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Abstract—Change captioning is to describe the semantic
change between a pair of similar images in natural language.
It is more challenging than general image captioning, because it
requires capturing fine-grained change information while being
immune to irrelevant viewpoint changes, and solving syntax
ambiguity in change descriptions. In this paper, we propose a
neighborhood contrastive transformer to improve the model’s
perceiving ability for various changes under different scenes
and cognition ability for complex syntax structure. Concretely,
we first design a neighboring feature aggregating to integrate
neighboring context into each feature, which helps quickly locate
the inconspicuous changes under the guidance of conspicuous
referents. Then, we devise a common feature distilling to compare
two images at neighborhood level and extract common properties
from each image, so as to learn effective contrastive information
between them. Finally, we introduce the explicit dependencies
between words to calibrate the transformer decoder, which helps
better understand complex syntax structure during training.
Extensive experimental results demonstrate that the proposed
method achieves the state-of-the-art performance on three public
datasets with different change scenarios. The code is available at
https://github.com/tuyunbin/NCT.

Index Terms—Change captioning, Neighborhood contrastive
transformer, Syntax dependencies.

I. INTRODUCTION

CHANGE captioning aims to describe what has changed
between two semantically similar images, which is a

novel task in the community of vision and language [1]–
[3]. It extends the conventional image captioning [4], [5]
further, i.e., it needs to simultaneously deal with two images
and describe their disagreement. This pushes forward the
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remove the girl in the left side of the image

(a)

the tiny blue shiny block to the right of the gray matte thing moved

(b)

the small brown block that is to the right of the red ball moved

(c)

Fig. 1. The examples of change captioning. The first one is from image editing
scene, where the removed object is inconspicuous. The second one shows
that with both object move and moderate viewpoint change, and the changed
object is partially occluded. The last one shows that with both object move
and extreme viewpoint change, where the real movement is overwhelmed by
pseudo movements. The changed objects and referents are shown in the red
and white boxes, respectively

research of exploring the relationship and difference of image
pair. In addition, it has wide applications, such as providing
explanation of complex image editing effects for laypersons or
visually-impaired users, outputting logs about monitored areas,
and generating reports about pathological changes [6]–[8].

The key challenges are mainly embodied in the two aspects.
First, the model should have the ability of fine-grained se-
mantic comprehension, because change information is usually
hard to pinpoint. For example, in Fig. 1 (a), the removed
girl is easy to ignore, due to her inconspicuous position and
vague shape. In Fig. 1 (b), The change is hard to be located,
because the moved block is partially occluded. Second, the
model should be immune to irrelevant distractors and only
describe genuine semantic change. In a dynamic environment,
it is nearly impossible to acquire two images under same
viewpoint due to various factors, such as camera shaking,
different shoot time, etc. In Fig. 1 (c), extreme viewpoint
change leads to obvious pseudo movement for unchanged
objects, which could overwhelm the real change and mislead
the model into generating inaccurate sentences.

There have been previous endeavors for the above chal-
lenges. Despite progresses, these methods suffer from learning
the effective change representation. Specifically, they compare
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two images mainly at global or local level, where global
refers to direct subtraction [9], [10] and local is to compute
their similarity based on individual feature matching [8], [11],
[12]. The former is too coarse to capture inconspicuous or
occluded changes. The latter is more reasonable, but it is
easily influenced by extreme viewpoint change, e.g., in Fig.
1 (c) every object seems to move. In this case, such individual
matching is unable to learn the stable features of change.
We argue that to learn effective features across viewpoint
changes, the model should compare details at neighborhood
level. The reasons are that spatially neighboring objects are
highly correlated in an image [13], where if an object changed,
its relations with neighboring objects would change as well.
Such relation change helps mine those inconspicuous changes.
Besides, pseudo changes are actually the distortion of objects’
scale and location, so the relations of these neighboring objects
are not affected. Considering this, we try to dynamically
integrate features at neighborhood level, thus helping the
model resist viewpoint changes and locate the real change.

Besides, we observe that a change description usually
consists of two parts: the semantic change and a referent,
which makes it contain complex syntax structure. As shown in
Fig. 1 (c), the main clause of this sentence is “the small brown
block moved”. However, the subject “block” and its predicate
“moved” are separated by a subordinate clause describing the
referent “ball”. In this case, the word “moved” is closer to the
word of “ball” than “block”. During training, if a model does
not understand syntax relations between words, it might learn
wrong information from the ground-truth caption. To the best
of our knowledge, this problem is disregarded by the existing
methods. In fact, the above misunderstanding could be avoided
if the model notices the direct dependency relation between
“block” and “moved”. Hence, it is necessary to introduce
explicit dependency relations during training, which helps the
model understand the syntax structure of captions.

In this paper, we propose a Neighborhood Contrastive
Transformer to pinpoint change under different change scenar-
ios, and endow the model with the syntax knowledge of de-
pendency relation to address structural ambiguity. Concretely,
given an image pair, a neighborhood feature aggregating is
first designed to integrate neighboring context into features of
each image. This helps the model resist viewpoint changes
and perceive the fine-grained change under the guidance of
neighboring referents. Then, based on similarity matching, a
common feature distilling is customized to establish corre-
spondences between the above two image features, so as to
summarize their common features. Next, the stable features
of change in each image are computed by removing common
features, which are fused to learn contrastive features between
the image pair. These contrastive features are subsequently fed
into a transformer decoder to generate descriptions. During
training, we provide the decoder with the prior knowledge of
dependencies between words, which is beneficial to understand
the complex syntax structure in ground-truth captions.

The contributions of this paper are summarized below: (1) A
neighborhood contrastive transformer is proposed to pinpoint
changes via performing neighborhood contrast between image
pairs, where a neighborhood feature aggregating is designed

to explore fine-grained changes and resist viewpoint change;
a common feature distilling is devised to capture discrimina-
tive properties of each image and construct their contrastive
features for sentence generation. (2) This work is the first
attempt in this task to solve syntax structural ambiguity via in-
troducing explicit dependencies between words. (3) Extensive
experiments demonstrate that our method performs favorably
against the state-of-the-art methods on three public datasets.

