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LungViT: Ensembling Cascade of Texture Sensitive
Hierarchical Vision Transformers for Cross-Volume

Chest CT Image-to-Image Translation
Muhammad F. A. Chaudhary, Sarah E. Gerard, Gary E. Christensen, Christopher B. Cooper,

Joyce D. Schroeder, Eric A. Hoffman, and Joseph M. Reinhardt

Abstract—Chest computed tomography (CT) at inspiration
is often complemented by an expiratory CT to identify pe-
ripheral airways disease. Additionally, co-registered inspiratory-
expiratory volumes can be used to derive various markers
of lung function. Expiratory CT scans, however, may not be
acquired due to dose or scan time considerations or may
be inadequate due to motion or insufficient exhale; leading
to a missed opportunity to evaluate underlying small airways
disease. Here, we propose LungViT – a generative adversarial
learning approach using hierarchical vision transformers for
translating inspiratory CT intensities to corresponding expiratory
CT intensities. LungViT addresses several limitations of the
traditional generative models including slicewise discontinuities,
limited size of generated volumes, and their inability to model
texture transfer at volumetric level. We propose a shifted-window
hierarchical vision transformer architecture with squeeze-and-
excitation decoder blocks for modeling dependencies between
features. We also propose a multiview texture similarity distance
metric for texture and style transfer in 3D. To incorporate global
information into the training process and refine the output of
our model, we use ensemble cascading. LungViT is able to
generate large 3D volumes of size 320 × 320 × 320. We train
and validate our model using a diverse cohort of 1500 subjects
with varying disease severity. To assess model generalizability
beyond the development set biases, we evaluate our model on
an out-of-distribution external validation set of 200 subjects.
Clinical validation on internal and external testing sets shows
that synthetic volumes could be reliably adopted for deriving
clinical endpoints of chronic obstructive pulmonary disease.

Index Terms—Generative adversarial networks (GANs), med-
ical image synthesis, style transfer, texture, lungs, vision trans-
formers

I. INTRODUCTION

CHEST computed tomography (CT) is the imaging modal-
ity most commonly used to diagnose lung disease [1]–

[3]. Advancements in CT hardware have enabled acquisition
of large volumes that capture anatomical details at high
resolution [4]. Computed tomography, acquired at multiple
lung volumes, facilitates clinical decision making by offering
complementary information about local anatomical structure
and function. Deformable image registration (DIR), typically
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of the end-inspiratory and end-expiratory CT volumes, is used
to derive various surrogates for regional lung function [5]–[7].
Such multivolume measures have improved our understanding
of pulmonary abnormalities such as lung cancer and chronic
obstructive pulmonary disease (COPD) [5]–[9]. For instance,
parametric response mapping (PRM) and disease probability
maps (DPM) have been used to identify local patterns of
emphysema and functional small airways disease (fSAD) from
co-registered, inspiratory-expiratory chest CT volumes [6], [7].
PRM and DPM have since gathered widespread clinical atten-
tion as they have been used to detect and characterize COPD
and asthma [10]. Bodduluri et al. showed that registration-
derived local tissue expansion of the lung was associated
with respiratory function, emphysema, and patient quality of
life [9].

While multiple volumes improve clinical assessment, ac-
quiring them takes additional time and results in increased
radiation dose and overall cost. Each high-resolution chest
CT volume acquired at inspiration can expose a patient to
several milli-Gray of ionizing radiation. An additional chest
CT volume at expiration entails at least half of the radiation
dosage of an inspiratory scan [11], [12]. The radiation expo-
sure may increase even further in cases where subjects are
not able to achieve reliable end-inspiratory or end-expiratory
chest CT volumes and may need a repeat scan. These cases
include advanced-stage COPD and lung cancer patients with
increased disease burden. Expiration imaging is not routinely
ordered by clinicians, who may not be aware of the value
of inspiration/expiration paired data. Several large multicenter
studies acquired CT scans at different lung volumes making it
difficult to characterize subjects across different cohorts. For
instance, the multi-ethnic study of atherosclerosis (MESA) ac-
quired CT scans at total lung capacity (TLC) only [13] and the
Genetic Epidemiology of COPD (COPDGene) study acquired
CT scans at TLC and functional residual capacity (FRC) [14].
These problems limit the widespread utility and retrospective
evaluation of multivolume approaches for analyzing lung dis-
ease and characterizing patterns across cohorts. Cross-volume
image synthesis could serve as a useful tool towards mitigating
this challenge. Having the ability to synthesize expiratory
CT images could allow for retrospective evaluation of lung
function when legacy scans consist only of an inspiratory data
set or the expiratory images were corrupted by an inadequate
expiratory effort or motion, which is often the case.

In recent years, generative models have experienced a
surge in popularity for various medical image analysis tasks
including, image synthesis and translation [15]–[23], recon-
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struction [24]–[26], super-resolution [27]–[29], denoising [25],
[30], [31], and data augmentation [32], [33]. Earlier works
in this area used 2D slice-based generative adversarial net-
works (GANs) for low-dose CT denoising [30], motion cor-
rection [34], and converting magnetic resonance slices to
synthetic CT slices [15]. However, 2D GANs typically suffer
from slicewise discontinuities which may not suitable for
radiological purposes. Volumetric GANs address this issue by
processing 3D volumes instead of 2D images. For instance,
Nie et al. used a 3D GAN with auto-context refinement for
CT patch synthesis, achieving consistency across all spatial
dimensions [16]. Edge-aware GANs used 3D edge priors
for multimodal magnetic resonance image synthesis [17].
Volumetric GANs require large GPU memory for training
and most approaches either train their models on patches or
downsampled volumes. Training 3D generators on patches
can lead to undesirable results due to lack of global context.
This is further aggravated by the inherently local nature of
fully convolutional generators. Due to these reasons most 3D
generative models were restricted to limited volume sizes.

Volumetric approaches often rely on carefully designed
image priors or loss functions to address the lack of context
in 3D patch-based networks [16], [17], [35]. Although such
strategies improve model performance, they fail to directly
address network locality. Vision transformers (ViTs) have
recently emerged as an alternative to purely convolutional
architectures since they are able to learn contextual repre-
sentations through self-attention [36]. Recent examples like
VTGAN [37] for retinal image synthesis, ResViT for unified
multimodal medical image synthesis [38], and PTNet for
infant brain magnetic resonance image synthesis [39] demon-
strate improved performance of ViT-based architectures over
fully convolutional methods. Most of these approaches still
resort to slice-based training due to significantly increased
GPU memory demands of ViTs. Another important limitation
presented by most of the GAN studies is a lack of model
validation against clinical end-points and on large out-of-
distribution external validation sets – a component which was
completely missing in all the studies discussed above. For our
task of cross-volume CT synthesis, it is pertinent to generate
high-resolution 3D volumes and validate them against clinical
markers of disease for broader clinical applicability.

We propose LungViT, a texture sensitive, multiscale vi-
sion transformer-based approach for predicting inspiratory-to-
expiratory intensity change in chest CT. We hypothesize that a
CT image at inspiration contains sufficient structural informa-
tion to predict the associated aeration change on an expiratory
CT image. We propose a hybrid generator architecture called
SwinSEER, which uses shifted-window (Swin) transformers
within the the encoder, and squeeze-and-excitation (SE) blocks
with convolutions within the decoder. Unlike most GAN
approaches, we optimize a multiview texture- and structure-
sensitive image quality assessment metric for improving tex-
ture synthesis and increase robustness to structural distortions.
We show that LungViT is able to capture subtle tissue textures
and generate high-resolution CT volumes up to a size of
320 × 320 × 320 – significantly larger than the volumes
generated by most of the recent 3D GAN approaches. The

major contributions of our work can be summarized as follows.
• We believe this is the first study that investigates the

role of generative models for cross-volume computed
tomography.

• We propose a hybrid 3D generator called SwinSEER,
based on convolutional and transformer blocks, for syn-
thesizing large 3D medical image volumes.

• We propose a multiview extension of the deep image
structure and texture similarity (DISTS) metric [40] for
modeling tissue texture and style transfer across volumes.

• We also propose ensemble cascading to better capture
global context for volumetric image synthesis; and com-
pare the performance of our method with various state-of-
the-art 2D and 3D image-to-image translation methods in-
cluding both convolutional and transformer architectures.

• Unlike most generative modeling studies, we demonstrate
that synthetic images, derived using LungViT, can be used
to reliably compute several clinical end-points of lung
function.

