
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 6, OCTOBER 2007 1137

Face Modeling and Animation Language
for MPEG-4 XMT Framework

Ali Arya, Senior Member, IEEE, and Steve DiPaola

Abstract—This paper proposes FML, an XML-based face
modeling and animation language. FML provides a structured
content description method for multimedia presentations based
on face animation. The language can be used as direct input
to compatible players, or be compiled within MPEG-4 XMT
framework to create MPEG-4 presentations. The language al-
lows parallel and sequential action description, decision-making
and dynamic event-based scenarios, model configuration, and
behavioral template definition. Facial actions include talking,
expressions, head movements, and low-level MPEG-4 FAPs. The
ShowFace and iFACE animation frameworks are also reviewed as
example FML-based animation systems.

Index Terms—Face animation, language, modeling, MPEG,
XML, XMT.

I. INTRODUCTION

MODERN multimedia presentations are no longer a one-
piece prerecorded stream of audio-visual data but a com-

bination of processed and/or synthesized components. These
components include traditional recordings, hand-made anima-
tions, computer-generated sound and graphics, and other media
objects to be created and put together based on certain spatial
and temporal relations. This makes the content description one
of the basic tasks in multimedia systems.

Advances in computer graphics techniques and multimedia
technologies have allowed the incorporation of computer gen-
erated content in multimedia presentations and applications
such as online agents and computer games. Many techniques,
languages, and programming interfaces are proposed to let
developers define their virtual scenes. OpenGL, Virtual Reality
Modeling Language (VRML), and Synchronized Multimedia
Integration Language (SMIL) are only a few examples that
will be briefly reviewed in Section II. Although new streaming
technologies allow real-time download/playback of audio/video
data, effective content description provides major advantages,
mainly

• dynamic creation of new content as opposed to transmis-
sion and playback of prerecorded material;

Manuscript received April 23, 2003; revised March 15, 2007. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Dr. Richard B. Reilly.

A. Arya is with the School of Information Technology, Carleton University,
Ottawa, ON K1S 5B6 Canada (e-mail: arya@ carleton.ca).

S. DiPaola is with the School of Interactive Arts and Technology, Simon
Fraser University, Surrey, BC, Canada (e-mail: sdipaola@sfu.ca).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2007.902862

• more efficient use of bandwidth by transmitting only a de-
scription to be created on demand (if possible);

• increased capability for content search and retrieval.
The behavior of a virtual online agent or a character in a

computer game, for example, would be considerably improved
if instead of relying on limited “footage”—the animator could
“describe” the desired content needed in response to possible
events. Such content could then be created dynamically, pro-
vided we had a sufficiently powerful animation engine. In face
animation, this means that not only we do not need to create the
content off-line; we are also able to apply the same “scenario”
to different virtual characters and have new characters perform
previously defined actions.

In the area of facial animation, some research has been done
to represent and describe certain facial actions with predefined
sets of “codes.” Facial Action Coding System [1] is probably
the first successful attempt in this regard (although not directly
a graphics and animation research). More recently, the MPEG-4
standard [2], [3] has defined Face Definition and Animation
Parameters (FDP and FAP) to encode low level facial actions
like jaw-down, and higher level, more complicated actions
like smile. It also provides Extensible MPEG-4 Textual format
(XMT) as a framework for incorporating textual descriptions
in languages like SMIL and VRML. MPEG-4 face parameters
define a low-level mechanism to control facial animation.
Although very powerful, this mechanism lacks higher levels
of abstraction, timing control and event management. In other
words, MPEG-4 face parameters do not provide an animation
language whereas XMT languages do not include any face-spe-
cific features, yet.

In this paper we propose a language specifically designed
for face animation and modeling. Face Modeling Language
(FML) is based on Extensible Markup Language (XML,
http://www.w3.org/xml) which allows re-use of existing XML
tools and products. FML provides a hierarchical structured
content description for facial animation; from high level stories
to low level face movements, giving maximum power and
flexibility to content authors. It is compatible with MPEG-4
FAPs and makes them easier to use by creating a higher level of
abstraction, and can be incorporated into MPEG-4 XMT frame-
work, filling the empty space of a face animation language.
FML combines the advantages of XML-based multimedia
languages and MPEG-4 face parameters into a hierarchical
structure dedicated to facial animation. Although the animation
engine can use a variety of methods for content creation (such
as 3-D models for pure synthetic data or photographs for
“modified” imagery), FML provides a data type-independent
mechanism for controlling the animation.

1520-9210/$25.00 © 2007 IEEE

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on June 03,2010 at 21:50:58 UTC from IEEE Xplore. Restrictions apply.

©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

1138 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 6, OCTOBER 2007

The authors have developed two facial animation systems
which use FML as a possible content description mechanism.
ShowFace [4]–[6] is the older (and simpler) system that uses
image transformations applied to photographs to create anima-
tion. iFACE [7], [8] is the newer system that isolates low-level
graphics data (2-D or 3-D) from the rest of the system so it can
be used for either 2-D photographs or 3-D synthesized data with
limited replacement of low-level modules.

In Section II, some of the related works in multimedia con-
tent description will be briefly reviewed. The basic concepts and
structure of FML, some case studies, and our facial animation
systems will be discussed in Sections III–V. Although the main
focus of this paper is on content description, in Section V we
quickly review some approaches to content creation in order
to make the study of FML and the discussed facial animation
systems self-sufficient. Some conclusions will be the topic of
Section VI. FML specification (including details on language
constructs, elements, and their attributes) can be found online
[9].