II. RELATED WORK

Image/Video Captioning. Before introducing the works of
change captioning, we first review recently published works in
conventional image/video captioning. TTA [14] detects visual
tags from videos to bridge visual-textual gap, and presents a
textual-temporal attention model to build alignment between
words and frames. LSRT [15] proposes the long short-term
relation transformer to fully mine objects’ relations for caption
generation. I2Transformer [16] learns the intra- and inter-
relation embedded representation from different modalities,
which is fed into the standard transformer for caption gen-
eration. P+D attention [17] proposes a dual attention module
on pyramid image feature maps, which can explore the visual-
semantic correlations and refine generated captions. MSA [18]
presents a multi-branch self-attention and duplicates it multiple
times, in order to increase the expressive power of general self-
attention model during caption generation. HTG+HMG [19]
proposes a relation-aware attention by designing two kinds of
graphs, namely linguistics-to-vision heterogeneous graph and
vision-to-vision homogeneous graph.

Change Captioning. It is a new task in visual captioning,
while it is more challenging. This is because it needs to
understand the contents of two images, and further to describe
their difference. The pioneer work [6] describes the change
based on the surveillance scenarios. The work [7] elaborates
the editing transformation between two images, as shown in
Fig.1 (a). The common point of these two works is that they
detect and describe changes between two well-aligned images.
In fact, there exist viewpoint shifts as we shoot pictures, which
poses a challenge to distinguish the real change from pseudo
changes. Considering this, Park et al. [9] and Kim et al. [11]
respectively release two datasets with moderate (Fig.1 (b)) and
extreme viewpoint changes (Fig.1 (c)). To describe semantic
change under viewpoint changes, Park et al. propose a DUDA
model for localizing and describing changes, where they model
the difference by subtracting two unaligned images, which
might compute the difference features with noise [20].

To ease this problem, Hosseinzadeh et al. [10] leverage
a retrieval model of TIRG [21] to regularize DUDA. Tu et
al. [20] measure the relations between the subtracted change
and image pair to judge if the change has actually happened.
Instead of using direct subtraction, on the one hand, the
works [8], [11], [22] first distill the common features between
two images based on feature similarity. Then, they remove
these features to explicitly capture the features of change.
On the other hand, the works [12], [23] match the similar
features between two images to implicitly infer the features of
change. To enhance the visual-textual alignment, Kim et al.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

[11] introduce a cycle consistency module to refine generated
sentences. Yao et al. [12] model the fine-grained cross-modal
alignment by the paradigm of pre-training to fine-tuning.

In addition, Liao et al. [24] introduce the 3D information
of depths of objects to deal with viewpoint changes. They
first input images into a pre-trained depth estimation model to
obtain the depth maps. Meanwhile, they utilize a pre-trained
Yolov4 to obtain the bounding boxes of the objects. Then,
with these depth maps and bounding boxes of objects, they
obtain the depths of objects. Since the accuracy of depths of
objects heavily depends on the efficiency of two pre-trained
models, the computed depth information is unreliable. Besides,
the introducing of 3D information increases the complexity of
model. Even so, leveraging 3D knowledge is another idea to
overcome the influence of viewpoint changes. This inspires us
to further explore this task in the future.

However, the aforementioned methods capture changed fea-
tures between two images mainly based on the global (direct
subtraction) or local (individual feature matching) level, while
not trying to learn the features of change based on the neigh-
borhood level. In addition, the problem of syntax ambiguous
in ground-truth captions are disregarded. Instead, we propose a
neighborhood contrastive transformer. It compares two images
at neighborhood level to first capture differentiating properties
from each image and then learn contrastive information be-
tween them. In addition, it employs dependency relations to
solve the problem of structure ambiguity in change captions.

Contrastive Feature learning in Captioning. Learning
contrastive features is to model similar/dissimilar image repre-
sentations from similar/dissimilar image pairs [25]. This idea
has been attempted by recent works in group captioning [26]
and chest X-ray report generation [25]. On the one hand,
given two groups of images, Li et al. [26] propose to use
self-attention mechanism to capture common properties from
each image group and then capture contrastive information
between them. On the other hand, given a chest X-ray image
and a set of norm images, Liu et al. [25] present a contrastive
attention model to learn contrastive features between the input
image with normal images. There are two major differences
between our method and them. First, there exist irrelevant
distractors (e.g., viewpoint change) in our task, which brings
the additional challenge to distinguish real change from pseudo
change. Second, different from them matching feature individ-
ually, our method is first to aggregate neighboring features,
and then perform feature matching at neighborhood level to
construct contrastive features, which aims to identify fine-
grained change while being immune to viewpoint change.

Syntax Knowledge Used in Captioning. There have been
some attempts that use the syntax knowledges of Part-of-
Speech (PoS) and syntax dependencies between words in
captioning. On the one hand, Hou et al. [27] propose to model
the syntactic structure and exploit the semantic primitive by
learning the joint probability of the PoS sequence and words.
Wang et al. [28] present a PoS generator to predict the global
syntactic PoS information of sentences. Zhang et al. [29]
and Deng et al. [30] propose to make the model adaptively
generate each word based on its PoS, thus improving the cross-
modal alignment. On the other hand, Zheng et al. [31] propose

to decode syntax components (subject, object and predicate)
for targeting the action in video clips. Zhao et al. [32] devise a
multi-modal dependency tree construction approach to capture
the syntactic and semantic dependencies in long and complex
video captions.

In change captioning, most works focus on learning an
accurate change representation for caption generation, while
ignoring the exploitation of syntax knowledge. Similar to
Zhang et al. and Deng et al., Tu et al. [20] introduce PoS
information and propose an attention-based visual switch to
dynamically use visual information. Different from this work,
we aim to exploit explicit syntax dependencies between words
to disambiguate syntax structure of change captions, which is
beneficial to help the model differentiate changed object and
its referent in ground-truth captions during training.

III. METHODOLOGY

As shown in Fig. 2, the architecture of our method consists
of four parts: (1) a neighborhood feature aggregating mod-
ule identifies the fine-grained change and resists irrelevant
viewpoint changes; (2) a common feature distilling module
extracts differentiating information from each image, and
learns contrastive information between them; (3) a contrastive
change localizer locates the specific change features on the two
images; (4) a syntax-aware transformer decoder translates the
learned features of change into a natural language sentence,
and predicts the syntax dependencies between words.

