

Edinburgh Research Explorer

High-Fidelity Per-Flow Delay Measurements with Reference
Latency Interpolation

Citation for published version:
Lee, M, Duffield, N & Kompella, R 2013, 'High-Fidelity Per-Flow Delay Measurements with Reference
Latency Interpolation', IEEE/ACM Transactions on Networking, vol. 21, no. 5, pp. 1567 - 1580 .
https://doi.org/10.1109/TNET.2012.2227793

Digital Object Identifier (DOI):
10.1109/TNET.2012.2227793

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE/ACM Transactions on Networking

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 13. Nov. 2024

https://doi.org/10.1109/TNET.2012.2227793
https://doi.org/10.1109/TNET.2012.2227793
https://www.research.ed.ac.uk/en/publications/36c4b86c-0d5b-43d4-a611-0de41ce445b8

1

High-Fidelity Per-Flow Delay Measurements with

Reference Latency Interpolation
Myungjin Lee, Nick Duffield, Ramana Rao Kompella

Abstract—New applications such as soft real-time data center
applications, algorithmic trading and high-performance com-
puting require extremely low latency (in microseconds) from
networks. Network operators today lack sufficient fine-grain
measurement tools to detect, localize and repair delay spikes
that cause application SLA violations. A recently proposed
solution called LDA provides a scalable way to obtain latency,
but only provides aggregate measurements. However, debugging
application-specific problems requires per-flow measurements,
since different flows may exhibit significantly different charac-
teristics even when they are traversing the same link. To enable
fine-grained per-flow measurements in routers, we propose a
new scalable architecture called reference latency interpolation
(RLI) that is based on our observation that packets potentially
belonging to different flows that are closely spaced to each
other exhibit similar delay properties. In our evaluation using
simulations over real traces, we show that while having small
overhead, RLI achieves a median relative error of 12% and one
to two orders of magnitude higher accuracy than previous per-
flow measurement solutions. We also observe RLI achieves as
high accuracy as LDA in aggregate latency estimation and RLI
outperforms LDA in standard deviation estimation.

Index Terms—Latency, measurements, per-flow, router, switch

I. INTRODUCTION

Latency is one of the most fundamental properties of packet-

switched networks. End-to-end latency directly impacts several

critical Internet applications including multimedia applications

such as voice-over-IP, video conferencing and online games.

While these traditional applications often require end-to-end

latencies within 100s of milliseconds, several new types of

applications that require extremely low end-to-end latency (in

the order of microseconds) have emerged. For instance, high

performance computing applications within data center net-

works [1], storage applications (with industry moving toward

Fiber Channel over Ethernet (FCoE) [2]) and, algorithmic

trading applications [3] (together constituting multi-billion

dollar markets) all require low end-to-end latencies in the order

of a few microseconds. A small increase in end-to-end latency

for trading applications can, for instance, lead to a loss of

millions of dollars in lost arbitrage opportunities [3].

Portions of this manuscript appeared in ACM SIGCOMM 2010. This work
was supported in part by the National Science Foundation through award
CNS-0831647, and Cisco Systems.

M. Lee is with the School of Informatics, University of Edinburgh,
Edinburgh EH8 9AB, UK (e-mail: myungjin.lee@ed.ac.uk).

R. R. Kompella is with the Department of Computer Science, Purdue
University, West Lafayette, IN 47907 (e-mail: kompella@cs.purdue.edu).

N. Duffield is with AT&T Labs–Research, 180 Park Ave, Building 103,
Florham Park, NJ 07932 (e-mail: duffield@research.att.com).

To effectively manage low-latency applications, operators

require sophisticated tools and techniques for detecting, and

more importantly, localizing delay spikes (i.e., finding the

router responsible for the high latency) in these networks.

Once the problem is localized, they can potentially, with fault

localization techniques, isolate the particular offending flow or

a set of such flows that are responsible for causing the delay

bursts, and reroute the traffic through other paths. In other

cases, the operators may upgrade their bottleneck links that

are responsible for the underlying delay spikes. Of course,

one could argue it may be more important to devise router

architectures that guarantee low end-to-end latencies to begin

with—indeed, some switches [4], [5] provide latency guaran-

tees within 10s of microseconds in a network not having a

fan-in traffic pattern—in which case, the need for fine-grained

measurements is obviated. Unfortunately, anticipating all types

of performance problems and application interactions that may

occur in a production data center a priori is often difficult;

fine-grained measurements are therefore still required.

Detecting and localizing latency problems is surprisingly

hard today. Routers and switches by themselves offer very

little latency measurement and monitoring capabilities; SNMP

counters and NetFlow with which routers come equipped are

grossly insufficient. SNMP counters provide coarse-grained

statistics on a per-port basis, but do not measure latencies.

NetFlow provides basic statistics on a per-flow basis such

as number of packets and bytes, but not latency estimates.

ISP network operators monitor the health of their network

by injecting active probes to measure end-to-end delays and

use tomographic techniques [6], [7] to infer link and hop

properties. Unfortunately, for the granularity of measurements

required, active probes need to be injected at an extremely

high probe rate making them not suitable for these low-latency

networks. Operators in these networks therefore resort to spe-

cialized measurement appliances that can be quite expensive;

ubiquitous deployment is therefore costly.

Recognizing these challenges, researchers have recently

proposed a new high speed router-level data structure called

LDA [8] for measuring delays within routers at high fidelity.