II. RELATED WORK

The diverse set of works in multimedia content description in-
volves methods for describing the components of a multimedia
presentation and their spatial and temporal relations. Histori-
cally, the first technical achievements in this regard were related
to video editing where temporal positioning of video elements is
necessary. The Society of Motion Picture and Television Engi-
neers (SMPTE) Time Coding [10], [11] that precisely specifies
the location of audio/video events down to the frame level is the
basis for EDL (Edit Decision List) [10], [11] that relates pieces
of recorded audio/video for editing. Electronic Program Guide
(EPG) is another example of content description for movies in
the form of textual information added to the multimedia stream.

More recent efforts by SMPTE are focused on Metadata
Dictionary that targets the definition of a metadata descrip-
tion of the content (see http://www.smpte-ra.org/mdd). These
metadata can include items from title to subject as well as
components. The concept of metadata description is the basis
for other similar researches like Dublin Core (http://dublin-
core.org), EBU P/Meta (http://www.ebu.ch/pmc_meta.html),
and TV Anytime (http://www.tv-anytime.org). Motion Picture
Expert Group (MPEG) is also another major player in standards
for multimedia content description and delivery. The MPEG-4
standard that came after MPEG-1 and MPEG-2, is one of
the first comprehensive attempts to define the multimedia
stream in terms of its forming components (objects like audio,
foreground figure, and background image). Users of MPEG-4
systems can use Object Content Information (OCI) to send
textual information about these objects.

A more promising approach in content description is the
MPEG-7 standard [12]. MPEG-7 is mainly motivated by the
need for a better, more powerful search mechanism for mul-
timedia content over the Internet but can also be used in a
variety of other applications including multimedia authoring.
The standard extends OCI and consists of a set of Descriptors
for multimedia features (similar to metadata in other works),
Schemes that show the structure of the descriptors, and an
XML-based Description/Schema Definition Language.

Most of these methods are not aimed at and customized for a
certain type of multimedia stream or object. This may result in
a wider range of applications but limit the capabilities for some
frequently used subjects like human face. To address this issue
MPEG-4 includes Face Definition Parameters (FDPs) and Face
Animation Parameters (FAPs) [3], [13], [14]. FDPs define a face
by giving measures for its major parts and features such as eyes,
lips, and their related distances. FAPs on the other hand, encode
the movements of these facial features. Together they allow a
receiver system to create a face (using any graphics method) and
animate that face based on low level commands in FAPs. The
concept of FAP can be considered a practical extension of Facial
Action Coding System (FACS) used earlier to code different
movements of facial features for certain expressions and actions.

It should be noted that FAPs do not need to be used with a syn-
thetic face and geometric models. They are independent of ani-
mation method and simply define the desired movements. They
can be used to apply pre-learned image transformations (based
on detected location of facial features) to a real 2-D picture in
order to create a visual effect like talking, facial expression, or
any facial movements [4], [5], [15].

MPEG-4 FDPs and FAPs do not provide an animation lan-
guage but only a set of low-level parameters. Although they are
powerful means in facial animation, the content providers and
animation engines still need higher levels of abstraction on top
of MPEG-4 parameters to provide group actions, timing control,
event handling and similar functionality usually provided by a
high-level language.

After a series of efforts to model temporal events in multi-
media streams [16], important progress was made in multimedia
content description with Synchronized Multimedia Integration
Language (SMIL) [17], an XML-based language designed to
specify temporal relationships of components in a multimedia
presentation, specially in web applications. SMIL can coexist
quite suitably with MPEG-4 object-based streams. SMIL-An-
imation is a newer language (http://www.w3.org/TR/smil-ani-
mation) based on SMIL which is aimed at describing anima-
tion pieces. It establishes a framework for general animation but
neither of these two provide any specific means for facial ani-
mation. There have also been different languages in the fields
of Virtual Reality and computer graphics for modeling com-
puter-generated scenes. Examples are Virtual Reality Modeling
Language (VRML, http://www.web3d.org) and programming
libraries like OpenGL (http://www.opengl.org).

The MPEG-4 standard includes eXtensible MPEG-4 Textual
format (XMT) framework [18] to represent scene description in
a textual format providing interoperability with languages such
as SMIL and VRML. It consists of two levels of textual formats.
XMT-A is a low-level XML-based translation of MPEG-4 con-
tents. XMT- is a high-level abstration of MPEG-4 features, al-
lowing developers to create the scene description in languages
like SMIL and VRML. These descriptions can then be com-
piled to native MPEG-4 format to be played back by MPEG-4
systems. It can also be directly used by compatible players and
browsers for each language, as shown in Fig. 1.

None of these languages are customized for face animation,
and they do not provide any explicit support for it, either.
The absence of a dedicated language for face animation, as

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on June 03,2010 at 21:50:58 UTC from IEEE Xplore. Restrictions apply.

