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Simultaneous activity and attenuation estimation
in TOF-PET with TV-constrained nonconvex

optimization
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Abstract— An alternating direction method of multipliers
(ADMM) framework is developed for nonsmooth biconvex
optimization for inverse problems in imaging. In partic-
ular, the simultaneous estimation of activity and atten-
uation (SAA) problem in time-of-flight positron emission
tomography (TOF-PET) has such a structure when maxi-
mum likelihood estimation (MLE) is employed. The ADMM
framework is applied to MLE for SAA in TOF-PET, resulting
in the ADMM-SAA algorithm. This algorithm is extended
by imposing total variation (TV) constraints on both the
activity and attenuation map, resulting in the ADMM-TVSAA
algorithm. The performance of this algorithm is illustrated
using the penalized maximum likelihood activity and at-
tenuation estimation (P-MLAA) algorithm as a reference.
Additional results on step-size tuning and on the use of
unconstrained ADMM-SAA are presented in the previous
arXiv submission: arXiv:2303.17042v1.
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neous activity/attenuation estimation, large-scale noncon-
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I. INTRODUCTION

NUCLEAR medicine imaging modalities such as single-
photon emission computed tomography (SPECT) and

positron emission tomography (PET) require the input of a
gamma ray attenuation map for quantitatively accurate imag-
ing. The combination of nuclear medicine imaging with other
image modalities such as X-ray computed tomography (CT)
[1], [2] or magnetic resonance imaging (MRI) [3] provides a
means for estimating the necessary attenuation map. There are,
however, challenges in the separate attenuation map estima-
tion. Use of CT-based attenuation maps requires extrapolation
of the photon attenuation map from the diagnostic X-ray
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energy range to 511 keV and registration of the PET and CT
imaging, which can be particularly difficult in the presence
of motion [4]. The use of MRI to estimate a synthetic CT
image is further complicated by the fact that bone and air
have similar gray values in MRI while bone has a significantly
higher attenuation coefficient for gamma rays.

To avoid a separate measurement for obtaining the gamma
ray attenuation map, a long-standing inverse problem of in-
terest has been to simultaneously estimate the attenuation and
activity distributions from emission data alone [5], [6]. To ad-
dress simultaneous activity and attenuation (SAA) estimation,
Nuyts et al. [6] use maximum likelihood to invert the algebraic
SAA model, and they find that accurate activity distributions
can be recovered by appropriately regularizing the attenuation
map. The regularization involves the use of Gibbs and intensity
priors on the attenuation distribution that encourage local
smoothness and clustering of values around known attenuation
values for tissues in the scanned subject. Another interesting
result for the SAA problem is obtained in considering time-of-
flight positron emission tomography (TOF-PET) [7]. Defrise et
al. [8] exploit an analytic range condition [9], [10] for the con-
tinuous TOF-PET model and obtain a uniqueness result that
the attenuation factor and activity can be determined up to a
multiplicative constant. Returning to the SAA algebraic model
for TOF-PET, a comprehensive study of this inverse problem
using maximum likelihood estimation is presented in Rezaei
et al. [11], where it is found that the activity and attenuation
maps can be recovered if the timing resolution of the TOF
measurements is sufficiently high and if support constraints are
exploited. We note an intriguing extension of the SAA problem
where the background radiation from Lutetium-176, present in
PET scintillators composed of either lutetium oxyorthosilicate
(LSO) or lutetium-yttrium orthosilicate (LYSO), is exploited
to provide additional information on the subject’s attenuation
map without the need for a separate scan [12]. Also, in the
context of PET/MRI, anatomical information from standard
MRI protocols can be used as a prior to inform the SAA
estimation without the need for dedicated pulse sequences
need for MR-based attenuation correction [13].

In this work, we seek to build off of Ref. [11] and develop an
image reconstruction framework for the SAA problem in TOF-
PET that can incorporate nonsmooth, convex constraints in
the maximum likelihood estimation. Such constraints can help
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to achieve stable inversion of the SAA estimation problem.
Of particular interest, here, is the use of total variation (TV)
constraints on both activity and attenuation distributions. We
have previously exploited such constraints in the context of nu-
clear medicine imaging; in Refs. [14] and [15] TV constraints
are exploited to enable sparse-data sampling configurations
in SPECT and PET, respectively. In Ref. [16], a similar
methodology is used for image reconstruction in low-count
list-mode TOF-PET.

The image reconstruction algorithms developed in
Refs. [14]–[16] are all instances of a general primal-dual
(PD) solver for nonsmooth convex optimization developed by
Chambolle and Pock [17], [18]. The optimization problem
posed by applying TV-constraints to the SAA estimation
problem, however, is nonsmooth and nonconvex. In our recent
work, we develop a framework for such problems in imaging,
where the optimization can be split into convex terms plus
differentiable terms that are possibly nonconvex [19]. This
framework is based on the alternating direction method of
multipliers (ADMM) [20] in a way that is closely related
to the PD algorithm. This framework has been successfully
applied to the nonsmooth and nonconvex optimization
problem that arises in spectral computed tomography (CT)
when the spectral response of the measurement is included
in the data model [21]. Here, we modify this framework
to address biconvex optimization and apply it to the SAA
estimation problem with convex constraints. The SAA data
model and imaging problem are specified in Sec. II, where
we then develop an ADMM algorithm to solve the associated
optimization problem. As the focus of this work is mainly on
the SAA inverse problem, we conduct a number of studies
on noiseless TOF-PET data in Sec. III that explore the range
of TOF-PET parameters that allow exact recovery of activity
and attenuation factors. Also presented in this section are
results with noisy data that demonstrate the stability of the
proposed algorithm. In Sec. V the results are discussed and
the conclusions of the work are given.

II. IMAGE RECONSTRUCTION MODEL AND ALGORITHMS

In presenting the SAA algorithm TOF-PET, we consider a
two dimensional (2D) simulation where the lines-of-response
(LORs) are organized in parallel-ray fashion and are specified
in the same way that the 2D Radon transform is param-
eterized. For the TOF-PET model, the Radon transform is
modified by including weighted line-integration that accounts
for TOF information that helps to localize the positron-electron
annihilation along a given LOR. After specifying the TOF-
PET data model, the MLAA algorithm from Rezaei et al.
[11] is briefly summarized. We then present the nonconvex
ADMM algorithm that performs SAA estimation with non-
smooth convex constraints.

A. TOF-PET modelling

The measurement model for the mean data in TOF-PET is

ciℓ = exp
[
−P⊤

ℓ µ
]
· T⊤

iℓ λ, (1)

where λ and µ are the unknown activity and attenuation maps,
respectively; Tiℓ is the TOF sensitivity image for TOF window
i, LOR ℓ; Pℓ is the X-ray projection matrix sensitivity image
for LOR ℓ. For defining the TOF projection matrix T , the TOF
window sensitivity along the LOR is specified as

wi(t) = exp[−(t− ti)2/(2σTOF)],

where the sampling along the LOR is half of the full-width-
half-maximum (FWHM) of this Gaussian distribution

∆t = ti+1 − ti = FWHM/2 =
√

2 log 2 · σTOF.