• We assess model generalizability on a large out-of-
distribution external validation cohort where CT scans
were acquired using a totally different protocol.

II. RELATED WORK

Generative adversarial network architectures were initially
based on fully convolutional generators and discriminators.
Vision transformer-based architectures were recently demon-
strated to perform better at medical image synthesis tasks. In
this section, we review both the paradigms and point out some
of their pertinent limitations.

A. Convolutional Generative Models

Fully Convolutional GANs have been shown to perform
remarkably well for various medical image processing tasks
such as denoising [30], [31], super-resolution [27]–[29], data
augmentation [32], [33], and image-to-image translation [15]–
[23]. The GAN frameworks can be differentiated by the
number of spatial dimensions they attempts to model, i.e.,
planar (2D) vs. volumetric (3D) approaches.

Most of the preliminary work done towards medical image-
to-image translation was performed by 2D GAN frameworks
that operated on 2D slices instead of 3D volumes. For instance,
Yang et al. proposed to jointly minimize adversarial and
perceptual loss functions for denoising low-dose CT slices
from paired high-dose samples [30]. Similarly, Armanious
et al. proposed MedGAN, which is a cascade of 2D UNet
blocks, trained by minimizing adversarial and perceptual loss
functions [42]. The MedGAN architecture was also used for
motion correction of magnetic resonance images [34]. In [22],
an image-conditional GAN was trained in a supervised fashion
to convert T1-weighted magnetic resonance slices to synthetic
CT slices. Zhou et al. developed a feature fusion approach
for cross-modal magnetic resonance image synthesis [20].
They trained three different network backbones using paired
2D slices to fuse representations from different modalities.
The multiple-backbone architecture demanded larger memory
and the framework was hence constrained to 2D slices [20].
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Fig. 1. Overview of the LungViT framework. We registered CT volumes at inspiration OTLC (fixed image) and expiration ORV (moving image) using
a deformable image registration (DIR) method. The lung segmentation mask for the original TLC image OTLC was obtained using Seg3DNet [41]. The
operator from TLC mask B(·) was used to generate two masked volumes – ITLC = B(OTLC) and IRV = B(ORV ◦ φ) (deformed to the TLC coordinate
system using the transformation φ estimated by DIR). A generator G and discriminator D were then trained on 3D patches xp and yp, of size p× p× p,
extracted from the masked ITLC and IRV volumes (both in TLC space) respectively. Notice, in addition to the adversarial loss LADV, gradients from the
multiview texture similarity module ∇LDISTSMV

and multiresolution voxel consistency loss ∇LMR were also back-propagated for learning the generator
G. ‘M1 . . .M4’ indicate 3D convolutions with unit filter size (1 × 1 × 1).

Lyu et al. proposed an ensemble learning approach for mag-
netic resonance image super-resolution. They improved model
performance by using upsampled image priors for training
their GAN [29]. Küstner et al. trained a cascade of motion-
compensated 2D UNet generators for cardiac angiogram super-
resolution [43]. A discriminator rejection sampling-based 2D
GAN was used to estimate local lung tissue mechanics from
a single inspiratory chest CT [44]. Wolterlink et al. used a
CycleGAN [45] for unpaired magnetic resonance to CT slice
translation. This modeling framework relaxed the assumption
of requiring paired training data and utilized two generative
models to ensure cycle-consistency between domains [15].
The lack of supervised training in unpaired approaches often
leads to structural inconsistencies between real and synthetic
images. Recently, Yang et al. tried to address this by exploiting
common structural attributes between two modalities [18].
All of these approaches used 2D slices for training which
appear discontinuous when stacked together into a volume.
The slice-based methods are unable to explicitly learn large-
scale 3D texture patterns, which strictly reduces the clinical
utility of the synthetic images. The unpaired approaches that
rely on multiple generative models incur large GPU memory
for training and are harder to scale at volumetric levels.

Volumetric (3D) generative frameworks address several
limitations presented by the slice-based (2D) methods [16],
[17], [19], [23], [32]. Nie et al. trained a 3D GAN on
magnetic resonance image patches to generate corresponding
CT patches. They further used auto-context [46] to iteratively
refine CT patch synthesis by conditioning each successive
GAN on outputs from the previous model [16]. The networks
operated on small image patches (of size 32 × 32 × 32)
and the overall volume size generated using the trained model
was limited to 153 × 193 × 50. The framework additionally
proposed to minimize the gradient difference loss to encourage

structural consistency between real and synthetic samples [16].
Unlike results from 2D GANs, the synthetic CT volumes
were consistent across all three spatial dimensions [16]. Shin
et al. also proposed a 3D GAN for data augmentation but
had to downsample their image volumes to 128 × 128 ×
54 due to limited GPU memory available for training [32].
Recently, another patch-based 3D approach, the edge-aware
GANs, leveraged edge detection to better capture structural
features for multi-modality MR image synthesis [17]. The
trained model was demonstrated to generate an overall volume
of size 240 × 240 × 155. A multi-resolution cascade of GANs
was also proposed to alleviate the memory requirements for
synthesizing high-resolution 3D volumes [23]. Similar to Nie
et al., this approach used contextual information from a lower
resolution model to train a cascade of patch-based higher res-
olution models. Volumetric generative models have been suc-
cessfully applied for medical image super-resolution as well.
Chen et al. proposed a memory efficient, multi-level densely
connected super-resolution generator. Each dense block was
designed to have dense connections and compressors, which
helped improve the overall memory requirement of the pro-
posed framework [47]. Similarly, Pham et al. investigated the
utility of multiscale 3D CNNs for mono-modal and multi-
modal medical image super-resolution [48]. A volumetric (3D)
counterpart of the well-known 2D image-to-image translation
method, Pix2Pix [49], was used for correcting rigid-body
motion artifacts in dynamic magnetic resonance images [50].
A 3D convolutional generator, Reg3DNet+, was recently used
for estimating lung tissue mechanics from inspiratory and
expiratory CT volumes [51].

B. Transformer-based GANs
Although fully convolutional generator architectures have

been applied to various medical image analysis problems,
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they are inherently local and are unable to capture long-range
dependencies between pixels of an image. This limitation was
first addressed, in part, by using self-attention modules in a
GAN (SAGAN) generator [52]. Li et al. used a convolutional
generator with pseudo-3D self-attention (SACNN) for low-
dose CT denoising [53]. A major shortcoming of the self-
attention module, however, is that it requires significantly
larger GPU memory for modeling the long-range dependencies
in an image, making it increasingly difficult to handle larger
image sizes and 3D volumes. This limitation was recently
addressed using a vision transformer, a non-convolutional
generator architecture that processes low-dimensional patch
embeddings for learning long-range dependencies between
them [36]. Due to their ability to learn improved contex-
tual representations, transformer-based methods have gained
recent attention for various medical imaging tasks including
segmentation [54]–[56], synthesis [37], [39], [57], [58], regis-
tration [59], [60], and reconstruction [24]–[26].

A coarse-to-fine, pure transformer GAN was proposed
for 2D retinal image synthesis and disease diagnosis [37].
A hybrid convolutional and transformer-based architecture,
called ResViT, was developed for unified multimodal magnetic
resonance image synthesis [38]. The proposed generator used
residual transformer blocks in the bottleneck layers to learn
global and local image features. The method was trained
on 2D slices due to GPU memory constraints [38]. More
recently, a multiscale pure transformer architecture, MTNet,
was proposed for multimodal MR image synthesis [58]. This
framework also suffered from large GPU memory require-
ments and was trained on 2D slices. A 3D hybrid model
called GANBERT was used for synthesizing positron emission
tomography images from the corresponding magnetic reso-
nance images [57]. Like other 3D convolutional approaches,
the generated volume size was limited to 93 × 76 × 76. Zhang
et al. proposed a pure transformer-based pyramical generative
architecture for magnetic resonance image synthesis in infant
brains [39]. Although the framework processed 3D volumes, it
demanded significant GPU memory and was trained on small
patches of size 64 × 64 × 64.

The current state of hybrid and pure transformer archi-
tectures clearly points towards a major limitation – limited
size of generated volumes due to GPU memory constraints.
This is further aggravated by the increasingly large 3D chest
CT volumes acquired for diagnosing lung disease. Another
pertinent limitation of almost all the models discussed above
is a lack of clinical validation by downstream analyses and
external validation on out-of-distribution datasets.