ARYA AND DIPAOLA: FACE MODELING AND ANIMATION LANGUAGE FOR MPEG-4 XMT FRAMEWORK 1139

Fig. 1. Interoperability in XMT [18].

an abstraction on top of FACS AUs or MPEG-4 FAPs, has
been evident especially within the XMT framework. Recent
advances in developing and using Embodied Conversational
Agents (ECAs), especially their web-based applications, and
growing acceptance of XML as a data representation language,
have drawn attention to markup languages for virtual characters
[19]–[22]. The basic idea is to define specific XML tags related
to agents’ actions such as moving and talking. Virtual Human
Markup Language (VHML) [21] is an XML-based language for
the representation of different aspects of “virtual humans,” i.e.,
avatars, such as speech production, facial and body animation,
emotional representation, dialogue management, and hyper and
multimedia information (http://www.vhml.org). It comprises
a number of special purpose languages, such as EML (Emo-
tion Markup Language), FAML (Facial Animation Markup
Language), and BAML (Body Animation Markup Language).
In VHML, timing of animation-elements in relation to each
other and in relation to the realization of text is achieved via
the attributes “duration” and “wait.” These take a time value
in seconds or milliseconds and are defined for all elements in
EML and FAML, i.e., for those parts of VHML concerned with
animation. A simple VHML/FAML document looks like this

Multimodal Presentation Markup Language (MPML) [22] is an-
other XML-based markup language developed to enable the de-
scription of multimodal presentation on the WWW, based on an-
imated characters (http://www.miv.t.u-tokyo.ac.jp/MPML/en).
It offers functionalities for synchronizing media presentation
(reusing parts of the Synchronized Multimedia Integration Lan-
guage, SMIL) and new XML elements such as
(basic interactivity), (decision making),
(spoken by a TTS-system), (to a certain point at the
screen), and (for standard facial expressions).
MPML addresses the interactivity and decision-making not di-

rectly covered by VHML/FAML, but both suffer from a lack of
explicit compatibility with MPEG-4 (XMT, FAPs, etc).

Another important group of related works are behavioral
modeling languages and tools for virtual agent. BEAT [23]
is an XML-based system, specifically designed for human
animation purposes. It is a toolkit for automatically suggesting
expressions and gestures, based on a given text to be spoken.
BEAT uses a knowledge base and rule set, and provides
synchronization data for facial activities, all in XML format.
This enables the system to use standard XML parsing and
scripting capabilities. Although BEAT is not a general content
description tool, it demonstrates some of the advantages of
XML-based approaches.

Other scripting and behavioral modeling languages for virtual
humans are considered by other researchers as well [13], [24],
[25]. These languages are usually simple macros for simplifying
the animation, or new languages which are not using existing
multimedia technologies. Most of the time, they are not specifi-
cally designed for face animation. Lee, et al. [13] have proposed
the concept of a hierarchical presentation of facial animation but
no comprehensive langugae for animation and modeling is pro-
posed.

Table I summarizes major methods and languages that may
be used for facial animation, and their supported features. The
need for a unifying language specifically designed for facial an-
imation that works as an abstraction layer on top of MPEG-4 pa-
rameters is the main motivation in designing FML as described
in the next section.

III. FACE MODELING LANGUAGE

A. Design Ideas

Fig. 2 illustrates a series of facial actions. A “wink” (closing
eye lid and lowering eyebrow), a “head rotation”, and a “smile”
(only stretching lip corners, for simplicity). To play back a mul-
timedia presentation of this sequence, we can record a “live ac-
tion”, transfer it if necessary, and finally play the file. This re-
quires

• availability of a character to record the scene;
• storage of multimedia data for each action;
• high bandwidth transfer.
As we mentioned before, a simple description like

wink-yaw-smile (with some more details) can achieve the

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on June 03,2010 at 21:50:58 UTC from IEEE Xplore. Restrictions apply.

1140 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 6, OCTOBER 2007

TABLE I
CONTENT DESCRIPTION METHODS AND FACIAL ANIMATION FEATURES

Fig. 2. Series of facial actions: (a) start, (b) wink, (c) head rotation, and (d) smile.

same result with no prerecorded data or massive data transfer
(assuming the character is modeled and we have a sufficiently
powerful graphics system). For instance, these actions can be
done by following MPEG-4 FAPs, as shown in the first action
of Fig. 3 (see MPEG-4 documentations [3] for a list of FAPs).

• Wink
FAP-31 (raise-l-i-eyebrow).
FAP-33 (raise-l-m-eyebrow).
FAP-35 (raise-l-o-eyebrow).
FAP-19 (close-t-l-eyelid).

• Head Rotation
FAP-49 (head-rotation -yaw, i.e., horizontal).

• Smile
FAP-6 (stretch-l-lipcorner).
FAP-6 (stretch-r-lipcorner).

The first problem with this approach is lack of parameters
at facial component level (e.g., one eye-wink instead of four
FAPs) and proper timing mechanism. The situation will be even
more complicated when we want the animation to pause after
this action series, wait for some external event and then start
a proper response. Grouping, time, and events are out of the
scope of MPEG-4 parameters and need to be addressed by a
higher-level language that abstracts on top of MPEG-4 parame-
ters. Languages that provide timing and other animation control

Fig. 3. FML timeline and temporal relation of face activities.

mechanism are not compatible with MPEG-4 or do not have
face-specific features (as discussed in the previous section).

The analysis in the previous section provides us with a set of
features (illustrated in the above example) that a face animation
language needs to support, collectively. FML is an XML-based
language that is designed to do this, filling the gap in XMT
framework for a face animation language. So the main ideas be-
hind FML are

• timeline definition of the relation between facial actions
and external events;

• defining capabilities and behavior templates;
• compatibility with MPEG-4 XMT and FAPs;

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on June 03,2010 at 21:50:58 UTC from IEEE Xplore. Restrictions apply.

