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Abstract—Ultra-wideband raster-scan optoacoustic 

mesoscopy (RSOM) is a novel modality that has 
demonstrated unprecedented ability to visualize epidermal 
and dermal structures in-vivo. However, an automatic and 
quantitative analysis of three-dimensional RSOM datasets 
remains unexplored. In this work we present our 
framework: Deep Learning RSOM Analysis Pipeline 
(DeepRAP), to analyze and quantify morphological skin 
features recorded by RSOM and extract imaging 
biomarkers for disease characterization. DeepRAP uses a 
multi-network segmentation strategy based on 
convolutional neural networks with transfer learning. This 
strategy enabled the automatic recognition of skin layers 
and subsequent segmentation of dermal microvasculature 
with an accuracy equivalent to human assessment. 
DeepRAP was validated against manual segmentation on 
25 psoriasis patients under treatment and our biomarker 
extraction was shown to characterize disease severity and 
progression well with a strong correlation to physician 
evaluation and histology. In a unique validation experiment, 
we applied DeepRAP in a time series sequence of 
occlusion-induced hyperemia from 10 healthy volunteers. 
We observe how the biomarkers decrease and recover 
during the occlusion and release process, demonstrating 
accurate performance and reproducibility of DeepRAP. 
Furthermore, we analyzed a cohort of 75 volunteers and 
defined a relationship between aging and microvascular 
features in-vivo. More precisely, this study revealed that 
fine microvascular features in the dermal layer have the 
strongest correlation to age. The ability of our newly 
developed framework to enable the rapid study of human 
skin morphology and microvasculature in-vivo promises to 
replace biopsy studies, increasing the translational 
potential of RSOM.   
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I. INTRODUCTION 

ON-INVASIVE and quantitative in-vivo assessment of skin 

features, including the microvasculature, carries 

significant potential for diagnostics and disease 

monitoring in a number of pathologies [1, 2]. However, the use 

of non-invasive observations is currently limited by the tools 

available. Consequently, most of our knowledge on the 

implication of morphological and microvascular skin features 

in various skin and systemic diseases are based on histological 

analysis of biopsied skin samples ex-vivo [3-7]. For example, 

psoriasis leads to epidermal thickening, capillary elongation 

and increased dermal vascularization[4, 5, 8]. Aging, diabetes, 

and cardiovascular disease lead to changes in subcutaneous 

microvascular morphology and function[9-13]. While 

histological sampling has shed light into these relationships, it 

is an invasive procedure associated with pain and risk of 

infection.  In addition, biopsies are very laborious and costly, 

making them undesirable for routine examinations in 

comparison to diagnostic and theranostic tests that take into 

account microvascular alterations[14, 15]. 

  While imaging techniques can be used to analyze skin non-

invasively[1, 15, 16], many of the current methods do not offer 

the fine detail of histological analysis. For example, 

dermoscopy visualizes only the skin surface and is not 

appropriate for retrieving skin features under the epidermis due 

to the strong photon scattering of skin[15, 17]. Tissue 

N 
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sectioning microscopy methods offer technology that can 

reduce the effects of photon scattering but still have limitations 

in skin imaging[1, 15, 16]. Confocal microscopy requires high 

optical energy per volume element and only reaches a few tens 

of microns deep[18]. Optical coherence tomography (OCT)[19, 

20] and raster-scan optoacoustic mesoscopy (RSOM) reach 

deeper into the skin and can also extract vascular features.  

However, the optoacoustic method has deeper penetration and 

provides stronger contrast from the vasculature, holding the 

potential to become a widespread method for the study of skin 

morphology and function. It has been recently shown that 

RSOM is the only method available today that can offer three-

dimensional skin images with virtually isotropic resolution and 

highly detailed cross-sectional images[7, 8, 21]. Moreover, the 

different chromophores that can be visualized at various 

wavelengths render RSOM superior over other methods in 

terms of the functional contrast visualized[21].   

  RSOM has been already employed in human studies to 

quantify psoriasis burden and remission due to treatment[3, 8], 

visualize vasculature associated with melanoma formation[7] 

or capture functional skin characteristics in response to 

heating[22]. In addition, structural and functional imaging 

features derived from RSOM have been demonstrated to be 

objective disease markers to assess and stratify the severity of 

atopic dermatitis and were found to correlate well with 

conventional metrics[23-25]. Depending on the implementation 

of RSOM, the method is able to acquire super broad bandwidth 

optoacoustic signals from ten up to more than a hundred MHz, 

resulting in resolutions down to tens of micrometers or better 

and penetrations of up to several millimeters[3, 7, 8, 21, 22, 24, 

26, 27]. Nevertheless, the laborious nature of processing RSOM 

images does not yet allow routine dissemination of the modality 

in clinical settings. Firstly, manual segmentation and simple 

intensity-threshold based approaches applied today are 

laborious, user-dependent and do not allow for testing of large 

patient cohorts in a time efficient manner[3, 8, 26]. Moreover, 

user-dependent operation may introduce errors. Secondly, the 

fine structures of RSOM images correlated to high frequency 

optoacoustic signals typically attain much lower intensity 

compared to large skin structures reconstructed from low 

frequency signals, which may result in biases in image analytics 

especially when applying intensity thresholds for image 

segmentation[28]. Thirdly, due to light attenuation or 

substantial variations in image contrast at different skin depths, 

there may be depth-dependent intensity loss in the image, which 

is an image feature that cannot be addressed with simple 

filtering operations. 

To explore the full potential of RSOM and address these 

limitations, we employed deep learning as a tool to automate 

and improve the segmentation accuracy and to extract features 

and imaging biomarkers automatically. Convolutional neural 

networks (CNNs) represent the state-of-the-art for pixel 

classification (segmentation) in general computer vision and 

medical imaging modalities such as magnetic resonance 

imaging (MRI) and computed tomography (CT) [29-31]. For 

vascular structures, the DeepVesselNet architecture [32, 33] 

and topology-preserving loss functions [34-37] have been 

developed to automatically segment 3D vessel structures from 

MRI, CT and optoacoustic tomography images [38], achieving 

excellent segmentation performance. In this study, we 

demonstrate for the first time the application of deep learning-

based methods for the quantitative analysis of RSOM images 

and extraction of biomarkers representative of skin morphology 

and microvasculature. We developed DeepRAP (Deep 

Learning RSOM Analysis Pipeline), a deep learning-based 

method for automated analysis of RSOM image volumes. 