A. Neighborhood Feature Aggregating

Formally, given two images of “before” Ibef and “after”
Iaft, we exploit an off-the-shelf CNN to extract grid features
for them, denoted as Xbef and Xaft, where X ∈ RC×H×W .
C, H, W indicate the number of channels, height, and width.
Although the CNN can capture local spatial context, these
correlations are modeled based on single image without view-
point changes and cannot be directly transferred to change
captioning. Besides, the latest work [33] in semantic corre-
spondence shows that local self-attention performs well in
capturing relations between neighboring elements. Inspired by
this, we design a neighborhood feature aggregating module to
dynamically update each feature by integrating spatial context
from the same neighborhood of two images.

Concretely, for Xbef(aft) = {x1, . . . , xN} (N = HW ),
where xi ∈ RC , we first project the feature of i-th grid cell xi
into a low-dimensional embedding space of RD by a shared
linear transformation:

x′i = Mvxi + bv + pos(x̃, ỹ), (1)

where Mv ∈ RD×C and bv ∈ RD are trainable parameters.
pos(x̃, ỹ) ∈ RD is a learnable position embedding for i-th grid
feature. Herein, x̃ and ỹ are the orders of each feature in the
height and width dimensions of an image. Position embedding
layers are two lookup tables of size (H, D/2) and size (W,
D/2). Based on the orders of each feature, we can learn its
position embeddings from height and width dimensions, and
concatenate them as its position embedding. Then, for every
grid feature x′i, we pick out its r × r neighboring features
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Fig. 2. The architecture of the proposed neighborhood contrastive transformer, including a neighborhood feature aggregating, a common feature distilling, a
contrastive change localizer and a syntax-aware transformer decoder.

and acquire a neighborhood feature representation X ′′bef(aft) ∈
RC×H×W×r×r. Next, we measure feature cosine similarities
between x′i and its r × r neighborhood:

e = Φ [Fq (x′i) ,Fk (x′′i )] ,

α ∼ Softmax (e) ,
(2)

where α ∈ Rr×r is the relation coefficient indicating how
much message to obtain from the neighboring features; Φ is
the cosine similarity function. Fq ∈ RD and Fk ∈ RD×r2

are two convolution layers. Finally, x′i is updated to x̂i via
aggregating related information from the neighboring features:

x̂i = x′i + Ft(
∑
r,r

α�Fv (x′′i )), x̂i ∈ RD, (3)

where � refers to element-wise multiplication. The above
operation updates the original features into X̂bef and X̂aft,
which enables the model to identify inconspicuous and oc-
cluded changes, while being immune to viewpoint change.

B. Common Feature Distilling

As shown in Fig. 1, compared to the tiny change, most
properties are identical between the image pair. Hence, it is
natural to find and remove the common portion from the
two images, and the remaining information can be treated
as contrastive features. Motivated by this, a common feature
distilling module is designed to compare two images and learn
an effective contrasive representation.

Herein, we learn the change features in X̂bef compared to
X̂aft. In detail, we first exploit a shared transformation layer
with depth-wise separate convolutions to project X̂bef and
X̂aft into a common semantic space. This further captures
spatial correlations in the same neighborhood:

X̃bef(aft) = Fdepth

(
X̂bef(aft), s

)
, X̃ ∈ RD×H×W , (4)

where s is with the kernel size of r × r, and we reshape
X̃bef(aft) to X̃bef(aft) ∈ RN×D. Then, we measure the
similarity between every feature x̃bi in X̃bef and every feature
x̃aj in X̃aft by the dot-product attention:

βi,j =
exp

(
β′i,j
)∑

j exp
(
β′i,j
) , β′i,j = x̃bTi x̃aj , (5)

where βi,j ∈ B is a set of similarity scores to indicate which
features are the common properties between X̃bef and X̃aft.
Then, the common features are extracted from X̃aft under the
guidance of the learned similarity score matrix B :

X̃u = B · X̃aft. (6)

Next, we remove the common features X̃u from X̃bef to distill
the change features:

X̃bef
c = X̃bef − X̃u. (7)

By that analogy, we distill the change features X̃aft
c in X̃aft

with reference to X̃bef . Finally, we construct the contrastive
representation between two images by fusing the above change
features, which is implemented by a fully-connected layer with
the ReLU activation function:

X̃c = ReLU
([
X̃bef

c ; X̃aft
c

]
Wh + bh

)
. (8)

C. Contrastive Change Localizer

After learning the contrastive representation X̃c, we intro-
duce a contrastive change localizer based on spatial attention
mechanism, which is used to pinpoint change on the two
images. Concretely, it first generates two attention maps by
using X̃c to query each image representation, respectively:

γbef = σ
(
MLP

([
X̃c; X̃bef

]))
,

γaft = σ
(
MLP

([
X̃c; X̃aft

]))
,

(9)
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where MLP is a two-layer multi-layer perceptron with the
ReLU activation function in between. [;] and σ denote con-
catenation operation and sigmoid activation function. Further,
the specific feature of change is localized via implementing a
weighted-sum pooling on each image representation over the
spatial dimensions, respectively:

lbef =
∑

H,W γbef � X̃bef , lbef ∈ RD,

laft =
∑

H,W γaft � X̃aft, laft ∈ RD.
(10)

D. Syntax-aware Language Decoder

With the pooling change features lbef , laft, and their differ-
ence feature ldiff , we first concatenate them as V ∈ R3×D.
Then, the decoder of transformer learns the cross-modal
alignment between the word embedding features E[W ] =
{E[w1], ..., E[wm]} and visual features V . Finally, the decoder
exploits attended features of change to generate sentences, dur-
ing which we introduce the syntax knowledge of dependencies
between words to calibrate the decoder. This aims to solve the
problem of syntax ambiguity in change descriptions.

1) Background Knowledge: We first briefly review the
framework of standard transformer decoder. The key module
is the scaled dot-product attention. Given a query matrix
Q ∈ RTq×dk , key matrix K ∈ RTv×dk and value matrix
V ∈ RTv×dv , the attention result is computed as:

Attention (Q,K, V ) = Softmax

(
QK>√
dk

,dim = 1

)
V. (11)

The multi-head attention is based on the scaled dot-product
attention. It consists of h different “heads”. For each head,
the attention result is computed by:

head i = Attention
(
QWQ

i ,KW
K
i , V WV

i

)
. (12)

Afterward, the multi-head attention operation is to concatenate
all the heads, which is defined as:

MultiHead (Q,K, V ) = Concat i=1...h ( head i)W
O.

