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Sébastien Ourselin, Shaoting Zhang

Abstract— Domain Adaptation (DA) is important for deep
learning medical image segmentation models to deal with
testing images from a new target domain. As the source-
domain data are usually unavailable when a trained model
is deployed at a new center, Source-Free Domain Adapta-
tion (SFDA) is appealing for data and annotation-efficient
adaptation to the target domain. However, existing SFDA
methods have a limited performance due to lack of suf-
ficient supervision with source-domain images unavail-
able and target-domain images unlabeled. We propose a
novel Uncertainty-aware Pseudo Label guided (UPL) SFDA
method for medical image segmentation. Specifically, we
propose Target Domain Growing (TDG) to enhance the
diversity of predictions in the target domain by duplicating
the pre-trained model’s prediction head multiple times with
perturbations. The different predictions in these duplicated
heads are used to obtain pseudo labels for unlabeled
target-domain images and their uncertainty to identify reli-
able pseudo labels. We also propose a Twice Forward pass
Supervision (TFS) strategy that uses reliable pseudo labels
obtained in one forward pass to supervise predictions in
the next forward pass. The adaptation is further regularized
by a mean prediction-based entropy minimization term that
encourages confident and consistent results in different
prediction heads. UPL-SFDA was validated with a multi-
site heart MRI segmentation dataset, a cross-modality fetal
brain segmentation dataset, and a 3D fetal tissue segmen-
tation dataset. It improved the average Dice by 5.54, 5.01
and 6.89 percentage points for the three tasks compared
with the baseline, respectively, and outperformed several
state-of-the-art SFDA methods.

Index Terms— Source-free domain adaptation, self-
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I. INTRODUCTION

DEEP learning has achieved excellent performance in
medical image segmentation tasks in recent years [1],

[2]. Its current success is highly dependent on the assumption
that training and testing images are from the same distribution.
However, in practice, a model trained with images from one
certain source domain may be used to deal with images in
an unseen target domain with different image appearances,
which is usually caused by different scanning devices, imaging
protocols, patient groups or image qualities, etc. Failing to deal
with the gap between the source and target domains will lead
to a dramatic performance decrease [3]. As it is impossible
to collect images from all the potential target domains during
training, it is essential to make the model adapted to images
in the unseen target domain after deployment.

Domain Adaptation (DA) that aims to solve the domain
gap between training and testing data is attracting increasing
attentions recently [4]. Though collecting a set of annotated
images in the target domain to fine-tune the pre-trained model
can make it adapted to the target domain, the annotations are
expensive to obtain and usually unavailable in the target do-
main for model deployment. Therefore, many researchers have
investigated Unsupervised Domain Adaptation (UDA) [4] that
uses unannotated images in the target domain for adaptation.
Most existing UDA methods require access to source-domain
and target-domain images simultaneously for training [5], [6].
However, due to concerns on privacy, bandwidth and other
issues, it is not always possible to access source-domain data
and target-domain data simultaneously.

Source-Free Domain Adaptation (SFDA) [7]–[9] aims to
adapt a model pre-trained with source-domain images to fit
the target data distribution without access to the source data.
Due to the absence of annotations in the target domain, the
main challenge for SFDA is the lack of sufficient supervision
for the model in the target domain. To deal with this problem,
some existing works designed auxiliary tasks such as rotation
prediction [9], image normalization [10] and auto-encoder-
based image reconstruction [11] to assist adaptation in the
target domain. However, these works introduce an extra sub-
network for the auxiliary task that needs to be trained in the
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source domain in advance, which makes these SFDA methods
only work for a model pre-trained in a specified way in the
source domain and cannot be applied to models pre-trained
in other manners, e.g., standard supervised learning without
auxiliary tasks.

In this work, we explore a more flexible approach for SFDA,
where only a pre-trained segmentation model and unannotated
images are available in the target domain, without restrictions
on how the model has been pre-trained in the source domain,
and we call it fully SFDA. Note that fully SFDA is independent
of the pre-training process, and is more general than the
auxiliary task-based methods [9]–[11] that require special pre-
training strategies and network structures.

To deal with unannotated images in the target domain
for fully SFDA, several researchers have investigated some
regularization methods, such as entropy minimization for the
predictions in the target domain [12], [13], which are inspired
by entropy minimization in the UDA [14]–[16] and semi-
supervised learning tasks [17]–[19]. However, only using
entropy minimization as supervision cannot provide suffi-
cient constraints, which makes the model tend to give high-
confidence but incorrect predictions in the target domain.
To deal with this problem, some researchers also proposed
self-training, which fine-tunes the pre-trained model using its
predictions on the target-domain images as pseudo labels [20]–
[22]. However, due to the change in the target domain distribu-
tion, it is hard to obtain accurate pseudo labels, which brings
challenges to achieving good performance [23].

To overcome these problems, we propose a novel
Uncertainty-aware Pseudo Label guided Source-Free Domain
Adaptation (UPL-SFDA) framework for medical image seg-
mentation. Differently from many existing methods that re-
quire a special pre-training strategy in the source domain [9]–
[11], our method is agnostic to the training stage and has
a minimal requirement on the network structure, which is
applicable in wider scenarios. Given a pre-trained network,
we propose Target Domain Growing (TDG) that duplicates
the prediction head K times in the target domain, and add
random perturbations (e.g., dropout, spatial transformation) to
obtain K different segmentation predictions. The ensemble
of these predictions leads to more robust pseudo labels with
efficient uncertainty estimation, which helps to distinguish
reliable pseudo labels from unreliable ones. To avoid model
degradation commonly faced by self-training, we introduce
Twice Forward pass Supervision (TFS) that uses reliable
pseudo labels obtained in one forward pass to supervise
predictions in a following forward pass. In addition, unlike
existing works imposing entropy minimization on each single
prediction head [12], [21], we impose entropy minimization
on the mean prediction across the K heads instead, which
additionally introduces an implicit multi-head consistency reg-
ularization to obtain more robust results. Our contributions are
summarized as follows:

• We propose a Source-Free Domain Adaptation method
based on uncertainty-aware pseudo labels for medical
image segmentation, which adapts a model to the target
domain without specific requirements on the pre-training
strategy and network structure in the source domain.

• We introduce Target Domain Growing (TDG) to expand
a pre-trained model with perturbed multiple prediction
heads in the target domain, which increases the quality
of pseudo labels and obtains uncertainty estimation effi-
ciently.

• A Twice Forward pass Supervision (TFS) is intro-
duced for self-training, which is combined with a mean
prediction-based entropy minimization to robustly learn
from pseudo labels in SFDA.