LDA addresses the scaling problem of active probes, and

cost issue of commercial monitors. While LDA provides a

good start, it is by no means sufficient as it is designed

to provide aggregate measurements such as average latency

across all packets, but not on a per-flow basis. Experience

indicates that concurrent flows may experience significantly

different latencies even when traversing the same given router,

and even over relatively short periods of time (e.g., a few

minutes). Thus, differentiated delay measurements are critical

2

for diagnosing problems, where the aggregate behavior of a

router may appear normal, but specific flows and applications

may suffer from bad performance.

We illustrate this situation using two motivating examples

that are similar in spirit but differ in their context. In the first

example, consider a data center provider hosting several differ-

ent applications, and a particular application experiences bad

performance say due to an offending application that is causing

periodic bursts of data (referred to as microbursts [9]). For

instance, many soft real-time applications in data centers (e.g.,

web search, retail, and advertising) rely on Partition/Aggregate

workflow and require to meet target deadlines (∼10ms) for

each server involved in the workflow [10]. Because the pro-

cessing time at servers may take up a large portion of the

deadline budgets, microbursts can lead to violations against

these deadlines. These failures in turn aggravate the quality of

the produced results because expired tasks are often cancelled.

Diagnosing this kind of problem requires to measure network

delays that took for task assignments and result collections.

However, obtaining aggregate statistics only (i.e., average

latency across several million packets) may be of little use

for the diagnosis because the statistics may look normal.

A similar issue is the in-cast problem in data centers where

synchronized bursts of packets fill switch buffers causing high

latencies or even packet loss because data center workloads

tend to be barrier-synchronized [11]. While specific solutions

may exist for known problems [11], the constant evolution of

data centers in scale and diversity may potentially give rise to

several unforeseen performance problems.

Our second example considers trading networks, where

financial institutions may obtain specific SLAs from service

providers (such as guaranteed latency of less than 100 µs) [12].

In such a context, it is important for the service providers to be

able to localize delay spikes and variations that may happen

at any of the several hops between the trading party and the

stock exchange—diagnosing these customer-specific problems

requires not just aggregate, but flow-level measurements.

Having motivated the intuitive need for differentiated mea-

surements, a fundamental question that one may ask is, how

much variation exists over several different flows that are

simultaneously traversing a given router. In this paper, we

explore this question by conducting a measurement study

using time-synchronized packet traces collected between two

interfaces of a real router, and simulations of backbone traces

using traditional queueing models. Our measurement results

reveal several insights: (1) We observe a significant amount

of diversity among several contemporaneous flows (up to 2-3

orders of magnitude difference). (2) We observe that packets

belonging to different flows exhibit significant temporal simi-

larity within short bursts.

We exploit the insights gained from our measurement study

to propose a new architecture called reference latency inter-

polation (RLI) for obtaining per-flow latency measurements

in a scalable fashion. Our target is to accurately detect flow

latencies in the order of a few 10s to 100 microseconds on

a per-flow basis. We wish to detect both average as well as

standard deviations of latencies within a given flow. Thus, the

contributions of this paper are:

• A measurement study of latency diversity and the temporal

localization of delay. Using real router traces and simula-

tions, we conduct a measurement study (§II) that reveals

our main insight—while concurrent flows can experience

diverse performance at longer time scales due to traffic and

congestion burstiness, the delay experience by packets from

different flows within small localized windows constituting a

measurement period is similar.

• An architecture for high-fidelity per-flow latency measure-

ments. Based on the findings in our measurement study, we

propose an architecture (§III) that pushes the state-of-the-

art in scalable latency estimation solutions beyond aggregate

measurements, to provide per-flow latency measurements.

• Evaluation using real traces and simulations. We extensively

evaluate the efficacy of our architecture (prototype implemen-

tation described in §IV) using a combination of real traces

as well as simulations. In our evaluation, the sensitivity on

estimation accuracy by different configurations is first studied

in §V-A. Then, we observe that our RLI architecture achieves

a median relative error of 10-12% (§V-B), and up to two

orders of magnitude lower relative error than existing state-

of-the-art schemes under specific configurations (§V-C). The

comparison between RLI and LDA also shows that they obtain

comparatively similar performance (§V-C).

II. DELAY DIVERSITY AND LOCALITY

Our focus in this paper is to devise a scalable architecture

for per-flow latency measurements within a router. These per-

flow measurements will enable network operators to localize

the root cause of any end-to-end latency spikes that customers

may complain about. Before we set out to devise such an

architecture, it is important to ascertain that one aggregate

latency measure (for which efficient solutions such as LDA [8]

have already been proposed) is not sufficient. In this section,

we show that there exists significant diversity of latency

experienced by concurrent flows traversing the same link,

both through qualitative reasoning from the bursty nature of

packet arrivals, and through an experimental study. We also

observe that the same burstiness properties reduce latency

diversity within sufficiently short time intervals; we discuss the

ramifications of this observation for the design of a scalable

architecture. A further conclusion is that common statistics of

delays encountered by a stream of active probes, such as their

mean or certain quantiles, can vary significantly from those

encountered by flows traversing the same link during the same

measurement period. Thus, active probes alone cannot be used

to estimate flow-level latencies.