For this work, scatter coincidences and random events are not
considered.

B. Imaging model based on nonconvex optimization
We consider performing SAA using likelihood maximiza-

tion, where the measured coincidence count data are assumed
to follow a multivariate, mutually independent Poisson distri-
bution

Ciℓ ∼ Poisson(ciℓ).

Equivalently, this estimation is performed by minimization of
the negative log-likelihood,

l(λ, µ) =
∑
iℓ

{ciℓ − Ciℓ · log ciℓ} = (2)∑
iℓ

{
exp(−P⊤

ℓ µ) · T⊤
iℓ λ− Ciℓ · (−P⊤

ℓ µ+ log(T⊤
iℓ λ))

}
.

The optimization problem of interest is

λ, µ = argmin
λ,µ

{
l(λ, µ) | 1⊤λ = Ntotal, λ, µ ≥ 0

}
, (3)

where l is the negative log-likelihood in Eq. (2); 1 is a vector
of size λ with unit entries so that 1⊤λ is equivalent to sum-
mation over λ; and Ntotal is the total number of annihilations.
The constraint on the total number of annihilations is used
to overcome the constant ambiguity in the SAA estimation
problem [8]. This constraint is enforced in this work instead
of the object support constraint investigated in Rezaei et al.
[11].

C. Summary of MLAA
To solve this imaging model, Rezaei et al. [11] developed

the MLAA algorithm. For completeness, we write the MLAA
update steps including a minor modification in Eq. (6) that
accommodates the constraint on the total number of annihila-
tions:

aℓ = exp

[
−
∑
k

Pℓkµk

]
∀ℓ, (4)

λk ←
λk∑

iℓ aℓTiℓk

∑
iℓ

{
Tiℓk

(
Ciℓ∑

k′ Tiℓk′λk′

)}
∀k, (5)

λ← λ

(
Ntotal∑

k λk

)
, (6)

µk ← µk +

∑
iℓk′ Pℓk (aℓTiℓk′λk′ − Ciℓ)∑

iℓk′ Pℓk′Pℓkaℓ
∑

k′′ Tiℓk′′λk′′
∀k, (7)

µk ← pos(µk) ∀k. (8)
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The MLAA algorithm essentially alternates between updating
λ with a Poisson likelihood EM step and µ with a Poisson
transmission likelihood optimization step. In this MLAA im-
plementation the extra update step in Eq. (6) enforces the
constraint on the total number of annihilations, and Eq. (8)
performs non-negativity projection, where negative values of
µ are set to zero. For MLAA the activity λ should have a
strictly positive initialization, and this quantity will remain
non-negative during the iteration.

Early stopping of the iteration is the primary means of per-
forming regularization with MLAA, but explicit regularization
can also be included with the use of Gibbs smoothing [22]–
[24]. In this work, we develop a framework for SAA which
can include nonsmooth regularization.

D. ADMM for nonsmooth and biconvex optimization

The general convex optimization problem that ADMM
solves takes the form

min
x,y
{f(x) + g(y) | Ax+By = c} ,

where f and g are convex and possibly non-smooth functions;
A and B are linear operators; x, y and c are vectors. The steps
of the ADMM algorithm are

x← argmin
x′

{
f(x′) + u⊤Ax′

+ 1
2∥Ax

′ +By − c∥2Σ + 1
2∥x

′ − x∥2Hf

}
(9)

y ← argmin
y′

{
g(y′) + u⊤By′

+ 1
2∥Ax+By′ − c∥2Σ + 1

2∥y
′ − y∥2Hg

}
(10)

u← u+Σ(Ax+By − c), (11)

where Σ, Hf , and Hg are symmetric positive definite, and
∥v∥2M ≡ v⊤Mv for any symmetric positive definite matrix
M . Because optimizing the TOF-PET likelihood for SAA is a
non-convex optimization problem, the ADMM algorithm does
not directly apply. One strategy to adapt ADMM to SAA is
to base the ADMM steps on a series of successive convex
approximations as developed by Chun et al. [25] using the
separable quadratic surrogates (SQS) method. In the present
work, we develop an alternative form of ADMM that directly
applies to SAA, exploiting the biconvex structure of the TOF-
PET likelihood function; i.e. fixing either λ or µ, the likelihood
is a convex function in the other variable.

The ADMM algorithm can be modified to accommodate a
biconvex function, and we consider the case that only g is a
biconvex function

g(y) = g(y1, y2),

where y is the concatenation of y1 and y2; and g(y1, ·) and
g(·, y2) are convex functions for fixed y1 and y2, respectively.
To accommodate the biconvexity of g, the second update
equation, Eq. (10), is replaced by an inner iteration with the

following update equations

y1 ← argmin
y′
1

{
g(y′1, y2) + u⊤B (y′1, y2) (12)

+ 1
2∥Ax+B (y′1, y2)− c∥2Σ + 1

2∥(y
′
1, y2)− (y1, y2)∥2Hg

}
y2 ← argmin

y′
2

{
g(y1, y

′
2) + u⊤B (y1, y

′
2) (13)

+ 1
2∥Ax+B (y1, y

′
2)− c∥2Σ + 1

2∥(y1, y
′
2)− (y1, y2)∥2Hg

}
.

The inner loop consists of alternating between Eqs. (12) and
(13) for a predetermined number of iterations Ny , where Ny ≥
1. After the inner loop is completed, the ADMM iteration
continues with Eq. (11) after the following assignment

y = (y1, y2).

This inner loop, specified in Eqs. (12) and (13), is computa-
tionally efficient if multiplication by the matrix B is efficient;
this is the case in our application because we consider B = I
where I is the identity matrix. Note that multiplication by A
is not performed within this inner iteration because the matrix
A only appears in the term Ax which is computed before
entering the inner loop.

E. ADMM for large-scale tomographic image
reconstruction

For the large-scale optimization problems that arise in
tomographic image reconstruction, the update step in Eq. (9)
can be problematic because of the term Ax, which appears in
the minimization over x. The matrix A usually contains the
system matrix for the imaging model, and computation of Ax
can be expensive particularly for 3D imaging; thus numerical
solution of Eq. (9) may not be feasible. This “expensive inner
loop” problem can be circumvented by linearization, i.e. by
including the additional term 1

2∥x
′−x∥2Hf

in Eq. (9) [19], [26],
resulting in an algorithm closely related to the primal-dual
(PD) algorithm of Chambolle and Pock [17], [18]. Considering
only scalar step size parameters, i.e.

Σ = σI,

the metric Hf in Eq. (9) is set to

Hf = I/τ − σA⊤A. (14)

This choice cancels the Ax′ term in Eq. (9), and the require-
ment that Hf be positive definite yields a constraint on the
step sizes σ and τ . In the context of the image reconstruction
problem, we also have

Hg = 0; B = −I; c = 0.