Extensive experiments on three applications (multi-site heart
MRI segmentation, cross-modality fetal brain segmentation,
and fetal tissue segmentation) showed that our method can
effectively adapt the model from a source domain to one
or multiple target domains. It outperformed several existing
SFDA methods for medical image segmentation, and was
comparable and even better than supervised training in the
target domain.

II. RELATED WORKS

A. Unsupervised Domain Adaption
UDA aims to transfer the knowledge learned from labeled

source-domain data to an unlabeled target domain. Current
UDA methods mainly adapt the model to the target domain in
three aspects. The first is image appearance alignment that
translates a target-domain image into a source-domain-like
image [24]–[27], so that the domain gap is alleviated. The
second is feature alignment that minimizes the distance of
feature distribution between the source and target domains
to learn domain-invariant representations [28]. For example,
for cardiac image segmentation, Wu et. [29] used Variational
Auto-Encoders (VAEs) to align the features in the source
and target domains, and Chen et al. [30] used Generative
Adversarial networks (GANs) to align the features. The third
is output alignment, i.e., using the source model to generate
pseudo labels in the target domain for adaptation [6]. However,
even relying on unpaired and unsupervised domain translation
techniques, these UDA methods require access to source
domain images, which is hardly guaranteed at a testing site due
to the concerns on privacy, computational cost and bandwidth.
Therefore, source-free DA is highly desirable in practice.

B. Source-Free Domain Adaption
Source-Free Domain Adaption (SFDA) deals with domain

adaption without access to source-domain data [7], [9], [21],
[31]. Yang et al. [31] proposed a Fourier-style mining-guided
framework, which comprises a generation stage and an adap-
tation stage for adapting the source model to the target
domain using paired source-like and target images. Sun et
al. [9] introduced an auxiliary branch to predict the rotation
angle in the target domain. Karani et al. [10] introduced a
shallow image normalization network before the segmentation
model, and fine-tuned the normalization network in the target
domain based on predictions refined by a Denoising Auto-
Encoder (DAE). However, these methods require the segmen-
tation model’s structure to be modified in advance to support
the auxiliary task and pre-trained with a specified strategy,
which is inapplicable to general segmentation models that
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Fig. 1. Overview of our proposed Uncertainty-aware Pseudo Label guided Source-Free Domain Adaptation (UPL-SFDA) framework. In the pre-
training stage, the model can be trained in the source domain with an arbitrary strategy. We use Target Domain Growing (TDG) to extend the
pre-trained model with multiple prediction heads with perturbations in the target domain. Note that the pseudo label and reliability map obtained in
one forward pass are used to supervise the predictions in the next forward pass in the Twice Forward pass Supervision (TFS) loss.

are unaware of the adaptation process during pre-training.
Recently, some methods [12], [32] avoid the coupling between
training in the source and target domains, so that the adaptation
process does not set a prerequisite for training methods in
the source domain, which is more general to arbitrary pre-
trained models. Wen et al. [7] proposed a selectively updated
Mean Teacher for SFDA, where predictions from a teacher
model based on exponential moving average is used to su-
pervise the student. Nado et al. [32] proposed Prediction-
Time Batch Normalization (PTBN) that recalculates statistics
of batch normalization layers according to the images in the
target domain. TENT [12] updates the parameters in batch
normalization layers to minimize the entropy of predictions in
the target domain. In addition to entropy minimization [12],
other loss functions, such as regional nuclear-norm loss with
contour regularization [33] and consistency regularization [34],
have been proposed for the setting. However, due to the lack of
annotations, achieving good performance for SFDA methods
is still challenging.

III. METHOD

Fig. 1 shows an overview of our proposed Uncertainty-
aware Pseudo Label guided Source-Free Domain Adaptation
(UPL-SFDA). It is independent of the pre-training stage in
the source domain, so it can deal with a model pre-trained
in an arbitrary strategy. In UPL-SFDA, we introduce Target

Domain Growing (TDG) to extend the source model into a
multi-head prediction structure by duplicating the pre-trained
prediction head K times, and then get pseudo labels based on
an ensemble of the prediction heads with perturbations using
dropout and spatial transformation. Pseudo labels obtained in
one forward pass are used to supervise the prediction of the
next forward pass, which acts as a consistency regularization
between the two forward passes, and they are weighted by
the reliability (confidence). For unreliable pixels, we use a
mean prediction-based entropy minimization regularization
that improves confidence of the predictions and inter-head
consistency.

A. Pre-trained Model from the Source Domain
Let S and T be the source and target domains, respectively.

Let XS = {(xs
i , y

s
i ), i = 1, ..., Ns} be the training images

and their labels in the source domain, and XT = {(xt
i, ), i =

1, ..., Nt} represent unlabeled images in the target domain for
adaptation, where Ns and Nt are the number of samples in
the two domains, respectively. Note that the data distributions
in S and T are different, and we assume that the label has the
same distribution across the two domains, i.e., the same type
of structure for segmentation.

For a general CNN-based segmentation model, it has a
feature extractor g and a prediction head h, and the parameters
of the segmentation model are denoted as {θg, θh}, where θg



4 SUBMITTED TO IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023

and θh denote the parameters of g and h, respectively. As
encoder-decoder networks are widely used for medical image
segmentation [35], [36], we consider g as an encoder and h as
a decoder in this work, respectively. The model is pre-trained
in the source domain via:

θ0g , θ
0
h = arg min

θg,θh

1

Ns

Ns∑
i=1

Ls

(
h
(
g(xs

i )
)
, ysi

)
(1)

where Ls donates a certain type of supervision loss in the
source domain, which might be implemented by fully super-
vised learning, semi-supervised learning and weakly super-
vised learning, etc., based on the type of the available labels in
the source domain. θ0g and θ0h denote the optimized parameter
values in the source domain, and they are used as initial
parameters for the adaptation process in the target domain.

B. Target Domain Growing in the Target Domain

With the pre-trained feature extractor g and prediction head
h, the model can be applied to a target-domain image to obtain
a prediction as the pseudo label. However, due to the gap
between source and target domains, directly applying the pre-
trained model will lead to a very low quality of pseudo labels.
To improve the quality of pseudo labels for a higher adaptation
performance, we propose Target Domain Growing (TDG) to
extend the source model, i.e., we duplicate the prediction head
(i.e., decoder) h by K times in the target domain, and they are
initialized as the pre-trained prediction head with parameter
values of θ0h. These prediction heads are connected to the same
pre-trained feature extractor g in parallel, as shown in Fig. 1.

Let hk denote the k-th prediction head in the target domain.
As they have the same initial parameter values with the same
architecture, their outputs will be the same for a given input. To
obtain diversity, we introduce perturbations for the prediction
heads so that they produce different results for more robust
ensemble. Specifically, we use random spatial transformation
and dropout to improve the diversity of predictions.