C. Neural Style and Texture Transfer

Neural style transfer is an underexplored paradigm in medi-
cal image synthesis. This can be attributed to a lack of 3D pre-
trained networks for generating style embeddings and also to
the absence of stylization exemplars for medical images. Most
of the literature for medical image-to-image translation used
learned perceptual image patch similarity (LPIPS) [61] for
improving the perceptual quality of the generated images [30],
[42]. Recently, Liu et al. used stylization codes for magnetic

resonance image harmonization [62]. For our problem of
cross-volume CT synthesis it is pertinent to model lung tissue
style and texture transfer during image synthesis.

III. BACKGROUND

Generative adversarial networks (or GANs) implicitly model
the data distribution by learning a mapping G : Z → X from
a random noise vector z ∈ Z to a given image x ∈ X ,
where x is sampled from the data distribution [63]. The
GAN framework consists of two different networks that are
trained to compete against each other until they reach Nash’s
equilibrium [63]. This game-theoretic training approach has
been successfully used to generate perceptually realistic im-
ages for various tasks. Isola et al. extended the original GAN
framework to the image conditional GAN (cGAN) that is
able to learn a generator G : X → Y , from an image
x (in domain X ) to another image y (in domain Y) [49].
The synthetic samples ŷ = G(x), generated by G are then
evaluated by a second model called the discriminator D,
which is simultaneously trained to learn if the samples are
real or fake. Typically, D is a binary classifier that outputs
the probability of a sample being derived from the target
(or data) distribution. While D is optimized to maximize this
probability, the generator G tries to minimize it, which creates
a dynamic modeled by the minimax game stated as:

LcGAN = Ex,y[logD(x,y)] +Ex[log (1−D(x,G(x)))], (1)

where G is trained to minimize (1) such that {G⋆} =
minG maxD LcGAN. Isola et al. suggested to additionally
minimize the pixelwise distance (ℓ1 or ℓ2) between the real
y and generated samples ŷ [49]. The minimax objective in
(1) can be extended to express the overall generator G loss
function as:

LG(x, y) = LBCE(D(x, G(x)), 1)︸ ︷︷ ︸
cross entropy adversarial loss

+λE[∥y − G(x)∥1]︸ ︷︷ ︸
ℓ1 – distance

, (2)

where the first term in (2) refers to binary cross-entropy (BCE)
loss minimized by G, and the second term constitutes the ℓ1 –
distance between the real y and generated samples ŷ. The
aforementioned framework is called Pix2Pix and has been
shown to be very effective for various 2D image-to-image
translation tasks [49].

IV. LUNGVIT

A. Overview

We introduce a neural style and texture transfer approach for
translating inspiratory CT image intensities to corresponding
expiratory CT image intensities (see Fig. 1). The training
framework was preceded by registration and segmentation
of the inspiratory CT image acquired at total lung capacity
(TLC), denoted as OTLC, and expiratory CT image acquired
at residual volume (RV), denoted as ORV (see Fig. 1). We used
a tissue intensity and fissure structure constrained deformable
image registration (DIR) method to match ORV (treated as
the moving image) to OTLC (treated as the fixed image) [64].
Lung segmentation mask of the original TLC image OTLC
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Fig. 2. The proposed LungViT generator. The encoder consists of four hierarchical feature processing Swin Transformer blocks, {S1, S2,S3, S4}, that learn
image representations at multiple resolutions. The feature dimensions f , initially set to 24, increase down the bottleneck up to 768, while the spatial dimensions
decrease to 4 × 4 × 4. All stages use 2 Swin Transformer blocks, except S2, which uses 4 blocks. We have also shown an expanded structure of the Swin
Transformer block besides the LungViT encoder. The decoder receives input from the bottleneck and is also connected to different stages of the encoder
via skip connections. The decoder backbone consists of alternation convolutional and SE blocks. The decoder outputs the generated image at three different
resolutions to be used by the multiresolution loss. For the convolutional blocks in the decoder {U1 . . .U5}, we use instance normalization. The internal
architecture of the SE block is also shown to the right of LungViT decoder.

was obtained using a cascaded, multiscale CNN framework
that uses the Seg3DNet architecture [41]. As shown in Fig. 1,
the operator from TLC image mask was used to generate two
masked volumes – ITLC and IRV where IRV corresponded
to the RV image deformed to the TLC image space.

We trained a volumetric image conditional least squares
GAN on paired image patches (xp and yp) extracted from
the co-registered, masked volumes, ITLC and IRV, respec-
tively. The generator architecture, called SwinSEER, con-
sisted of a multiresolution shifted-window vision transformer-
based encoder for modeling long-range dependencies between
distant image regions. Its decoder consisted of transposed
convolutions and squeeze-and-excitation blocks for adaptive
recalibration of feature maps through channel attention. To
harness the advantages of one-to-one correspondence between
source (TLC patches or xp) and target domain images (RV
patches or yp), we trained our models in a paired image-
to-image translation setting. This allowed us to develop a
multiresolution voxel consistency loss (LMR) that encouraged
high-resolution image synthesis. In addition to the LMR and
the adversarial loss LADV from discriminator D, we developed
a multiview DISTS loss LDISTSMV

to encourage better style
transfer and texture synthesis across volumes. The proposed
framework is shown in Fig. 1.

B. Conditional Least Squares GAN

We formulate the highly ill-posed problem of cross-volume
synthesis as an image-to-image translation of a patch x ∈

R1×H×W×D from the domain of ITLC patches to a patch
y ∈ R1×H×W×D within the domain of IRV patches. The cross
entropy-based adversarial feedback in (1) may cause vanishing
gradients that result in highly unstable GAN training. Instead,
we used the least squares GAN (LSGAN) framework to stabi-
lize GAN training [65]. Given a dataset Q = {(xi,yi)}Ni=1, we
trained our framework using the following LSGAN objective:

LLSGAN = − Ex, y[(D(x,y)− 1)2]− Ex[D(x,G(x))2]. (3)

To further encourage voxelwise consistency, we proposed to
use a coarse-to-fine set of ground-truth labels for deeply
supervising the decoder of our generator (see Fig. 1). These
labels were generated by downsampling the target image
patch y (from the deformed RV image – IRV) at three
different resolutions of the decoder. We used nearest neighbor
interpolation for downsampling the image patch y to gen-
erate multiresolution ground-truth labels for supervising our
decoder. These labels were used to compute ℓ1 - distance (MR
loss or LMR) at the last three decoder layers, as shown in
Fig. 1. For last three layers of the decoder, the loss at each
resolution P = {p

4 ,
p
2 , p} was given as:

LMR(y, ŷ) =
∑
i∈P

E[∥yi − ŷi∥1], (4)

where ŷi for i ∈ P denoted the generated samples obtained
from different layers of the decoder at multiple resolutions (see
Fig. 1). Similarly, yi represented the multiresolution ground-
truth labels obtained by nearest neighbor interpolation. The



6

MR loss operated on these ground-truth labels and synthetic
representations at three different resolutions of the generator
decoder, as shown in Fig. 1. Before computing the MR loss,
we used pointwise 3D convolutions (1 × 1 × 1) to align
coarse-to-fine tensors across the channel dimensions. The loss
for our conditional GAN generator can thus be extended as:

LG(x, y) = LMSE(D(x, G(x)), 1)︸ ︷︷ ︸
least squares adversarial loss

+λLMR(y, G(x))︸ ︷︷ ︸
MR ℓ1 – distance

, (5)

where the first term in (5) denotes the least squares adversarial
loss minimized by the generator. We restricted the loss com-
putation from the final layer to lung segmentation regions for
further improving voxel consistency and added it as another
term in the loss function.

C. SwinSEER Architecture – LungViT Generator

1) Hierarchical Shifted-Window Transformer-Based En-
coder: We used a multiscale, shifted-window transformer
(Swin Transformer) encoder for LungViT (see Fig. 2). The
encoder backbone consisted of four stages, {S1,S2,S3,S4},
with multiple Swin Transformer blocks [66]. We constructed
a hierarchical pyramid of feature maps within the encoder,
of size H×W ×D → H

32 × D
32 × D

32 , for enhancing image
synthesis by learning multiresolution details (see Fig. 2). To
achieve this, we utilized a patch merging module in each block.
Typically, ViTs operate on feature maps at a single resolution,
leading to quadratic complexity in computing global self-
attention with increasing image size. By using hierarchical rep-
resentations through patch merging, we were able to perform
multi-head self-attention (MSA) within a local patch window
at each stage. This enabled Swin Transformer to compute self-
attention within a limited window while maintaining linear
complexity relative to the image size. A challenge with com-
puting MSA within local windows, however, is that it may
not be able to capture relationships between them. This was
addressed by following up windowed MSA (W-MSA) with
another transformer block with shifted-window MSA (SW-
MSA). Two consecutive Swin Transformer blocks with W-
MSA and SW-MSA are shown in Fig. 2, the computations of
which can be expressed as:

ẑl = W-MSA(LN(zl−1)) + zl−1,

zl = MLP(LN(ẑl)) + ẑl,

ẑl+1 = SW-MSA(LN(zl)) + zl,

zl+1 = MLP(LN(ẑl+1)) + ẑl+1,

(6)

where zl and zl+1 denoted outputs from the regular (W-MSA)
and shifted window (SW-MSA) multi-head self-attention, re-
spectively; LN denoted layer normalization and MLP denoted
multilayer perceptron. We computed MSA with relative po-
sitional bias B ∈ RW2×W2×W2

for each head using the
following expression:

Attention(Q,K,V) = Softmax

(
QKT

√
d

+ B

)
V, (7)

where Q, K, V represented query, key, and value tensors, d
indicated size of the queries and keys, and W denoted window
size.

