increased, which led to the lower F1 scores.

The comparison of localization uncertainties between the
baseline and CNN methods on the simulated test sets are
presented in Fig. 11, using box-and-whisker plots along with
violin plots. The bottom and top edges of the blue boxes
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(a) (b)

Fig. 11. Localization uncertainties of baseline and CNN methods on the
simulated test sets. (a) and (b) are the results with one plane wave and three
plane waves, respectively.

(a) (b)

(c) (d)

Fig. 12. Localization uncertainties of the CNN method on the simulated test
sets at different scatterer densities: the lateral position errors with (a) one
plane wave and (b) three plane waves, and the axial position errors with (c)
one plane wave and (d) three plane waves.

indicate the 25 th (q1) and 75 th percentiles (q3), and the
center red lines indicate the medians. The whiskers, vertically
extended lines from the boxes, indicate the range of values
except outliers, which are greater than q3 +1.5× (q3− q1) or
less than q1 − 1.5× (q3 − q1). The violin plots were overlaid
as shaded area to demonstrate the error distribution directly.
For both methods, the lateral position error was higher than
the axial position error, and the CNN method achieved clearly
better localization than the baseline method. For the most part
the medians were very close to zero, indicating that the scat-
terer position estimation was unbiased in both directions. The
localization was also improved when more plane waves were
transmitted. Localization uncertainties of the CNN method at
different scatterer densities are shown in Fig. 12. Neither the
scatterer density nor the number of transmissions had much
impact on the axial position errors. The lateral position errors,

(a) (b)

(c) (d)

Fig. 13. Resolved rate of (a), (c) baseline methods and (b), (d) CNN methods
on the simulated test sets where (a) and (b) are with one plane wave and (c)
and (d) are with three plane waves. The green lines represent the theoretical
resolution limit of DAS beamforming.

on the other hand, gradually increased as the scatterer density
increased.

The 2-D histograms in Fig. 13 show the resolved rates of
two isolated scatterers measured in 20 µm× 20 µm bins. The
green lines represent the theoretical resolution limit of DAS
beamformed images, assuming that the 6 dB contour of a PSF
is an ellipse. The FWHM was measured on a simulated PSF
in the center of the ROI. For one plane wave, the FWHM
was 376 µm (1.32λ) laterally and 125 µm (0.44λ) axially. For
three plane waves, the FWHM was 265 µm (0.93λ) laterally
and 140 µm (0.49λ) axially. The resolution results show that
the CNN method can resolve scatterers closer than the DAS
limit. The mean resolved rates in the area under the green line
for the baseline and CNN methods were 0.16 and 0.68 with
one plane wave, and 0.17 and 0.67 with three plane waves,
respectively.

B. 3-D Printed Phantom Experiment

For the phantom study, CNNs were applied to measured
data without evaluation on simulated test data. The qualitative
results of the baseline and CNN methods on the grid and
random scatterer phantoms are presented in Fig. 14 and their
quantitative comparison is shown in Table IV and Fig. 15.

With one plane wave, side lobe level was high, and side
lobes were added up when the scatterers were placed in a
grid. Therefore, the DAS beamforming was unable to identify
individual scatterers of the grid phantom properly, as shown in
Fig. 14a. The CNN method also achieved poor detection with
one plane wave on the grid phantom, as shown in Fig. 14b.
The CNN was not generalized sufficiently to handle regularly
placed scatterers as the training frames were generated by
placing scatterers randomly. Most of the scatterers in the first
and the last columns were correctly detected, but the other
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 14. A comparison of scatterer detection between baseline method and CNN method on phantom measured frames. (a) - (d) are results of the grid
phantom and (e) - (h) are results of the random phantom. B-mode images with (a), (e) one plane wave and (c), (g) three plane waves and confidence maps
with (b), (f) one plane wave and (d), (h) three plane waves are shown with true scatterers and estimated scatterers.

(a) (b)

(c) (d)

Fig. 15. Localization uncertainties of baseline and CNN methods on phantom
measured data: (a) and (b) are results on the grid scatterer phantom with one
and three plane waves, respectively. (c) and (d) are results on the random
scatterer phantom with one and three plane waves, respectively.

TABLE IV
PRECISION, RECALL, AND F1 SCORE COMPARISON ON THE PHANTOM

TEST SETS

Phantom Method
One plane wave Three plane waves

Precision Recall F1 Precision Recall F1

Grid
Baseline 0.82 0.41 0.54 1.00 1.00 1.00

CNN 0.89 0.22 0.35 0.98 1.00 0.98

Random
Baseline 0.47 0.23 0.31 0.49 0.32 0.39

CNN 0.53 0.37 0.44 0.59 0.63 0.61

scatterers were missed. Thus, the precision was higher than
the baseline but the recall was lower. On the contrary, with
three plane waves, the baseline method found all the scatterers
without any false detection. The CNN method also achieved
comparable detection results with three plane waves, showing
that more transmissions for a frame helped generalization of
the CNN. For localization, the CNN method showed slightly
smaller uncertainties except the axial localization with one
plane wave.