First, for an input image x ∈ RH×W in the target domain,
where H and W are the height and width, respectively, we
send it into the network K times, each time with a random
spatial transformation and for a different prediction head hk.
The segmentation prediction result for the k-th head is:

pk = T −1
k ◦ hk

(
g(Tk ◦ x)

)
(2)

where Tk is a random spatial transformation and T −1
k is the

corresponding inverse transformation. pk ∈ RC×H×W is the
output segmentation probability map with C channels obtained
by Softmax, where C is the class number for segmentation.
In this paper, we set Tk as random flipping, random rotation
with π/2, π and 3π/2 for efficient implementation.

Second, we add a dropout layer before each of the prediction
head hk, so that the prediction heads take different random
subsets of the features as input. Due to the image-level and
feature-level perturbations, the K predictions are different for
an input image. We then average across the K predicted
segmentation probability maps for ensemble:

p̄ =
1

K

K∑
k=1

pk (3)

C. Twice forward pass supervision with Reliable Pseudo
Labels

With the average probability prediction p̄, we take an
argmax to obtain the pseudo label for the input x. To re-
duce noises, we post-process it by only keeping the largest
component for each foreground class in segmentation tasks
where each foreground class has only one component (e.g,
heart structure and fetal brain segmentation in this work). Then
the post-processed pseudo label is converted into a one-hot
representation, which is denoted as ỹ ∈ {0, 1}C×H×W .

As the domain gap may limit the quality of the pseudo
label ỹ, directly using ỹ to supervise the network will lead to
a limited performance. To deal with this problem, we use the
uncertainty information in p̄ to identify pixels with reliable
pseudo labels and only use the reliable region to supervise the
network. To achieve this, we define a binary reliability map
M ∈ {0, 1}H×W for ỹ, and each element in M is defined as:

Mn =

{
1 if p̄c∗,n > τ

0 otherwise
(4)

where n = 1, 2, ..., HW is the pixel index. c∗ =
argmaxc(p̄c,n) is the class with the highest probability for
pixel n, and p̄c∗,n represents the confidence for the pseudo
label at that pixel. τ ∈ (1/C, 1.0) is a confidence threshold.

For pseudo label-based self-training, the model may be
biased towards its own prediction in each iteration. To avoid
this problem, Chen et al. [37] introduced cross supervision
where two networks with different predictions guide each
other to reduce the bias. However, the use of two networks
would increase the computational and memory cost, and it
is not suitable for SFDA where only one pre-trained model
is provided. Inspired by Chen et al. [37] and to improve the
robustness of pseudo label-based SFDA, we introduce Twice
Forward pass Supervision (TFS) for robust adaptation.

Specifically, for a batch of data in the training set, before
each gradient back-propagation, we perform two consecutive
forward passes. We employ the pseudo label ỹ and its asso-
ciated reliability map M obtained in the first forward pass to
supervise the prediction heads in the second forward pass. Let
p′k denote the output of the k-th prediction head in the second
forward pass. Due to the use of random spatial transformation
and dropout as mentioned above, the outputs of the two
forward passes are different despite the same parameter values.
Using ỹ to supervise p′k can introduce a consistency regular-
ization under perturbations, which improves the robustness of
the network. The TFS loss is:

LTFS =
1

K

K∑
k=1

Lw−dice(p
′k, ỹ,M) (5)

where Lw−dice is the reliability map-weighted Dice loss for
a single head. Here we use a Dice-based loss for pseudo
label supervision, as Dice loss can better deal with class
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TABLE I
DETAILS OF DATASETS USED FOR EXPERIMENTS. THE VALUES REPRESENT VOLUME NUMBERS.

Dataset M&MS Dataset FB Dataset FeTA Dataset

Domain
A B C D Source Target Source Target

Siemens Philips General Electric Canon HASTE trueFISP IRTK mialSR

Training 135 177 105 70 47 30 28 28
Validation 19 25 15 10 7 5 4 4

Testing 38 50 30 20 14 9 8 8

Overall 192 252 150 100 68 44 40 40

imbalance in segmentation tasks than cross entropy [38], and
the segmentation performance is usually evaluated by Dice.

Lw−dice = 1− 1

C

C∑
c=1

∑
n 2Mnp

′k
c,nỹc,n∑

n Mn(p′k
c,n + ỹc,n) + η

(6)

where n is the pixel index and η = 10−5 is a small number
for numeric stability.

D. Mean Prediction-based Entropy Minimization
Entropy minimization is widely used for regularization in

semi-supervised learning [19] and SFDA [13], [39], [40],
which improves the model’s confidence by minimizing the en-
tropy of the class distribution in a prediction output. However,
existing entropy minimization methods for SFDA are applied
to networks with a single prediction head. For our method with
multiple prediction heads, enforcing entropy minimization for
each prediction head respectively may lead to sub-optimal
results when different predication heads obtain opposite results
with high confidence. For example, for binary segmentation,
when hk and hk+1 predict one pixel as being the foreground
with probability of 0.0 and 1.0 respectively, both branches
have the lowest entropy, but their average has a high entropy.
To overcome this problem, we apply entropy minimization to
the mean prediction across the K heads:

Lment = − 1

HW

HW∑
n=1

C∑
c=1

p̄′
c,nlog(p̄

′
c,n) (7)

where p̄′ is the mean probability prediction obtained by the
K heads in the second forward of TFS. Compared with
minimizing the entropy of each prediction head respectively,
minimizing the entropy of their mean prediction p̄′ can not
only reduce the uncertainty of each head, but also encourage
the consistency between them. Thus, it helps to improve the
robustness of the network on samples in the target domain.

E. Adaptation by Self-training
Our adaptation method adopts a self-training process on

unlabeled images in the target domain. Based on the pseudo
labels obtained by TDG, the overall loss function for tuning
the network with TFS in the target domain is:

L = LTFS + λLment (8)

where λ is a hyper-parameter to control the weight of Lment.
Note that there are two forward passes for each parameter
update step, where the first forward pass obtains pseudo labels,

and the loss function is calculated in the second pass for
parameter update with back-propagation.

IV. EXPERIMENTS

A. Datasets and Implementation
We used three datasets for experiments: 1) the public

Multi-centre, multi-vendor and multi-disease cardiac image
segmentation (M&MS) dataset [41], where the images were
acquired by devices with four different vendors, 2) an in-
house Fetal Brain (FB) segmentation dataset that contains
two different MRI sequences, and 3) a public Fetal Tissue
Annotation (FeTA) dataset that contains two different super-
resolution methods [42]. A summary of these three datasets is
listed in Table I.