The input to the encoder x with size C×H×W ×D was
mapped to f features by a pointwise 3D convolution operator
M1 and was subsequently partitioned into smaller patches
with size H

2 × D
2 × D

2 by a patch partitioning block (as shown
in Fig. 2). This was processed through four multiresolution
stages with Swin Transformer blocks. For all stages, we used
2 Swin Transformer blocks, except in S2, where we used 4
Swin Transformer blocks. The feature maps were gradually
increased to 32f for the bottleneck layer, as shown in Fig. 2.
The input to the encoder was a single-channel patch of size
128× 128× 128.

2) Convolutional Decoder with Squeeze-and-Excitation
Blocks: The overall architecture of LungViT generator was a
variation of the SwinUNETR architecture [67] that used skip
connections from multiple blocks of the Swin Transformer
encoder to the convolutional decoder (see Fig. 2). However,
the SwinUNETR decoder fails to capture the relationship
between distinct patch features, which are acquired from
various encoder blocks and are arranged along the channel
dimension. We proposed to enhance the expressiveness of the
LungViT decoder by using squeeze-and-excitation blocks (SE
blocks) [68] for computing channel attention at each resolution
of the decoder (see Fig. 2). We used four SE blocks in the
LungViT decoder and its structure is shown in Fig. 2. The SE
block works by squeezing the spatial dimension of a feature
map F ∈ RC×H×W×D to a vector z ∈ RC through global
average pooling (GAP), such that each element of z, at a
location c, is computed as:

zc =
1

H ×W ×D

H∑
i=1

W∑
j=1

D∑
k=1

Fc(i, j, k). (8)

The next step involves excitation by passing z through non-
linearities δ and finally computing the channelwise attention
a by sigmoid activation function σ:

a = σ(W2δ(W1z)) ∈ RC, (9)

where W1 ∈ RC
r ×C and W2 ∈ RC×C

r denoted weights for
FC layers shown in Fig. 2, and δ denoted ReLU activation
function. We used a reduction factor r = 2 The final output of
the SE block was given by the elementwise multiplication of
the channel attention value at location c and the feature map
Fc ∈ RH×W×D:

F ′
c = acFc. (10)

The decoder was made up of five transposed convolution
blocks {U1 . . .U5}, as shown in Fig. 2. We obtained outputs
from the last three layers of the decoder for computing
multiresolution voxel consistency loss. At every output layer,
we used pointwise convolutions {M2,M3,M4} for reducing
the channel dimensions of the three multiresolution outputs
to 1. The final output of the decoder was a single-channel
RV volume patch of size 128× 128× 128. During inference,
the larger 3D CT volumes, of size 320 × 320 × 320, were
generated by taking the mean between the overlapping patches
extracted with an overlap of 32.

We used a Markovian PatchGAN discriminator in this
work [49]. Instead of providing adversarial feedback over the
entire image, the PatchGAN discriminator attempts to classify
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image patches, where the size of each patch is smaller than
the overall spatial dimension of the input tensor. For input
tensor of size 128 × 128 × 128, we set the patch size to
8 × 8 × 8. Such a patch-based discriminator models the
entire image as a Markov random field and helps capture
high-resolution details present in smaller patches. We also
investigated the impact of using batch normalization and
LeakyReLU activation function. These changes, however, did
not provide significant improvements in model performance.

D. Multiview Deep Image Structure and Texture Similarity

Neural style and texture transfer approaches typically rely
on high-dimensional projections of images from large pre-
trained models, trained for higher level tasks such as image
classification and object detection. The distance between these
internal network activations is used to quantify perceptual
similarity between two samples. The most commonly used
perceptual similarity metric is the learned perceptual image
patch similarity, LPIPS [61]. To compute LPIPS between
two slices s, ŝ ∈ RC×H×W, two sets of high-dimensional
embeddings, Hs and Hŝ, are first extracted from a pre-trained
VGG-16 followed by computing ℓ2-distance between them.
The ℓp-norm based distance functions, however, fail to account
for spatial distribution of intensities within an image and
therefore may not be suitable for characterizing textural and
structural differences between slices.

We used the deep image structure and texture similar-
ity (DISTS) [40] to characterize both structural and textu-
ral differences between the embeddings. For that, we used
the formulation proposed by the structural similarity metric
(SSIM) [69]. Let Hs = {hi}Li=0 and Hŝ = {ĥi}Li=0 be
two sets of embeddings obtained from a pre-trained VGG-
16 model, where L is the number of layers, i = 0 denotes
original image, and {h}Li=1 are the feature maps obtained from
different layers of the network. The VGG-16 model was pre-
trained on the large-scale hierarchical image repository called
the ImageNet [70]. We used global means of slice embeddings,
µi
s and µi

ŝ, to define a quality measure for texture l(hi, ĥi) and
global correlations of slice embeddings, σi

s and σi
ŝ, for defining

the quality measure for structure s(hi, ĥi), defined as:

l(hi, ĥi) =
2µi

sµ
i
ŝ + c1

(µi
s)

2 + (µi
ŝ)

2 + c1
, (11)

s(hi, ĥi) =
2σi

sŝ + c2
(σi

s)
2 + (σi

ŝ)
2 + c2

, (12)

where σi
sŝ denotes global covariance between each hi and

ĥi, and c1, c2 are small constants added to avoid numerical
instability. The DISTS loss was then defined by combining
(11) and (12) as:

LDISTS(s, ŝ) = 1−
L∑

i=0

(αil(hi, ĥi) + βis(hi, ĥi)), (13)

where αi and βi were positive learnable weights such that∑L
i=0(αi + βi) = 1. We extended the slice-based objective in

(13) to multiple views of a medical image volume. For real y

Fig. 3. Multiview texture similarity module – DISTSMV. A pre-trained
VGG - 16 is used to embed one of the three 2D views at a time into a
higher-dimensional space. The slice embeddings Hs and Hŝ are then used
to compute the DISTS measure for each view. A similar approach is used
for other two views and the overall multiview texture similarity, DISTSMV,
is then aggregated.

and synthetic patches ŷ = G(x) patches, where each y, ŷ ∈
R1×H×W×D, we transposed each volume to compute DISTS
across all three dimensions – axial, coronal and sagittal (shown
in Fig. 3). For computing the similarity across each view, we
grouped two dimensions of the 3D patch to independently
represent axial (yi,j), coronal (yi,k), sagittal (yj,k) slices, as
shown in Fig. 3. The multiview texture similarity (DISTSMV)
between two volumes y and ŷ was thus defined as:

LDISTSMV(y, ŷ) = L(yi,j , ŷi,j)︸ ︷︷ ︸
axial

+L(yi,k, ŷi,k)︸ ︷︷ ︸
coronal

+ L(yj,k, ŷj,k)︸ ︷︷ ︸
sagittal

,
(14)

where L(·, ·) denoted LDISTS(·, ·) in (14) and each term
corresponded to a different view of the volume. This simple
extension enabled texture transfer at a volumetric level. The
overall cost function minimized by the generator for the
proposed framework is:

LG(x, y) = LADV(D(x, G(x)))︸ ︷︷ ︸
least squares adversarial loss

+λ1LMR(y,G(x))︸ ︷︷ ︸
MR ℓ1 – distance

+ λ2LDISTSMV
(y,G(x))︸ ︷︷ ︸

multiview texture similarity

.
(15)

E. Context-awareness via ensembling cascade

Patch-based generative frameworks often suffer from a lack
of global contextual information that is useful for image
synthesis. We address this problem by training an ensemble of
LungViT frameworks, each conditioned on synthetic outputs
from the preceding model, as shown in Fig. 4. Such iterative
conditioning helps the successive models to better capture the
overall context thereby iteratively improving patch synthesis.
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LungViT1 LungViT2 LungViTn

Fig. 4. Ensembling by cascading (EC) framework for dense regression where
multiple LungViT frameworks are trained, and each subsequent model is
conditioned on the output from its precursor model, until a refined output
ŷn is obtained.