DeepRAP encompasses three major technical developments 

(Fig. 1): (1) a U-Net based model to separate skin morphology 

into epidermis and dermis layers; (2) a topology-preserving loss 

function to train a deep VesNet, allowing for accurate 

segmentation of dermis microvasculature in 3D and (3) the 

automatic computation of skin morphological and vasculature 

biomarkers. To preserve the fine features, DeepRAP processes 

the high and low frequency signals of RSOM data separately, 

significantly improving the segmentation accuracy of high-

resolution skin structures.  

We demonstrate DeepRAP by applying it to automatically 

segment RSOM images obtained from 25 psoriasis patients 

under treatment. The quantified RSOM biomarker is then 

applied to characterize the disease severity and progression, 

showing excellent agreement with manual segmentation and 

histology. In addition, we test DeepRAP using a more 

challenging problem, namely the assessment of cutaneous 

microvascular endothelial function by analyzing a sequence of 

RSOM volumetric images acquired during the post-occlusive 

reactive hyperemia process, i.e. an image sequence with 

significant contrast variations. Results show that DeepRAP 

accurately captures and quantifies the strong dynamic changes 

of skin microvasculature features, in higher detail and accuracy 

compared to Laser Doppler flowmetry or tissue spectrometry. 

We found that DeepRAP performs well, even at varying signal 

intensities due to tissue inhomogeneity at different skin depths 

or from different skin conditions. Having validated DeepRAP 

in datasets with known performance, we applied it to explore 

the rate of microvasculature change as a function of age in a 

group of 75 healthy volunteers. DeepRAP extracted five vessel 

features, which were examined for their relationship to age 

progression. The analysis indicates that small vessels in the 10-

40 micrometers range were most prominently affected by age, 

with a reduction rate that appeared most prominent in the 20-65 

years’ age range. The combination of RSOM and DeepRAP 

analysis presents an attractive solution to image and quantify 

morphology and functional changes in the skin, with the 

potential to improve diagnostic and prognostic applications for 

skin and circulatory pathologies. 

II. METHODS AND MATERIALS 

RSOM imaging and image reconstruction. We employed 

an in-house RSOM imaging system, which was introduced in 

our previous work [3, 39]. Illumination was provided by a 

pulsed laser at a wavelength of 532 nm. The repetition rate of 

the laser was 1 kHz, yielding an optical fluence of 0.375 

mJ/cm2, which is far below the safety limit according to the 

American National Standards for Safe Use of Lasers in humans 

(20 mJ/cm2)[40]. Before each scan, the skin was cleaned with 

alcohol wipes. Both the patients and the operators used 

appropriate goggles for laser safety reasons. Each patient was 

scanned with an imaging field of view of 4×2 mm2, a step size 

.   
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of 7.5 µm in the fast axis (X axis), and a step-size of 15 µm in 

the slow axis (Y axis). Z is the depth direction. Each RSOM 

scan lasted approximately 70 s. We first applied motion 

correction algorithms to minimize motion-related artifacts in 

every RSOM scan before reconstruction [41]. Then, acquired 

RSOM signals were divided into two frequency bands, 10-40 

MHz (low) and 40-120 MHz (high), for the 10-120 MHz 

bandwidth. Signals in the two different bands were 

independently reconstructed. Reconstructions were based on 

beam-forming algorithms that generated three-dimensional 

images[39]. The reconstruction algorithm was accelerated by 

parallel computing on a graphics processing unit (GPU) and 

improved by incorporating the spatial sensitivity field of the 

detector as a weighting matrix. The reconstruction time of one 

bandwidth took about 5 minutes with the voxel size of the 

reconstruction grid at 12 µm × 12 µm × 3 µm. The two 

reconstructed images R_low and R_high corresponded to the 

low- and high-frequency bands. A composite image was 

constructed by fusing R_low into the red channel and R_high 

into the green channel of an RGB image [3]. The detailed 

process has been introduced in our previous work [3]. The 

RSOM images were rendered by taking the MIPs of the 

reconstructed images along the slow axis or the depth direction. 

Volunteer and patient studies. Twenty psoriasis patients 

with Psoriasis Area Severity Index (PASI) values from 1 to 7 

were imaged following approval from the Ethics Committee of 

the Technical University of Munich. In addition, 5 psoriasis 

patients were measured during conventional inpatient treatment 

consisting of topical descaling, anti-inflammatory therapy (by 

means of salicylate Vaseline, topical corticosteroids and 

dithranol) and simultaneous phototherapy (311 nm Narrowband 

UVB (NB-UVB) or psoralen-UVA (PUVA)). RSOM scans 

were recorded at different time points on the same skin location. 

The detailed information of the study has been reported in our 

previous work [8].  

For the hyperemia experiment, 10 healthy volunteers with a 

mean age of 33 were recruited following approval from the 

Ethics Committee of the Technical University of Munich. The 

RSOM scanning head was positioned at an area of about 5 cm 

to the wrist. A clinical use pneumatic cuff was placed at the 

level of the upper arm (i.e., distal to the site of brachial artery 

measurement) and controlled by an experienced operator. The 

hyperemia measurement took a total of 9 minutes, including: 2 

minutes baseline, 4 minutes cuff on (cuff pressure was inflated 

to 220 mmHg), and 3 minutes cuff off (cuff deflation). To 

visualize the skin microvessels during the 9-minute cuff 

measurement, 9 RSOM 3D scans were recorded every minute 

in an area of 4 mm × 2 mm. 