1) Cardiac Image Segmentation Dataset (M&MS): The
M&MS dataset [41] consists of 345 cardiac MRI volumes
collected from six different hospitals, using four different
scanner vendors, namely Siemens, Philips, General Electric,
and Canon. The imaging devices were MAGNETOM Avanto
for hospital 1, Achieva for hospital 2 and 3, Signa Excite,
Vantage Orian, and MAGNETOM Skyra for hospital 4, 5
and 6, respectively. Following [41], we divide the dataset into
four domains: Domain A for Siemens, comprising data from
hospitals 1 and 6; Domain B for Philips, comprising data from
hospitals 2 and 3; Domain C for General Electric, comprising
data from hospital 4; and Domain D for Canon, comprising
data from hospital 5. The slice number per volume varied from
10 to 13. The in-plane resolution ranged from 0.85 to 1.45 mm
with slice thickness 9.2-10 mm. Following the setting in [40],
we used domain A as the source domain, and B, C and D as the
target domains. The target tissues for segmentation are the Left
Ventricle (LV), Right Ventricle (RV) and Myocardium (MYO).
We randomly split images in each domain into 70%, 10%
and 20% for training, validation and testing, respectively, and
abandoned labels for the training sets in the target domains.

2) Fetal Brain (FB) Segmentation Dataset: The FB dataset
had fetal MRI with two imaging protocols acquired from a
single center, including 68 volumes of half-Fourier acquired
single turbo spin-echo (HASTE) and 44 volumes of true
fast imaging with steady state precession (TrueFISP). The
slice number for each volume varied from 11 to 22, and the
gestational age ranged in 21-33 weeks. The two sequences
had an in-plane resolution of 0.64 to 0.70 mm and 0.67 to
1.12 mm respectively, with slice-thickness 6.5 - 7.15 mm and
6.5 mm, respectively. HASTE and TrueFISP were used as the
source and target domains, respectively. We randomly split the
images in each domain into 70%, 10% and 20% for training,
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TABLE II
DICE (%) OF DIFFERENT METHODS ON THE M&MS DATASET FOR CARDIAC STRUCTURE SEGMENTATION IN THE TARGET DOMAINS. THE BOLD

FONT HIGHLIGHTS THE BEST VALUES IN THE FIRST AND SECOND SECTIONS, RESPECTIVELY. ASTERISKS INDICATE STATISTICAL SIGNIFICANCE

WHEN COMPARING THE METHODS WITH THE SOURCE ONLY (*: P ≤ 0.05, **: P ≤ 0.01, ***: P ≤ 0.001) USING A PAIRED STUDENT’S T-TEST.

Method
Target domain B Target domain C Target domain D

LV MYO RV LV MYO RV LV MYO RV

Source only 87.54±10.40 75.50±10.97 81.50±16.97 86.47±7.61 77.46±7.71 80.55±11.44 88.04±6.71 75.88±8.57 77.76±17.88
Source only-Esb 88.62±8.19 77.22±9.99 82.82±19.22 86.60±7.94 78.54±9.53 84.26±9.14 88.22±7.56 77.53±8.06 79.35±17.56
Fine-tune valid 90.34±6.30 81.68±6.53 85.30±12.13 89.54±6.06 82.82±4.67 86.20±8.20 88.38±8.46 81.08±4.10 83.47±11.69
Fine-tune train 90.90±5.36 83.76±5.48 87.63±6.11 89.59±5.69 83.98±4.85 87.46±5.38 90.68±5.40 83.89±4.29 85.93±5.57

Target only 91.13±6.37 84.37±6.56 87.27±8.86 89.40±7.57 82.67±5.66 82.99±7.85 88.69±8.35 81.60±5.35 83.41±11.25

PTBN [32] 89.62±7.11 79.99±6.40** 82.31±15.73 86.06±8.96 79.62±7.07 83.76±7.34 88.19±6.51 79.03±4.92 81.01±11.30
TENT [12] 89.03±8.46 79.96±6.44** 83.72±11.42 84.97±10.98 78.68±6.76 84.65±7.18 84.28±10.62 79.08±4.07 82.34±9.70

TTT [9] 89.41±7.06 79.50±6.99** 82.72±13.27 85.89±9.12 79.57±7.10 83.62±6.56 88.13±6.93 79.91±4.60 82.31±9.63
URMA [21] 90.38±5.64 82.09±5.39*** 84.30±7.27 88.44±6.29* 81.73±6.21* 86.52±4.90* 88.94±5.92 80.69±4.74 83.01±7.61

Ours w/o Esb 90.70±5.38* 81.82±5.81*** 85.73±9.22 89.74±3.98** 83.10±5.61** 86.69±5.50* 89.09±6.00 80.89±3.91 83.87±9.37
Ours 91.02±5.50 * 82.77±5.25*** 87.33±7.87* 89.64±4.03* 84.00±5.04*** 88.73±4.51*** 89.13±6.04 81.84±4.27* 85.30±9.53

M&MS B         M&MS C            M&MS D              FB       

L
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Fig. 2. Evolution of validation Dice, Lment and LTFS during adapta-
tion. The black squares mark the epoch with the highest validation Dice.

validation and testing, respectively, and abandoned the labels
of training images in the target domain.

3) Fetal Tissue Annotation (FeTA) Challenge Dataset: The
FeTA Dataset [42] used in this study was from the FeTA2022
challenge1 that aims to segment seven different tissues, namely
External Cerebrospinal Fluid (ECF), Grey Matter (GM), White
Matter (WM), Ventricles (Ven), Cerebellum (Cer), Deep Grey
Matter (DGM), and Brain Stem (BS). The official dataset has
120 samples, but only 80 samples are publicly available after
the challenge, and they were acquired from the University
Children’s Hospital Zurich (Kispi) using 1.5T and 3T clinical
GE whole-body scanners. T2-weighted single-shot Fast Spin
Echo sequences were acquired with an in-plane resolution of
0.5mm × 0.5mm and a slice thickness of 3 to 5 mm. To obtain
high-resolution fetal brain reconstructions, the mialSR super-
resolution (SR) method [43] was used for 40 cases, while the
Simple IRTK method [44] was used for the other 40 cases.
We used the 40 cases reconstructed by Simple IRTK as the
source domain, and the other 40 cases reconstructed by mialSR
as the target domain. For each domain, the 3D SR volumes
were divided into training, validation, and testing sets in the
ratio of 70%, 10% and 20%, respectively.