On the random scatterer phantom, the CNN method
achieved better detection for both one and three plane waves.
For localization, the CNN method showed smaller axial uncer-
tainties but little higher lateral uncertainties. With three plane
waves, the detection and localization were improved but, in
general, it was more challenging to identify scatterers for both
methods on the random scatterer phantom.

V. DISCUSSION

A CNN-based scatterer detection and localization method
is presented. Instead of end-to-end training, the CNNs were
trained to learn the mapping from RF channel data to non-
overlapping Gaussian confidence maps, and scatterers were
detected and localized from the confidence maps by looking
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for local maxima. This two-step framework made it possible
to handle varying numbers of scatterers (Ns). By obtaining
non-overlapping Gaussian confidence maps from RF chan-
nel data without beamforming, it was able to identify high
concentrations of scatterers which cannot be separated by
conventional ultrasound imaging due to the overlapping PSFs.
This method also has an advantage of fast processing by
exploiting GPU computation. The proposed CNN implicitly
included beamforming since it is a mapping from the channel
domain to the ultrasound image domain, which is a bottleneck
of current ultrasound imaging. For the CNNs, processing time
for a frame was 16ms on average in a PC equipped with a
NVIDIA Titan V graphics card.

It was essential to use non-overlapping Gaussian confidence
maps to make training work. Binary confidence maps were
initially used to train CNNs with advanced loss functions such
as weighted cross entropy [13], jaccard loss [54], or focal loss
[55], as well as simple loss functions such as MSE or mean
absolute error, but all of them failed. The binary confidence
maps were too sparse to be handled by simply manipulating
the loss function. However, non-overlapping Gaussian con-
fidence maps relaxed the sparsity of the binary confidence
maps while being able to recover scatterer positions by taking
the maximum of overlapping Gaussians. Therefore, the larger
gradients were provided during training and the CNNs were
able to be guided to the correct solutions stably.

The training was firstly performed in the training set at the
scatterer density of 2.44mm−2, and was further performed on
the whole training sets later. Interestingly, the CNNs trained
at the scatterer density of 2.44mm−2 were already well
generalized at the scatterer densities higher than 2.44mm−2.
On the other hand, the CNNs achieved poor precision and
localization at the lower scatterer densities as two Gaussian
peaks appeared laterally near a true scatterer position in the
confidence maps. Therefore, the training sets had more frames
at the lower scatterer densities. It was also investigated to train
CNNs using the whole training sets from the beginning of
the training but the proposed way was more efficient; CNNs
converged to the solutions with fewer iterations.

The delayed RF signal induced by a scatterer lies across
all the channels and at several depths depending on the
lateral location of the scatterer. Hence, large receptive fields
were required for a CNN, so four down and four up blocks
were used. We tried to incorporate skip connections into the
proposed CNN by, if necessary, applying upsampling to the
feature maps in the contracting path to match the size of
their corresponding feature maps in the expanding path. For
image segmentation, the skip connections play an important
role to recover lost spatial information during downsampling
[13], [56]. The resulting reconstructed images have more fine
details and, as a result, provide better localized semantic
segmentation. However, the skip connections hindered suc-
cessful training for the task in this paper and the CNNs
learned zero confidence maps. We presume that the feature
maps extracted from RF channel data in the contracting path
are not directly related to the reconstruction of confidence
maps, unlike image segmentation. Instead, CoordConv [44]
was applied to cope with the spatial information loss. The

(a)

Fig. 16. The average numbers of scatterers closer than the theoretical
resolution limit of DAS beamforming given a scatterer at different scatterer
densities in the simulated test sets.

(a) (b)

Fig. 17. Recall and localization precision re-calculated to compare CNN
method to Deep-ULM: (a) Positive detection density and (b) median of
Euclidean position errors with one standard deviation bars at different scatterer
densities.

CNNs with CoordConv localized non-overlapping Gaussians
more precisely and achieved the better recall and localization
precision on the validation sets.

On the simulated test sets, the proposed method outper-
formed the baseline method. The performance drop was much
more severe for the baseline method at high scatterer densities,
where the more scatterers were placed with in the resolution
limit. Fig.16 shows the average numbers of scatterers within
the FWHM (the 6 dB ellipse contour) given a scatterer in the
simulated test sets.

Deep-ULM is another CNN-based method which local-
izes high-density targets from beamformed images that con-
tain overlapping PSFs. To compare the proposed method
with Deep-ULM, the recall and localization errors were re-
calculated following the method which van Sloun et al. used
to generate the results in the supplementary Fig. 1 in [24].
The threshold value for determining positive detection was
λ/7 and Euclidean distances between the true and estimated
scatterers were calculated. The evaluation results depend on
the threshold value. As it increases, recall improves while
localization precision degrades. The threshold λ/7 was chosen
following [24] for a fair comparison. The results are presented
in Fig. 17. Both methods showed good performance at high
densities but the proposed method achieved slightly better re-
call and localization precision. Deep-ULM recovered roughly
1.80mm−2, while the proposed method recovered 2.26mm−2

at the density of 2.44mm−2, and Deep-ULM recovered
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roughly 2.10mm−2 at the density of 3.53mm−2 when the
proposed method recovered 3.00mm−2 at the density of
3.42mm−2. The median of Euclidean errors of Deep-ULM
was approximately λ/12 but the proposed method achieved
smaller errors than that. It is difficult to conclude that the
proposed method outperforms Deep-ULM since the evaluation
was not performed on the same test data. This, however, shows
the potential of the methods directly employing RF channel
data.