It is important to note that each successive model within the
ensembling framework did not share weights with the previous
model and we used a cascade of two models for this study.
Since each model is conditioned on the output from a similar
pre-trained predecessor, the modeling framework forms an
ensembling cascade called the LungViTEC.

V. EXPERIMENTAL DETAILS

A. Dataset and Preprocessing
For training and evaluating our models, we utilized CT data

from the SubPopulations and Intermediate Outcome Measures
in COPD Study (SPIROMICS) [71]. SPIROMICS is a multi-
center, prospective cohort study that acquired breathhold CT
scans for every participant at two different lung volumes – total
lung capacity (TLC) and residual volume (RV). The original
resolution of the chest CT scans was approximately 0.6 × 0.6
× 0.5 mm3, and the image size was 512 × 512 per slice, with
500 to 600 slices per volume [11]. SPIROMICS acquired scans
from subjects with varying degrees of disease severity, defined
by the Global Initiative for Chronic Obstructive Lung Disease
(GOLD) [72]. GOLD 1 to GOLD 4 denotes mild to severe
COPD, while asymptomatic smokers were grouped in GOLD
0. A small subset of normal individuals who never smoked
was also included for analysis (see Table I).

Before training, we registered RV volumes to the cor-
responding TLC volumes using a mass-preserving DIR
method [64], [73], [74]. The transformation between two
volumes was parameterized using cubic BSpline interpolation
and was determined using a multiresolution strategy from Yin
et al [64]. The overall cost function for the DIR method
included a tissue mass-preserving component for matching
image intensities, a structural constraint to encourage better
alignment between fissure structures, and a regularization term
on displacement vector field to ensure a smooth transforma-
tion [64], [73], [74]. Pre-registered image volumes at TLC
and RV were then resampled isotropically to a resolution
of 1 × 1 × 1 mm3. To remove outliers arising due to
calcification or metal artifacts, intensity values were clipped to
the interval [-1024, 1024] Hounsfield units (HU). The image
volumes were then cropped to the bounding box containing
the union of the lung regions of the inspiration and expiration.
A multi-resolution convolutional neural network was used to
segment the lung regions [41]. We further normalized the
image intensities between -1 and 1. Disjoint training and
testing sets had 1055 and 512 subjects, spanning the GOLD
spectrum of disease severity, as illustrated in Table I.

B. Model Evaluation
1) Quantitative Evaluation: We evaluated our models using

different voxel-based, structural, and perceptual quantitative

TABLE I
DISTRIBUTION OF COPD SEVERITY, DEFINED BY GOLD [72], ACROSS

DISJOINT TRAINING AND TESTING DATASETS.

Training Testing

Individuals who never smoked 154 59
GOLD 0 200 100
GOLD 1 200 99
GOLD 2 200 100
GOLD 3 200 100
GOLD 4 133 54

Total 1055 512

metrics. To assess voxelwise differences between the real
images y and synthetic images ŷ = G(x), we used peak-
signal-to-noise-ratio (PSNR) in decibels (dB) and percent
normalized mean squared error (NMSE). The voxelwise met-
rics were computed within the lung region defined by the
segmentation mask. PSNR between y and ŷ was defined as
PSNR(y, ŷ) = 20 log10

max{y}
∥y−ŷ∥ℓ2

, where max{y} was the
maximum possible value of image intensities, and NMSE
was expressed as NMSE(y, ŷ) =

∥y−ŷ∥2
ℓ2

∥y∥2
ℓ2

. To assess local
structural similarity between the real and synthetic volumes
we used the structural similarity index (SSIM) [69] stated
as SSIM(y, ŷ) =

(2µyµŷ+c1)(2σyŷ+c2)

(µ2
y+µ2

ŷ+c1)(σ2
y+σ2

ŷ+c2)
, where y and ŷ

indicated real and synthetic 3D volumes, respectively. Here,
µ’s denoted means and σ’s denote standard deviations and a
window of size 11 × 11 × 11 was used. We also evaluated
the perceptual similarity between real and synthetic images
using LPIPS [61] and Fréchet Inception Distance (FID) [75].
To further assess agreement between the means of real and
synthetically generated images, we conducted a Bland-Altman
analysis [76].

2) Clinical Validation: Most of the studies involved with
the development of generative models tend to ignore clinical
validation of the synthetic samples generated by their models.
We sought to evaluate the clinical reliability of our samples
by computing air trapping and parametric response mapping
(PRM)-based emphysema and functional small airways disease
(fSAD). These biomarkers, which require matched inspiratory
and expiratory image pairs, have been shown to be associated
with various disease outcomes in COPD [6]. fSAD was defined
as the fraction of voxels between -950 HU and -810 HU on
a TLC scan and between -1000 HU and -857 HU on an RV
scan, while air trapping was defined as the percent of voxels
below -856 HU on an RV scan alone.

3) Qualitative Evaluation: We evaluated visual sample
quality by segmenting pulmonary fissures on the real and
synthetic images. In doing so, we sought to evaluate whether
the synthetic volumes captured the shape and grayscale char-
acteristics of the fissures reliably. Fissure segmentation was
performed using FissureNet, a state-of-the-art lung fissure
segmentation method [77]. We also evaluated the spatial
distribution of air trapping on real and synthetic scans.

4) Out-of-Distribution Testing: To assess model generaliz-
ability, we evaluated our model on CT data obtained from a to-
tally different cohort from the Genetic Epidemiology of COPD
study (COPDGene) [14]. We used CT data from 200 subjects
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LungViTECLungViTSwinUNETRGANUNETRGANVox2VoxPTNet2DSAGANYang et al.Pix2PixRVTLC

Fig. 5. Visual comparison of representative samples shown across coronal, axial, and sagittal views from the same subject. Deformed RV image (ground truth
in this case) is denoted by RV. We compare results from LungViT with four state-of-the-art slice-based methods, Pix2Pix [49], Yang et al. [30], SAGAN [52],
and PTNet [39], and three different volumetric methods including, Vox2Vox [50], UNETR [56], and SwinUNETR [67]. Since UNETR and SwinUNETR were
trained adversarially, we denote them as UNETRGAN and SwinUNETRGAN, respectively. All 2D methods showed discontinuities across axial and sagittal
views (shown in red), since they were trained on mid-coronal slices.

TABLE II
QUANTITATIVE PERFORMANCE EVALUATION OF LUNGVIT ACROSS 512 SUBJECTS FROM THE SPIROMICS COHORT, IN CONTRAST TO VARIOUS

STATE-OF-THE-ART 2D AND 3D GENERATIVE FRAMEWORKS. PERFORMANCE WAS EVALUATED USING PSNR, SSIM, LPIPS, FID, NMSE,
AND MEAN ABSOLUTE ERROR BETWEEN GROUND TRUTH AND PREDICTED FSAD VALUES. WILCOXON’S SIGNED RANK TEST WAS USED TO

ASSESS DIFFERENCES BETWEEN THE MEANS OF ALL EVALUATION METRICS WITH LUNGVITEC SELECTED AS THE REFERENCE AND
∗ : p < 0.05, ∗∗ : p < 0.01, ∗∗∗ : p < 0.001, AND † : p >= 0.05. THE BEST METRIC VALUES ARE HIGHLIGHTED IN BLACK

AND THE SECOND BEST VALUES ARE HIGHLIGHTED IN BLUE.