ARYA AND DIPAOLA: FACE MODELING AND ANIMATION LANGUAGE FOR MPEG-4 XMT FRAMEWORK 1141

• compatibility with XML and related web technologies and
existing tools;

• allowing customized and facial component-level parame-
ters;

• independence from content generation (animation)
methods and data types (2-D versus 3-D).

The first action of Fig. 2 can be done by an FML script such
as the following lines (elements are discussed later; details
omitted):

The choice of XML as the base for FML is based on its ca-
pabilities as a markup language, growing acceptance, and avail-
able system support in different platforms. FML supports a hi-
erarchical view of face animation, i.e., representing simple indi-
vidually-meaningless moves to complicated high level stories.
This hierarchy consists of the following levels (bottom-up).

• Frame, a single image showing a snapshot of the face (Nat-
urally, may not be accompanied by speech).

• Move, a set of frames usually representing transition be-
tween key frames (e.g., making a smile).

• Action, a “meaningful” combination of moves.
• Story, a stand-alone piece of face animation.
FML defines a timeline of events (Fig. 3) including head

movements, speech, and facial expressions, and their combina-
tions. Temporal combination of facial actions is done through
time containers which are XML tags borrowed from SMIL
(other language elements are FML-specific). Since a face
animation might be used in an interactive environment, such
a timeline may be altered/determined by a user. So another
functionality of FML is to allow user interaction and in general
event handling (notice that user input can be considered a
special case of an external event.). This event handling may be
in form of

• Decision Making; choosing to go through one of possible
paths in the story.

• Dynamic Generation; creating a new set of actions to
follow.

A major concern in designing FML is compatibility with
existing standards and languages. Growing acceptance of
MPEG-4 standard makes it necessary to design FML in a way
it can be translated to/from a set of FAPs. Also due to similarity
of concepts, it is desirable to use SMIL syntax and constructs,
as much as possible. Satisfying these requirements make FML
a good candidate for being a part of MPEG-4 XMT framework.

B. FML Document Structure

Fig. 4 shows the typical structure of FML documents. An
FML document consists, at the higher level, of two types of el-
ements: model and story. A model element is used for defining
face capabilities, parameters, and initial configuration. This el-
ement groups other FML elements (model items) described in
next subsection.

A story element, on the other hand, represents the timeline
of events in face animation in terms of individual Actions (FML

Fig. 4. FML document map; model-item, time-container, and FML-move rep-
resent parts to be replaced by actual FML elements.

act elements). The face animation timeline consists of facial ac-
tivities and their temporal relations. These activities are them-
selves sets of simple Moves. Sets of these moves are grouped
together within Time Containers, i.e., special XML tags that
define the temporal relationships of the elements inside them.
FML includes three SMIL time containers excl, seq and par
representing exclusive, sequential and parallel move-sets. Other
XML tags are specifically designed for FML

FML supports three basic face moves: talking, expressions,
and 3-D head movements. Combined through time containers,
they form an FML act which is a logically related set of activ-
ities. Details of these moves and other FML elements and con-
structs will be discussed in the next subsections.

C. Modeling Elements

The model element encloses all the face modeling informa-
tion. As described in FML specification, some important model
elements are as follows.

• character: The personality being animated. This element
has one attribute name.

• img: An image to be used for animation; This element has
two major attribute src and type. It provides an image and
tells the player where to use it. For instance the image can
be a frontal or profile pictures used for creating a 3-D geo-
metric model.

• range: Acceptable range of head movement in a specific
direction; It has two major attributes: type and val speci-
fying the direction and the related range value.

• param: Any player-specific parameter (e.g., MPEG-4
FDP); param has two attributes name and val .

• event: external events used in decision-making; described
later.

• template: defines a set of parameterized activities to be
recalled inside story using behavior element.

Fig. 5 shows a sample model module. FML templates will
be extended in later versions to include advanced behavioral
modeling.

D. Story-Related Language Constructs

The FML timeline, presented in Stories, consists primarily of
Actions which are a purposeful set of Moves. The Actions are
performed sequentially but may contain parallel Moves in them-
selves. Time Containers are FML elements that represent the
temporal relation between moves. The basic Time Containers

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on June 03,2010 at 21:50:58 UTC from IEEE Xplore. Restrictions apply.

1142 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 6, OCTOBER 2007

Fig. 5. FML model and templates.

are seq and par corresponding to sequential and parallel activi-
ties. The former contains moves that start one after another and
the latter contains moves that begin at the same time. The Time
Containers include primitive moves and also other Time Con-
tainers in a nested way. The repeat attribute of the Time Con-
tainer elements allows iteration in FML documents.

Similar to SMIL, FML also has a third type of Time Con-
tainers, excl, used for implementing exclusive activities and de-
cision-making as discussed later.

FML supports three types of primitive moves plus MPEG-4
FAPs and some other move elements.

• talk is a nonempty XML element and its content is the text
to be spoken if a Text-To-Speech module is available. It can
also act as an empty element where attribute file specifies
speech data.

• expr specifies facial expressions with attributes type and
val. Every FML-compatible animation system has to sup-
port standard MPEG-4 expression types, i.e., smile, anger,
surprise, sadness, fear, disgust, and normal. Other expres-
sion types can be used depending on the underlying ani-
mation system.

• hdmv handles 3-D head rotations. Similar to expr, this
move is an empty element and has the same attributes.

• fap inserts an MPEG-4 FAP into the document. It is also
an empty element with attributes type and val.

• param inserts a custom parameter depending on the under-
lying animation system. It is also an empty element with
attributes type and val.