The ADMM generic optimization problem becomes

min
x,y
{f(x) + g(y) | Ax− y = 0} , (15)
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and the algorithm for convex optimization is then specified by
the following update equations

x← argmin
x′

{
f(x′) + x′

⊤
A⊤(u+ σ(Ax− y))

+ 1
2τ ∥x

′ − x∥2
}

(16)

y ← argmin
y′

{
g(y′)− u⊤y′ + σ

2 ∥Ax− y
′∥2
}

(17)

u← u+ σ(Ax− y). (18)

Aside from minor details, this set of update equations is
equivalent to the PD algorithm, but as a starting point to
modify the update steps for non-convex optimization, this form
is more convenient because both f and g functions appear
directly in the updates. In contrast, the PD algorithm dualizes
g and the convex conjugate g⋆ is needed. If it is desired to
apply PD to non-convex g, figuring out what to put in place
of g⋆, while possible [27], adds another layer of complication
to the algorithm development.

The modification of the linearized ADMM updates for
addressing the case where g is biconvex replaces Eq. (17)
with inner loop update equations

y1 = argmin
y′
1

{
g(y′1, y2)− u⊤(y′1, y2) (19)

+ σ
2 ∥Ax− (y′1, y2)∥2

}
y2 = argmin

y′
2

{
g(y1, y

′
2)− u⊤(y1, y′2) (20)

+ σ
2 ∥Ax− (y1, y

′
2)∥2

}
.

Convergence of this modified ADMM algorithm for biconvex
functions is not theoretically guaranteed and thus convergence
is demonstrated empirically.

F. ADMM for SAA in TOF-PET

The instantiation of ADMM for SAA estimation by min-
imization of the negative log-likelihood is covered here in
detail. The optimization problem of interest, restated from
Eq. (3), is

λ, µ = argmin
λ,µ

{
l(λ, µ) | 1⊤λ = Ntotal, λ ≥ 0, µ ≥ 0

}
.

(21)
In this sub-section, we map this optimization problem on to
the ADMM algorithm, derive the x-update and biconvex y-
updates, and provide the pseudo-code for SAA estimation.

To map the optimization problem in Eq. (21) onto the
generic ADMM optimization in Eq. (15), the primal, splitting,
and dual variables x, y, and u, are respectively assigned as

x =

(
λ
µ

)
, y =

(
yλ
yµ

)
, u =

(
uλ
uµ

)
.

The linear system A is assigned as

A =

(
T 0
0 P

)
.

The convex function f is used to represent the non-negativity
constraints and the constraint on the total number of annihi-
lations by setting

f(λ, µ) = δ(1⊤λ = Ntotal) + δ(λ ≥ 0) + δ(µ ≥ 0), (22)

where δ is the convex indicator function, which is zero if
the conditional argument is true and infinity otherwise. The
biconvex function g accounts for the negative log-likelihood
objective function in Eq. (21)

g(yλ, yµ) = L(yλ, yµ), (23)

L(yλ, yµ) =
∑
iℓ

{
exp(−yµ, ℓ) · yλ, iℓ

−Ciℓ · (−yµ, ℓ + log(yλ, iℓ))
}
,

where
l(λ, µ) = L(Tλ, Pµ).

Parametrization of the step sizes: Step size selection is a crit-
ical issue for first-order, large-scale optimization algorithms.
There can be much flexibility in the step size selection, and
it is important to select a minimal set of free parameters that
are effective for algorithm efficiency but not too cumbersome
in the tuning procedure. Because the system matrix A for
SAA is block-diagonal, a slight generalization of the ADMM
linearization is considered. The metric Hf is written as

Hf =

(
Hλ 0
0 Hµ

)
,

Hλ =
I

τλ
− σλT⊤T,

Hµ =
I

τµ
− σµP⊤P,

and the step size parameters are chosen according to

σλτλ = 1/∥T∥22, σµτµ = 1/∥P∥22,

where ∥M∥2 is the largest singular value of the matrix M .
With four step size parameters and two equality constraints,
there are two free step size parameters. Specifically, the step
size ratios, ρλ and ρµ, are chosen to be the free parameters
that need to be tuned:

σλ =ρλ/∥T∥2, τλ = 1/(ρλ∥T∥2), (24)
σµ =ρµ/∥P∥2, τµ = 1/(ρµ∥P∥2). (25)

Tuning of ρλ and ρµ is a necessary step any time the T or P
matrices are changed due to, for example, a change in scan
configuration or sampling pattern.

The x-update: For the SAA problem in TOF-PET the x-
update in Eq. (16) splits into two optimization problems

λ← argmin
λ′

{
λ′

⊤
T⊤(uλ + σλ(Tλ− yλ)) (26)

+ 1
2τλ
∥λ′ − λ∥2 | 1⊤λ′ = Ntotal, λ′ ≥ 0

}
,

µ← argmin
µ′

{
µ′⊤P⊤(uµ + σµ(Pµ− yµ)) (27)

+ 1
2τµ
∥µ′ − µ∥2 | µ′ ≥ 0

}
,
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where the indicator terms of the convex function f from
Eq. (22) are incorporated as constraints in the λ- and µ-
update equations. The optimization problem for the µ-update
in Eq. (27) is solved by setting the gradient of the objective
function to zero and solving for µ′, followed by a non-
negativity projection to enforce the constraint on µ′

µ← µ− τµP⊤ūµ, (28)
ūµ = uµ + σµ(Pµ− yµ),
µ← pos(µ),

where the function pos(·) thresholds negative components of
the argument to zero.

For the λ optimization problem in Eq. (26), completing
the square in the quadratic objective function, rescaling the
objective function, and ignoring the λ′-independent term yields

λ← argmin
λ′

{
1
2

∥∥λ′ − (λ− τλT⊤ūλ
)∥∥2 (29)

| 1⊤λ′ = Ntotal, λ′ ≥ 0
}
,

ūλ = uλ + σλ(Tλ− yλ).

This optimization problem is now in the form of a projection
onto the positive simplex, for which an efficient algorithm is
developed by Duchi et al. [28]. Computationally, the updates
in λ and µ are the most expensive steps in the ADMM
algorithm because they involve forward- and back-projection
of µ and ūµ, respectively, in addition to TOF forward- and
back-projection of λ and ūλ, respectively.