A. Data sets

Given no public traces with synchronized packet timestamps

across router ingress and egress interfaces, we resort to two

traces: First, we used traces of the passage of synthetic traffic

across a real router collected by the authors of [13]. Details

about workload and network environment that are used to

collect this data set can be found in [13]. Even though the

traffic sources are synthetic, they are subject to real router

forwarding paths, queueing and other behavior, and thus are

3

Link: OC-192 (10 Gbps), Duration: 600s, Year: 2008

Name #keys #packets pkts/key mean delay (ms) R

CHIC 8.25M 131M 15.9 0.286 9.96e+3

SANJ 10.3M 214M 20.8 0.386 4.54e+4

Link: OC-3 (155 Mbps), Duration: 305s, Year: 2006

WEB468 140k 2.61M 18.6 0.552 39.0

WEB700 208k 3.98M 19.1 3.70 271

TABLE I
TRACE CHARACTERISTICS: DURATION, NUMBER OF 5-TUPLE KEYS,

AVERAGE NUMBER OF PACKETS PER KEY, AVERAGE PACKET DELAY, AND

RANGE FACTOR R OF PER-KEY AVERAGE DELAY.

quite realistic in terms of latency. The data set referred to as

WISC consists of two traces (WEB468 and WEB700) with

different utilization levels, summarized in Table I. Second,

we used backbone header traces published by CAIDA [14]

that include actual packet arrival times of real packets at

an interface, and then simulate the passage of these packet

arrivals through a queue. The traces are also summarized in

Table I. Each trace records packet arrivals during a 600 second

period on OC-192 (i.e., 10 Gbps) backbone links of a tier-one

ISP. The traces denoted as CHIC and SANJ represent those

collected at Chicago, IL and San Jose, CA respectively. We

believe WISC traces and the backbone traces complement each

other for us to conduct our study as close to reality as possible.

These four data sets are used to demonstrate the existence

of latency diversity and temporal locality of delays experimen-

tally. Later, we resort to the same data sets for the evaluation of

our architecture in §V. While these are not data center traces,

we believe the observations hold true in general. Note that

SANJ and CHIC are derived from synthetic queueing times

based on a simple FIFO queueing model (more details about

the queueing model in §IV-A) and real timestamps of packets

arrival on an OC-192 interface. Thus we expect that they will

provide a realistic representation of the queueing dynamics

whose properties underpin our method. By contrast, the fact

that WEB468 and WEB700 are obtained through subjection

to real router forwarding paths enables us to capture any

effects specific to complexities of actual queueing. Due to

space limitations, we will report our results in greatest detail

for SANJ and CHIC, more briefly for the others, although all

confirmed the expected latency diversity.

B. Latency Diversity over Keys

Many studies have found flow arrivals to be bursty (flows

do not commence as a Poisson process) and flow durations

are heavy-tailed (as opposed to exponentially distributed) [15],

[16], [17]. Under such conditions, congestion also tends to

be bursty, being concentrated in rarer and longer bursts that

would be the case for Poisson traffic. Consequently, the latency

experience of a flow depends strongly on whether it encounters

a congestion burst or not, and the comparative rarity of the

bursts means that the normalizing effect of temporal averaging

only comes into play for long flows. Furthermore, common

statistics of delays encountered by a stream of probes (such

as their mean or certain quantiles) can vary significantly from

those encountered by flows traversing the same link during the

same measurement period.

To study delay diversity, we classified each packet according

to the standard 5-tuple key comprising source and destination

IP addresses and TCP/UDP ports, and IP protocol. Being the

finest key definition for our data, this represents the most

challenging case for our approach. From Table I we see that

WEB700 entails a 50% higher packet rate than WEB468 and

the mean delay for WEB700 is about an order of magnitude

higher than that for WEB468. SANJ trace comprises a load

about 63% higher than CHIC; mean delay for SANJ is about

35% higher than that for CHIC.

We characterize packet delay at the flow level using the per

key average packet delay, a simple statistic that is sensitive

both to the center and the extremes of the delay values, both of

which may influence performance. We characterize the delay

diversity over the set of flows by the range factor R (also

tabulated in Table I), defined as the ratio of 99th and 1st

quantiles in a per-key mean delay distribution. R captures

nearly the full extent of the range, while excluding a small

number of outliers. For SANJ and CHIC, the range spanned 3

to 4 orders of magnitude, while for WEB468 and WEB700 the

range was 1 to 2 orders of magnitude. Unsurprisingly, R was

larger for the higher load trace of each pair. The difference in

range factors between WISC and OC-192 (CHIC and SANJ)

traces is because the range of packet latencies in OC-192 trace

is almost three orders of magnitude larger than that of packet

latencies in WISC trace. Therefore, we conclude that a single

delay statistic, such as an average or quantile over a set of

probes over the same duration, cannot accurately account for

the delay experienced by the range of traffic flows.

C. Temporal localization of queueing delays

We have just seen how delay statistics of concurrent flows

over a 5 minute period can vary over an order of magnitude,

and gave a qualitative explanation in terms of bursty nature—

both of packet arrivals and congestion. However, this same

burstiness additionally leads us to expect that, within bursts

of delay, packets should experience more similar queueing

delays. A theoretical argument for such behavior has been

given in the context of some relatively simple traffic models

in [18]. We now demonstrate this empirically, by localizing

time, and determining how closely the mean queueing delay

experienced by packets of a given flow over a small time

window (e.g., up to a few milliseconds) can be approximated

by the mean delay experienced by the packets of all other flows

transmitting packets over the same window. Note that we focus

on queueing delay, since different size packets encountering

the same delay burst will incur different serialization delays

according to their size. Given ingress and egress timestamps,

ti and te respectively, of a packet of size b bits at a resource

served at service rate r bits per second, the associated queueing

delay is taken as d = te − ti − b/r. In the remainder of this

section, the term “delay” will be understood as queueing delay.