PSNR (dB)↑ SSIM↑ LPIPS2.5D↓ FID2.5D↓ NMSE (%)↓ fSADMAE↓

Pix2Pix 22.42 ± 1.39∗∗∗ 0.795 ± 0.028∗∗∗ 0.123 ± 0.019∗∗∗ 2.06 ± 0.47∗∗∗ 4.94 ± 3.41∗∗∗ 10.15 ± 6.89∗∗∗

Yang et al. 24.17 ± 2.32∗∗∗ 0.833 ± 0.039∗∗∗ 0.101 ± 0.020∗∗∗ 1.62 ± 0.44∗∗∗ 3.66 ± 2.87∗∗∗ 6.09 ± 6.43†

SAGAN 24.58 ± 2.67∗∗∗ 0.845 ± 0.039∗∗∗ 0.145 ± 0.023∗∗∗ 3.22 ± 0.84∗∗∗ 3.52 ± 3.04∗∗∗ 6.31 ± 6.68†

PTNet 24.16 ± 1.39∗∗∗ 0.832 ± 0.040∗∗∗ 0.114 ± 0.022∗∗∗ 2.49 ± 0.78∗∗∗ 3.66 ± 2.83∗∗∗ 6.63 ± 7.22∗

Vox2Vox 24.04 ± 1.95∗∗∗ 0.819 ± 0.032∗∗∗ 0.159 ± 0.019∗∗∗ 3.48 ± 0.48∗∗∗ 3.63 ± 2.85∗∗∗ 9.33 ± 9.22∗∗∗

UNETRGAN 23.93 ± 2.18∗∗∗ 0.830 ± 0.035∗∗∗ 0.121 ± 0.019∗∗∗ 2.34 ± 0.43∗∗∗ 3.79 ± 2.89∗∗∗ 6.40 ± 7.00†

SwinUNETRGAN 23.53 ± 2.11∗∗∗ 0.823 ± 0.038∗∗∗ 0.111 ± 0.019∗∗∗ 1.81 ± 0.47∗∗∗ 4.09 ± 2.91∗∗∗ 7.55 ± 7.27∗∗∗

LungViT 24.43 ± 2.42∗∗∗ 0.837 ± 0.042∗∗∗ 0.096 ± 0.019∗∗∗ 1.42 ± 0.44∗∗∗ 3.50 ± 2.90∗∗∗ 6.04 ± 7.06†

LungViTEC 24.75 ± 2.47 0.842 ± 0.040 0.096 ± 0.020 1.51 ± 0.43 3.26 ± 2.70 6.06 ± 7.07

of the COPDGene study that were acquired at the University
of Iowa Hospitals and Clinics using a different CT acquisition
protocol. Model evaluation on an out-of-distribution cohort
was conducted to evaluate model biases towards the validation
set. The CT images were processed and registered following
a similar method used for the images from SPIROMICS.

5) Registration Evaluation: To assess the performance of
image registration method used in this study, we measured
the overlap between TLC image masks and deformed RV
image masks. The overlap was quantified using three different
metrics: Dice similarity coefficient (DSC) [78], the Jaccard
index [79], and average symmetric surface distance (ASSD)
measured in millimeters (mm) [80].

C. Comparison with State-of-the-Art
We compared the performance of LungViT model with sev-

eral state-of-the-art 2D and 3D convolutional, self-attention-
and transformer-based generative models.

1) Convolutional Generative Models: We compared model
performance with Pix2Pix [49], a slice-based 2D GAN frame-
work for conditional image-to-image translation. We also com-
pared model performance with a volumetric variant of Pix2Pix,

the Vox2Vox framework [50]. Another convolutional model
was the work by Yang et al. [30]. We compared our model to
this work because it was one of the first GAN frameworks to
jointly optimize perceptual and norm-based distances for low-
dose CT denoising, and several recent generative modeling
techniques have been influenced by the ideas presented in this
work.

2) Self-Attention and Transformer-Based Models: We
also compared model performance with self-attention GAN
(SAGAN) [52]. SAGAN uses convolutional self-attention
blocks within the decoder to model long-range dependencies
between pixels of an image. It also uses spectral normalization
as a stability measure for adversarial learning [52]. Our
model performance was compared to two hybrid convolu-
tional and transformer-based models, UNETR [56] and Swi-
nUNETR [67], and a recently proposed purely transformer-
based generative model called PTNet [39]. To improve per-
ceptual performance of transformer models, both UNETR and
SwinUNETR were trained adversarially on 3D image patches
and were called UNETRGAN and SwinUNETRGAN.

3) Ablation Study: We conducted an ablation study to
assess the relative contribution of various model components
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by gradually increasing the model complexity.

D. Implementation Details

The LungViT framework consisted of different modules
including the generator, discriminator, and a pre-trained VGG-
16 model. The framework was implemented using the open
source framework PyTorch [81] and MONAI [82], and was
trained using a single NVIDIA A100 GPU with a batch size
of 4. During training, the entire framework used 75 GBs of
GPU memory for end-to-end training. Since the weights of
pre-trained VGG-16 model were not optimized by computing
the backpropagation gradients, it utilized a smaller fraction of
the overall GPU memory. For optimizing the generator and
discriminator parameters, we used the Adam optimizer with
imbalanced learning rates 0.0002 and 0.00005, respectively.
The hyperparameters λ1 and λ2 were set to 100 for all
experiments.

VI. RESULTS

We evaluated our model using several qualitative and quan-
titative measures and compared its performance with various
state-of-the-art volumetric and slice-based generative models.
Representative synthesis results in multiple cross-sectional
views from all models have been shown in Fig. 5. All 3D
models, including Vox2Vox, UNETRGAN, SwinUNETRGAN,
LungViT, and LungViTEC, generated spatially consistent re-
sults in all three dimensions. In contrast, the 2D GANs,
which were trained on coronal slices, produced discontinuities
across axial and sagittal views (highlighted in red boxes in
Fig. 5). The discontinuities were most prominent for SAGAN
and PTNet, while Pix2Pix and the method from Yang et
al [30] showed bands of discontinuities in some regions.
On sagittal cross-sections, the discontinuities were observed
mostly on the dorsal side of the lung. The Vox2Vox generated
blurred images with missing tissue textures, lobar fissures,
and bronchovascular bundles (see Fig. 5). We also show mid-
coronal slices from six different subjects with varying GOLD
stages for LungViTEC in Fig. 6. The LungViTEC was able to
capture aeration change patterns, intricate vessel structures,
and fissures across all GOLD stages (see Fig. 6).

The LungViT framework, which incorporated DISTSMV
and SE blocks, showed superior quantitative performance
when compared to seven other methods (see Table II). We
observed a significant increase in performance with ensem-
ble cascading (EC), as shown in Table II for LungViTEC.
LungViTEC achieved an overall PSNR of 24.75 followed
by SAGAN with PSNR 24.58 and LungViT with PSNR
24.43. Both LungViTEC and LungViT showed high perceptual
quality with significantly lower LPIPS (0.0962 and 0.0964)
and FID (1.51 and 1.42) values. LungViTEC and LungViT
also performed superiorly in terms of NMSE (3.26% and
3.50%) and fSADMAE (6.06 and 6.04). The highest SSIM was
achieved by SAGAN (0.845) followed by LungViTEC (0.842)
and LungViT (0.837). Wilcoxon’s signed ranked test indicated
a statistically significant difference in performance between
LungViTEC and all other models. Quantitative performance of
LungViTEC across varying levels of disease severity, ranging

from GOLD 0 to GOLD 4, is shown in Table III. Quantitative
performance evaluation of the image registration has been
reported in Table IV. The overlap between TLC and deformed
RV image masks showed good agreement with an overall DSC
of 0.988, Jaccard index of 0.967, and ASSD of 0.467mm.

We conducted a regression analysis for LungViTEC between
the means of real Imean

RV and synthetically generated RV scans
Î
mean

RV (see Fig. 7). The means showed good agreement with
an overall coefficient of determination r2 = 0.66. A Bland
Altman analysis showed a small bias of 22 HU between the
means of real and synthetic RV scans (Fig. 7).

We conducted model validation using two well-known
imaging biomarkers that are derived from TLC and RV scans
for characterizing COPD – CT density-based air-trapping [83]
and image registration-based PRM characterization of func-
tional small airways disease (fSAD) [6]. Percent air trapping
was defined as the fraction of voxels below -856 HU within
the lung region on an RV scan. For computing fSAD, joint
histograms of co-registered TLC-RV image pairs were used.
fSAD was defined as the fraction of voxels between -950 HU
and -810 HU on a TLC scan and between -1000 HU and -857
HU on an RV scan. We assessed differences in CT biomarkers
derived from real and synthetically generated RV volumes
by conducting a Bland Altman analysis shown in Fig. 8.
Synthetic RV images generated by LungViTEC yielded similar
air trapping and fSAD percentages with a minimal overall bias
of 2.33% for fSAD and 1.56% for air trapping. Similarly,
LungViT showed a bias of 3.17% for fSAD and 2.29%
for air trapping estimation. Both LungViTEC and LungViT
underestimated fSAD and air trapping. SwinUNETRGAN sig-
nificantly overestimated fSAD and air trapping with negative
biases 4.84% and 5.67%, respectively. Unlike LungViTEC and
LungViT, the errors in SwinUNETRGAN were not consistent
(see Fig. 8).