The biconvex y-updates: The g function in Eq. (23) is
biconvex in that it is convex in yλ if yµ is fixed and vice versa.
Splitting up the g function over the two update equations in
Eqs. (19) and (20) yields

yλ = argmin
y′
λ

{∑
iℓ

(
exp(−yµ, ℓ) · y′λ, iℓ − Ciℓ · log(y′λ, iℓ)

)
−u⊤λ y′λ +

σλ
2
∥y′λ − Tλ∥2 | y′λ ≥ 0

}
, (30)

and

yµ = argmin
y′
µ

{∑
iℓ

(
exp(−y′µ, ℓ) · yλ, iℓ + Ciℓ · y′µ, ℓ

)
−u⊤µ y′µ +

σµ
2
∥y′µ − Pµ∥2 | y′µ ≥ 0

}
, (31)

noting that the exp(−yµ) · yλ term is the only one that mixes
the yλ and yµ variables and is therefore common to both
minimization problems. In order for the biconvex alternation
to converge it is necessary to introduce the non-negativity
constraints on y′λ and y′µ. Physically, these constraints are
redundant with the non-negativity constraints imposed on λ
and µ; if these physical constraints are not used, it is still
necessary to impose non-negativity constraints on Tλ and Pµ.

The minimization problems for the y-update are both sep-
arable over the components of y′λ and y′µ. The minimization
over y′λ in Eq. (30) is solved analytically by setting the gradient
of the objective function to zero, yielding a quadratic equation
when Ciℓ > 0,

σλy
2
λ, iℓ − biℓyλ, iℓ − Ciℓ = 0,

where biℓ = uλ, iℓ + σλT
⊤
iℓ λ− exp(−yµ, ℓ),

and a linear equation when Ciℓ = 0,

σλyλ, iℓ − biℓ = 0.

For the Ciℓ > 0 case, the non-negativity constraint on y′λ
is respected by selecting the non-negative root of the corre-
sponding quadratic equation, and for the Ciℓ = 0 case, the
non-negativity constraint on y′λ yields an update,

yλ, iℓ = max(biℓ/σλ, 0).

Both the linear and quadratic cases can be merged into the
following update equation for yλ, iℓ,

yλ, iℓ =

(
biℓ +

√
b2iℓ + 4σλCiℓ

)
/(2σλ). (32)

Solving the minimization over y′µ in Eq. (31) is more
involved because setting the gradient of the objective function
to zero results in a transcendental equation, which requires the
use of a numerical solver. The objective function is convex
in y′µ and its derivatives are easily computed analytically.
Thus Newton’s algorithm can be applied to obtain an efficient
and accurate solution to Eq. (31). Both the first and second
derivatives of the objective function are needed for Newton’s
algorithm. Defining ψ to be the objective function of Eq. (31)

ψ(y′µ) =
∑
iℓ

(
exp(−y′µ, ℓ) · yλ, iℓ + Ciℓ · y′µ, ℓ

)
− u⊤µ y′µ +

σµ
2
∥y′µ − Pµ∥2,

the first derivative of ψ is

∂ψ(y′µ)

∂y′µ, ℓ
= − exp(−y′µ, ℓ) · yλ, ℓ

+ Cℓ − uµ + σµ(y
′
µ, ℓ − P⊤

ℓ µ), (33)

where
yλ, ℓ =

∑
i

yλ, iℓ , Cℓ =
∑
i

Ciℓ .

The second derivative of ψ is

∂2ψ(y′µ)

∂y′µ, ℓ
2 = exp(−y′µ, ℓ) · yλ, ℓ + σµ , (34)

which is strictly positive. Thus Newton’s algorithm can be
applied without any difficulties with the following update
equation

y′µ, ℓ ← y′µ, ℓ −
∂ψ(y′µ)

∂y′µ, ℓ

(
∂2ψ(y′µ)

∂y′µ, ℓ
2

)−1

. (35)

There is also the non-negativity constraint in Eq. (31), and this
can be accounted for by thresholding negative values of y′µ, ℓ
to zero after the Newton iteration is completed.

The proposed y-update involves two additional levels of iter-
ation. The first additional level of iteration involves alternating
between solving Eqs. (30) and (31). In the second additional
level of iteration Eq. (31) is solved with the Newton iteration
in Eq. (35). Nevertheless, these additional nested iterations do
not negatively impact the efficiency of the overall algorithm
because all of the iterations for the y-update separate over the
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components of y. The complete y-update computation takes
less effort than computing Tλ, the TOF data of an estimate
of the activity map, λ. This is one of the useful aspects of the
powerful splitting technique that ADMM exploits.

Algorithm 1 ADMM pseudocode for SAA estimation with
biconvex optimization. Variables λ, µ, yλ, yµ, ȳλ, ȳµ, uλ, and
uµ are initialized to zero. Step size ratio parameters ρλ and
ρµ are chosen, and step size parameters σλ, σµ, τλ, and τµ
are determined according to Eqs. (24) and (25).

1: for k ← 1, Niter do
2: λ̄ = T⊤(uλ + σλ(ȳλ − yλ))
3: λ← Psimplex(Ntotal)

(
λ− τλλ̄

)
4: ȳλ = Tλ
5: µ̄ = P⊤(uµ + σµ(ȳµ − yµ))
6: µ← pos(µ− τµµ̄)
7: ȳµ = Pµ
8: vµ, ℓ =

∑
i Ciℓ − (uµ, ℓ − σµȳµ, ℓ) ∀ℓ

9: for k′ ← 1, Ny do ▷ Biconvex alternation loop
10: biℓ = uλ, iℓ + σλȳλ, iℓ − exp(−yµ, ℓ) ∀i, ℓ
11: yλ, iℓ =

(
biℓ +

√
b2iℓ + 4σλCiℓ

)
/(2σλ) ∀i, ℓ

12: yλ, ℓ =
∑

i yλ, iℓ ∀ℓ
13: y′µ, ℓ = 0 ∀ℓ ▷ Initialize Newton iteration
14: for k′′ ← 1, Nnewt do ▷ Loop for solving Eq. (31)
15: ψ

(1)
ℓ = − exp(−y′µ, ℓ) · yλ, ℓ + σµy

′
µ, ℓ + vµ, ℓ

16: ψ
(2)
ℓ = exp(−y′µ, ℓ) · yλ, ℓ + σµ ∀ℓ

17: y′µ, ℓ ← y′µ, ℓ − ψ
(1)
ℓ ·

(
ψ
(2)
ℓ

)−1

∀ℓ
18: y′µ, ℓ ← pos(y′µ, ℓ) ∀ℓ ▷ Nonneg., Eq. (31)
19: end for
20: yµ, ℓ = y′µ, ℓ ∀ℓ
21: end for
22: uλ ← uλ + σλ(ȳλ − yλ)
23: uµ ← uµ + σµ(ȳµ − yµ)
24: end for

ADMM pseudocode for SAA estimation: The x-, y-, and u-
update equations are assembled into a complete pseudocode
given in Algorithm 1. The expensive projection and back-
projection computations are collected in as few lines as possi-
ble, and their results stored, to avoid unnecessary repetition
of these burdensome operations. The simplex projection at
line 3 is the optimization problem defined in Eq. (29); efficient
computer code for implementing this projection is available
from Duchi et al. [28]. The first derivative computation from
Eq. (33) is performed at lines 8 and 15, where line 8 collects
all terms that are not dependent on yλ or y′µ. The function
pos(·) in lines 6 and 18 returns the argument if it is non-
negative, otherwise it returns zero. For the results presented
in this work, we only consider zero initialization for all of the
algorithm variables. The choice of step size ratios ρλ and ρµ
will impact the convergence rate of the algorithm, and these
parameters must be tuned for optimal performance.