We will discuss the ramifications of our findings for the design

of performance measurements in §II-E.

In our study, we divide time into fixed interval windows

of the same width, and for each key k and interval i, we

record the number ni,k of packets present in interval i and

their average queueing delay di,k. The average queueing delay

4

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0.0001 0.001 0.01 0.1 1 10

lo
c
a

l
m

e
a

n
 d

e
la

y
 /

 m
s

 mean delay per 5-tuple / ms

1s: MedRE=0.84
10ms: MedRE=0.51

0.1ms MedRE =0.055

global: MedRE=0.78

(a) #packets ≤ 10

 0.01

 0.1

 1

 10

 0.01 0.1 1 10

lo
c
a

l
m

e
a

n
 d

e
la

y
 /

 m
s

 mean delay per 5-tuple / ms

1s: MedRE=0.30
10ms: MedRE=0.16

0.1ms MedRE =0.012

global: MedRE=0.54

(b) #packets > 10

Fig. 1. Scatter plot of local vs actual mean delay per 5-tuple key with CHIC
trace; localization intervals 0.1ms, 10ms, and 1s. Global average delay also
shown as horizontal line.

encountered by packets during interval i is

d̃i =

∑
k ni,kdi,k∑

k ni,k

.

Now the average delay encountered by packets of key k is

Dk =

∑
i ni,kdi,k∑

i ni,k

.

Hence if our intuition is correct, replacing di,k by d̃i in the

definition of Dk, i.e., taking a weighted average of the d̃i
weighted by the numbers of packets ni,k for key k in each

intervals, should yield a fairly accurate approximation of Dk,

at least for sufficiently narrow intervals. We call the result of

the substitution localized mean delay, in full it becomes:

D̃k =

∑
i ni,kd̃i∑
i ni,k

=

∑
i,j ni,kni,jdi,j/

∑
ℓ ni,ℓ∑

i ni,k

Figure 1 displays scatter plots of the localized and true mean

delays per key in CHIC, for localization windows of 0.1ms,

10ms and 1s, broken out according to the number of packets

per key. For clarity, we show only about 400 randomly selected

points for each window localization value. Observe closer

agreement for smaller windows, while for large windows

the scatter appears to revert to a more horizontal regression,

reflecting averaging over longer windows. The localized mean

delay is far better predictor of a key’s mean delay than the

global average packet delay, shown as a horizontal line. We

quantify the accuracy via the median relative error (MedRE)

over all keys, shown in the plot key. Note that even for

the smallest localization time (0.1ms), the median number

 0

 0.2

 0.4

 0.6

 0.8

 1

 1e-05 0.0001 0.001 0.01 0.1 1

Q
(x

,d
)

delay burst duration x (seconds)

d = 0.01ms

d = 0.03ms

d = 0.1ms

d = 0.3ms

d = 1ms

d = 3ms

d = 10ms

(a) SANJ

 0

 0.2

 0.4

 0.6

 0.8

 1

 1e-05 0.0001 0.001 0.01 0.1 1

Q
(x

,d
)

delay burst duration x (seconds)

d = 0.01ms

d = 0.03ms

d = 0.1ms

d = 0.3ms

d = 1ms

d = 3ms

d = 10ms

(b) CHIC

Fig. 2. Delay burst distributions for traces SANJ and CHIC. Proportion
Q(x, d) of time spent in bursts of duration at least x, in which delay was at
least d, for d = (0.01, 0.03, 0.1, 0.3, 1, 3, 10)ms.

of packets per window was 21, so that the accuracy of the

localized mean delay is not simply an artifact of comparing a

key’s packet with itself. Further, Figure 1(a) shows that a small

localization window is more beneficial for latency estimation

of small flows, while only relative small proportion of small

average delays were poorly estimated. Accuracy was found to

closer for SANJ than CHIC, presumably a consequence of its

higher offered load, as evidenced by the longer mean delays

in Table I. Plots for SANJ are omitted for brevity. We now

relate these differences specifically to the burst properties of

delay episodes.

D. Burst properties of queueing delay

We can further account for the accuracy of the localized

mean delay by examining the temporal properties of delay

bursts. For this purpose, a burst of delay above d corresponds

to a maximal set of some number n of successive packets with

arrival times t1, . . . , tn whose delay exceeds d. In this case,

the burst duration is taken as tn+1− t1 (or tn− t1 if packet n
is the last packet in the trace). We calculated the proportions

Q(x, d) of the time spent in a burst of duration at least x in

which the delay was at least d.

The displays of Q in Figure 2 account for the differences

observed between SANJ and CHIC. As reference delay we

take the global mean packet delay δ and ask what duration

of bursts the queue spends at least half its time above that

level, i.e., what is the duration τ for which Q(τ, δ) = 1/2?

Provided there are sufficiently many background packets in a

window of duration τ , we expect the local mean to be fairly

accurate. For SANJ, δ = 0.39ms leads to τ of roughly 10ms,

5

while for CHIC, δ = 0.29ms leading to τ of roughly 0.1ms. In

both cases this is within the smallest window considered; the

larger τ value for SANJ would seem to account for its greater

accuracy. We also found confirmation of our delay model in

relating the burst timescale to the accuracy of localized mean

estimates for a given window for the WEB700 and WEB468

traces (omitted for brevity).