• wait pauses the animation. It is also an empty element with
only timing attributes.

• Other controls (Play, Capture, Save, etc.).
All story elements have four timing attributes repeat, begin,

duration, and end. In a sequential time container, begin is rel-
ative to start time of the previous move, and in a parallel con-
tainer it is relative to the start time of the container. In case of
a conflict, duration of moves is set according to their own set-
tings rather than the container. The repeat attribute is considered
for defining definite (when having an explicit value) or indefi-
nite loops (associated with events). Fig. 6 illustrates the use of
time containers and primitive moves. It should be noted that the
current version of FML does not include any mechanism for
enforcing the timing (such as audio-video synchronization). It
is the responsibility of underlying animation system to handle
these issues.

Fig. 6. FML time containers and primitive moves.

Fig. 7. FML decision making and event handling.

E. Event Handling and Decision Making

Dynamic interactive applications require the FML document
to be able to make decisions, i.e., to follow different paths based
on certain events. To accomplish this excl time container and
event element are added. An event represents any external data,
e.g., the value of a user selection. The new time container asso-
ciates with an event and allows waiting until the event has one
of the given values, then it continues with exclusive execution
of the action corresponding to that value, as illustrated in Fig. 7.

The FML Processor exposes proper interface function to
allow event values to be set in run time. event is the FML coun-
terpart of familiar if-else constructs in normal programming
languages.

F. Compatibility

The XML-based nature of this language allows the FML doc-
uments to be embedded in web pages. Normal XML parsers can
extract data and use them as input to an FML-enabled player,
through simple scripting. Such a script can also use XML Doc-
ument Object Model (DOM) to modify the FML document, e.g.,
adding certain activities based on user input. This compatibility
with web browsing environments, gives another level of inter-
activity and dynamic operation to FML-based system, as illus-
trated in Section IV.

Another major aspect of FML is its compatibility with
MPEG-4 XMT framework and face definition/animation pa-
rameters. This has been achieved by using XML as the base
for FML and also sharing language concepts with SMIL. As
the result, FML fits properly within the XMT framework. FML
documents can work as an XMT- code and be compiled to
MPEG-4 native features, i.e., FDPs and FAPs. FML is a high
level abstraction on top of MPEG-4 Face Animation Parame-
ters. FAPs are grouped into visemes, expressions, and low-level
facial movements. In FML, visemes are handled implicitly
through the talk element. The FML processor translates the
input text to a set of phonemes and visemes compatible with
those defined in MPEG-4 standard. A typical Text-To-Speech

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on June 03,2010 at 21:50:58 UTC from IEEE Xplore. Restrictions apply.

ARYA AND DIPAOLA: FACE MODELING AND ANIMATION LANGUAGE FOR MPEG-4 XMT FRAMEWORK 1143

Fig. 8. Static repeated FML document.

engine can find the phonemes and using the tables defined in
MPEG-4 standard these phonemes will be mapped to visemes.
FML facial expressions are defined in direct correspondence
to those in MPEG FAPs. For other face animation parameters,
the fap element is used. This element works like other FML
moves, and its type and val attribute are compatible with FAP
numbers and values. As a result, FML processor can (and will)
translate an FML document to a set of MPEG-4 compatible
movements (and also 3-D head rotations) to be animated by the
player components.

IV. CASE STUDIES

FML can be used in a variety of ways and applications. It can
be used as a high-level authoring tool within XMT framework
to create MPEG-4 streams (after translation), or be used directly
by compatible players for static or interactive face animation
scenarios. Here we discuss three sample cases to illustrate the
use of FML documents.

A. Static Document

The first case is a simple FML document that does not need
any user interaction. There is only one unique path the animation
follows. The interesting point in this basic example is the use of
iterations, using repeat attribute.

An example of this case can be animating the image of a
person who is not available for real recording. The img element
specifies the frontal (base) view of the character and the story is
a simple one: saying hello then smiling (Fig. 8). To add a limited
dynamic behavior, the image, text to be spoken, and the itera-
tion count can be set by an interactive user and then a simple
program (e.g., a script on a web page) can create the FML doc-
ument. This document will then be sent to an FML-compatible
player to generate and show the animation.

B. Event Handling

The second case shows how to define an external event, wait
for a change in its value, and perform certain activities based
on that value (i.e., event handling and decision making). An ex-
ternal event corresponding to an interactive user selection is de-
fined first. It is initialized to that specifies an invalid value.
Then, an excl time container, including required activities for
possible user selections, is associated with the event. The excl

Fig. 9. Events and decision making in FML.

element will wait for a valid value of the event. This is equiva-
lent to a pause in face animation until a user selection is done.

A good example of this case can be a virtual agent answering
users’ questions online. Depending on the selected question (as-
suming a fixed set of questions), a value is set for the external
event and the agent speaks the corresponding answer. The FML
document in Fig. 9 uses two events: one governs the indefinite
loop to process the user inputs, and the second selects the proper
action (replying to user question in the mentioned example).

The FML-compatible player reads the input, initializes the
animation (by showing the character in initial state) and when it
reaches this action, waits for user input because the select event
does not match any of the values inside excl. After the event is
set through the proper API (see Section V), the related action
is performed. This will continue until the quit event, used by
repeat, is set to a nonnegative value. If the value is zero, it stops,
otherwise continues for the defined number of times.