4) Implementation Details: All the experiments were imple-
mented with PyTorch, using an NVIDIA GeForce RTX 2080Ti
GPU. Our code is made available online2. For M&MS dataset
and FB datasets that have a large slice thickness, we selected
the widely used 2D UNet [35] to demonstrate the effectiveness
of our method, as most medical image segmentation models
are based on UNet-like structures [1]. The image intensity was

1https://feta.grand-challenge.org/
2https://github.com/HiLab-git/UPL-SFDA

clipped by the 1st and 99-th percentiles, and linearly normal-
ized to [-1,1]. Each slice in the M&MS dataset was center
cropped to 256×256, and the slices in the FB dataset were
resized to 256×256. For the FeTA dataset, we cropped the 3D
volumes based on the brain region during preprocessing, and
used the 3D U-Net architecture [45] for implementation. Due
to memory limitation, we cropped the images to a patch size
of [32, 64, 64]. In the inference stage, we applied a sliding
window using the same patch size with a stride of 50% to
obtain the final segmentation results. During pre-training in the
source domain, we trained the source model for 400 epochs
with Dice loss, Adam optimizer and initial learning rate of
0.01 that was decayed to 90% every 4 epochs. The model
parameters with the best performance on the validation set in
the source domain were used for adaptation. For adaptation in
each target domain, we duplicated the decoder for K times,
and updated all the model parameters for 20 epochs with Adam
optimizer and a fixed learning rate of 10−4.

The hyper-parameter setting was determined based on the
labeled validation set of the target domain. Specifically, K = 4
and λ = 1.0. τ was set to 0.95 for the M&MS and FeTA
dataset, and 0.9 for FB dataset, respectively. In the adaptation
stages, for M&MS and FB dataset, we set all the slices in a
single volume as a batch, and for FeTA dataset, the batch size
was set to 4. After training, we used the checkpoint with the
best performance on the validation set for inference. Fig. 2
shows the evolution of validation Dice, Lment and LTFS . It
can be observed that the loss functions converge in 20 epochs,
and the best checkpoint was obtained at epoch 6 for M&MS
B, C, 4 for M&MS D and 6 for the FB dataset, respectively.

For quantitative evaluation of the volumetric segmentation
results, we adopted the commonly used 3D Dice score and
Average Symmetric Surface Distance (ASSD). As the slice
thickness was large (6-10 mm) in the M&MS and FB datasets,
we calculated ASSD values with unit of pixel.

B. Comparison with State-of-the-art Methods

To verify the effectiveness of our proposed UPL-SFDA,
we compared it with four state-of-the-art SFDA methods: 1)
PTBN [32] that updates batch normalization statistics based
on unlabeled training images in the target domain without loss
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TABLE III
ASSD (PIXELS) OF DIFFERENT METHODS ON THE M&MS DATASET FOR CARDIAC STRUCTURE SEGMENTATION IN THE TARGET DOMAINS. THE

BOLD FONT HIGHLIGHTS THE BEST VALUES IN THE FIRST AND SECOND SECTIONS, RESPECTIVELY. ASTERISKS INDICATE STATISTICAL

SIGNIFICANCE WHEN COMPARING THE METHODS WITH THE SOURCE ONLY (*: P ≤ 0.05, **: P ≤ 0.01) USING A PAIRED STUDENT’S T-TEST.

Method
Target domain B Target domain C Target domain D

LV MYO RV LV MYO RV LV MYO RV

Source only 0.55±0.46 0.64±0.45 0.88±1.10 0.58±0.37 0.57±0.21 1.18±1.38 0.54±0.34 0.59±0.30 1.59±2.55
Source only-Esb 0.49±0.43 0.61±0.48 0.77±1.54 0.54±0.30 0.54±0.22 0.64±0.56 0.53±0.38 0.57±0.32 0.85±0.91
Fine-tune valid 0.43±0.36 0.55±0.46 0.49±0.44 0.46±0.30 0.49±0.18 0.68±0.68 0.53±0.43 0.50±0.23 0.69±0.60
Fine-tune train 0.43±0.44 0.50±0.45 0.43±0.29 0.41±0.20 0.40±0.12 0.53±0.38 0.36±0.16 0.39±0.11 0.48±0.22

Target only 0.52±0.77 0.55±0.61 0.54±0.95 0.40±0.24 0.44±0.16 1.31±0.99 0.57±0.55 0.51±0.24 0.88±0.69

PTBN [32] 0.51±0.43 0.60±0.46 0.79±1.33 0.65±0.44 0.53±0.16 1.03±0.92 0.63±0.53 0.55±0.26 1.21±1.41
TENT [12] 0.61±0.69 0.62±0.54 0.67±0.99 0.71±0.65 0.59±0.24 0.87±0.73 0.88±0.72 0.59±0.25 0.55±0.31

TTT [9] 0.48±0.38 0.59±0.47 0.82±1.23 0.71±0.55 0.55±0.19 1.16±0.89 0.64±0.53 0.53±0.21 1.01±1.20
URMA [21] 0.41±0.25* 0.51±0.35 0.50±0.23* 0.45±0.23* 0.46±0.13** 0.53±0.32* 0.47±0.22 0.50±0.16 0.52±0.22

Ours w/o Esb 0.46±0.52 0.58±0.57 0.54±0.37* 0.42±0.24** 0.46±0.18* 0.62±0.43 0.56±0.39 0.51±0.21 0.59±0.46
Ours 0.45±0.54 0.54±0.57 0.40±0.38* 0.40±0.16** 0.43±0.16** 0.39±0.26** 0.48±0.30 0.47±0.19 0.46±0.29

TABLE IV
QUANTITATIVE COMPARISON OF DIFFERENT SFDA METHODS FOR FB

SEGMENTATION. * DENOTES SIGNIFICANT DIFFERENCE (p-VALUE ≤
0.05) FROM SOURCE ONLY USING A PAIRED STUDENT’S T-TEST.

Methods Dice (%) ASSD (pixel)
Source only 84.09±6.34 1.33±0.49

Source only-Esb 86.39±6.94 1.02±0.41
Fine-tune valid 85.26±5.38 2.09±1.44
Fine-tune train 89.71±4.87 0.86±0.49