(13)
Further, the output of each attention layer x is fed into a feed-
forward network (FFN) based on a non-linear transformation:

FFN(x) = GELU (xWf1 + bf1)Wf2 + bf2. (14)

Then, we give a introduction about the dependencies be-
tween words. In natural language processing, dependency
parsing refers to the process of examining the dependencies
between the linguistic units (e.g., words) of a sentence, in
order to determine its grammatical structure. That is, syntax
dependency is the notion that words are connected to each
other by directed links. The verb is taken to be the structural
center of clause structure and tagged as “root”. All other
syntactic words are either directly or indirectly connected
to the “root” in terms of the directed links. In Fig. 2, we
mainly illustrate the main words of this change caption. A
dependence tag indicates the relationship between two words.
For example, the word “moved” changes the meaning of the
noun “cylinder”. Therefore, we can find that a dependency
from “moved” to “cylinder”, where “moved” is the pinnacle
and “cylinder” is the kid or dependent. The tag of this

dependency is “nsubj”, which stands for nominal subject of
this sentence. The verb “moved” is the root in this dependency
structure. In addition, we notice that there is no directed link
between the other “cylinder” and the “moved”. Based on
these directed links, the model can better understand complex
structure in a sentence and thus identify which object changed.

2) Decoding Stage: The decoder contains a stack of N
identical layers. At the l-th decoder layer, the masked self-
attention layer, which prevents the model from seeing future
words, first takes the word embedding features E[W ] =
{E[w1], ..., E[wm]} as the inputs and models their relation-
ships. The operation is defined as:

Ê[W ] = LN (E[W ] + MultiHead (E[W ], E[W ], E[W ])),
(15)

where LN is short for layer normalization [34]. Then, the
decoder utilizes the attended features Ê[W ] to query the most
related features from V based on the cross-attention layer:

Ĥ = LN (E[Ŵ ] + MultiHead (E[Ŵ ], V, V )). (16)

Afterward, the Ĥ is passed to a feed-forward layer:

H̃ = LN(Ĥ + FFN(Ĥ)). (17)

Finally, the probability distributions of target words and depen-
dencies are calculated via two separate single hidden layers:

W = Softmax
(
H̃Wc + bc

)
,

D = Softmax
(
H̃Wd + bd

)
,

(18)

where Wc ∈ RD×U , Wd ∈ RD×n, bc ∈ RU , and bd ∈ Rn are
the parameters to be learned. U is the dimension of vocabulary
size; n is the number of dependency relations.

E. Joint Training

We jointly train the caption generator and dependency pre-
dictor in an end-to-end manner by maximizing the likelihood
of the observed word sequences and dependency relations.
Given the target ground-truth caption words (wc

1, . . . , w
c
m) and

dependency relations
(
wd

1 , . . . , w
d
m

)
, we minimize the nega-

tive log-likelihood loss of caption generator and dependency
predictor, respectively:

Lcap(θc) = −
m∑
t=1

log p (wc
t | wc

<t; θc) ,

Ldep(θd) = −
m∑
t=1

log p
(
wd

t | wd
<t; θd

)
,

(19)

where θc and θp are the parameters of the caption generator
and dependency predictor, respectively. m is the length of the
caption and dependencies. The final loss function is optimized
as follows:

L(θ) = Lcap + λLdep, (20)

where λ is a trade-off parameter to balance the contributions
from the caption generator and dependency predictor.
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IV. EXPERIMENTS

A. Datasets

Image Editing Request dataset [7] is comprised of 3,939
real image pairs with 5,695 editing instructions. Each image
pair in the training set has one instruction, and each image
pair in the validation and test sets has three instructions. The
changed objects in this dataset are usually inconspicuous and
vague. We use the official split with 3,061 image pairs for
training, 383 for validation, and 495 for testing.

CLEVR-Change is a large-scale synthetic dataset [9] with
moderate viewpoint change. It has 79,606 image pairs and
493,735 captions, including five change types, i.e., “Color”,
“Texture”, “Add”, “Drop”, and ”Move”. It has two change
settings: both scene and pseudo change and only pseudo
change. We use the official split with 67,660 for training, 3,976
for validation and 7,970 for testing.

CLEVR-DC is a large-scale synthetic dataset [11] to simu-
late extreme viewpoint shifts. It consists of 48,000 pairs with
the same change types as CLEVR-Change. We use the official
split with 85% for training, 5% for validation, and 10% for
test, respectively.

B. Evaluation Metrics

Following the state-of-the-art methods [8], [10], [35], five
metrics are used to evaluate the generated sentences, i.e.,
BLEU-4 (B) [36], METEOR (M) [37], ROUGE-L (R) [38],
CIDEr (C) [39], and SPICE (S) [40]. BLEU-4 is exploited
for corpus level comparisons of 4-gram matches and has been
widely used in machine translation task. METEOR is designed
to measure the relationship between candidate and reference
sentences based on exact token matching. ROUGE-L computes
the word correlations that co-exist in two sentences in the
same order, based on the Longest Common Sub-sequence
(LCS). CIDEr is recently proposed and especially designed for
the captioning task to capture human judgment of consensus.
SPICE is also a new metric and designed for captioning
task, which compares semantic propositional content between
candidate and reference sentences. We compute results based
on the Microsoft COCO evaluation server [41].

C. Implementation Details

For a fair comparison, we follow the state-of-the-art meth-
ods to use a ResNet-101 model [42] pre-trained on the
Imagenet dataset [43] for extracting grid features of an image
pair, with the dimension of 1024 × 14 × 14. We first project
these features into a lower dimension of 512. The hidden
size in the overall model and word embedding size in the
decoder are set to 512 and 300. To obtain the ground-truth
dependencies, we exploit a pre-trained Biaffine Parse [44] to
extract the explicit dependency relations of each sentence in
the training sets. We set the layer number of neighborhood
feature aggregating as 1; the number of dependency tags as
49; the neighborhood range r as 3; the layer number of decoder
as 2; the number of attention head as 8.

During training, on CLEVR-Change and CLEVR-DC, we
set the batch size and learning rate as 128 and 2 × 10−4. On

TABLE I
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON

CLEVR-CHANGE ON TOTAL PERFORMANCE. “*” REPRESENTS THIS
MODEL IS TRAINED WITH THREE PRE-TRAINING TASKS.