Healthy volunteers were recruited following approval from 

the Ethics Committee of the Technical University of Munich. 

All participants gave written informed consent before the 

planned RSOM examination. In total, 75 healthy volunteers, 

with ages ranging from 25-65 years, were scanned. The 

volunteers were divided into three age groups: I (n=24, 29.5 ± 

3.5 years, in the range of 20 to 35 years), II (n=28, 41.1 ± 4.1 

years in the range of 36 to 50 years) and III (n=23, 59.5 ± 4.9 

years in the range of 51 to 65 years). Each individual was 

scanned at a region of interest (ROI, 4×2 mm) over the pretibial 

region of the distal lower limb. RSOM data quality was 

evaluated based on our previously developed RSOM quality 

evaluation approach and low-quality data was excluded [42]. 

Skin layer segmentation. Our network architecture is a U-

Net with a depth of 5 and dropout in the second to fifth up-

convolution, based on the work introduced by Gerl et al.[43]. 

This architecture uses an encoder-decoder structure wherein the 

encoder uses blocks of convolution and max-pooling operations 

to encode the image information into a compressed feature 

space. The decoder takes these encodings from the feature 

space as input and uses up-convolutions and regular 

convolutions to decompress the information into our desired 

representation. Finally, with residual connections, the output of 

each block during the encoding is fed forward to the 

corresponding decoder block.  

For the layer segmentation model, 28 RSOM volumes from 

volunteers and 15 RSOM volumes from psoriasis patients are 

used for training, 7 RSOM volumes from volunteers and 3 

RSOM volumes from psoriasis patients are used for validation 

and 8 RSOM volumes from volunteers and 2 RSOM volumes 

from psoriasis patients are used for testing. We split each 

volume into 2D slides from both sides, resulting in a training 

set of 8550 2D samples with a pixel resolution of 333 × 550. 

We used the following data augmentations: (1) random Z 

rescale (rescaling of the epidermis region by a random factor 

between 0.6 and 1.4); (2) random Z shift (shifting the whole 

volume in the z direction by a random value between -75 and 

100); (3) random mirror; and (4) intensity transform (a 

piecewise linear intensity rescaling). We performed a five-fold 

cross validation. As a loss function, we used binary cross 

entropy. Furthermore, we used the Adam optimizer and trained 

our models on one P5000 GPU. We achieved a quantitative 

segmentation performance of 84.26 ± 8.22 in Dice score and 

73.63 ± 11.71 in IoU. We then calculated two primitive skin 

layer features. First, we extracted the average epidermis width 

TABLE II 
INPUT CHANNEL COMPARISON 

IC p Dice clDice Precision Recall 

 
1 

0.90 85.01±3.88 81.30±4.68 91.03±4.30 80.85±10.0
7 0.95 82.20±6.53 79.80±6.06 95.15±2.64 73.47±11.7

1  

2 

0.90 87.01±2.71 82.58±5.54 91.08±2.90 83.87±7.52 

0.95 84.56±4.61 80.95±5.61 95.83±1.35 76.18±8.42 

VesNet was pre-trained on synthetic data, then trained on a mix of synthetic, 

background, and annotated samples with BCE as a loss function. We 
compare training on a single input channel and on two input channels (IC). 

Testing was done on three RSOM volumes. Varying probability thresholds 

p were applied. Numbers in bold indicate the best performance per threshold. 
Data are represented as the score ± standard deviation. 

TABLE I 

SLIDING WINDOW MIP EXPERIMENT 

Filter 

length 

Dice Precision Recall # of 

s.w.d.c. a 

none 84.2 ± 8.4 84.7 ± 13.3 87.0 ± 12.4 1 / 10 
3 84.1 ± 8.3 84.1 ± 13.6 87.4 ± 12.4 4 / 10 

5 84.2 ± 8.2 84.8 ± 13.4 87.0 ± 12.5 6 / 10 

9 83.7 ± 9.0 85.0 ± 13.9 86.0 ± 13.9 4 / 10 

12 83.6 ± 9.4 85.0 ± 13.7 86.1 ± 14.4 3 / 10 

Epidermis segmentation performance on a set of 10 RSOM volumes using 
different filters. The segmentation scores among all filters were very 

similar, whereas the number of disconnected components reached a 

minimum for a filter length of 5.  
a ‘# of s.w.d.c.’ is short for ‘number of samples without disconnected 

components. 
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in µm. Here we divide the total epidermis volume by the fixed 

RSOM X and Y dimensions (333 and 171). For the epidermal 

signal density, we multiplied the input volume with its 

epidermis segmentation mask and normalized its sum by the 

total epidermis volume. 

To enhance signal density in low-signal areas of the epidermis 

and to aid segmentation, we employed a 1D sliding window 

maximum filter along the direction perpendicular to the 2D 

slice fed into the U-Net. We explored this post-processing step 

in an experiment, where we applied different filter lengths to a 

set of 10 RSOM volumes. We then calculated the resulting 

segmentation performance in segmentation metrics and 

identified disconnected components in the samples. For a set of 

10 RSOM volumes, the segmentation metrics (i.e., Dice, 

Precision, Recall) for different filter lengths were comparable 

as shown in Table I. However, at a length of five, we saw a 

minimum in the number of disconnected components of the 

segmented epidermis (also confirmed by optical inspection). 

This was favorable, as we expected the epidermis to be 

segmented as one connected component. Hence, we chose to 

filter with a 1D maximum filter of length 5 as a post-processing 

step to improve our segmentation.  

To understand the quality of our segmentations, we performed 

an inter-rater test where two experts independently labeled 14 

images of skin layers. We calculated volumetric scores of raters 

against each other and calculated an agreement in Dice of 

0.7970 ± 0.1132 and 0.6771 ± 0.1441 in IoU. We observed that 

the quantitative performance of our model was on par with 

expert segmentations and had lower standard deviations as well.  