C. Dynamic Content Generation

The last FML case to be presented illustrates the use of XML
Document Object Model (DOM) to dynamically modify the
FML document and generate new animation activities. For in-
stance, a new choice of action can be added to the previous ex-
ample, on-the-fly. Fig. 10 shows a sample JavaScript code that
accesses an XML document, finds a particular node, and adds
a new child to it. Since this case uses standard XML DOM fea-
tures, we do not discuss that in more details. It only shows how
the use of XML as the base language can be helpful in FML
documents.

The same DOM methods can be accessed from within the
FML Player to modify the document while/before playing it.
The FML Player can expose proper interface functions to pro-
vide these capabilities to users/applications in an easier way.

V. ANIMATION SYSTEMS

A. Background

Video streaming systems [26] usually do not have specific fa-
cilities for face animation. Traditionally, animating human faces
is done through synthetic computer generated images with 3-D
head models [13], [27], [28]. Although powerful in creating a
variety of facial states, these methods require relatively complex
and time-consuming computation and the output may not be
very realistic. Another approach to facial animation uses image

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on June 03,2010 at 21:50:58 UTC from IEEE Xplore. Restrictions apply.

1144 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 6, OCTOBER 2007

Fig. 10. JavaScript code for FML document modification.

processing techniques applied to 2-D data (normal photographs)
[5], [15], [29], [30]. This is usually a simple morphing between
a library of key frames which means animation requires a large
database of photographs [15], but the computational complexity
is lower and the results seem more realistic.

The authors have been involved in two face animation re-
search projects that used FML as a content description method.
Arya and Hamidzadeh [4]–[6] developed ShowFace as a simple
streaming system that could create facial animation streams.
ShowFace uses a 2-D method but reduces the database require-
ment by learning image transformations from a set of training
images. More recently, Arya and DiPaola [7], [8] have pro-
posed Interactive Face Animation – Comprehensive Environ-
ment (iFACE) as a more general approach to facial animation,
based on the concept of Face Multimedia Object [7], discussed
later. iFACE uses a hierarchical geometry where data type (2-D
or 3-D) is considered only at the lowest level. This is combined
with a behavioral model consisting of Knowledge, Personality,
and Mood. iFACE can be used as a “face engine” for a variety
of face-based applications. Both iFACE and ShowFace systems
are MPEG-4 compatible.

B. Face Multimedia Object (FMO)

For a large group of applications, facial presentations can be
considered a means of communication. A “communicative face”
relies and focuses on those aspects of facial actions and fea-
tures that help to effectively communicate a message. We be-
lieve that the communicative behavior of a face can be consid-
ered to be determined by the following groups (spaces) of pa-
rameters (Fig. 11).

• Geometry: This forms the underlying physical appearance
of the face. Creating and animating different faces and
face-types are done by manipulating the geometry that can
be defined using 2-D and/or 3-D data (i.e., pixels and ver-
tices).

• Knowledge: Behavioral rules, stimulus-response associa-
tion, and required actions are encapsulated into Knowl-
edge. In the simplest case, this can be the sequence of ac-
tions that a face animation character has to follow. In more
complicated cases, knowledge can be all the behavioral
rules that an interactive character learns and uses.

Fig. 11. Parameter spaces for face multimedia object.

• Personality: Different characters can learn and have the
same knowledge, but their actions, and the way they are
performed, can still be different depending on individual
interests, priorities, and characteristics. Personality encap-
sulates all the long-term modes of behavior and charac-
teristics of an individual. Facial personality is parameter-
ized based on typical head movements, blinking, raising
eye-brows and similar facial actions.

• Mood: Certain individual characteristics are transient re-
sults of external events and physical situation and needs.
These emotions (e.g., happiness and sadness) and sensa-
tions (e.g., fatigue) may not last for a long time, but will
have considerable effect on the behavior.

Face Multimedia Object (FMO) is a high-level multimedia
data type encapsulating all the functionality of a communicative
face. It exposes proper interfaces to be used by client objects and
applications, and can be used as a “face engine” for face-based
applications such as computer games and online agents. iFACE
system provides an implementation of FMO in addition to other
required tools.

C. iFACE System

iFACE [7] is a parameterized face animation system, i.e., an-
imation is defined and created through activation of groups of
parameters interacting with each other as illustrated in Fig. 11.
Geometry is the foundation of facial animation. iFACE uses a
hierarchical model that provides different layers of abstraction
(such as Features, Components) on top of head data, each with
their own interfaces exposing functionality related to that layer.
The system will translate higher-level functions and commands
to lower-level ones, and eventually to point-level manipulation.
This means that animators and programmers do not need to be
involved in details unless they want to override the default be-
havior of the system.

Knowledge, Personality, and Mood are designed as compo-
nents around the Geometry, exposing their own interfaces for ac-
cess by the application programs. Knowledge receives the input
script and external events, and holds the rules of interaction. All
of these are applied to Geometry in the form of parameters at
the appropriate layer of abstraction. Personality (which can be
configured through input scripts or interactively) suggests facial
gestures and states based on the explicit actions requested by
Knowledge. For example, if the script requires a piece of speech,
Knowledge translates this to a set of phonemes and visemes and
their timing, so the Geometry can animate the face. Meanwhile,
Personality suggests certain head movements, facial gestures,

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on June 03,2010 at 21:50:58 UTC from IEEE Xplore. Restrictions apply.