Total
Method B M R C S

DUDA (ICCV’19) 47.3 33.9 - 112.3 24.5
M-VAM (ECCV’20) 50.3 37.0 69.7 114.9 30.5

DUDA+TIRG (CVPR’21) 51.2 37.7 70.5 115.4 31.1
IFDC (TMM’21) 49.2 32.5 69.1 118.7 -

R3Net+SSP (EMNLP’21) 54.7 39.8 73.1 123.0 32.6
VACC (ICCV’21) 52.4 37.5 - 114.2 31.0

SRDRL+AVS (ACL’21) 54.9 40.2 73.3 122.2 32.9
SGCC (ACM MM’21) 51.1 40.6 73.9 121.8 32.2

MCCFormers-D (ICCV’21) 52.4 38.3 - 121.6 26.8
PCL w/o PT (AAAI’22) 32.7 27.7 57.2 89.8 -
PCL w/ PT (AAAI’22) * 51.2 36.2 71.7 128.9 -

NCT (Ours) 55.1 40.2 73.8 124.1 32.9

TABLE II
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON

CLEVR-CHANGE ON SCENE CHANGE.

Scene Change
Method B M R C S

DUDA (ICCV’19) 42.9 29.7 - 94.6 19.9
DUDA+TIRG (CVPR’21) 49.9 34.3 65.4 101.3 27.9

IFDC (TMM’21) 47.2 29.3 63.7 105.4 -
R3Net+SSP (EMNLP’21) 52.7 36.2 69.8 116.6 30.3
SRDRL+AVS (ACL’21) 52.7 36.4 69.7 114.2 30.8

NCT (Ours) 53.1 36.5 70.7 118.4 30.9

Image Editing Request, the batch size and learning rate are set
to 32 and 2 × 10−4. We use Adam optimizer [45] to minimize
the negative log-likelihood loss of Eq. (20). In the inference
phase, the greedy decoding strategy is used to generate target
captions. Both training and inference are implemented with
PyTorch [46] on an RTX 3090 GPU.

D. Performance Comparison

1) Results on the CLEVR-Change Dataset.: We compare
the proposed method with the state-of-the-art methods in: 1)
total performance evaluating the overall performance under
both scene and pseudo changes; 2) scene change; 3) different
change types. The ten comparison methods are DUDA [9], M-
VAM [8], IFDC [22], DUDA+TIRG [10], R3Net+SSP [35],
VACC [11], SRDRL+AVS [20], MCCFormers-D [23], SGCC
[24], and PCL w/ and w/o PT (pre-training) [12]. Herein,
PCL designs three pre-training tasks to enhance the fine-
grained alignment between image differences and captions.
The authors of PCL pre-train the model with 8K warm-up
steps and 250K iterations in total. In contrast to them, the
other compared methods are trained in an end-to-end manner.
Therefore, we compare PCL with and without pre-training for
a fair comparison. The results are shown in Table I - V.

In Table I, we can observe that 1) NCT achieves superior
results on most metrics; 2) note that MCCFormers-D is also
based on transformer and identifies change based on feature
similarity. There are two major differences between it and ours.
First, it implements individual feature matching between two
sets of features. Instead, our NCT aims to compare two images
at neighborhood level to capture contrastive properties between
them, which helps perceive fine-grained change while being
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TABLE III
A DETAILED BREAKDOWN OF EVALUATION ON CIDER WITH DIFFERENT

CHANGE TYPES: “(C) COLOR”, “(T) TEXTUR”, “(A) ADD”, “(D) DROP”,
AND “(M) MOVE”.

CIDEr
Method C T A D M

DUDA (ICCV’19) 120.4 86.7 108.3 103.4 56.4
M-VAM (ECCV’20) 122.1 98.7 126.3 115.8 82.0

DUDA+TIRG (CVPR’21) 120.8 89.9 119.8 123.4 62.1
IFDC (TMM’21) 133.2 99.1 128.2 118.5 82.1

R3Net+SSP (EMNLP’21) 139.2 123.5 122.7 121.9 88.1
SRDRL+AVS (ACL’21) 136.1 122.7 121.0 126.0 78.9
SGCC (ACM MM’21) 128.0 122.9 117.1 116.9 77.1
PCT w/ PT (AAAI’22) 131.2 101.1 133.3 116.5 81.7

NCT (Ours) 140.2 128.8 128.4 129.0 86.0

TABLE IV
A DETAILED BREAKDOWN OF EVALUATION ON SPICE.

SPICE
Method C T A D M

DUDA (ICCV’19) 21.2 18.3 22.4 22.2 15.4
M-VAM (ECCV’20) 28.0 26.7 30.8 32.3 22.5

DUDA+TIRG (CVPR’21) 29.7 27.4 31.4 30.8 23.5
R3Net+SSP (EMNLP’21) 31.6 30.8 32.3 31.7 25.4
SRDRL+AVS (ACL’21) 32.4 30.9 33.0 32.4 25.4
SGCC (ACM MM’21) 30.0 31.1 30.8 30.1 25.3

NCT (Ours) 32.4 31.8 32.3 32.6 25.5

immune to viewpoint change. Second, different from it based
on the standard transformer for caption generation, we exploit
syntax dependencies to calibrate decoder, which helps better
understand complex syntax structure of change descriptions.
3) Compared with SGCC, the proposed NCT is a little lower
on the metrics of METEOR and ROUGE-L. Our conjecture is
that SGCC exploits more visual modalities than ours, such as
semantic attributes extracted by Yolov4 [47] and image depth
maps that are computed by Monodepth2 [48]. In contrast,
our NCT surpasses SGCC on the other metrics by a large
margin. 4) Compared with PCL, NCT surpasses it without pre-
training by a large margin. For PCL with pre-training, NCT
also outperforms it on the three metrics. For CIDEr, NCT is
a little lower. Our conjecture is that PCL leverages three pre-
training tasks (with 8K warm-up steps and 250K iterations in
total) to augment the model.

In Table II, it is noted that NCT outperforms the state-
of-the-art methods on every metrics, especially improving
CIDEr score by a large margin. In Table III - V, we compare
NCT with state-of-the-art methods under the specific change
types using the metrics of CIDEr, SPICE and METEOR.
Especially, CIDEr and SPICE are especially designed for
evaluating captioning performance. The results show that our
NCT achieves the superior results over the state-of-the-art
methods in almost every category. This shows that our method
has a good generalization ability under different change types.

In a word, compared to the state-of-the-art methods in dif-
ferent situations, the proposed NCT achieves the encouraging
performance. This superiority results from that 1) the neigh-
borhood feature aggregating and common feature distilling
help learn reliable contrastive features and resist irrelevant
viewpoint changes; 2) the syntax dependencies can solve the
problem of structure ambiguity in change descriptions.