In Fig. 9, we show the effectiveness of the DISTSMV mod-
ule towards capturing the spatial distribution of air trapping
(shown on axial slices in comparison to SwinUNETRGAN). For
the subject shown in Fig. 9, LungViT estimated 32.44% air
trapping and LungViTEC estimated 36.88% air trapping, which
were very close to the ground truth value of 34.63%. The
LungViT models were able to accurately identify parenchymal
regions with air trapping, unlike SwinUNETRGAN, which
overestimated the spatial extent of the disease with an overall
mean of 54.85% across the entire volume. Fissure segmen-
tations on real and synthetic RV volumes, from pre-trained
FissureNet, are shown on sagittal slices in Fig. 10. Differences
in quantitative CT biomarkers from real and synthetic RV
scans across different GOLD stages has been shown in Fig.
11.

We conducted model validation on an out-of-distribution
cohort of 200 subjects from the COPDGene study (results
shown in Table VI). The model performed well with PSNR
23.96, SSIM of 0.833 and fSAD error of 4.32%. A visu-
alization of samples predicted by LungViTEC on a subject
from COPDGene is shown in Fig. 12. Lastly, results from
the ablation study are presented in Table V.
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TABLE III
PERFORMANCE EVALUATION OF THE LUNGVITEC FRAMEWORK ACROSS VARYING DEGREES OF DISEASE SEVERITY, AS DEFINED BY THE GLOBAL

INITIATIVE FOR CHRONIC OBSTRUCTIVE LUNG DISEASE (GOLD) [72].

PSNR (dB)↑ SSIM↑ LPIPS2.5D↓ FID2.5D↓ NMSE (%)↓
Individuals who never smoked 22.97 ± 1.45 0.820 ± 0.031 0.102 ± 0.018 1.89 ± 0.35 5.24 ± 2.32
GOLD 0 23.82 ± 1.78 0.832 ± 0.032 0.096 ± 0.017 1.71 ± 0.38 4.28 ± 3.08
GOLD 1 23.57 ± 2.36 0.821 ± 0.050 0.109 ± 0.032 1.76 ± 1.00 4.20 ± 3.35
GOLD 2 24.59 ± 1.89 0.842 ± 0.036 0.097 ± 0.020 1.51 ± 0.28 2.93 ± 1.83
GOLD 3 26.20 ± 2.15 0.859 ± 0.038 0.090 ± 0.019 1.20 ± 0.30 1.74 ± 1.05
GOLD 4 28.03 ± 1.91 0.887 ± 0.023 0.081 ± 0.012 1.03 ± 0.27 1.08 ± 0.83

TABLE IV
QUANTITATIVE EVALUATION OF THE DEFORMABLE IMAGE REGISTRATION

INDICATED BY THE OVERLAP BETWEEN TLC IMAGE MASKS AND
DEFORMED RV IMAGE MASKS. THE OVERLAP WAS QUANTIFIED
BY THE DICE SIMILARITY COEFFICIENT (DSC), THE JACCARD

INDEX, AND THE AVERAGE SYMMETRIC SURFACE DISTANCE
(ASSD). REGISTRATION PERFORMANCE ACROSS TRAINING

AND TESTING SETS HAS ALSO BEEN REPORTED.

DSC Jaccard ASSD (mm)

Training 0.988 ± 0.008 0.977 ± 0.013 0.459 ± 0.375
Testing 0.988 ± 0.009 0.976 ± 0.015 0.484 ± 0.423

Overall 0.988 ± 0.008 0.976 ± 0.014 0.467 ± 0.391

VII. DISCUSSION AND CONCLUSION

Multiple volume surrogates of lung function have gained
widespread clinical attention for characterizing local func-
tional abnormalities in COPD [6]. While these measures
enable better understanding of disease mechanisms, they re-
quire CT images at different volumes which may not be
recommended in some clinical settings. We hypothesized that
a CT image at end-inspiration contained sufficient structural
information to predict the associated aeration change on an
expiratory CT image. To that end, we proposed a volu-
metric texture transfer framework for translating inspiratory
CT image intensities to corresponding expiratory CT image
intensities. Although, we demonstrated image translation from
a TLC CT to RV, the proposed method can be used to estimate
CT intensities at other lung volumes such as the functional
residual capacity.

Image-to-image translation for large 3D volumes entailed
several challenges. Foremost, was the large GPU memory
required to handle increasingly large CT volumes. Most of the
existing generative methods address this by training on 2D
slices, which leads to discontinuous transitions when slices
are stacked together. This limits the radiological utility of
synthetic images. We also noticed these discontinuities for
2D GAN models in comparison to their 3D counterparts (see
Fig 5). To circumvent slicewise discontinuity, we trained our
models on 3D patches that were combined at inference by
taking the mean along the overlapping boundaries. This helped
us estimate a smooth 3D volume by avoiding discontinuities
across patches. Patch-based networks often suffer from the
limited size of receptive field and may not be able to model
global patterns within an image volume. We attempted to
address this in several ways. The simplest measure was to
use larger patches of size 128 × 128 × 128 that were trained
on deeper models for increasing the overall receptive field.
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Fig. 6. Qualitative performance analysis of LungViTEC across varying COPD
severity. ‘NS’ indicates individuals who never smoked. RV denotes ground
truth scans deformed to TLC space.

We modeled the dependencies between distant regions of an
image by using a multiresolution Swin Transformer encoder.
The encoder was connected at multiple resolutions to a channel
attention-based convolutional decoder. We used SE blocks to
model relationships between different features learnt by the
encoder and the decoder layers. To further alleviate lack of
context, we used a coarse-to-fine voxelwise consistency loss
and ensemble cascading. The proposed framework, with all its
components, was trained using a batch size of 4 on a single
NVIDIA A100 GPU with 80 GB memory. The DISTSMV mod-
ule that was proposed to model the stylistic and textural details,
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Fig. 7. Regression analysis with corresponding Bland-Altman plot for
comparison between the means of real and synthetic RV scans generated by
LungViTEC. IRV denotes ground truth RV scans deformed into TLC image
space.
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Fig. 8. Bland Altman analysis for comparing the CT biomarkers (% fSAD
and % air trapping) derived from real RV volumes (deformed to TLC
space) and synthetic RV volumes, generated by SwinUNETRGAN, LungViT,
and LungViTEC. % fSADRV and % AirRV indicate the ground truth values
extracted from the deformed RV image volumes. % fSADpredicted and %
Airpredictedwere the biomarker values extracted from model predicted, synthetic
RV images. In each Bland Altman plot, mean difference and associated
confidence intervals (defined as ±1.96 SD) are also provided. SD = standard
deviation of the difference.

entailed a very small proportion of GPU memory and was still
able to capture subtle tissue textures enabling perceptually re-
alistic image generation. Unlike the unpaired image-to-image
translation methods, which require larger datasets and more
GPU memory, we trained our models in a paired setting; which
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Fig. 9. Impact of DISTSMV on visual the distribution of air trapping.
SwinUNETRGAN, for instance, overestimated the overall percent air trapping,
while the LungViT models performed well at texture synthesis which im-
proved air trapping estimation.
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Fig. 10. Fissure segmentations using a state-of-the-art fissure segmentation
model, FissureNet [77] on real IRV (deformed or moving RV image) and
synthetic ÎRV samples from LungViTEC, shown on sagittal slices.

allowed us to develop multiresolution voxel consistency and
style-based modules for exploiting one-to-one relationships
between paired samples. Image registration before training was
first required to ensure point-by-point correspondence between
paired TLC and RV images. This increased the reliance of our
method on the underlying image registration method; which
remains to be investigated in future studies. Although image
registration is not required for unpaired approaches such as
the CycleGAN, Yang et al. recently showed that it improved
image synthesis in unpaired settings as well [18].