E. Implications for measurement design

We now tie together the phenomena of performance di-

versity and delay localization with the problem of per-flow

delay estimation. We argue in §III that a brute force approach

in which routers or other devices timestamp every packet is

neither necessary nor feasible to produce ubiquitous per-flow

delay measurements. Note that our assumption here is that one

is interested in only computing the per-flow mean delays; for

a deeper understanding of the fluctuations of packet delays,

timestamping each packet may still be required. The major

consequence of performance diversity is that performance

statistics of a given flow may differ significantly from those

of another (such as a background flow or a probe stream).

However, the performance statistics of two sets of packets will

agree more closely, if their packets transit at roughly the same

times, at least within the typical duration of delay bursts. The

crucial observation is that, rather than measuring the delay of

each packet in a flow directly, it can be sufficient to infer its

performance from that of a set of reference packets provided

the packet transmission times are sufficiently close.

Now, routers are particularly well placed to create mea-

surements from which to determine the transit delay times

of packets. Routers therefore can create a reference stream

of packets on a link, giving rise to a reference set of link

delay measurements. Then the delay of any given flow can

be estimated by selecting measurements from the reference

stream that are localized to the packets of the flow under

study. This represents a big saving in measurement complexity

due to reuse: For different flows, different reference delay

measurements are selected as required from the reference

stream. Effectively, we can improve the accuracy of the delay

measurement of a given flow, by increasing the number of

samples contributing to that measurement, specifically select-

ing those that are most likely to be correlated with it. As

an illustrative example, consider a flow with 100 packets.

If a sampling rate of 1-in-100 is used, the flow’s latency

measurements are computed using approximately 1 sample.

With our approach, we can compute the latency measurements

with all 100 packets, except each packet’s latency is estimated

using the reference stream (inducing a small amount of ap-

proximation error) yielding more accurate results.

In view of the relations between estimation accuracy, de-

lay burst duration, and temporal localization width described

above, the approach is contingent on having a probe stream

that is sufficiently dense to encounter a typical flow’s packets

within bursts of delays of interest. This is easier to accomplish

for high loads, delays being higher and delay bursts being

longer. But even when probes are not sufficiently dense for

this purpose—resulting in insufficiently narrow localization—

we found examples to display no worse accuracy than a naive

global average of the type that would be produced by non-

local averaging over a probe stream. We remark that a recent

approach of leveraging background flow records for delay esti-

mation [18] suffers in this way, because it is inherently unable

to control the temporal disposition of reference measurements.

We believe the relevance of these findings for our study is

not in the absolute delay values detailed in Table I, nor the par-

ticular localization timescales found in our study. For example,

higher speed links may be expected to have shorter queueing

delays and hence, shorter timescales for the localization of

packet delays. But this effect is compensated for by the fact

that a higher packet rate link can be expected to accommodate

a higher rate reference packet stream, that can therefore sample

delays at a finer granularity. Note also that our findings are

more relevant within financial and data center networks which

tend to be more stringent in the latency bounds than a general

WAN. For example, a past study [19] found delay jitter across

two POPs to be mostly less than 1ms; however, this value can

mask the significant diversity amongst smaller delays at the

level of microseconds that would still impact performance on

a financial network.

III. REFERENCE LATENCY INTERPOLATION

In our setting, we consider a stream of packets traveling

from a sender to a receiver (e.g., ingress and egress router

interfaces), and we are interested in estimating per-flow laten-

cies. We assume fine-grained time synchronization between

the sender and receiver. Within a router, this is straightfor-

ward as they both typically operate within the same clock

domain. Even across routers, microsecond precision time-

synchronization can be achieved with the help of primitives

such as IEEE 1588 [20] that are increasingly being deployed

within routers. (Note that the error due to clock synchroniza-

tion is an additive component to the estimates computed by

our architecture.) We first quickly discuss possible solutions

and see why they may not work well.

A. Problems with previous solutions

Naive approach. One way to obtain latency estimates is

to maintain timestamps for each packet at the sender and

receiver. For estimating per-flow latencies, we just collect the

timestamps for all packets that belong to a given flow and ag-

gregate them. The biggest problem with this approach is scale:

At 10 Gbps, the number of packets is of the order of a few

million per second making it expensive in terms of number of

timestamps maintained (memory), of updating timestamps into

specific data structures or packets themselves (processing),

and transporting the timestamps from sender to the receiver

or wherever the latencies are computed (bandwidth).

Packets carrying timestamps: We can potentially embed

timestamps within packets, but IP packets currently do not

have a timestamp field while TCP options are typically

meant for end-to-end latencies. Embedding timestamps require

changes to packet headers, and may cause intrusive changes

to the router forwarding paths (that often involve third-party

components such as TCAMs, switch fabric ASICs) that ven-

dors often refrain from adopting. In addition, adding packet

6

headers to each and every packet can consume significant

extra bandwidth that is not desirable. For example, a 32-bit

timestamp per packet (assuming average size packets of 125

bytes) could use up to 3.2% capacity.