G. ADMM for TV-constrained SAA in TOF-PET
The proposed ADMM framework for solving SAA esti-

mation in TOF-PET allows for great flexibility in impos-
ing convex constraints in the imaging optimization problem.
Accordingly, we augment the total annihilation count and
nonnegativity constraints in Eq. (21) with additional total
variation constraints on the activity and attenuation maps

λ, µ = argmin
λ,µ

{
l(λ, µ) | ∥λ∥TV ≤ γλ, ∥µ∥TV ≤ γµ,

1⊤λ = Ntotal, λ ≥ 0, µ ≥ 0
}
, (36)

where ∥ ·∥TV is the isotropic TV seminorm; γλ and γµ are the
TV constraint values for the activity and attenuation maps,
respectively. The additional TV constraints exploit gradient
sparsity in in both the activity and attenuation that potentially
improves accurate estimation of their corresponding images.

Because the novel aspect of this work is the treatment
of the biconvex log-likelihood term, which is explained in
detail in Sec. II-F, the ADMM instance for this optimization
problem is covered in the Appendix. The ADMM algorithm
for TV-constrained SAA estimation (ADMM-TVSAA) is also
designed so that it makes use of the same step size ratio
parameters as discussed for Algorithm 1. Because of the
additional constraints, the TV constraint values γλ and γµ
become additional parameters of the algorithm.

H. Step size scaling of ADMM for SAA
When tuning the step size parameters ρλ and ρµ in ADMM-

SAA or ADMM-TVSAA, it is important to account for the
fact that the the optimal settings for maximum algorithm
efficiency change with scaling of the coincidence data C.
A practical consequence is that optimally efficient ρ-values
would depend on, for example, collection time of the TOF-
PET system. In the following results presented in Sec. III, this
issue is addressed by normalizing the data C with the factor
size(C)/∥C∥2. The choice of data normalization is arbitrary
because of the following scaling relationship. If we replace
the coincidence data C by aC, the same ADMM iterates, up
to a scaling, can be obtained by adjusting the constraint and
step size parameters as follows:

Ntotal → aNtotal, γλ → aγλ,

σλ → σλ/a, τλ → aτλ, σµ → aσµ, τµ → τµ/a.

With this scaling of the algorithm parameters, the algorithm
variables transform as follows:

λ→ aλ, yλ → ayλ, uλ → uλ,

µ→ µ, yµ → yµ, uµ → auµ.

The scaling transformations can be verified by making the
appropriate substitutions into Eqs. (18), (26), (27), (30), and
(31), or into the update equations of Algorithm 1.

I. Huber-penalized MLAA
Use of ADMM allows for nonsmooth terms in the opti-

mization such as use of the TV-norms and complex constraints
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Fig. 1. (left) Slice number 40 from the University of Washington
Digital Reference Object: activity image in arbitrary units, and (right)
attenuation map displayed in the gray scale window [0.075, 0.115]
cm−1. The dashed circle in the activity image indicates the activity
distribution used for the investigation of SAA with interior data.

on the activity and attenuation. The closest comparison from
the literature involves a smooth objective function with Huber
penalties on the activity and attenuation. Accordingly com-
parison results are obtained with the penalized-MLAA (P-
MLAA) algorithm presented in Mehranian et al. [24]. The
P-MLAA algorithm implemented here addresses the following
optimization problem Huber penalties

λ, µ = argmin
λ,µ

{
l(λ, µ) + βHδ(λ) + γHδ(µ) |

1⊤λ = Ntotal, λ ≥ 0, µ ≥ 0
}
, (37)

where Hδ(·) is the Huber penalty with smoothing parameter
δ, see for example Nuyts et al. [6] for the definition of this
penalty function. The P-MLAA algorithm replaces Eq. (5)
with the “one step late” update equation developed by Green
[30] and introduces a Gibbs prior into Eq. (7) in the manner
developed in Nuyts et al. [6].

III. RESULTS WITH A 2D TOF-PET SIMULATION

The results demonstrating the ADMM-SAA algorithm are
all derived from a 2D simulation using the digital reference
object (DRO) shown in Fig. 1 [31]. This digital phantom
is cropped to 176x176 image array with physical dimension
30x30 cm2. The LORs are arranged in a 2D parallel-beam
geometry with 176 views covering a π radian arc, and 176
parallel rays being measured per view with a spacing of 0.17
cm (30/176 ≈ 0.17). The TOF FWHM is taken to be 4.5 cm,
which corresponds to a timing resolution of approximately
300 picoseconds. The spacing between TOF window samples
is 2.25 cm, and a total of 17 TOF samples are taken per LOR.
For the image reconstruction, both the attenuation and activity
images are represented on a 176x176 grid. The purpose of
the presented results is to demonstrate usage of the ADMM-
SAA algorithm and the impact of the TV constraints on the
reconstruction of the activity and attenuation.

For the following results, the biconvex alternation loop
at line 9 of Algorithm 1 is run for Ny = 100 iterations,
and the Newton solver at line 14 is run for Nnewt = 10
iterations. With both of these loop settings, Eq. (23) is solved
accurately in a numerical sense. Even with the inner loops
being executed with such high iteration numbers, the efficiency
of the whole biconvex alternation loop is still high, because
all of the computations separate across the vector components.

Fig. 2. Convergence of ADMM-TVSAA with noiseless TOF-PET data
for the case of the full activity distribution (left) and the interior activity
distribution (right). The data RMSE is normalized to the mean value of
the TOF-PET data, and the activity/attenuation RMSEs are normalized
to the mean values of their respective images.

The computational effort for the biconvex alternation loop
is O(Ny · NTOF · Nviews ·

√
Npix) (the Newton loop does

not increase the order of this loop because it involves the
attenuation sinogram only), and by comparison, computing
TOF projection, Tλ, is O(NTOF · Nviews · Npix), where Npix
is the total number of pixels and Nviews is the number of
projection angles. For the small 176x176 images of this study
the biconvex loop is of the same order as TOF projection
because Ny ≈

√
Npix, but as the data and image size increase,

TOF projection becomes the more burdensome computation. It
is also possible, in practice, to reduce Ny and Nnewt and work
with inexact solution of Eq. (23) but we do not investigate this
option in this work.

A. SAA from noiseless data

Image reconstruction is performed on noiseless data using
the mean counts as the measured data, and ADMM-TVSAA is
employed to study the effectiveness for solving the associated
inverse problem for two situations: (1) the full activity distri-
bution from the DRO phantom is used as the test object, and
(2) the activity distribution is truncated at the yellow, dashed
circle in Fig. 1. The second case is a more challenging inverse
problem for SAA because recovery of the full attenuation map
is complicated by the fact that only LORs that intersect the
non-zero activity provide useful data, and accordingly recovery
of the attenuation map has a similar degree of difficulty as the
interior problem in tomography.