Another shortcoming of most volumetric generative models
is that they do not attempt to model the inherent style and
texture patterns during image translation. Style transfer at a
volumetric level is limited due to a lack of 3D models that can
be used for generating deep representations. Moreover, styl-
ization typically requires exemplars that are missing for most
medical image translation tasks. For our task, modeling texture
within the expiratory CT was pertinent since most clinical
measures depended largely on variations in local tissue texture.
We proposed a multiview texture similarity (DISTSMV) to
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Fig. 11. Percent fSAD and % air trapping values across varying degrees
of COPD severity, defined by GOLD [72]. RV denotes % fSAD and %
air trapping values from real RV scans, deformed to TLC volumes, while
LungViTEC represents the same biomarkers extracted from synthetic RV
volumes generated by the LungViTEC framework. ‘NS’ = individuals who
never smoked.
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Fig. 12. Visual performance evaluation of LungViTEC on a subject from
an out-of-distribution external validation cohort, COPDGene. The difference
images represent absolute differences between the ground truth (RV) and
predicted LungViTEC samples.

model image textures in 3D. Adding DISTSMV significantly
improved perceptual image quality when compared to other
methods, as shown in Fig. 5. Ensembling cascade further
improved the overall quantitative performance of the model
(as shown in Table II).

We analyzed the performance of four different state-of-the-
art 2D methods in comparison to our work. Two of these
models, Pix2Pix [49] and the work by Yang et al. [30], were
based on purely convolutional generators and discriminators;
SAGAN was augmented with self-attention blocks and spectral
normalization [52], while PTNet was a pure transformer
network [39]. Amongst the 2D models, Pix2Pix showed the
worst quantitative performance while SAGAN performed the
best. Although SAGAN achieved the highest SSIM index of
0.845 (compared to LungViTEC with 0.842) shown in Table II,
it showed significant discontinuities across axial and sagittal
slices (see Fig. 5). It is important to note that PTNet required
significantly larger GPU memory, restricting its authors to train
it on small patches with a size of 64 × 64 × 64 [39]. While
this approach managed memory constraints for their task, it
may not have been suitable for synthesizing cross-volume CT

images with increasingly large volumes. Therefore, we trained
PTNet on 2D coronal slices for comparison where it performed
well but also showed slice discontinuities (see Fig. 5). We also
compared our model with two recent state-of-the-art hybrid
generator architectures with transformer and convolutional
blocks, UNETRGAN and SwinUNETRGAN that were trained
adversarially. The architecture of our generator, SwinSEER,
was a combination of carefully selected convolutional, at-
tentional, and transformer blocks that were collectively able
to perform better than most of the recent convolutional and
transformer-based generators. The relative importance of each
of the framework components was further ascertained by an
ablation study shown in Table V.

We compared the performance of our model to other meth-
ods based on two perceptual quality metrics – LPIPS and
FID. The LungViT models showed superior perceptual quality
compared to all other models (see LPIPS and FID in Table II).
Although the work of Yang et al. [30] explicitly minimized
LPIPS loss, LungViT was still able to achieve a lower LPIPS
value of 0.096 vs. 0.101 (see Table II). We compared the
performance of our models with different methods using a
quantitative CT metric-based error – fSADMAE. Our models
achieved lowest errors in fSAD demonstrating highest poten-
tial for clinical adaptability.

An important part of our work was constituted by the
clinical validation of our model. LungViTEC performed well
across varying GOLD stages and the model was able to capture
changes across more severe disease (see Table III). Earlier
we noted that the 2D models missed subtle changes in tissue
textures and produced distorted fissure and vessel structures
due to slicewise discontinuities. Unlike these models, intricate
vessel structures were captured successfully by LungViTEC,
as shown in Fig. 6. A Bland Altman analysis between CT
biomarkers from real and synthetic scans revealed increased
bias of SwinUNETRGAN model towards overestimating %
fSAD by 4.84% and % air trapping by 5.67% on average
(see top two plots in Fig. 8). The LungViT model underes-
timated % fSAD and % air trapping with a decreased bias
of 3.17% and 2.29% respectively (see Fig. 8). LungViTEC
underestimated % fSAD and % air trapping with minimal bias
of just 2.33% and 1.56% respectively. Bland Altman analysis
showed reliable estimation of clinical biomarkers using the
LungViTEC framework. A visual comparison in Fig. 9 also
showed improved consistency in spatial distribution of air
trapping across real and synthetic samples as compared to the
SwinUNETRGAN. Identical fissure boundaries identified by an
independently trained model showed that our model reliably
approximated the real data distribution (see Fig. 10). Model
validation through an independently trained network demon-
strated realism of the synthetic samples. Clinical validation
across different GOLD stages demonstrated that LungViTEC
was able to predict CT biomarkers (fSAD and air trapping)
as disease severity increased (see Fig. 11). More importantly,
fSAD and air trapping from synthetic RV scans increased with
COPD GOLD stages. These results corroborated the clinical
findings by Pompe et al. [84] and Galban et al. [6] that as-
sociated COPD GOLD stages with increased air trapping and
fSAD respectively. These findings highlighted the potential of



14

TABLE V
ABLATION STUDY FOR UNDERSTAND THE RELATIVE IMPORTANT OF VARIOUS LUNGVIT COMPONENTS. SWINUNETRGAN SERVED AS THE BASELINE

MODEL WHICH WAS PROGRESSIVELY ENHANCED FOR THE ABLATION STUDY. WE DENOTE THE HIGHEST METRIC VALUES IN BLACK AND SECOND
HIGHEST VALUES IN BLUE.

PSNR (dB)↑ SSIM↑ LPIPS2.5D↓ FID2.5D↓ fSADMAE↓

SwinUNETRGAN – baseline 23.53 ± 2.11 0.823 ± 0.038 0.111 ± 0.019 1.81 ± 0.47 7.55 ± 7.27
SwinUNETRGAN – with LDISTSMV + LMR 24.53 ± 2.17 0.823 ± 0.038 0.099 ± 0.021 1.54 ± 0.43 6.69 ± 7.54
LungViT – with LDISTSMV + LMR + SE blocks 24.43 ± 2.42 0.837 ± 0.042 0.096 ± 0.019 1.42 ± 0.44 6.04 ± 7.06
LungViT with EC 24.75 ± 2.47 0.842 ± 0.040 0.096 ± 0.020 1.51 ± 0.43 6.06 ± 7.07

TABLE VI
QUANTITATIVE PERFORMANCE EVALUATION OF LUNGVITEC ON 200

SUBJECTS FROM AN OUT-OF-DISTRIBUTION COHORT, COPDGENE [14].

PSNR (dB)↑ SSIM↑ fSADMAE↓

LungViTEC 23.96 ± 1.66 0.833 ± 0.028 4.32 ± 4.19

synthetically extracted quantitative CT biomarkers for charac-
terizing COPD and related lung disorders. A limitation of our
study is that RV shape and volume information is lost since
the predicted RV image is anatomically aligned to the TLC
image. However, calculation of CT biomarkers from paired
images (e.g. PRM) requires initial image registration, therefore
the proposed method can provide these measurements.

Most of the generative modeling studies lack validation on
out-of-distribution datasets. We evaluated our model, devel-
oped using SPIROMICS, on an external cohort of subjects
from COPDGene study. COPDGene acquired CT data using
a totally different image acquisition protocol compared to
SPIROMICS. Our model showed reliable out-of-distribution
generalization with a very small decrease in performance com-
pared to the development cohort (see Table VI). Interestingly,
the fSAD error was lower for COPDGene cohort as compared
to SPIROMICS. Qualitative evaluation also showed that model
could capture aeration changes from TLC to RV in COPDGene
cohort (see Fig. 12).

It is common in clinical practice to acquire lung images
only at inspiration, and yet it is becoming evident that an
early sign of numerous lung diseases is seen on the expiratory
image, manifesting as air trapping or fSAD. Our method would
allow for the retrospective assessment of patient scans to assess
if pathologies were preceded by fSAD, providing critical
insights into disease processes. It would enable patient as-
sessment across multiple large cohorts, including MESA [13]
and COPDGene [14], which acquired CT scans at different
volumes. Additionally, the assessment of fSAD is dependent
upon a patient making an appropriate effort to expel as much
air from the lungs as possible. Furthermore, this difficult
maneuver must be repeatable so as to allow for the tracking
of disease progression. In many cases, patients with increased
symptom burden may not be able to expel much air from
the lungs making image acquisition harder and unreliable.
LungViT eliminates the need for the patient to achieve a breath
hold at this low lung volume, thus allowing for the more
accurate tracing of longitudinal changes. Our method also
allows for the automated reporting of functional abnormalities
across a wide variety of lung diseases providing the potential

for expanded insights into early pathologies associated with
transplant rejection, prediction of rapid progression of emphy-
sema or fibrosis, and more. In summary, our method allows for
retrospective evaluation where multiple lung volumes have not
been imaged and prospectively where subject considerations
limit the availability of a reliable inspiratory/expiratory image
pair.
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