 Vessel segmentation. Our neural network architecture for 

vessel segmentation is based on the VesNet (DeepVesselNet) 

architecture [44], which is a 3D fully convolutional neural 

network (FCN) with four fully convolutional layers. We 

modified the architecture by replacing 2D-crosshair 

convolutions with full 3D convolutions to increase 

performance. In addition, we added group normalization layers 

and increased the feature space size. We trained DeepRAP 

using one RTX8000 GPU. As the final loss function (𝐿𝑓𝑖𝑛𝑎𝑙), 

we used a weighted combination of the topology aware 

clDice[34] (𝐿𝑐𝑙𝐷𝑖𝑐𝑒 ) and the binary cross entropy (BCE) loss 

function (𝐿𝐵𝐶𝐸) to preserve vessel connectivity, where 𝛼 is the 

weighting parameter, as in Equation 1:  

 𝐿𝑓𝑖𝑛𝑎𝑙 =  𝛼 ×  𝐿𝑐𝑙𝐷𝑖𝑐𝑒 +  (1 − 𝛼) ×  𝐿𝐵𝐶𝐸 (1) 

The networks were trained on two channels of input data 

(detailed in RSOM imaging and image reconstruction). We 

found that training on the two channels improved the 

segmentation performance by roughly 2% while also reducing 

the standard deviation (Table II). Labeling a large number of 

curvilinear structures such as blood vessels in 3D RSOM 

volumes is highly time-consuming. Therefore, we chose to 

follow a Transfer Learning approach for the vessel 

segmentation task [33]. Here, we trained our neural network 

first on a large set of generated synthetic data samples; second, 

on a small set of real RSOM samples with annotated 3D vessels; 

and third, on so-called background samples to reduce artifacts 

on a set of RSOM samples without vessels. 

Initially, we trained our network on synthetic arterial tree 

images which were generated using the method of Schneider et 

al.[45]. Style transforms were applied to minimize its domain 

distribution shift to the original RSOM images, resulting in 30 

samples with two channels and 304 × 325 × 600 pixels. To show 

that our synthetic dataset was indeed a valid starting set for our 

data, we trained networks on only synthetic data while testing 

real data (Table II). We observed that training purely on 

synthetic data leads to an acceptable segmentation 

performance, which can be improved with few real labeled 

samples (82.24 on purely synthetic data and 88.42 when refined 

on real data, see Table III). For the fine-tuned vessel 

segmentation model, 30 synthetic volumes and 15 RSOM 

volumes from volunteers are used for further training, 4 RSOM 

volumes are used for validation and 3 RSOM volumes are used 

for testing. The epidermis was already cut in the Z-direction, 

resulting in two channel data with an X, Y resolution of 333 × 

171 pixels and a varying depth resolution around 400 pixels. 
A frequently observed artifact in our results were layer-like 

reflections in the lower part of the RSOM images. In response 

to this, four very noisy RSOM samples were selected, labeled 

only as "background", and used for training to improve the 

network’s capability to distinguish between reflections and 

vessels. The parts of the background samples containing 

vascular structures were excluded beforehand so as not include 

TABLE III 
VESSEL SEGMENTATION COMPARISON AMONG OUR MODEL WITH OTHER METHODS 

Model Dice clDice Precision Recall 

Sato Tubeness Filter 68.68 ± 2.84 74.01 ± 4.98 86.94 ± 3.35 57.12 ± 5.16 

Frangi Vesselness Filter 26.09 ± 1.51 51.31 ± 4.90 83.36 ± 12.11 15.62 ± 1.55 

Jerman Vesselness Filter 71.88 ± 1.06 74.31 ± 7.35 71.33 ± 5.03 73.36 ± 6.40 

Otsu Threshold 69.30 ± 4.59 76.49 ± 5.97 98.63 ± 0.84 53.67 ± 5.90 

Mean-C Threshold 62.84 ± 3.53 80.85 ± 3.79 53.03 ± 5.57 77.72 ± 1.28 

Transformer-based NN 89.55 ± 1.26 87.73 ± 2.28 93.61 ± 4.13 86.00 ± 2.03 

nnUnet 92.31 ± 2.91 90.08 ± 3.28 92.25 ± 2.97 92.39 ± 2.92 

U-Net 84.92 ± 2.02 84.43 ± 6.72 84.37 ± 2.52 85.98 ± 6.84 

Our Model (only synthetic data) 82.24 ± 8.47 78.51 ± 11.75 86.25 ± 11.75 79.86 ± 11.37 

Our Model 88.42 ± 1.62 86.37 ± 6.14 88.43 ± 2.68 88.31 ± 4.64 

Methods, including Transformer-based NN, nnUnet, U-Net and our model were pre-trained on synthetic data and trained on a mix of synthetic-, background- 
and annotated RSOM samples. The test set consisted of three annotated RSOM volumes. Numbers in bold indicate the best performance per threshold. Data 

are represented as the score ± standard deviation. 
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false negative samples in our dataset. We extensively compared 

our network architecture and loss functions to other state-of-

the-art methods and found that the VesNet architecture, with 

four convolutional layers and a combined loss function of 

clDice and BCE, outperformed other cost functions such as the 

standard Dice loss (Table III). Our method also outperforms all 

traditional vessel segmentation methods (e.g. Frangi, Table III). 

Compared to other state of the art deep learning methods, our 

model outperforms a simple U-Net [46], performs similar to a 

SwinUnet transformer [47] but is slightly outperformed by a 

nnUnet [31]. However, we chose to use the lightweight VesNet 

architecture because it requires about 520 times less (30582058 

vs. 58 816) parameters compared to nnUnet while still 

providing us with “human-level” performance (see Results).  

Using a lightweight neural network (NN) is important in a 

clinical setting to speed up the analysis process of the entire 

pipeline. Regardless, changing the segmentation NN is easily 

employable due to the modular setup of our pipeline.  

Vessel features. Based on the binary segmentations, we 

computed the total blood volume in µm³. The blood volume is 

defined by the sum of all segmented vessel voxels. 