The convergence results for 5000 iterations of ADMM-
TVSAA on the phantom with the full activity distribution and
the truncated (or interior) activity distribution are shown in
Fig. 2. In both cases, the normalized data RMSE and activity
RMSE is observed to steadily converge to zero although
the activity RMSE is noted to converge more slowly than
the data RMSE. Recovering the true attenuation is clearly
more challenging; for the full activity distribution case the
attenuation RMSE exhibits convergent behavior all the way to
the last computed iteration, but for the truncated activity case
the global attenuation RMSE does not demonstrate convergent
behavior. For truncated activity, however, the attenuation factor
derived from the inaccurate attenuation map must have high
degree of accuracy since the activity distribution is nicely
recovered.

A series of image estimates are shown for the full activity
in Fig. 3 and only the 5000th iteration results are shown
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Fig. 3. Reconstructed activity (left column) and attenuation (right
column) images from noiseless data with ADMM-TVSAA at 50 (top row),
100 (middle row), and 5000 (bottom row) iterations. Because the result
at 5000 iterations is visually indistinguishable from the test phantom the
difference from the ground truth is displayed in the bottom row. The
activity distribution is normalized to 1.0 for the maximum value.

for truncated activity in Fig. 4. The difference images at
5000 iterations shows accurate reconstruction of both activity
and attenuation for the full distribution case. The attenuation
difference in the bottom panels reveals error at the 1% level for
the attenuation map near the edges of the phantom. The panels
at the earlier iterations provide a sense of the convergence
to the solution; specifically the activity images at 50 or 100
iterations closely resemble the result at 5000 iterations. The
attenuation map clearly converges more slowly. For the case
of truncated activity shown in Fig. 4, the activity image is
accurately recovered but it is clear that the attenuation map is
not completely recovered. Interestingly, ADMM-TVSAA does
seem to be able to recover the support of the attenuation map
even if there is substantial error in the outer portions of the

Fig. 4. For the results with the interior activity distribution we only show
iteration 5000 for the activty (left) and attenuation (right). The actual
activity/attenuation images are shown in the top row, and the difference
from ground truth is shown in the bottom row.

Activity Attenuation

Fig. 5. Normalized standard deviation versus normalized bias of the
activity (left) and attenuation (right) images as a function of iteration
number computed empirically from 100 noise realizations for MLAA,
MLAA with Huber penalties, and TV-constrained SAA. Normalization
of bias and standard deviation is achieved by dividing by the mean
value of the corresponding ground truth image. The labeled dots indicate
the iteration numbers for the respective algorithm curves. For TV-
constrained ADMM-SAA, curves are shown for activity and attenuation
TV constraints set to γλ = 1.0 and γµ = 1.0, respectively, where the
constraint values are given as a fraction of the ground truth TV values.
The Huber penalty parameters for P-MLAA are set so that the resulting
activity and attenuation images have nearly the same TV values as the
ground truth after 500 iterations.

image. Moreover, the central portion of the attenuation image
in the location where the activity is non-zero does appear to
be reconstructed accurately.

B. SAA from noisy data
The next set of studies focus on SAA with noisy data and

only the case of the full activity distribution is considered.
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Fig. 6. Reconstructed activity (left column) and attenuation (right
column) images from noisy data with ADMM-TVSAA. The top row shows
a reconstructed set of images from a single noise realization at 500
iterations, and the bottom row shows the corresponding mean over 100
noise realizations. With the activity distribution normalized to 1.0 for the
maximum value, the gray scale for the activity images is [0, 1.1], and
the gray scale for the attenuation is [0.055, 0.135].

Noise realizations are obtained by scaling the mean TOF-PET
data so that the total number of measured coincidences is
4×106; the realization is then obtained by selecting a number
of detected coincidences for each time-window sample and
LOR, drawn from a Poisson distribution. In demonstrating the
use of ADMM-TVSAA, two forms of MLAA provide refer-
ence algorithms. The MLAA algorithm described in Sec. II-C
is one of the references, where early stopping provides regular-
ization. The P-MLAA algorithm with Huber penalties provides
the other reference where the parameters are chosen in such a
way that it could conceivably yield similar results as ADMM-
TVSAA after 500 iterations. All three algorithms enforce the
total annihilation count and non-negativity constraints. The
smoothing parameter for P-MLAA’s Huber functions are both
chosen to be 0.1% of the phantom maximum value, which
is much less than the contrast of structures in either the
attenuation or activity maps. In this way the Huber penalties
approximate the TV-norm accurately. The penalty parameters
are tuned so that the phantom TV values are achieved at 500
iterations of P-MLAA.

For a quantitative bias-variance analysis of the activity and
attenuation, MLAA, P-MLAA, and ADMM-TVSAA are used
to perform SAA on an ensemble of 100 noise realizations of
TOF-PET data. The mean and pixel standard deviation are
computed and plotted in Fig. 5 as a function of iteration num-
ber. The use of the TV-constraints, allows ADMM-TVSAA
to achieve activity estimates with low bias and variance as
compared with basic maximum-likelihood estimation as im-
plemented with MLAA. Use of explicit Huber penalties with
P-MLAA also yields images at 500 iterations that have low
bias and variance with respect to MLAA; although the paths

Fig. 7. Same as Fig. 6 except that the Huber-regularized MLAA is used
to generate the image iterates.

in the bias-variance plot for ADMM-TVSAA and P-MLAA
are quite different as a function of iteration number. For
the particular parameter settings chosen, the ADMM-TVSAA
algorithm achieves slightly lower global bias in the activity
image with slightly larger variance as compared to P-MLAA.
In the activity bias-variance curves, the proximity of the points
at 200 and 500 iterations is an indication that the respective
ADMM-TVSAA and P-MLAA are near convergence.

The bias-variance curves for the attenuation image reveal a
much different behavior than that of the activity image. Both
ADMM-TVSAA and P-MLAA substantially improve on the
use of MLAA without explicit penalty terms. The variance of
the ADMM-TVSAA result is larger than that of P-MLAA, but
ADMM-TVSAA achieves a lower bias. It is also clear that 500
iterations is not sufficient to achieve a converged attenuation
map because the there is still quite some separation between
the points at 200 and 500 iterations for ADMM-TVSAA and
P-MLAA. This difference in the rate of convergence of the
activity and attenuation images was also seen in the noiseless
results shown in Fig. 2. That there can be such a difference in
the convergence rate of the two images is due to the fact that
the attenuation image only impacts the activity image through
the attenuation factor.