To assess the proposed method for real world applications,
two 3-D printed phantoms were imaged. One of the benefits of
using the 3-D printed phantoms is that true scatterer positions
and the dimensions of the phantom and scatterers (cavities) are
known. It was important to modify the scatterers in the training
sets to match the cavity dimensions. The CNNs trained for the
simulation experiment failed on the measured data, showing
too many false positive detections axially. However, the CNNs
trained with the modified training sets successfully identified
scatterers to some extent except some scatterers on the grid
phantom when one plane wave was transmitted as seen in
Fig. 14b. It is notable that this was achieved only with the
simulated training data, since it is extremely difficult to obtain
sufficient training data with ground truth for these kinds of
experiments.

The phantom experiments show that the CNN method is
transferable to measured data by modeling scatterers properly
in the training data simulation. The baseline method performed
slightly better for the most trivial case, namely the grid
scatterer phantom with three plane waves, but the CNN method
performed better on the random scatterer phantom. Even so,
the CNN method on the random scatterer phantom presented
a relatively large number of false positives compared to the
simulation results. This could be because of the discrepancy
between the training (simulated) data and the test (phantom)
data. There are factors not considered in the simulation such as
attenuation, different scattering intensities of the cavities, and
different speed of sound in the phantom medium. Moreover,
a further degradation of the performance is expected on in
vivo data since the discrepancy between the training data
and the in vivo data would become larger due to scatterer
response variations, refraction, reverberation artifacts, etc. A
more versatile simulation using various parameters to cover
possible in vivo variations of RF channel data and a more
generalized CNN model could increase the CNN method
performance on the measured phantom data and overcome the
potential limits in in vivo scenarios.

The proposed method gives 2-D images using a 1-D trans-
ducer. This limits the view of target structure along the
elevation direction. The 3-D printed phantoms are essentially
2-D phantoms which have elongated cavities and the dimen-
sion along the elevation direction was not captured in the
results. This limitation can be solved by using 2-D transducers
such as fully addressed transducers or row-column addressed
transducers.

Several problems are expected to occur if the CNN method
is applied to MB detection for SRUS. MBs are not static but
move with different velocities depending on the vessel size.
This should be considered during training data generation.

Also, it is important to model MBs properly in simulations
since their sizes and other physical properties vary. It was
necessary to remodel scatterers following the real physical
structure for the phantom experiment. This is expected to be an
important factor when applying the CNN method on measured
MB signals.

Background scattering from tissue was not dealt with here
since this work focused on a proof-of-concept of CNNs’ ability
to detect and localize high concentrations of scatteres from
RF channel data. For in-vivo scenarios, the tissue signals may
hinder the CNN method, so a way of rejecting them without
hurting the performance of CNNs needs to be investigated. For
example, clutter filtering based on singular value decomposi-
tion (SVD) or contrast-enhanced ultrasound (CEUS) imaging
such as pulse inversion [57] or amplitude modulation [58]
can be applied. However, the drawbacks of such methods
are that it is difficult to find an optimal singular value for
SVD to separate MB signals, and the CEUS imaging limits
the frame-rate. In addition, both methods have a chance to
distort the signals from the MBs, which would make the
detected MB signals different from the data used for training.
Alternatively, another neural network such as CORONA [59]
can be deployed, which is a Robust PCA-based unfolded
neural network that performs clutter filtering. By incorporating
CORONA with the proposed CNN method, clutter filtering and
MB localization can be learned simultaneously.

Lastly, further research on the optimal imaging scheme and
scalability of CNN is required. Plane waves were used to
support the hypothesis in a small region. In practice, however,
a larger field of view is needed. Also, the more correlated data
are available, the better estimation can be achieved. The CNNs
with three plane waves achieved better performance than the
CNN with one plane wave in all evaluation criteria, but this
increases the required GPU memory. In addition, the imaging
scheme would affect the capability of the CNN method and
plane waves might not be the optimal choice. It is necessary
to examine how other imaging schemes, such as focused or
defocused waves affect the CNN method, or a new imaging
scheme could be developed.

VI. CONCLUSION

The CNN-based scatterer detection and localization method
is presented. CNNs were trained to return non-overlapping
Gaussian confidence maps from simulated RF channel data,
and the scatterer positions were estimated from the confi-
dence maps. The simulation results show that the proposed
method can identify high-density scatterers successfully even
when some of them are closer than the resolution limit
of conventional ultrasound imaging. It is also shown that
the CNN method can be applied to real measured data by
modeling scatterers following the true scatterer structure. The
CNN method can potentially be extended to replace DAS
beamforming for high concentration MB detection and thus
reduce the long data acquisition times of SRUS using ULM.
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