Furthermore, we extracted the surface area to volume ratio 

(sa/vol), where low values describe compact shapes, and high 

values describe objects with large surface areas. The surface is 

the defined scanning field of view (4×2 mm2). We used 

Pyradiomic implementations to extract these features[48]. 

Complex vascular features were extracted from the metric 

graph representation, see below for details. Features were 

calculated by iterating over the metric graph edges or nodes. 

We calculated the total microvasculature length in millimeters 

by extracting the collective length of all edges in a volume. 

Using the edge weight, we distinguished small and large 

vascular structures, where the vessel radius r < 2.5 pixel (30 

μm) denotes a small vessel. Using this criterion, we extracted 

the feature of small vessel length, which is an indicator for 

microvasculature. The location where a vessel splits into two or 

more branches is a bifurcation point, a key characteristic of 

vascular networks. Bifurcation points were extracted from the 

metric graph as the number of nodes with a degree higher than 

two. Moreover, we extracted the average vessel radius per 

sample. We explored more features such as the number of 

loops, degree assortativity coefficient[49], and average path 

length, but omitted them due to low significance for subsequent 

use cases. 

Metric graph extraction. Extracting specific features from a 

volumetric segmentation mask has limitations regarding a 

compact description of the connectivity information. Therefore, 

we constructed a metric graph representation (G) to achieve a 

compact anatomical representation preserving topological 

properties[50]. A metric graph is a one-dimensional stratified 

space composed of linked nodes and edges. To extract G, we 

followed the approach by Aanjaneya et al.[51], which is based 

on distinct groups of points. A pre-existing open-source project 

served as our codebase [51]. In this work, we extended the 

existing 2D implementation to 3D and termed it metric graph 

reconstruction. As an initial step, we convert the complete 

segmentation mask into a point cloud. To reduce computational 

complexity, we constructed a skeleton based on this point cloud 

and passed it to our algorithm. To preserve minimal volumetric 

shape properties, we further extended G to hold edge weights 

representing the average vessel radius. Here, we determined for 

each element of the skeleton the closest Euclidean distance to 

the background and assigned this distance value to the element. 

The resulting modified skeleton holds the minimum vessel 

radius in each point. When merging groups of edge points to 

identify an actual edge during metric graph reconstruction, we 

added the mean value of all points as a weight corresponding to 

the edge’s average vessel radius. Fig. 2 depicts the result of our 

modified metric graph reconstruction. We observed that metric 

graph reconstruction decreased the complexity of the 

volumetric segmentation mask by multiple orders of 

magnitude, while preserving major topological properties. Due 

to the uniform representation of graphs, we could now easily 

iterate over nodes and edges and compute features quickly. 

Post-processing of the graph representation. The metric 

graph representation G is based on the original vessel 

segmentation mask (not post-processed); therefore, we 

discarded small unpaired structures in G with a Euclidean 

length < 50. Furthermore, G might contain small ending 

branches that do not represent the actual vascular topology 

caused by the skeletonization of unsmooth or spikey vessel 

surfaces. Thus, we "smoothed" G by removing ending branches 

(edges with exactly one node of degree one) with a Euclidean 

length smaller than 20 pixels.  

Feature-regions of Interest. To minimize the effects of 

different image sizes, varying regions of interest, and 

segmentation inconsistencies on the feature extraction, we 

applied two pre-processing steps. The most frequent 

misclassifications occurred slightly below the epidermis and in 

the lower dermal part, usually caused by so-called reflections. 

Thus, we restricted our feature extraction to an ROI, focusing 

only on the central dermal part. We estimated that the 

information loss due to the ROI is less severe than discarding 

samples that contain reflections. The ROI had the same 

dimensions for all volumes, allowing us to report absolute 

values for the features. Secondly, our feature extraction could 

have been affected by small false positives. Our study focused 

on connected vascular components and not on small, 

unconnected objects. Therefore, objects with a total volume 

smaller than 1000 pixels were removed for all features not 

dependent on metric graph (G). 

Statistics. All metrics represent the mean value with standard 

deviations (e.g. as error bar). To assess the statistical 

significance between different age groups, we performed 

parametric tests (unpaired t-test) for normally distributed data; 

otherwise, nonparametric tests (Mann Whitney U test) were 

applied. Statistical significance was defined at P < 0.05. We 

applied third-order polynomial curve fitting to the data 

distributions of RSOM features in different age groups. 

III. RESULTS 

Quantification of skin layer thickness and vasculature 

features using deep learning. The superficial structure of 

human skin comprises of the epidermis and the dermis layers. 

Epidermal thickness is an important biomarker to assess the 

dermatological health and severity of pathologies such as 

psoriasis[3, 8]. Therefore, we developed a CNN segmentation 
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model inspired by our previous work[43] to segment the 

pathological skin layers (Fig. 1). Our U-Net achieves a high 

segmentation performance, with a Dice score of 84.26 ± 8.22 

and IoU of 73.63 ± 11.71. These scores can be considered as 

“human level” performance. We validated this via a dedicated 

inter-rater experiment where two experienced raters were 

tasked with manual segmentation of 15 identical images. The 

two experts achieved a Dice score of 79.70 ± 11.32 and 67.71 

± 15.62 IoU (standard deviation was calculated between the full 

3D volumes), which is similar to the performance of our model 

(see Table I). Detailed documentation, hyper-parameter search 

and results can be found in the Methods section. Based on the 

layer segmentation shown in Fig. 2a, the average epidermal 

thickness in 3D was automatically computed by averaging 2D 

slices in the out-of-plane direction. 