Target only 88.85±4.12 0.91±0.30

PTBN [32] 85.70±4.88 1.85±0.96
TENT [12] 85.75±3.62 1.60±0.71

TTT [9] 85.84±4.52 1.80±0.90
URMA [21] 84.12±6.82 2.18±1.19

Ours w/o Esb 87.95±4.61 1.37±1.21
Ours 89.10±3.09* 1.08±0.49

functions for optimization; 2) TENT [12] that only updates
the parameters of batch normalization layers by minimizing
the entropy of model predictions in the target domain; 3)
TTT [9] that uses an auxiliary decoder to predict the rotation
angle of target-domain images, and the auxiliary task’s loss
is used to update the model parameters; and 4) URMA [21]
that uses pseudo labels generated by a frozen main decoder to
supervise auxiliary decoders. We also compared our method
with four naive methods: 1) Source only where the model
pre-trained in the source domain is directly used for inference
in the target domain, which serves as the lower bound; 2)
Target only that uses training images and their labels in the
target domain to train a model directly, without pre-training
in the source domain; and 3) Fine-tune train and 4) Fine-
tune valid that mean the model pre-trained in the source
domain is fine-tuned with the annotated training and validation
sets in target domain based on fully supervised learning,
respectively. In order to investigate the impact of ensembling,
we conducted two additional experiments: 1) Source only-
Esb that refers to ensemble based on spatial transformations of
input images for inference with the pre-trained source model;
2) Ours w/o Esb where our method did not utilize any spatial
transformations and made predictions using only one decoder.
We implemented all the compared methods with the same
backbone, i.e., UNet [35] for M&MS and FB dataset, and

3D UNet [45] for FeTA dataset for a fair comparison.
1) Result for Cardiac Image Segmentation: For the M&MS

dataset, we used domain A as the source domain, and adapted
the pre-trained model to domain B, C and D, respectively.
Table II and III show the quantitative comparison between the
compared methods in terms of Dice and ASSD, respectively.
It can be observed the “Target only” outperformed “Source
only” substantially, showing the large domain gap between the
source and target domains. For example, in target domain B,
“Source only” achieved an average Dice of 87.54%, 75.50%
and 81.50% for LV, MYO and RV, respectively, and the
corresponding Dice values obtained by “Target only” were
91.13%, 84.37% and 87.27% respectively.

The second sections in Table II and III show that all the
compared methods outperformed “Source only”. PTBN [32],
TENT [12] and TTT [9] obtained a moderate improvement
from “Source only”. For example, in Target domain B, they
improved the average Dice for LV from 87.54% to 89.62%,
89.03% and 89.41%, respectively. URMA [21] obtained a
higher Dice (90.38%) than these three methods, but it was
inferior to our method (91.02%). The average Dice across the
three target structures obtained by our method was 87.04%,
87.46% and 85.43% in the three target domains, respectively,
compared with the corresponding values of 81.51%, 81.49%
and 80.56% achieved by “source only”, showing that our
method improved the average Dice scores by 5.53, 5.97 and
4.87 percentage points in the three target domains respectively.

In terms of average Dice values, our method outperformed
“Fine-tune valid”, and was close to “Target only” (p-value >
0.05) in target domain B, and better than “Fine-tune train”,
“Fine-tune valid” and “Target only” in target domain C. In
target domain D, our method also outperformed “Target only”.
Note that “Target only”, and “Fine-tune train” require annota-
tions in the training set of the target domain, while our adapta-
tion method could achieve a similar performance without the
annotations. We also analyzed the effectiveness of ensemble of
multiple prediction heads with spatial transformations. Taking
M&MS B as an example, “Source only-Esb” performed better
than “Source only”, indicating the positive effect of additional
data augmentations for inference. In addition, “Ours w/o Esb”
exhibited a decreased performance compared with our com-
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TABLE V
DICE (%) OF DIFFERENT SFDA METHODS ON THE FETA DATASET FOR FETAL TISSUE SEGMENTATION. ASTERISKS INDICATE STATISTICAL

SIGNIFICANCE WHEN COMPARING THE METHODS WITH SOURCE ONLY (*: P ≤ 0.05, **: P ≤ 0.01) USING A PAIRED STUDENT’S T-TEST. THE BOLD

FONT HIGHLIGHTS THE BEST VALUES IN THE FIRST AND SECOND SECTIONS, RESPECTIVELY.

Method ECF GM WM Ven Cer DGM BS Average

Source only 77.55±5.78 63.68±6.09 83.89±4.16 75.03±10.35 73.91±18.54 52.57±12.54 51.46±28.54 68.30±12.28
Source only-Esb 78.03±5.65 64.54±6.23 83.89±4.19 76.32±8.34 73.88±18.68 47.98±13.45 47.95±27.99 67.51±12.08
Fine-tune valid 79.73±7.95 65.65±6.82 81.83±9.85 77.12±13.25 77.45±12.04 69.86±5.87 50.14±23.58 71.68±11.34
Fine-tune train 85.59±3.23 71.55±5.81 90.30±2.68 85.18±8.03 87.78±4.98 81.49±6.76 73.17±16.58 82.15±6.87

Target only 86.16±2.23 71.80±5.17 89.93±3.11 83.11±9.10 84.38±5.37 82.33±5.00 71.21±12.77 81.27±6.11

PTBN [32] 77.60±7.70 62.54±7.73 82.32±5.50 74.06±10.63 80.20±12.46 57.91±15.46 52.13±23.86 69.53±11.91
TENT [12] 81.43±4.73* 65.85±5.06* 84.49±4.36 73.85±10.00 80.59±15.97* 62.26±9.12* 60.00±20.33 72.64±9.94*

TTT [9] 80.00±5.98 63.77±6.53 83.06±4.36 74.29±10.39 81.57±12.51 57.57±12.81 56.05±22.42 70.90±10.71
URMA [21] 81.76±5.53* 65.95±5.21* 84.56±4.71 73.97±9.54 83.02±13.10* 64.78±8.26** 62.52±19.89 73.79±9.46*

Ours w/o Esb 84.16±3.32 66.06±5.77 83.56±4.03 75.07±9.14 84.02±10.68 63.80±8.17 67.36±11.83 74.86±7.56*
Ours 84.75±3.15** 66.98±5.67* 83.96±3.82 76.66±7.61 84.91±8.18* 62.46±8.79* 66.57±13.52* 75.19±7.25**

(a) image (b) ground truth  (c) source only (d) PTBN (e) TENT (f) TTT (g) URMA (h) ours

Fig. 3. Qualitative comparison of different SFDA methods. The top three rows are from domain B, C and D on M&MS dataset respectively. The
last two rows are from the target domain of FB and FeTA datasets, respectively.

plete method. This suggests that ensembling during inference
plays a beneficial role in our approach. A visual comparison
between different SFDA methods is shown in Fig. 3. Note that
“Source only” achieved a poor performance, and the results
of our method were closer to the ground truth than those of
the other methods.