TABLE V
A DETAILED BREAKDOWN OF EVALUATION ON METEOR.

METEOR
Method C T A D M

DUDA (ICCV’19) 32.8 27.3 33.4 31.4 23.5
M-VAM+RAF (ECCV’20) 35.8 32.3 37.8 36.2 27.9
DUDA+TIRG (CVPR’21) 36.1 30.4 37.8 36.7 27.0

IFDC (TMM’21) 33.1 27.9 36.2 31.4 31.2
R3Net+SSP (EMNLP’21) 38.9 35.5 38.0 37.5 30.9
SRDRL+AVS (ACL’21) 39.0 35.6 38.9 38.0 30.1
SGCC (ACM MM’21) 37.8 36.1 38.9 36.7 32.8

NCT (Ours) 39.1 36.3 39.0 37.2 30.5

TABLE VI
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON CLEVR-DC.

Method B M R C S
DUDA 40.3 27.1 - 56.7 16.1

DUDA + CC 41.7 27.5 - 62.0 16.4
M-VAM 40.9 27.1 - 60.1 15.8

M-VAM+CC 41.0 27.2 - 62.0 16.4
VA 44.5 29.2 - 70.0 17.1

VACC 45.0 29.3 - 71.7 17.6
NCT 47.5 32.5 65.1 76.9 15.6

2) Results on the CLEVR-DC Dataset: The experiment
is also carried out on a newly released synthetic dataset
(ICCV’21) with extreme viewpoint changes. We compare
with six state-of-the-art methods: DUDA/DUDA+CC [9], M-
VAM/M-VAM+CC [8], and VA/VACC [11].

The comparison results are shown in Table VI. We find
that NCT outperforms the state-of-the-art methods on most
metrics by a large margin. This validates that our method has a
good robustness in any viewpoint change. This mainly benefits
from the fact of capturing contrastive information between a
pair of images at neighborhood level, because under viewpoint
changes, the object relations are stable within/between local
neighborhoods of no change.

TABLE VII
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON IMAGE

EDITING REQUEST DATASET.

Method B M R C S
multi-head att 6.1 11.8 35.1 22.8 -
static rel-att 5.8 12.6 35.5 20.7 -

dynamic rel-att 6.7 12.8 37.5 26.4 -
NCT 8.1 15.0 38.8 34.2 12.7

3) Results on the Image Editing Request Dataset: We
conduct the experiment on another challenging dataset, Image
Editing Request. The changed objects in this dataset are
usually vague and inconspicuous. We compare NCT with three
state-of-the-art methods reported by Tan et al. [7]: multi-head
att, static rel-att, and dynamic rel-att.

Table VII shows that NCT outperforms the state-of-the-art
methods by a large margin. This indicates that the proposed
method can accurately describe which part of the “source”
image has been edited by capturing neighborhood contrastive
features and achieving syntax disambiguity based on explicit
dependencies between words.

In short, experiments on the above three datasets show that
our method has a good generalization of change localization
and description on different change scenarios.
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TABLE VIII
ABLATION STUDIES BASED ON TOTAL PERFORMANCE ON

CLEVR-CHANGE

Method B M R C S
Diff-sub 53.3 38.8 72.1 119.7 31.8

NFA 54.3 39.7 73.1 121.9 32.0
CFD 54.1 39.6 73.1 122.8 32.2
ST 53.7 39.4 72.7 120.7 31.9

NCT w/o S 54.6 40.0 73.6 123.4 32.5
NCT 55.1 40.2 73.8 124.1 32.9

E. Ablation Studies

We carry out ablation studies to validate the effectiveness
of each proposed module and the full model. (1) Diff-sub is a
transformer-based baseline model which computes difference
features by direct subtraction. Specifically, it first directly sub-
tracts two image features to obtain the difference representa-
tion. Then, it uses the spatial attention mechanism to select the
most relevant features on each image based on the subtracted
representation. Finally, the specifically changed features are
fed into a standard transformer decoder for caption generation.
(2) NFA performs neighborhood feature aggregating before
subtraction. (3) CFD distills common features to construct
contrastive features, instead of using direct subtraction. (4) ST
refers to syntax-aware transformer decoder that uses syntax
dependency relation to augment the baseline model. (5) NCT
w/o S is the neighborhood contrastive transformer without
syntax dependency. (6) NCT is the proposed full model:
neighborhood contrastive transformer with syntax dependency.

The ablation studies are based on the total performance on
CLEVR-Change, and the results are shown in Table VIII.
We observe that 1) compared to the baseline model, each
module and the full model achieve consistent improvements;
2) the performance of NFA and CFD are close, and bet-
ter performance is achieved by their combination; 3) only
augmenting the baseline model with syntax dependency, the
improvement is slight, and the best performance is achieved
through combining it with NCT. The above observations
indicate that 1) the effectiveness of each proposed module
and the full model; 2) each module not only plays its unique
role, but also supplements the other; 3) only if the model
learns effective contrastive features by neighborhood feature
aggregating and common feature distilling, the syntax-aware
decoder would use these features to yield correct sentences.

F. Evaluating the Model’s Robustness under Various Degrees
of Viewpoint Changes

To evaluate the robustness of NCT under different degrees
of viewpoint changes, following the pioneer work [9], we
compute the IoU of the bounding boxes of the objects (except
the changed object) across the two images, where the lower
IoU refers to higher difficulty. Herein, we employ SPICE to
evaluate the sentences generated by Diff-sub (baseline model)
and NCT with respect to different IoU of the object’s bounding
boxes. The results are shown in the left sub-figure of Fig.
3. It is noted that NCT consistently outperforms the baseline
by a large margin. This indicates that the proposed method
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Fig. 3. Left sub-figure is the visualization of captioning performance (SPICE)
that is breakdown by viewpoint change (measured by IoU); right sub-figure
is the effects of the trade-off parameter λ on CLEVR-Change.
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Fig. 4. The effects of the trade-off parameter λ on CLEVR-DC (left sub-
figure) and Image Editing Request (right sub-figure).

can identify reliable change and handle the varying degrees of
viewpoint changes.