 
Fig. 1. DeepRAP processing diagram. (a) the reconstructed high 
frequency (HF) and low frequency (LF) images are preprocessed 
separately as the input data; the raster-scan optoacoustic mesoscopy 
(RSOM) image volumes are segmented using a U-Net to precisely 
delineate the epidermis and dermis layers and the dermal vasculature is 
segmented by a VesNet; vascular graph is extracted, and various skin 
biomarkers are computed. (b) Segmentation results of one RSOM 
volume; 3D renderings of the original RSOM volume (left); results of our 
deep learning layer and vessel segmentation (middle), where the 
segmented epidermis (EP) is marked in green, and the segmented 
dermal (DR) vessels are in red; dermal vessels are color coded 
according to their diameter (right). The bottom row shows the maximum 
intensity projection images from the top view corresponding to the 
dermal vessels. HF, high frequency; LF, low frequency. Scale bar: 500 
µm. 

Furthermore, the structural and functional changes of the 

cutaneous microvasculature of the dermis are closely associated 

with changes in disease activity[3-6]. We developed a dedicated 

segmentation model for the dermal microvasculature (Fig. 1a), 

in which we thoroughly benchmarked and tested different 

architectures, layer depths, loss functions and hyperparameter 

configurations to achieve optimal segmentation as shown in 

Fig. 1b and Supplementary movie 1. Our final model is based 

on a DeepVesselNet architecture, which is a 3D CNN with 4-

layers (Table III). We trained our model on a mixed set of 

images from healthy controls and patients with psoriasis, using 

the clDice loss function[34] to preserve vessel connectivity. 

Our model achieved a Dice score of 88.42 ± 1.62 and 86.37 ± 

6.14 using clDice. Similar to our epidermis segmentation, we 

again implemented an inter-rater experiment where two expert 

evaluators rated 16 volumes. Compared to the labels, they 

achieved a Dice score of 85, a performance similar to our 

model. Based on this segmented vessel network, various 

biomarkers were computed, as shown in Fig. 1.  

Segmentation comparison. The segmentation comparisons 

of various RSOM data between DeepRAP and a thresholding-

based method are shown in Fig. 2. The first column (Fig. 2a) 

depicts the original RSOM volumes with strong reflection 

artifacts (marked by white arrows), which appear in the regions 

above the skin surface or in the lower dermis mixed with the 

vasculature. Since the contrast of reflection artifacts is similar 

to the RSOM features, the thresholding method (Fig. 2b) cannot 

separate the artifacts (marked by white arrows) while they are 

completely removed by the DeepRAP method (Supplementary 

movie 2). In addition, the fine microvasculature has lower 

contrast compared to the large RSOM features, which can be 

easily degraded using the thresholding segmentation (Fig. 2b). 

However, those fine microvasculature features are well 

segmented in the DeepRAP image (Fig. 2c), indicating that 

DeepRAP can achieve much higher segmentation accuracy 

with RSOM datasets containing various contrasts and artifacts 

compared to the thresholding method. 

 

Fig. 2. Multiple segmentation comparisons on raster-scan optoacoustic 
mesoscopy (RSOM) images between our DeepRAP and a thresholding-
based approach. Using DeepRAP, the segmented epidermis (EP) is 
marked in green, and the segmented dermal (DR) vessels are in red. A 
threshold-based approach cannot distinguish these. (a) DeepRAP 
accurately segments the epidermis and dermis microvascular layers of 
RSOM volumes with artifacts (white arrows) mixed with the epidermis 
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layer while these artifacts are left in the thresholding image; (b) 
DeepRAP segments the microvasculature in the high frequency content 
(yellow arrows) while these vascular features are not correctly 
segmented using the thresholding approach; (c) DeepRAP accurately 
segments the dermal microvasculature by removing artifacts mixed with 
dermal microvasculature while they are segmented as vessels in the 
thresholding image (white arrows). 

 

Fig. 3 Epidermis segmentation of psoriasis skin. (a)-(e) Cross-
sectional raster-scan optoacoustic mesoscopy (RSOM) images of 
psoriasis skin lesions with various Psoriasis Area Severity Index (PASI) 
scores, where the epidermal thickness is segmented and marked by the 
grey areas. (f) Correlation between the PASI score and the epidermal 
thickness. Scale bar: 500 µm. 

Severity assessment of psoriasis skin. The epidermis 

thickness has been reported to be an important biomarker to 

diagnose and monitor the severity of psoriasis [3, 8]. To 

investigate whether DeepRAP can differentiate between 

various stages of disease activity, we assessed epidermal 

thickness in psoriasis patients with different PASI scores 

ranging from 1-7 (7 being the most severe). We then applied 

DeepRAP to automatically segment and compute the epidermal 

thickness in volumetric RSOM images (Supplementary movie 

3). Fig. 3a-e depict images from patients with different PASI 

scores with segmented epidermis masks. Using DeepRAP, we 

found that the PASI values are closely correlated with the 

epidermal thickness, i.e., the more severe the disease, the 

thicker the calculated epidermal thickness (Fig. 3f). Our 

findings are well correlated to our previous work analyzed 

manually by experienced RSOM operators based on MIP 2D 

images[8].  

Quantification of skin feature changes during hyperemia. 

To demonstrate the capability of RSOM for assessing 

endothelial function of the cutaneous microvasculature over 

time, we applied DeepRAP to quantify skin feature changes 

during pressure-induced hyperemia. Here, we recorded 3D 

images of the skin structures every minute during a nine-minute 

pressure-induced hyperemia process, consisting of a two-

minute baseline measurement without cuff pressure, four 

minutes of cuff inflation and three minutes of cuff deflation. 