ARYA AND DIPAOLA: FACE MODELING AND ANIMATION LANGUAGE FOR MPEG-4 XMT FRAMEWORK 1145

visemes and expressions that are attributes of the chosen char-
acter’s personality, based on the content of speech and energy
level. Mood applies a base facial state to all the facial actions.

iFACE includes an off-line design environment, iFaceStudio,
for creating animations and configuring the head objects, and
a wrapper control, FacePlayer, that can be easily used in
web forms and similar GUI applications. A normal scripting
language can control the animation by accessing the object
methods and properties. More about iFACE and sample anima-
tions and FML scripts can be found online [31].

D. ShowFace System

ShowFace [4]–[6] is a simple modular system for streaming
facial animation. It includes components for receiving input
stream (MPEG-4 descriptions or FML scripts), parsing them
in order to provide a list of video and audio actions, objects
for generating the multimedia content, and finally a mixer
that creates the final output stream. Ituses Feature-based
Image Transformation (FIX) [5]. In a training phase, a set of
image-based transformations is learned by the system, which
can map between these face states (e.g., transform a neutral face
to a smiling one). Transformations are found by tracking facial
features when the model is performing the related transitions,
and then they are applied to a given image, in order to find
the new location of feature points and lines. The facial regions
are then mapped according to their closest feature points.
FIX allows the ShowFace system to perform a 2-D version of
MPEG-4 FAP operations.

VI. CONCLUSIONS

XML-based Face Modeling Language (FML) is proposed to
describe the desired sequence of actions in facial animation.
FML allows event handling, and also sequential or simultaneous
combination of supported face states, and can be converted to a
set of MPEG-4 Face Animation Parameters. It uses a similar
structure to SMIL which makes the language a good candidate
for being part of MPEG-4 XMT framework.

The main contributions of FML are its hierarchical structure,
animation configuration and modeling, flexibility for static and
dynamic scenarios, and dedication to face animation. FML fully
supports MPEG-4 FAPs using high-level constructs which can
be translated to FAPS and also direct FAP embedding. Compat-
ibility with MPEG-4 XMT and use of XML as a base are also
among the important features in the language. Future extensions
to FML can include more complicated behavior modeling and
better coupling with MPEG-4 streams.

FML covers a wide range of applications including but not
limited to authoring tools for MPEG-4 streams, input to stand-
alone animation programs, and animation components for web
pages. Such applications can be used in video conferencing,
games, visual effects, and online services with animated agents.
FML can be used in a compatible player or in combination with
MPEG-4 presentations. ShowFace and iFACE are briefly dis-
cussed, as examples of FML-compatible facial animation sys-
tems. The FML-based iFACE system has been successfully used
by animators to create animation pieces as illustrated on the web
site [31]. It provides the animators with the ease of use and full
control at the same time, and allows for authoring control mixed

with programming control which is highly useful in high-end
games and other interactive applications.

REFERENCES

[1] P. Ekman and W. V. Friesen, Facial Action Coding System. Mountain
View , CA: Consulting Psychologists Press, 1978.

[2] S. Battista, F. Casalino, and C. Lande, “MPEG-4: A multimedia stan-
dard for the third millennium,” IEEE Multimedia, vol. 6, 7, no. 4, 1, pt.
1 and 2, pp. 74–83, Oct.–Jan. 1999–2000.

[3] I. S. Pandzic and R. Forchheimer, Eds., MPEG-4 Facial Animation:
The Standard, Implementation and Applications New York: Wiley,
2002.

[4] A. Arya and B. Hamidzadeh, “Personalized face animation in Show-
Face system,” Int. J. Image Graph., Special Issue on Virtual Reality
and Virtual Environments, vol. 3, no. 2, pp. 345–363, 2003.

[5] A. Arya and B. Hamidzadeh, “FIX: Feature-based image transforma-
tions for face animation,” in Proc. IEEE Conf IT in Research and Tech-
nology (ITRE), Newark, NJ, Aug. 12–14, 2003.

[6] A. Arya and B. Hamidzadeh, “ShowFace MPEG-4 compatible face
animation framework,” in IASTED Int. Conf Computer Graphics and
Imaging (CGIM), Aug. 12–14, 2002.

[7] A. Arya, S. DiPaola, L. Jefferies, and J. T. Enns, “Socially commu-
nicative characters for interactive applications,” in Proc. 14th Int. Conf.
Central Europe on Computer Graphics, Visualization and Computer
Vision (WSCG-2006), Plzen, Czech Republic, Jan.–Feb. 2006.

[8] S. DiPaola and A. Arya, “Socially expressive communication agents:
A face-centric approach,” in Proc. Eur. Conf. Electronic Imaging and
the Visual Arts, EVA-2005, Florence, Italy, Mar. 17–18, 2005.

[9] [Online]. Available: http://img.csit.carleton.ca/iface/fml.html
[10] J. Ankeney, “Non-linear editing comes of age,” TV Technol., May 1995.
[11] T. D. C. Little, “Time-based media representation and delivery,” in

Multimedia Systems, J. F. K. Buford, Ed. New York: ACM Press,
1994.

[12] F. Nack and A. T. Lindsay, “Everything you wanted to know about
MPEG-7,” IEEE Multimedia, vol. 6, no. 3, pp. 65–77, Jul. 1999.

[13] W. S. Lee, M. Escher, G. Sannier, and N. Magnenat-Thalmann,
“MPEG-4 compatible faces from orthogonal photos,” in Proc. IEEE
Conf Computer Animation, 1999.