LDA. If we are only interested in aggregate delay, we could

just maintain two counters at the sender and the receiver that

maintain the number of packets and their timestamp sum. At

the end of the interval, the sender could transmit these two

counters to the receiver which can subsequently compute the

average delay. This is the basic idea exploited in a recently

proposed data structure called LDA [8]. In order to account

for potential packet loss, LDA uses a stage of sampling

and multiple buckets (say 1 000) to ensure that statistics are

computed over a large number of samples. While this idea

works great for aggregate delays, it is unclear how to extend

this idea for obtaining per-flow estimates. The trivial idea of

maintaining LDAs with many counters for each and every

flow is not likely to scale as the number of flows could

be large. Even if we could somehow provision storage for

each and every LDA, the sender counters for each flow need

to be periodically transmitted to the receivers. Thus, control

bandwidth is going to be too high. One could argue that per-

flow measurements may be required only for a small subset of

“important” flows, in which case, maintaining per-flow LDA

(for that subset of flows) would be feasible. Unfortunately, it

is not often clear which set of flows need to be chosen for

per-flow measurements in advance. Besides, determining the

right size of the LDA banks may be difficult in advance since

flow sizes are not known a priori.

We therefore need to consider alternate mechanisms to

achieve our goal. In particular, we can exploit the observations

in our previous section (§II) that packets that belong to

different flows experience similar delay when they are closely

spaced within each other.

B. RLI architecture

Intuitively, queueing delay, which is the major portion of

delays experienced in routers, can be thought of as a con-

tinuous function (not necessarily monotonic) in busy periods

where there are packets to send. In Figure 3, we show the

variation of delay as time progresses at the sender side. We

can observe that the delay experienced by each of the regular

packets can be estimated accurately from a few reference delay

samples (shown as circles in the figure) by interpolating these

reference packet delay samples (shown by a dotted line in the

figure). Further, the interpolation error can be controlled by

varying the number of reference points in the delay curve,

thus trading-off accuracy for resource usage. This is the key

idea exploited in our architecture.

Our architecture consists of two main components: a ref-

erence packet generator at the sender side, and a latency

estimator at the receiver that maintains a few counters on a

per-flow basis. The reference packet generator injects reference

packets with sender timestamps periodically into the packet

stream at the ingress interface of a router. These reference

packets would experience queueing and other effects similar to

that of the regular packets thus providing a stream of reference

Reference
Packet

Interpolated
Delay

delay estimate
Error in D

e
la

y Regular

packets

Time

Fig. 3. Key idea in our architecture is to estimate packet delays by
interpolating the reference packet latencies.

delay samples for the latency estimator at the receiver end. The

latency estimator estimates the delay of a regular packet using

these reference delay samples that are then accumulated into

the per-flow counters.

1) Reference packet generator: A key question concerns

when to generate the reference packet. One option is to

inject them according to a Poisson distribution. While in

the past, Poisson-modulated probes have been advocated by

researchers [21] since they capture time averages very well,

our goal is not to compute the average behavior of the queue

over a given time. Instead, we wish to use these reference

packets to estimate individual packet delays, and thus, Poisson

modulation is not a requirement in our system. Furthermore,

we wish to bound the interprobe time in order to control

the impact of probes on background traffic, whereas Poisson

probes can have arbitrarily small interprobe times.

There are three choices we first consider: The first is to

inject one reference packet for every n regular data packets

(e.g., n = 1000). Besides being simple to implement, this

1-in-n reference packet injection has a bounded overhead in

terms of number of additional packets injected as a function

of the total number of packets. The problem, however, is that

there could be periods of low utilization when these reference

packet can be spaced apart significantly, potentially affecting

the accuracy of the interpolation estimates. To alleviate this,

an alternate solution is to inject an active probe packet every

τ time period (e.g., τ = 1ms). While this can result in a fixed

worst case bandwidth requirement, this may provide worse

results when the utilization is higher, especially when the

delay variations are quite rapid. Lastly, we may combine these

two approaches by injecting a packet every 1-in-n, or after τ
seconds, whichever comes first. Unfortunately, it is not clear

how to identify the right value of τ . On one hand, keeping

τ low increases accuracy but causes too much overhead and

starts to interfere with regular packets. On the other hand,

setting a high value of τ defeats the purpose of setting an

upper bound on the time-period.

Thus, we consider monitoring the utilization in a dynamic

fashion in order to determine at what time instants to inject

the packets. We find that this adaptive scheme performs better

than either of the fixed time based or count based schemes

just described. Adapting the probe rate to utilization enables

us to get the best of both worlds: limiting the probe rate at

high utilizations, while getting sufficiently frequent coverage

at low utilizations. Still, adaptive schemes entail a subtle

trade-off because the adapter may lag in response to a high

7

Algorithm 1 Reference packet injection rate adaptation

1: procedure CALCULATE-INJECTION-RATE

2: ⊲ reff : effective injection rate

3: ⊲ drp : duration between two reference packets (RPs)

4: ⊲ cb: byte counts of regular packets between RPs

5: ⊲ uest : moving-averaged link utilization

6: ⊲ umin , umax : minimum, maximum link utilization

7: ⊲ rmin , rmax : minimum, maximum injection rate

8: ⊲ α: EWMA smoothing factor

9: ⊲ lc: link capacity

10: uinstant ← cb/drp/lc, cb ← 0
11: uest ← uinstant · α+ uest · (1− α)
12: ueff ← uest , where umin ≤ uest ≤ umax

13: reff ←
√
1− (

ueff −umin

umax−umin
)2(rmax − rmin) + rmin

14: return reff
15: end procedure

rate burst of shorter duration than its adaptation timescale.

In practice, however, we have not found such phenomena to

degrade the performance experienced by background traffic.

An issue with this scheme is that it becomes infeasible to

estimate variations in utilization across all links when RLI is

deployed across routers. Thus, in this paper, we mainly focus

on latency measurements between interfaces within a router.