Cross-sectional MIP images in Figures 4a-c show that during 

the hyperemia process, there was a decrease in image intensity 

in the dermis compared to the baseline image. Following cuff 

deflation, we observed that vascular structures fully recover, 

with dilated vessel diameters and more cutaneous vessels 

(white arrows in Fig. 4c). It is worth noting that the skin 

microvasculature was accurately segmented despite strong 

variations in image contrast during the hyperemia process. In 

addition, the microvascular changes during hyperemia were 

characterized by computing the mean RSOM image intensity 

(Fig. 4d). Next, we applied DeepRAP to measure epidermal 

thickness and various vascular features including the total blood 

volume (Fig. 4e), total vessel number (Fig. 4f), total vessel 

 

Fig. 4 Quantification of skin features during hyperemia. 3D RSOM images were recorded at the forearm of a healthy volunteer every minute 
during a nine-minute arterial occlusion process. The original and segmented RSOM images by DeepRAP at (a) the baseline, (b) cuff inflation, 
and (c) deflation points are shown. White arrows indicate new vessels appearing during the hyperemia process. The epidermis is segmented 
and marked by the grey areas, while the dermal vessels are marked in blue color and overlaid with the original vessel structures. (d) The 
normalized image intensity profiles of the RSOM images acquired during the hyperemia process. Skin features computed from the segmented 
images include: (e) total blood volume, (f) total vessel number, (g) total vessel length, (h) total length of small vessels (with diameter less than 
60 µm), (i) total length of large vessels (with diameter more than 60 µm), (j) diameter change of the labelled vessel (marked by the white dashed 
line in a), (k) epidermal thickness; (l) profiles of the blood flow, oxygen saturation (SO2), and partial blood volume (rHb). Scale bar: 500 µm. 
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lengths (Fig. 4g) and small (diameter less than 60 µm, Fig. 4h) 

and large vessel (diameter more than 60 µm, Fig. 4i) lengths. 

The response pattern of these vascular biomarkers was similar 

to the image intensity profile (Fig. 4d). In addition, the changing 

diameter of a specific vessel (marked by the white dashed line 

in Fig. 4a) during the hyperemia process was well visualized 

and quantified in Fig. 4j. Arterial occlusion did not affect 

epidermal thickness as it remained relatively constant (Fig. 4k). 

To compare our results, we used a commercial Laser Doppler 

flowmetry and tissue spectrometry setup to measure the blood 

flow (Flow), oxygen saturation (SO2) and partial blood volume 

(rHb) during post-occlusive reactive hyperemia (PORH). The 

changes in flow and SO2 were similar in trend to the skin 

biomarkers computed by DeepRAP (Fig. 4l). These change 

profiles of the individual parameters can be used to quantify 

skin vessel function, for example, the endothelial function of 

the small and large vessels respectively. 

Assessment of aging on skin features. Previous studies have 

reported that skin morphological and microvasculature features 

can be affected by aging[13, 52-55]. To further validate the 

utility of our deep learning tool, we studied skin feature changes 

resulting from aging, applying DeepRAP to analyze RSOM 

datasets acquired from healthy volunteers with different ages. 

Fig. 5a-c shows cross-sectional MIP RSOM images and 

corresponding dermal vessels from three groups: 1. young age 

volunteers (I, n=24, 29.5 ± 3.5 years, in the range of 20 to 35 

years), 2. middle age volunteers (II, n= 28, 41.1 ± 4.1 years, in 

the range of 36 to 50 years) and 3. old age volunteers (III, n=23, 

59.5 ± 4.9 years in the range of 51 to 65 years). Using 

DeepRAP, we found that the density of the dermal vascular 

network was highest in young volunteers (Fig. 5a) and 

decreased with age, with lower densities found in volunteers 

from the middle age group (Fig. 5b) and the lowest densities 

found in the old age volunteers (Fig. 5c). Vessel lengths, 

diameter and the number of bifurcation points are commonly 

 

Fig. 5 Comparisons of skin features among healthy volunteers in three age groups. The healthy volunteers were divided into three groups based 
on their ages: I (n=24, 29.5 ± 3.5 years), II (n= 28, 41.1 ± 4.1 years) and III (n=23, 59.5 ± 4.9 years). Three cross-sectional raster-scan 
optoacoustic mesoscopy (RSOM) images of each group and corresponding dermal vessels from the top-view are shown in (a-c), where the 
epidermis (EP) and dermal (DR) vessels were segmented by the DeepRAP. The epidermis is segmented and marked by the grey areas, while 
the dermal vessels are marked in blue color and overlaid with the original vessel structures. (d-h). Skin features were computed and compared 
among the three groups including: (d) total vessel length, (e) small vessel length (vessels with diameter < 40 µm), (f) large vessel length (vessels 
with diameter ≥ 40 µm), (g) total blood volume and (h) epidermal thickness. (i) the distributions of these five skin features with increment of 
volunteer aging. ns: not significant. Scale bar 500 µm. 
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computed to quantify the vascular architecture. Hence, we used 

DeepRAP to segment the RSOM volume and compute these 

vascular features and the epidermal thickness. Quantitative 

comparisons of the magnitude of different RSOM features are 

presented in Fig. 5d-5h, while the distributions of these features 

with the increment of age is shown in Fig. 5i. As for the total 

vessel length (Fig. 5d, length normalized to the size of the 

scanning field of view), we found a mean value of 21.43 ± 4.48 

mm in the young age (I) group versus 16.52 ± 5.62 mm in the 

middle age (II) group (p = 0.0022) with 23% difference of the 

mean value, while the mean total vessel length significantly 

decreased to 10.19 ± 2.39 mm in the old age (III) group, a 38% 

reduction compared to the middle age (II) group (p < 0.001). To 

investigate the effects of age on different vessel sizes, we 

further separated the total vessel length into the small (diameter 

< 60 µm) and large (diameter ≥ 60 µm) vessel lengths. The 

small and large vessel lengths both decreased significantly from 

the young age group to the middle age groups (for small vessels, 

5.25 ± 1.84 mm (I) vs. 3.58 ± 1.49 mm (II), with p = 0.0012; 

and for large vessels, 17.17 ± 3.83 mm (I) vs. 12.84 ± 4.89 mm 

(II) with p = 0.0288). We found that the average small vessel 

length (Fig. 5e) was approximately 56% lower in the old age 

group (III) than in the middle age (II) group (1.57 ± 0.46 mm 

vs. 3.58 ± 1.49 mm with p < 0.0001), whereas the mean large 

vessel length (Fig. 5f) was about 49% lower in the old age group 

(III) compared to the middle age (II) group (8.75 ± 2.34 mm 

versus 17.17 ± 3.83 mm, p = 0.0019). This finding suggests that 

the systemic impacts of aging on the dermal vasculature are 

more prominent in small vessels than in larger vessels. The total 

blood volume in the DR layer (i.e., the sum of the total vessel 

voxels) was markedly different between the young and middle 

age groups (Fig. 5g, 431.99 ± 74.42 µm3 versus 339.42 ± 93.49 

µm3, p < 0.0008, 21% mean value difference), while the 

difference is also larger between the old age and the middle age 

groups (202.24 ± 66.82 µm3 versus 339.42 ± 93.49 µm3, p < 

0.0001, 40% mean value difference). The impairment of aging 

on the dermal microvasculature is more significant between the 

middle age to old age groups compared to the young age to 

middle age groups. Analysis of the epidermal thickness (Fig. 