The activity and attenuation images for the present noise
studies are shown in Figs. 6 and 7 for ADMM-TVSAA and
P-MLAA, respectively. The top row of each figure shows
images at 500 iterations for a single noise realization, and
the bottom row shows the mean over 100 noise realizations,
which reveals the spatial dependence of the image bias. The
most notable difference between the two algorithms is in the
attenuation images. The ADMM-TVSAA algorithm achieves
an attenuation distribution that has the correct support and
gray level even if it suffers from noticeable noise artifacts.
The result for P-MLAA, however, shows significant bias in the
attenuation images and features from the activity distribution
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Fig. 8. Line profiles through the middle row of pixels comparing the
ground truth with the mean reconstructed activity (left) and attenuation
(right) images generated at 500 iterations by ADMM-TVSAA and P-
MLAA.

Fig. 9. Evolution of activity (left) and attenuation (right) image TV as a
function of iteration number for 2000 iterations of ADMM-TVSAA and P-
MLAA. The TV values are normalized so that the ground truth phantom
values are 1.0.

clearly bleed through to the attenuation images. The error in
the attenuation images, however, may not be critical if the
attenuation factors are recovered, and this appears to be the
case for both algorithms as the activity images at 500 iterations
are accurate. The activity for P-MLAA shows slightly more
bias, relative to ADMM-TVSAA, at the phantom border.

The line profiles in Fig. 8 reveal the bias more quantitatively.
For ADMM-TVSAA, the mean activity follows the line profile
of the ground truth quite closely except for the fact that the
sharp features are slightly rounded. The mean attenuation is
somewhat accurate except for near the border of the object
support where there is significant blurring of the edge. For P-
MLAA, the mean activity has a slight increase at the phantom
border and a slight filling in of the central cold spot. The
attenuation profile for P-MLAA reflects the significant bias
that was seen in Fig. 7.

IV. DISCUSSION

The constrained likelihood model for SAA in TOF-PET
enables novel numerical investigation into the SAA inverse
problem. In particular, for this work, TV-constraints that
exploit gradient sparsity are investigated for simultaneous
recovery of activity and attenuation images. From the for-
mulation presented in Sec. II-G, given knowledge of the
total annihilation count and TV values of the activity and
attenuation, the question is whether or not it is possible
to recover the underlying activity and attenuation distribu-
tions. For the presented noiseless study where the activity
and attenuation have the same support, it appears that both
distributions can be accurately recovered. For the case where
the activity distribution is interior to the attenuation, the former
is recovered accurately while the latter is recovered only within

the support of the activity distribution. The study with data
noise provides some sense of the stability of the SAA inverse
problem when using the TV-constrained likelihood model.

We point out that carrying out inverse problems studies with
the penalized likelihood approach shown in Sec. II-I is much
more difficult. Aside from the difference between TV and
Huber regularization terms, penalized likelihood needs to be
investigated in the limit where the penalty parameters approach
zero in order to provide the equivalent solution to constrained
likelihood when the data are noiseless.

Even with noisy data, it is difficult to use the penalized-
likelihood approach for achieving the same solution as the
constrained-likelihood model. This is illustrated in the evo-
lution of the activity and attenuation image TV shown in
Fig. 9. These results correspond to the noise study that
yielded the single noise realization images in Figs. 6 and
7 except that the iteration number is extended to 2000. For
ADMM-TVSAA, the image TVs reach their constraint values
quickly and maintain these values. For P-MLAA, the desired
constraint values are achieved at 500 iterations because a
two-dimensional penalty parameter search was performed to
achieve this goal. Iterating further with P-MLAA causes the
image TV to change. This change is not large for the activity
because this image is nearly converged, but for the attenuation
the change in TV is rather large. In order to come closer to the
desired constraint values with P-MLAA, the penalty parameter
search would need to be performed at larger iteration numbers,
increasing the computational burden.

So far this discussion has focused on algorithms for in-
vestigating the TOF-PET SAA inverse problem, which can
be quite different than their use for image reconstruction in
real data scenarios. For an actual scan, ground truth is not
available and mathematical accuracy of the solution may not
correlate well with the imaging task of interest. Parameters
of ADMM-TVSAA or P-MLAA need to be optimized on
a metric reflecting performance on this imaging task. Also,
because accurate solution is not necessarily the goal, early
stopping is almost always used in practical applications of
iterative image reconstruction. In this sense, iteration number
becomes a parameter to tune and the practical difference
between these two algorithms is the different paths they take in
approaching their respective solutions. We also point out that
we have shown results for P-MLAA using Green’s one step
late algorithm, and use of other solvers such as ADMM with
SQS [25] may lead to improved performance of P-MLAA.

The presented study made use of a relatively simple test
object that may favor the use of TV constraints. For realistic
activity distributions, such constraints can still be employed
effectively as is shown in Refs. [15] and [16], where human
PET data is reconstructed using such constraints.

V. CONCLUSION

In this work, an ADMM framework is developed that can be
applied to nonsmooth and nonconvex optimization problems
that arise in imaging. The particular form of nonconvexity
addressed is when the optimization problem has a biconvex
structure. The imaging problem posed by simultaneous es-
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timation of the activity and attenuation (SAA) in time-of-
flight positron emission tomography (TOF-PET) has such a
structure. Using this ADMM framework, a limited study on the
impact of total variation (TV) constraints on the activity and
attenuation for the SAA problem is presented. The use of both
of these constraints is seen to help stabilize the SAA inverse
problem. The shown results are intended to demonstrate the
ADMM-TVSAA algorithm and its potential in solving the
SAA inverse problem with the use of TV constraints on the
activity and attenuation. While we have shown results only for
ADMM-TVSAA, the ADMM framework is easily extended to
include other nonsmooth, convex terms. Further study varying
the test phantom and TOF-PET setup are needed to obtain a
more comprehensive picture of the SAA inverse problem.

DATA AVAILABILITY

The implementation of the algorithms, which are presented
in this article, and the code, which generates the figures, are
available at:
https://github.com/zhimeir/saa_admm_paper.

APPENDIX

ADMM for TVSAA in TOF-PET

In this Appendix, the details for the instantiation of ADMM
for TV-constraineed SAA estimation (ADMM-TVSAA) is
explained. The optimization problem of interest is Eq. (36)
from the main text, which we restate here

λ, µ = argmin
λ,µ

{
l(λ, µ) | ∥Dλ∥1 ≤ γλ, ∥Dµ∥1 ≤ γµ,

1⊤λ = Ntotal, λ ≥ 0, µ ≥ 0
}
, (A1)

where D is the discretization of the spatial gradient operator,
and ∥Dx∥1 is the anisotropic TV of x. To map the opti-
mization problem onto the generic ADMM optimization in
Eq. (14), the primal, splitting, and dual variables x, y, and u,
are respectively assigned as

x =

(
λ
µ

)
, y =


yλ
zλ
yµ
zµ

 , u =


uλ
vλ
uµ
vµ

 ,

The linear system A is assigned as

A =


T 0
νλD 0
0 P
0 νµD

 ,

where
νλ = ∥T∥2/∥D∥2, νµ = ∥P∥2/∥D∥2, (A2)

are constants that normalize the gradient matrices to the
projection matrices.