2) Results for Fetal Brain Segmentation: We further investi-
gated the performance of the compared methods on FB dataset,
with HASTE and TrueFISP as the source and target domains,
respectively. The quantitative evaluation results are shown in
Table IV. It can be observed that “Source only” and “Target

only” achieved an average Dice of 84.09% and 88.85%,
respectively, showing the large gap between the two domains.
“Fine-tune train” outperformed “Target only”, achieving an
average Dice of 89.71%. The existing methods only achieved
a slight improvement compared with “Source only”, with the
Dice values ranging from 84.12% to 85.84%. In contrast, our
method largely improved it to 89.10%, which outperformed
“Target only” and was close to “Fine-tune train” (p-value >
0.05). Our method achieved an average ASSD of 1.08 pixels,
which was lower than those of the other SFDA methods. The
qualitative comparison in the penultimate row of Fig. 3 shows
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Fig. 4. Performance of our method with different hyper-parameter
values on the validation sets of different target domains.

that the existing methods tend to achieve under-segmentation
of the fetal brain, while our method can successfully segment
the entire fetal brain region with high accuracy.

3) Results for 3D Fetal Tissue Segmentation: Quantitative
evaluation results on the FeTA dataset in terms of Dice are
shown in Table V. It shows that “Source only” and “Target
only” achieved an average Dice of 68.30% and 81.27%,
respectively, indicating the large gap between the two domains.
Our method increased the average Dice by 6.89 percentage
points compared with “Source only”, reaching 75.19%. In
contrast, the existing methods had a lower performance than
ours. The average Dice obtained by PTBN [32], TENT [12],
TTT [9] and URMA [21] was 69.53%, 72.64%, 70.90% and
73.79%, respectively. The qualitative comparison in the last
row of Fig. 3 demonstrates that our method outperformed the
other methods in terms of segmentation performance.

C. Ablation Analysis of Our UPL-SFDA
1) Effect of Hyper-parameters: There are three important

hyper-parameters specific to our method: the number of dupli-
cated prediction heads K, the confidence threshold τ to select
reliable pseudo labels for supervision, and the loss weight λ.
We first investigated the effect of K by setting it to 1 to 5
respectively, and the performance on the validation sets of the
two datasets are shown in Fig. 4(a). It can be observed that
K = 1 performed worse than larger K values, showing the
superiority of using TDG. The performance on both datasets
improved when K changed from 1 to 4, and K = 5 did
not further bring performance improvement. Therefore, we set
K = 4 for our method.

Then we investigated how τ affected the pseudo labels
and the SFDA performance. Fig. 5 shows some examples of
reliable pseudo labels with different τ values. We found that
a higher threshold τ will lead to smaller reliable regions for
each class, which helps to avoid the model being affected by
unreliable regions of the pseudo labels. Quantitative compar-
ison between different τ values is demonstrated in Fig. 4(b),
which shows that the performance on the M&MS dataset
was relatively stable with different τ values, and τ = 0.95
performed slightly better than the other values in average. The
best τ value on the FB dataset was 0.90 based on performance
on the validation set. Therefore, we set τ to 0.95 and 0.9
for the two datasets, respectively. The performance on the
validation set with different λ values is shown in Fig. 4(c). It
demonstrates that the best λ was 1.0 for the different datasets.

Fig. 6 shows the reliable pseudo labels obtained at different
training epochs in the target domains. It can be observed

that the pseudo labels are updated during the self-training
process, and their quality gradually improves at different
training epochs. In addition, the confidence of the pseudo
labels also improves with the increase of training epochs.

2) Ablation study of each component: To evaluate the ef-
fectiveness of each of the proposed components in our UPL-
SFDA, we set the baseline as updating the source model based
on self-training where the network was supervised by its own
prediction and an entropy minimization loss. The quantitative
results obtained by different variants of our method are shown
in Table VI, where M means using the binary reliability map
to weight pseudo labels, TDG means using target domain
growing with dropout before each prediction head, and T
means using random spatial transformation for each prediction
head. Lment means minimizing entropy of the mean prediction
across the K heads, rather than minimizing entropy of each
head respectively.

Table VI shows that each component of our method led
to a performance improvement. Take the performance on the
domain C of M&MS dataset as an example, the average
Dice score obtained by “Source only” was 81.47%. The
baseline obtained an average Dice of 84.20%, and introduc-
ing reliability map weighting for pseudo labels improved it
to 85.09%. For TDG, only using dropout for perturbations
obtained an average Dice of 85.22%, and additionally using
spatial transformation for the prediction heads improved it
to 86.16%, showing that the spatial transformation plays an
important role in our method. Then, using our Twice Forward
pass Supervision (TFS) loss improved it to 86.79%, and our
proposed method combining all these modules with Lment

obtained the highest Dice score of 87.46%. Note that by
removing the spatial transformation for the prediction heads in
our method, the average Dice decreased to 85.43%. We also
tried to only combine Lment loss with TDG using the spatial
transformations (i.e., removing TFS loss), and the average
Dice dropped to 86.94%. In addition, Table VI shows that
our method outperformed “Target only” on domains C and D
in the M&MS dataset and the target domain of FB dataset in
terms of average Dice score.

V. DISCUSSION

Our proposed UPL-SFDA based on TDG and reliable
pseudo label supervision has several advantages over exist-
ing SFDA methods for domain adaptation without access
to source-domain images. First, unlike some existing meth-
ods [9]–[11] using auxiliary branches in the network that
require special training strategies in the source domain, our
method does not require training auxiliary branches in the
source domain, and it makes the training methods in the source
and target domains independent. This decoupling makes our
method more general to a wider range of pre-trained mod-
els. Second, compared with existing methods using entropy
minimization for regularization [12], our method uses reliable
pseudo labels for adaptation, which provides more effective
supervision signals for model update. In addition, based on
the TDG strategy with perturbations, we obtain multiple
predictions that can provide high-quality pseudo labels with
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TABLE VI
ABLATION STUDY ON DIFFERENT COMPONENTS OF OUR UPL-SFDA. THE FIRST ROW (BASELINE) IS UPDATING THE SOURCE MODEL WITH PSEUDO

LABELS OBTAINED BY ITSELF AND ENTROPY MINIMIZATION. M : USING THE BINARY RELIABILITY MAP TO WEIGHT PSEUDO LABELS. TDG: TARGET

DOMAIN GROWING WITH DROPOUT BEFORE EACH PREDICTION HEAD. T : RANDOM SPACIAL TRANSFORMATION FOR EACH PREDICTION HEAD.