5h) showed no obvious difference among the young age 

(109.80 ± 12.37 µm), middle age (108.76 ± 9.94 µm) and old 

age groups (109.69 ± 14.35 µm). 

IV. DISCUSSION 

DeepRAP is a pipeline for automatic segmentation and 

biomarker extraction of the skin layers and dermal vasculature, 

facilitating a new avenue for disease characterization. We show 

excellent, human-level performance with computed results 

which correlate well with clinical psoriasis severity scores. We 

also showed that changes in skin morphology and vasculature 

during PORH have similar response patterns of blood flow and 

oxygen saturation as measured by commercial setups. These 

experiments demonstrate the efficacy of DeepRAP for  

comprehensive assessment of microvascular endothelial 

function facilitating clinical application[56]. In addition, five 

anatomical and vascular features are extracted by DeepRAP 

and studied in relation to aging. We found that the small vessels 

in the upper dermis were most prominently impaired with 

aging. 

In previous RSOM studies, conventional analysis often relied 

on manual or thresholding-based segmentation methods to 

process 2D MIP images, which could induce significant 

variations, annotator bias or loss of the 3D geometrical 

information. This method is error-prone and labor-intensive 

when used to analyze large clinical RSOM studies. DeepRAP 

is the first deep learning-based method designed to 

automatically segment RSOM images in 3D and compute 

various skin features. We also demonstrated that DeepRAP 

achieves much better segmentation performance compared to 

conventional thresholding-based methods (Fig. 2) and is more 

robust towards varying SNR and artifacts. In a unique 

validation experiment, we applied DeepRAP to a timeseries 

sequence of RSOM volumes recorded over occlusion-induced 

hyperemia from 10 healthy volunteers. We observe how the 

biomarkers decrease and recover during the occlusion and 

release process, demonstrating accurate performance and 

reproducibility in a highly challenging validation task which 

exhibits marked contrast variations. Previous studies report an 

urgent need to develop a safe and ideally non-invasive method 

of microvascular function assessment [56] which we address in 

this study. Hence, assessment of the skin micro-vasculature 

endothelial function is important for early disease detection and 

therapy monitoring, e.g., for diabetes and cardiovascular 

diseases [57, 58]. Our DeepRAP pipeline can accurately 

segment and quantify skin features from a series of RSOM 

images, despite significant changes in image contrast during 

hyperemia test. This allows RSOM to assess microvasculature 

function by accurately quantifying vessel changes in response 

to stimuli, which could further promote the clinical applications 

of RSOM. Furthermore, DeepRAP was able to analyze large 

RSOM datasets from healthy and disease conditions, with the 

capacity to automatically measure skin morphology features in 

3D for disease monitoring. 

Using DeepRAP, we showed that vessel lengths (of varying 

hierarchy), vessel number and total blood volume, were 

reduced in the middle age group compared to the young age 

group and significantly decreased in the old age group 

compared to the middle age group which is in line with previous 

findings [13, 52-55]. For example, it was reported that the 

superficial skin microvasculature assessed by video 

capillaroscopy or histology was significantly reduced in older 

volunteers compared to young volunteers. Moreover, aging 

impaired the small vessels more significantly than the large 

vessels, which has not been reported in previous studies.  

DeepRAP is based on a transfer learning approach, where we 

pre-trained the CNN on synthetic data[45] and refined it on a 

small labelled dataset of 17.75% of the synthetic dataset. Thus, 

our method might generalize well to different types of imaging 

data (such as other optoacoustic imaging systems or other tissue 

structures), as only a small, labelled dataset is needed to adjust 

our pre-trained network. It has been shown that for the 

segmentation of tubular structures such as vessels, the 

optimization of voxel overlap alone (e.g., Dice) is not sufficient 

[59, 60]. Hence, we aim to improve the topological faithfulness 

of our method by employing a topology-aware loss function, 

namely clDice. However, this is only one of many approaches 

for improving topology. Frequently used methods are based on 

post-processing[61], tree shape priors for vessel 
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segmentation[62], or persistent homology[63]. Approaches 

based on persistent homology come with the strictest theoretical 

guarantees. Nevertheless, in our use case, we chose clDice 

because it is more robust towards image noise, as present in 

RSOM data, which presents challenges when modeling 

topology in structures used in persistent homology approaches, 

such as Betti numbers. Furthermore, existing approaches 

address vessel analysis directly at a graph level (segmentation, 

in our case), allowing the computation of total blood volume 

(Fig. 5), an important biomarker. From a limitation perspective, 

it is important to be aware that all supervised learning methods 

are heavily dependent on data and label quality. Secondly, 

while transfer learning helps with the generalizability of 

methods, this generality has limits, and the performance of the 

model should always be evaluated on a target domain test set. 

Finally, training topological methods requires more 

computational resources than training basic networks with, for 

example, Dice loss. 

In conclusion, DeepRAP is a scalable, modular and automated 

machine learning-based method that can be used to analyze and 

quantify skin morphological and functional features from 3D 

RSOM datasets. We envisage that our method will be employed 

to promote the applications of RSOM imaging for quantitative 

clinical studies and diagnostics. 
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