As with the SAA problem, the convex function f is used to
represent the constraint on the total number of annihilations
by setting

f(λ, µ) = δ(1⊤λ = Ntotal) + δ(λ ≥ 0) + δ(µ ≥ 0).

The biconvex function g accounts for the remaining terms in
Eq. (A1)

g(yλ, yµ) = L(yλ, yµ)+

δ(∥zλ∥1 ≤ νλγλ) + δ(∥zµ∥1 ≤ νµγµ), (A3)

where the biconvex function L(yλ, yµ) is defined in Eq. (23)
and the TV constraint values have also been scaled to reflect
the normalization of D.

Parametrization of the step-sizes: With the modified system
matrix A, the metric from Eq. (14) becomes

Hf =

(
Hλ 0
0 Hµ

)
,

Hλ =
I

τλ
− σλ(T⊤T + ν2λD

⊤D),

Hµ =
I

τµ
− σµ(P⊤P + ν2µD

⊤D),

and the step-size parameters are chosen so that

σλτλ = (∥T∥22 + ν2λ∥D∥22)−1, σµτµ = (∥P∥22 + ν2µ∥D∥22)−1.

As with ADMM-SAA the step size ratios, ρλ and ρµ, need to
be determined by a similar grid search to what is shown in
Sec. IIIA. The grid search performed for ADMM-SAA pro-
vides a good initial starting point for the step-size parameter
search for ADMM-TVSAA when the parameters νλ and νµ are
determined by Eq. (A2). Accordingly, the step size parameters
for ADMM-TVSAA are

σλ = ρλ(∥T∥22 + ν2λ∥D∥22)−1,

τλ = ρ−1
λ (∥T∥22 + ν2λ∥D∥22)−1,

σµ = ρµ(∥P∥22 + ν2µ∥D∥22)−1,

τµ = ρ−1
µ (∥P∥22 + ν2µ∥D∥22)−1.

The y-update: The g function in Eq. (A3) separates into
a biconvex function in yλ and yµ, and convex functions in
zλ and zµ. The biconvex terms are treated in exactly the same
way as the ADMM-SAA presentation in Sec. IIF. Focusing on
the last two convex terms in Eq. (A3) yields the optimization
problems

zλ = (A4)

argmin
z′
λ

{
δ(∥z′λ∥1 ≤ νλγλ)− v⊤λ z′λ +

σλ
2
∥z′λ − νλDλ∥2

}
,

and

zµ = (A5)

argmin
z′
µ

{
δ(∥z′µ∥1 ≤ νµγµ)− v⊤µ z′µ +

σµ
2
∥z′µ − νµDµ∥2

}
.

Because both of these problems are identical, we focus on
Eq. (A4). The objective function consists of a quadratic func-
tion and an indicator function that enforces the ℓ1 constraint on
z′λ. Furthermore, the quadratic function has uniform curvature,
i.e. a Hessian matrix that is proportional to the identity matrix.
For this special case, the solution to Eq. (A4) is obtained in
a two-step process that involves finding the minimizer of the
unconstrained quadratic function, then projecting the result to

https://github.com/zhimeir/saa_admm_paper
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the closest z′λ that satisfies the ℓ1 constraint. The unconstrained
minimizer is given by

z′′λ = vλ/σλ + νλDλ,

and the solution to Eq. (A4) becomes

z′λ = PL1(νλγλ)(z
′′
λ), L1(r) = {z | ∥z∥1 ≤ r},

where PL1(νλγλ)(·) denotes projection onto the ℓ1-ball of
“radius” νλγλ. An efficient algorithm for performing this pro-
jection is presented in Ref. [28], or it can also be accomplished
by vector shrinkage and use of a root finding algorithm to
determine the shrinkage parameter to attain an ℓ1-norm of
νλγλ. The update equations for zλ and zµ are

zλ ← PL1(νλγλ)(vλ/σλ + νλDλ),

zµ ← PL1(νµγµ)(vµ/σµ + νµDµ).

Algorithm 2 ADMM pseudocode for TV-constrained SAA
estimation. Variables λ, µ, yλ, yµ, zλ, zµ,ȳλ, ȳµ, z̄λ, z̄µ, uλ,
uµ, vλ, and vµ are initialized to zero. Step size ratio parameters
ρλ and ρµ are determined in the grid search described in
Sec. IIIA.

1: for k ← 1, Niter do
2: λ̄1 = T⊤(uλ + σλ(ȳλ − yλ))
3: λ̄2 = νλD

⊤(vλ + σλ(z̄λ − zλ))
4: λ← Psimplex(Ntotal)

(
λ− τλ(λ̄1 + λ̄2)

)
5: ȳλ = Tλ
6: z̄λ = νλDλ
7: µ̄1 = P⊤(uµ + σµ(ȳµ − yµ))
8: µ̄2 = νµD

⊤(vµ + σµ(z̄µ − zµ))
9: µ← µ− τµ(µ̄1 + µ̄2)

10: ȳµ = Pµ
11: z̄µ = νµDµ
12: vµ, ℓ =

∑
i Ciℓ − (uµ, ℓ − σµȳµ, ℓ) ∀ℓ

13: for k′ ← 1, Ny do
14: biℓ = uλ, iℓ + σλȳλ, iℓ − exp(−yµ, ℓ) ∀i, ℓ
15: yλ, iℓ =

(
biℓ +

√
b2iℓ + 4σλCiℓ

)
/(2σλ) ∀i, ℓ

16: yλ, ℓ =
∑

i yλ, iℓ ∀ℓ
17: y′µ, ℓ = 0 ∀ℓ
18: for k′′ ← 1, Nnewt do
19: ψ

(1)
ℓ = − exp(−y′µ, ℓ) · yλ, ℓ + σµy

′
µ, ℓ + vµ, ℓ

20: ψ
(2)
ℓ = exp(−y′µ, ℓ) · yλ, ℓ + σµ ∀ℓ

21: y′µ, ℓ ← y′µ, ℓ − ψ
(1)
ℓ ·

(
ψ
(2)
ℓ

)−1

∀ℓ
22: y′µ, ℓ ← pos(y′µ, ℓ) ∀ℓ
23: end for
24: yµ, ℓ = y′µ, ℓ ∀ℓ
25: end for
26: zλ ← PL1(νλγλ)(vλ/σλ + z̄λ)
27: zµ ← PL1(νµγµ)(vµ/σµ + z̄µ)
28: uλ ← uλ + σλ(ȳλ − yλ)
29: uµ ← uµ + σµ(ȳµ − yµ)
30: vλ ← vλ + σλ(z̄λ − zλ)
31: vµ ← vµ + σµ(z̄µ − zµ)
32: end for

ADMM pseudocode for TV-constrained SAA estimation: The
derivations in this appendix yield the additional steps that are
needed to formulate the pseudocode shown in Algorithm 2
from the ADMM-SAA pseudocode in Algorithm 1.
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