G. Study on the Trade-off Parameter λ

In this section, we discuss the effect of the trade-off param-
eter λ in Eq. (20) on CLEVR-Change, CLEVR-DC and Image
Editing Request. This parameter is to balance the contributions
from the caption generator and dependency predictor. On
CLEVR-Change, with different values, the obtained SPICE
scores are shown in the right sub-figure of Fig. 3. We find that
as the values of λ increasing or decreasing, the performance
of NCT changes. This is mainly because the whole model
will focus much on one part but ignore the supervision signal
from the other. Based on this, we empirically set λ to 0.01.
In addition, for other two datasets, CLEVR-DC and Image
Editing Request, the results are shown in Fig. 4. With different
values, the obtained SPICE scores on CLEVR-DC in the left
sub-figure, and on Image Editing Request in the right sub-
figure. It is noted that similar to the experimental results on
CLEVR-Change, as the values of λ increasing or decreasing,
the performance of NCT changes. On the both datasets, the
better value is 0.02. The above analysis shows that the value of
this trade-off parameter λ is close on different datasets, which
validates that the proposed method has a good robustness on
different change scenarios.

H. Study on the Parameter of Neighborhood Range r

In this section, we will analyze the effect of neighborhood
range r. Herein, we set it as 3 and 5, respectively. Note that
as this value is larger than 5, the computation cost increases
sharply and is more than one RTX 3090 GPU. With different
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<before> <after>

GT: the other tiny purple object 

the same shape as the green thing 

is in a different location

Diff-sub: the other green thing 

that is the same size as the purple 

cylinder changed its location

NCT: the other purple thing the 

same size as the yellow cube moved

<before> <after>

GT: remove the black shadow

Diff-sub: remove the glare 

from the photo

NCT: remove the shadow

the    other  purple      thing  …  cube          moved

det

amod
nsubj

root

amod

(c) CLEVR-DC: Object Move 

remove           the            shadow

det

root
dobj

(b) Image Editing Request: Object Drop 

<before> <after>

GT: the tiny shiny blue cube in front of 

the cyan block is in a different location

Diff-sub: the scene remains the same

NCT: the blue cube changed its location

the      blue     cube        changed          its      location

det

nsubj

root

amod

(c) CLEVR-Change: Object Move 

poss

dobj

Fig. 5. Qualitative examples on CLEVR-Change, Image Editing Request, and CLEVR-DC. For each example, we report the captions generated by Diff-sub
and NCT along with the ground-truth (GT) captions. Correct and incorrect parts of the captions are in green and red, respectively. We visualize the results
of change localization on the “before” and “after” images, and illustrate the heat map visualization to show the semantic alignment between changed features
and corresponding words. We visualize the predicted dependencies of each example. The ground-truth changes are shown in red boxes.

values, the captioning performance and parameter number are
shown in Table IX.

We find that there is no obvious performance increase as we
enlarge neighborhood range, and the results on most metrics
even decrease. Our conjecture is that the model only needs
the closet referents to guide where the changed object is, so
the neighborhood range of 3×3 is suitable. Based on this, we
empirically set r to 3 on the three datasets.

TABLE IX
STUDY THE EFFECTS OF THE PARAMETER OF NEIGHBORHOOD RANGE r
ON THE THREE DATASETS, WHERE CC, CD, AND IER ARE SHORT FOR

CLEVR-CHANGE, CLEVR-DC, AND IMAGE EDITING REQUEST.

r Set Params B M C S
3 × 3 CC 26.65M 55.1 40.2 124.1 32.9
5 × 5 CC 26.74M 54.9 39.9 124.8 32.7
3 × 3 CD 26.70M 47.5 32.5 76.9 15.6
5 × 5 CD 26.79M 44.4 31.3 71.1 14.5
3 × 3 IER 34.07 M 8.1 15.0 34.2 12.7
5 × 5 IER 34.17M 9.5 14.7 36.9 11.9

I. Qualitative Analysis

To evaluate the overall performance of NCT about change
localization and caption generation, we conduct qualitative
analysis on CLEVR-Change, Image Editing Request, and

CLEVR-DC, as shown in Fig. 5. For each image pair, we
report the captions yielded by the baseline model of Diff-sub
and our NCT along with the ground truth (green words). To
evaluate the accuracy of changed objects, we also visualize
the changed results based on the attention weights of change
detection. For the first example, the object movement is slight,
which makes Diff-sub misjudge that there is nothing changed.
For the second example, the removed object is too faint to
notice. In this case, Diff-sub directly subtracts two images to
compute change features, which wrongly judges the “shadow”
as “glare” and fails to generate the accurate sentence. For the
third example, extreme viewpoint change results in pseudo
movements of all objects, which makes Diff-sub misidentify
really changed object. Besides, another possible reason of this
failure is that the syntax structure in the ground-truth sentence
is complex. That is, the referent “green thing” is closer to
changed type than “purple thing”, which might make Diff-sub
misjudge the changed object as the “green thing”. In contrast
to Diff-sub, the proposed NCT can accurately localize and
describe changed objects. This mainly benefits from that 1)
the neighboring feature aggregating helps the model identify
the real change while being immune to viewpoint change;
2) the common feature distilling can effectively summarize
common properties of the image pair and extract differentiat-
ing features from each image, so as to construct constrictive
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<before> <after> <before> <after> <before> <after>

GT: remove all of the people 

from the photo

NCT: make the sky more 

saturated

GT: the tiny grey shiny block that is in front 

of the grey matte cube  changed its location

NCT: the small cyan metal cube that is to 

the right of the small grey matte cylinder 

changed its location

GT: the other yellow ball made of the same 

material of as the large green cylinder moved

NCT: the other yellow rubber object that is 

the same shape as the large blue thing 

became metallic

Image Editing Request CLEVR-Change CLEVR-DC

Fig. 6. Failure examples obtained by NCT on the test split of Image Editing Request, CLEVR-Change, and CLEVR-DC.

features between them; 3) introducing dependency relations
between words helps solve syntax ambiguity in sentences and
understand their complex syntax structure. For instance, in
the third example, our NCT can predict the directed link
between really changed object “purple thing” and changed
type “moved”, so as to identify the really changed object.

In addition, we find that in the third example, NCT predicts
that the tiny purple object is the same size as the yellow
cube. The possible reasons for this misunderstanding are that
1) NCT compares their size mainly based on the “after”
image. 2) The change types in this dataset do not include
size change. In this case, the model has a limited ability to
accurately compare the size between two objects. Therefore,
further exploration to identify the changes of objects’ size is
warranted in future research. More qualitative examples are
shown in the supplementary material.