Although we expect the advantage of adaptation to be

generic, we now discuss the particular form of realization

in our implementation. To keep track of link utilization and

adjust reference packet rate, we maintain a small amount of

state. Specifically, our adaptive scheme consists of two steps:

updating link utilization and calculating effective reference

packet rate reff . Algorithm 1 presents the pseudocode for

the scheme. The algorithm is triggered immediately after a

reference packet is injected with the previously calculated reff .

To estimate link utilization, we maintain a byte counter cb
that keeps track of the number of regular packets between two

injected reference packets. We also maintain the time interval

drp between the two injected reference packets. We calculate

instantaneous link utilization using these two variables and link

capacity lc. We could use the instantaneous link utilization

uinstant directly to calculate effective reference packet rate,

but, in order to remove the effects of short term fluctuations

of estimated link utilization, we update average link utilization

uest using exponentially weighted moving average (EWMA)

with a smoothing factor, α. We reset the byte counter imme-

diately after link utilization estimation is done.

After updating uest , we calculate the next reference packet

rate. Our objective is to adapt reff as a function f of link

utilization, where rmax = f (umin) and rmin = f (umax), umin

and umax being configurable parameters. Thus, we bound ueff

to ensure that ueff always lies in between umin and umax . If

uest is higher (lower) than umax (umin), we set ueff is set

to umax (umin). While there could be many choices for the

function f , we choose an elliptical function (shown in line 13)

and calculate reff . The rationale for choosing this function is

that, it typically targets accurate estimation of latency under

low to moderate utilization (i.e., decreases reff slow when

Sender Timestamp

Packet

Stream

Flow selection

Logic
Flow Memory

Updateper−flowdelay

Interpolation Buffer

Create
Reference Packet

Packet

Stream statistics
Utilization

Packet
Generator

Reference

Estimator

Latency

ReceiverSender

Fig. 4. Overview of our architecture.

ueff is close to umin), but reduces rate significantly at high

utilization (as ueff approaches umax). For our evaluation, we

set umin = 0.6 and umax = 0.85, while rmin and rmax are set

to 1-in-300 (0.0034) and 1-in-10 (0.1) respectively.

2) Latency estimator: The receiver processes the reference

packets (containing timestamps) inter-mixed with regular data

packets to estimate per-packet latencies. Our architecture does

not require the receiver to maintain counters for all flows

in the network. Indeed, our architecture can work on top of

any existing framework for per-flow measurements such as

NetFlow, that maintains flow records (containing number of

packets, bytes, etc.) for a small subset of flows. For each of the

flows of interest (obtained using any flow sampling schemes),

we maintain three counters indexed by the flow key that keep

track of the following: (1) number of delay samples for the

flow; (2) sum of estimated delays for all packets of that flow;

(3) sum of squares of individual packet delays. This composite

set of counters are updated for all packets that belong to

flows of interest. It is, therefore, important to implement these

counters in high-speed SRAM to scale to high line rates. (We

discuss other alternatives later in §VI.)

Our latency estimator component also contains an interpo-

lation buffer (as shown in Figure 4) to store packets that have

arrived between two reference packets. This requirement stems

from the fact that delay value estimated for each individual

packet is a function of the delay experienced by the two refer-

ence delay samples (corresponding to the reference packets).

Of course, we do not need to store the entire packet in the

interpolation buffer; storing just the flow key, the associated

timestamp and byte count is sufficient for each packet. The size

of the interpolation buffer required can be statically determined

depending on the design of the reference packet generator.

If reference packets are generated according to the 1-in-n
scheme, the interpolation buffer need not be larger than n.

For other schemes, we can easily compute an upper bound

on the number of packets between two active probes. For

instance, for the 1-in-τ scheme, we can easily compute the

number of minimum-size packets for a given link capacity

that can be transmitted in τ seconds; this dictates the size of

the interpolation buffer.

While the presence of the interpolation buffer in our ar-

chitecture facilitates the use of both left and right reference

packets to estimate delay for a given packet (potentially

allowing better accuracy), it requires additional complexity in

state maintenance. At the other end of the trade-off, we can

imagine getting rid of the buffer completely and estimate the

8

delay of a packet as a function of only the reference packet

before the packet, but not after. This requires no state in terms

of the interpolation buffer, but requires remembering the delay

experienced by the reference packet, that can be easily kept

track of using a single counter.

C. Packet delay estimators

We formally describe our packet delay estimators in this

section. The first estimator called RLI estimator1 uses two

reference packets for linear interpolation and works as follows.

RLI estimator. Let pai be an i-th reference packet. Let prj , j =
1, 2, . . . , n be a regular packet whose receiver timestamp is

located between al = pai and ar = pai+1 that represent the left

and right reference packets in the interpolation buffer. Let τ rj
and brj denote the receiver-side timestamp and a byte count

of prj , and τl, τr represent the receiver-side timestamps of

al and ar. Let b be the size of reference packet (i.e., 8-byte

timestamp and 40-byte header) and lc be the link capacity.

Then the estimated delay, d̂j for prj obtained by interpolating

the delays of al and ar (represented as dl and dr) is given as:

d̂j = dl + (τ rj − τl)
dr − dl
τr − τl

+
brj − b

lc
, j = 1, 2, . . . (1)

The third term on the right-hand side in Equation (1) com-

pensates for different serialization times by the difference

in packet size between regular packets and reference packet.

Whenever a new probe packet arrives, al and ar are updated;

subsequent interpolated delays of new regular packets are

computed with these new values as given by Equation (1).