Components Dice (%) ASSD (pixel)

M TDG T TFS Lment M&MS B M&MS C M&MS D FB M&MS B M&MS C M&MS D FB

84.10±9.67 84.20±6.16 83.37±6.90 83.44±7.38 0.60±0.84 0.64±0.36 0.60±0.38 1.39±0.76
✓ 84.49±10.35 85.09±5.79 84.10±6.97 85.88±5.49 0.58±0.80 0.49±0.21 0.56±0.36 1.56±1.01
✓ ✓ 84.52±10.31 85.22±5.57 84.12±6.89 86.77±4.17 0.56±0.63 0.50±0.22 0.55±0.34 0.95±0.24
✓ ✓ ✓ 86.39±7.90 86.16±6.17 84.98±7.08 86.92±5.41 0.44±0.43 0.46±0.25 0.48±0.26 0.91±0.36
✓ ✓ ✓ ✓ 86.52±6.63 86.79±4.44 85.20±7.02 88.11±5.06 0.46±0.44 0.42±0.17 0.48±0.26 0.86±0.34
✓ ✓ ✓ ✓ ✓ 87.04±6.20 87.46±4.52 85.43±6.61 89.10±3.09 0.46±0.38 0.40±0.24 0.47±0.33 1.08±0.49
✓ ✓ ✓ ✓ 85.16±6.91 85.43±6.54 84.42±6.89 87.57±3.20 0.49±0.32 0.56±0.37 0.54±0.36 1.02±0.27

✓ ✓ ✓ 85.82±7.95 86.94±5.13 84.09±7.87 84.48±6.88 0.46±0.42 0.41±0.20 0.55±0.39 1.52±0.92

Source only 81.51±12.78 81.47±8.92 80.56±11.05 84.09±6.34 0.69±0.67 0.71±0.65 0.90±1.06 1.33±049
Target only 87.59±7.26 85.02±7.02 84.56±8.31 88.85±4.12 0.53±0.77 0.71±0.46 0.65±0.49 0.91±0.30

(a) image (b) ground truth (c) argmax (d)  � = 0.70 (e)  � = 0.80 (f)  � = 0.90 (g)  � = 0.95 (h)  � = 0.99 

Right VentricleLeft Ventricle Myocardium Fetal brain Background

Fig. 5. Effect of confidence threshold τ on reliable pseudo labels. The first three rows are from domain B, C and D on M&MS dataset respectively,
and the last row is from the target domain of FB dataset. (c) shows pseudo labels obtained by argmax, and (d)-(h) are reliable pseudo labels with
different τ values, where uncolored regions are pixels with unreliable pseudo labels.

efficient uncertainty estimation, which prevents the model
being corrupted by unreliable pseudo labels. Using entropy
minimization on the average prediction across the multiple
heads can encourage a consistency between them, which also
improves the robustness of our method.

The pseudo label-based supervision loss Lw−dice and the
unsupervised regularization loss Lment have two similari-
ties. First, both of them are based on multi-head agreement.
Lw−dice uses relatively consensus regions of the K prediction
heads as pseudo labels, and Lment encourages the K pre-
diction heads to obtain consensus results by minimizing the
uncertainty in the average prediction. Second, the two terms
will increase the confidence of the predictions. Lw−dice drives
the predictions to be closer to the hard pseudo labels, while
Lment directly minimizes the entropy, and both of them will

reduce uncertain predictions. However, they also have several
important differences. First, Lw−dice encourages consistency
across two different forward passes with feature perturbations,
while Lment is for consistency across prediction heads. Sec-
ond, Lw−dice is applied to high-confidence pixels (with a
threshold of τ ), while Lment is applied to the entire image
region. Thirdly, Lw−dice is a pseudo label-based supervision
loss, while Lment is an unsupervised loss for regularization.
Therefore, the two terms are complementary to each other.

Introducing perturbations to the K prediction heads in
TDG is important for achieving good performance. Without
perturbation, the K prediction heads will obtain the same
result, which degrades to just using the pre-trained model with
a single prediction head. With perturbations, the K prediction
results are different and their ensemble is more robust, which
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Right VentricleLeft Ventricle Myocardium Fetal brain Background

(a) image (b) ground truth (c) Source only (d) epoch ϵ4 (e) epoch ϵ2 (f) epoch 3ϵ
4 (g) epoch ϵ

Fig. 6. Pseudo labels at different training steps in self-training. ϵ means the epoch number with the highest performance on the validation set. The
first three rows are from domain B, C and D of M&MS dataset respectively, and the bottom row is from the target domain of FB dataset. In (c)-(g),
only reliable pseudo labels are encoded by colors, and pixels without encoded colors will be ignored in the calculation of TFS loss.

can overcome the bias in each prediction head and lead to
uncertainty estimation. In addition, we implemented our TDG
with an encoder-decoder structure due to that most state-
of-the-art CNNs for medical image segmentation have an
encoder-decoder structure [35], [36]. It may also be applied
to other networks [46] by duplicating the prediction head
multiple times with perturbations in the target domain.

In our experiment, a validation set with annotations in the
target domain is used to select hyper-parameters for the com-
pared methods. The advantage of using the labeled validation
set is that it allows to find the optimal hyper-parameters
such as learning rate and weights of loss terms of each
compared method. In addition, it allows early stopping and
checkpoint selection to avoid over-fitting on the training set in
the target domain, which ensures a fair comparison between
the different methods. One may also use the validation set
to update the model weights by fine-tuning, which could
provide more supervision signal directly to the model for
parameter optimization. However, it may lead the model to
over-fit the validation set that is usually small. In addition,
using the validation set for hyper-parameter selection rather
than model learning is a work standard in the machine learning
community. However, in some cases, the labeled validation
set may not be available, making it less practical to use the
validation set to fine-tune the pre-trained model.

This work still has some limitations. First, our method
involves performing two forward passes for each gradient
back-propagation, which takes more time than using a single

forward pass. The training time consumption for our method is
slightly higher than TENT [12], but lower than URMA [21].
For instance, in M&MS B, our method takes an average of
0.661s per case to train one epoch, while TENT and URMA
require 0.342s and 0.944s in average, respectively. The average
inference time for our method is 0.342s per case, and slightly
higher than TENT’s 0.269s. Second, we have employed a
labeled validation set in the target domain to select the
optimal hyper-parameters. However, in practical applications,
acquiring a validation set could be challenging, making it
hard to determine hyper-parameters. Additionally, TDG with
multiple prediction heads increase the memory cost, which
does not allow a large patch size or batch size for dealing
with 3D medical images and may limit the performance.

VI. CONCLUSION

In conclusion, we propose a novel uncertainty-aware pseudo
label-guided approach for Source-Free Domain Adaptation
(UPL-SFDA) in medical image segmentation, which uses
target domain growing to generate multiple predictions for
an input to obtain reliable pseudo labels with a weight map
based on uncertainty estimation. The network is supervised
by the weighted pseudo labels and minimizing the entropy of
the average of the multiple predictions. A twice forward pass
supervision strategy is also proposed to avoid the network
being biased towards its own predictions in self-training.
Experimental results on multi-site heart MRI segmentation
and cross-modality fetal brain segmentation showed that our
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method outperformed existing SFDA methods, and it was
comparable to and even better than supervised training in the
target domain. In the future, it is of interest to apply our
method to other segmentation tasks.
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