J. Discussion

Fig. 6 illustrates the failure cases obtained by NCT on
the three datasets with different change scenarios. For all
the change scenes, we can observe that the proposed NCT
successfully localizes the changed objects. However, it fails
to describe them in accurate sentences. For the failure cases,
our conjecture is that the visual signal of change appears in
a inconspicuous region with weak feature in each example.
This makes it overwhelmed by most unchanged objects. As
such, the decoder cannot receive sufficient visual information
for caption generation. In our opinion, there are two possible
solutions for this challenge. One solution is to exploit other
visual modalities to augment grid features, such as semantic
segmentation features which can capture more fine-grained
visual information [49], so as to enhance the feature represen-

tation for these objects with weak change signals. The other
solution is to take advantage of the paradigm of pre-training
to fine-tuning, such as fine-tuning the visual features on
change captioning datasets. Specifically, we can exploit a pre-
trained feature extractor that coordinates with our framework
(e.g., Vision Transformer [50]). Then, we do not freeze its
parameters and jointly train it with the proposed NCT. In this
way, the training loss can be propagated back to the feature
extractor, so as to enhance the representation ability of image
features. We will try these strategies in the subsequent work.
In addition, we notice that the visualized attention weights of
change localization are with noises on CLEVR-DC. we will
try to address the problem of extreme viewpoint changes from
the perspective of leveraging 3D knowledge in the future.

V. CONCLUSION

In this paper, we propose a Neighborhood Contrastive
Transformer (NCT) to pinpoint and describe the change under
different change scenes. In NCT, the neighborhood feature
aggregating module can help overcome the influence of view-
point change, and quickly find the inconspicuous change under
the guidance of surrounding conspicuous referents. The com-
mon feature distilling module can capture common properties
from each image and learn contrastive representation between
the image pair. Furthermore, we introduce the explicit depen-
dencies between words to calibrate the decoder of transformer,
which helps understand complex syntax structure in change
descriptions during training. Extensive experiments demon-
strate that NCT outperforms the state-of-the-art methods by a
large margin on the three public datasets with different change
scenarios, which also shows that it has a good generalization
ability to deal with various change settings.
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<before> <after> <before> <after> <before> <after>

GT: the scene remains the same

Diff-sub: the other cyan thing that is the 

same size as the red shiny cylinder moved

NCT: the scene remains the same

GT: the purple object moved

Diff-sub: the other thing that is the same 

color as the purple cylinder moved

NCT: the other purple thing that is the same size as 

the yellow rubber block is in a difference location

GT: the other green matte thing that is the 

same color as the large matte cylinder moved

Diff-sub: the other grey thing that is the 

same size as the yellow matte block moved

NCT: the other green thing that is the same size

as the blue matte thing changed its location

Fig. 7. Qualitative examples on the test split of CLEVR-DC.

<before> <after> <before> <after> <before> <after>

GT: the tiny brown metallic sphere that 

is in front of the small purple thing 

changed to matte

Diff-sub: the scene remains the same

NCT: the tiny brown metallic ball that 

is in front of the purple metal thing 

turned rubber

GT: the small red metal ball behind the 

small grey matte ball has been added

Diff-sub: the scene remains the same

NCT: the small red shiny sphere 

that is behind the tiny purple matte 

object has been added

GT: the tiny cyan matte cylinder that 

is behind the small blue sphere moved

Diff-sub: the scene remains the same

NCT: the tiny cyan matte cylinder 

that is on the left side of the small 

blue thing is in a different location

Fig. 8. Qualitative examples on the test split of CLEVR-Change.

APPENDIX
IMPLEMENTATION DETAILS AND MORE QUALITATIVE

EXAMPLES ON THE THREE DATASETS

In the appendix, we first provide more implementation
details of our method. On the three datasets, we train the model
to convergence with 10K iterations in total. Both training and
inference are implemented with PyTorch on an RTX 3090
GPU. In the training stage, the used resources on the three
datasets are shown in Table X. We can find that our method
does not need much resources and training time, so it can be

easy reproduced by other researchers.

TABLE X
THE USAGE OF TRAINING TIME AND GPU MEMORY ON THE THREE

DATASETS

Training Time GPU Memory
CLEVR-Change 4 hours 13G

CLEVR-DC 2 hours 8G
Image Editing Request 30 minutes 4G

Then, we illustrate more qualitative examples about change
localization and caption generation on the three datasets, which



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

<before> <after> <before> <after> <before> <after>

GT: add the text over the dog face

Diff-sub: add filter to the picture

NCT: add text of dog

GT: remove the pink leash

Diff-sub: remove the glare from the 

image

NCT: remove the leash

GT: remove lady

Diff-sub: remove the brightness and 

saturation

NCT: remove the people from the picture

Fig. 9. Qualitative examples on the test split of Image Editing Request.

are shown in Fig. 7 - 9. For the CLEVR-DC dataset that is
to stimulate extreme viewpoint changes, there exist obvious
pseudo movements for all the objects in a scene, as shown
in Fig. 7. This misleads the baseline model of Diff-sub into
yielding wrong results. The qualitative examples on CLEVR-
Change are shown in Fig. 8. Since the changed objects are
partially occluded or inconspicuous, the baseline model cannot
locate these changes and misjudges nothing has changed.
Instead, the proposed NCT accurately distinguishes these fine-
grained changes from pseudo changes and generates related
sentences. It is noted that in Fig. 7, the heat maps in the left-
hand side example highlight all the five objects. Our conjecture
is that the heat map is generated based on the attention weights
of contrastive change localizer (Sec. III-C). When nothing has
changed, the learned contrastive representation of the image
pair would not contain the information of changed object.
And the features of background are much weaker than the
object features. In this case, the localizer would attend to
object features and assign similar attention weight for each
object feature, so the visualized heat maps highlight all the five
objects. On Image Editing request from Fig. 9 we can observe
that in each example, the change information is so vague that
it is hard to find, but our model still locates the changed object,
so as to generate the desirable caption compared to the baseline
model. The superior results of our method mainly benefits
from that 1) the neighborhood feature aggregating helps the
model handle irrelevant viewpoint change and locate fine-
grained change; 2) the common feature distilling can capture
joint information of the image pair and extract differentiating
properties from each image, which constructs constrictive
features between them; 3) introducing explicit dependency
relations between words helps disambiguate complex syntax

structure in change sentences during training.
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