[14] I. S. Pandzic, “A web-based MPEG-4 facial animation system,” in
Proc. Int. Conf. Augmented Virtual Reality and 3D Imaging, 2001.

[15] T. Ezzat and T. Poggio, “MikeTalk: A talking facial display based on
morphing visemes,” in Proc. IEEE Conf. Computer Animation, 1998.

[16] N. Hirzalla, B. Falchuk, and A. Karmouch, “A temporal model for in-
teractive multimedia scenarios,” IEEE Multimedia, vol. 2, no. 3, pp.
24–31, 1995.

[17] D. Bulterman, “SMIL-2,” IEEE Multimedia, vol. 8, no. 4, pp. 82–88,
Oct. 2001.

[18] M. Kim, S. Wood, and L. T. Cheok, “Extensible MPEG-4 textual
format (XMT),” in Proc. ACM Conf Multimedia, 2000.

[19] Y. Arafa, K. Kamyab, E. Mamdani, S. Kshirsagar, N. Magnenat-Thal-
mann, A. Guye-Vuillème, and D. Thalmann, “Two approaches to
scripting character animation,” in Proc. 1st Int. Conf. Autonomous
Agents and Multi-Agent Systems, Workshop on Embodied Conversa-
tional Agents, Bologna, Italy, Jul. 2002.

[20] B. DeCarolis, M. Bilvi, and C. Pelachaud, “APML, a markup lan-
guage for believable behaviour generation,” in Proc. 1st Int. Conf Au-
tonomous Agents & Multi-Agent Systems, Workshop on Embodied Con-
versational Agents, Bologna, Italy, Jul. 2002.

[21] A. Marriott and J. Stallo, “VHML: Uncertainties and problems. A dis-
cussion,” in Proc. 1st Int. Conf Autonomous Agents & Multi-Agent Sys-
tems, Workshop on Embodied Conversational Agents, Bologna, Italy,
Jul. 2002.

[22] H. Prendinger, S. Descamps, and M. Ishizuka, “Scripting affective
communication with life-like characters in web-based interaction
systems,” Appl. Artif. Intell., vol. 16, no. 7–8, 2002.

[23] J. Cassell, H. H. Vilhjálmsson, and T. Bickmore, “BEAT: The behavior
expression animation toolkit,” in Proc. ACM SIGGRAPH, 2001.

[24] J. Funge, X. Tu, and D. Terzopoulos, “Cognitive modeling: Knowl-
edge, reasoning, and planning for intelligent characters,” in Proc. ACM
SIGGRAPH, 1999.

[25] M. Kallmann and D. Thalmann, “A behavioral interface to simulate
agent-object interactions in real time,” in Proc. IEEE Conf Computer
Animation, 1999.

[26] G. Lawton, “Video streaming,” IEEE Comput., vol. 33, no. 7, pp.
120–122, Jul. 2000.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on June 03,2010 at 21:50:58 UTC from IEEE Xplore. Restrictions apply.

1146 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 6, OCTOBER 2007

[27] V. Blanz and T. Vetter, “A morphable model for the synthesis of 3D
faces,” in Proc. ACM SIGGRAPH, 1999.

[28] F. I. Parke and K. Waters, Computer Facial Animation. New York:
A. K. Peters, 2000.

[29] C. Bregler, M. Covell, and M. Slaney, “Video rewrite: Driving visual
speech with audio,” in ACM Comput. Graph., 1997.

[30] H. P. Graf, E. Cosatto, and T. Ezzat, “Face analysis for the synthesis
of photo-realistic talking heads,” in Proc. IEEE Conf Automatic Face
and Gesture Recognition, 2000.

[31] [Online]. Available: http://img.csit.carleton.ca/iface

Ali Arya (S’95–M’98–SM’06) received the B.Sc.
degree in electrical engineering from Tehran Poly-
technic, Tehran, Iran, in 1990, and the Ph.D. degree
in computer engineering from the Department of
Electrical and Computer Engineering, University of
British Columbia, Canada, in 2004.

He has worked as Research Engineer, System
Analyst, and Project Manager in different research
centers and leading companies, including Tehran Cy-
bernetic Arm Project, Iran, and Honeywell, Canada,
and also as Instructor and Postdoctoral Fellow at

the University of British Columbia and Simon Fraser University, Vancouver,
BC, Canada. Since August 2006, he has been an Assistant Professor at the
School of Information Technology, Carleton University, Ottawa, ON, Canada.
His research interests include social user interfaces, interactive multimedia
systems, computer graphics and animation, real-time systems, and Web-based
applications.

Steve DiPaola received the B.Sc. degree in com-
puter science from the State University of New
York at Stony Brook in 1981 and the M.A. degree
in computer graphics from New York Institute of
Technology, New York, in 1991.

He is currently an Associate Professor with the
School of Interactive Arts and Technology, Simon
Fraser University, Surrey, BC, Canada, which ac-
tively combines technology, science, and the arts
using online and collaborative methods. There, he
directs of the iVizLab (http://ivizlab.sfu.ca) which

conducts research on “socially-based interactive visualization.” He has research
interests in human centered design, computer graphics and animation, and
interactive systems. He had published (papers and book chapters) extensively in
the area of character and avatar based 3-D virtual communication technologies
and has given presentations worldwide. He has been a Teacher and Researcher
at such institutions as Stanford University, Stanford, CA, and the Computer
Graphics Lab, New York Institute of Technology.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on June 03,2010 at 21:50:58 UTC from IEEE Xplore. Restrictions apply.