For each flow fk, three per-flow counters are maintained as

we discussed before. After the delay estimate is computed for

the packet prj , the counters corresponding to the flow to which

prj belongs are updated as follows.

c(fk) = c(fk) + 1 (2)

m(fk) = m(fk) + d̂j (3)

v(fk) = v(fk) + d̂j
2

(4)

When a flow with a flow key fk expires, if c̃(fk), m̃(fk),
and ṽ(fk) represent the final values of the number of packets,

mean and variance counters in flow memory, then the delay

mean and variance of a flow fk are:

E[dfk] = m̃(fk)/c̃(fk) (5)

Var[dfk] = ṽ(fk)/c̃(fk)− E[dfk]
2 (6)

where dfk denotes a random variable for delays of packets of

a flow with fk. These values are updated before exporting the

flow record.

RLI-L estimator. The RLI estimator requires storing packets

in an interpolation buffer until a reference packet arrives after

which each of the packets’ delays are updated, that requires

additional complexity. Thus, we consider an alternative esti-

mator called RLI-L estimator that instead of using both the

left and right delay samples uses only the left delay sample.

1We use RLI estimator to refer to the estimator and just RLI to refer to the
architecture.

In other words, for all regular packets that appear between pai
and pai+1 with delays dl and dr,

d̂j = dl + (brj − b)/lc.

The per-flow counters are updated the same way as before

in RLI estimator. Because this estimator does not use both

values, it is not as accurate as the RLI estimator as we shall

discuss in our evaluation.

Shrinkage estimation. While linear interpolation is a simple

means to approximate the delay, linearity may not always be

the best choice. We therefore considered possible refinement

of the delay estimators, in particular using Shrinkage Estima-

tion [22]. Unfortunately, Shrinkage Estimation provided only a

very small improvement in estimation accuracy; we therefore

do not consider this further in this paper.

IV. EVALUATION METHODOLOGY

This section outlines the methodology we used to evaluate

our architecture. Experimental results are presented in §V.

A. Simulator

We evaluate our architecture using a simulator we create by

extending an open-source NetFlow platform called YAF [23]

for our simulation. NetFlow, the de facto passive measurement

solution, already supports flow-level collection of basic statis-

tics such as number of packets, bytes, etc. Thus, extending

YAF automatically provided us with the flow creation, flow

update, and flow expiry mechanisms in regular NetFlow. We

added support for the injection of reference packets from the

sender side, the interpolation buffer at the receiver, and latency

estimator along with three additional counters we maintain

for the latency estimates on a per-flow basis. We implement

the adaptive reference packet injection algorithm based on

keeping track of the utilization as described in Algorithm 1.

While we simulate RED queue management strategy as well

as DropTail queue, we observe little difference in evaluation

results between them. In this paper, we only present results

using RED in interest of space.

In the queueing model employed for simulation with CHIC

and SANJ, we control the packet loss and delay by configuring

queue length and drain rate. The drain rate is defined as bytes

per second. By fixing the drain rate less than 1.25GB/s, we

can automatically control both the delay as well as the loss

distribution. Following the guidelines in [24], we chose a

queue size of 10 000 2, minth = 4000 and maxth = 9000,

queue weight wq = 0.002 and maximum drop probability,

maxp = 1

50
for all traces. Note that our simulation using CHIC

and SANJ traces is open-loop, i.e., we do not see TCP backoff

effects even when packets are dropped. By contrast, both

WEB468 and WEB700 traces are generated by configuring a

real router with RED, and as such, they expose all the relevant

TCP backoff dynamics associated with RED.

For WISC traces, since we cannot easily inject reference

packets into the simulation, we rely on a simple packet

2Assuming 10 Gbps link and 1ms RTT in a data center network, the rule-
of-thumb (i.e., bandwidth-delay product) suggests a router buffer of 10 Mbits.
Assuming average packet size be 125 bytes, we choose 10 000.

9

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-3

10
-2

10
-1

10
0

R
e

la
ti
v
e

 e
rr

o
r

Injection rate

20% utilization
70% utilization

Fig. 5. Accuracy changes of delay mean estimates over injection rate
variation. Each curve represents median relative error and error bars show
25th and 75th percentiles.

marking scheme that denotes the nearest regular packet as a

reference packet whenever it needs to be injected. Compared

to adjusting the packet timestamps to simulate the injection

of reference packets, our packet marking scheme is much less

intrusive. We believe that it does not affect the accuracy of

our architecture, because the delays are still real packet delays.

Effectively, the reference packet times are just slightly offset

from what they would be in an actual realization.

B. Other solutions for comparison

Trajectory sampling. First, we consider trajectory sampling

proposed by Duffield et al. to sample packet trajectories [25].

While the original intent is different, we can add a timestamp

with each packet label sampled at a router, and aggregate

samples that belong to a given flow for latency estimates.

The estimator just computes the difference of timestamps at

two adjacent locations (similar to the naive timestamp idea

discussed in §III).
Multiflow estimator. Next, we consider a new estimator

called Multiflow estimator (MFE) proposed by Lee et al. in

[18]. MFE exploits the fact that NetFlow already maintains

timestamps of start and end packets for each (sampled) flow.

Two adjacent routers using consistent hash-based sampling

will collect same flow records with same start and end packets,

giving two delay samples. Given that the simple averaging

of just these two samples is not an accurate estimator, MFE

computes the average of all delay samples (referred to as

background samples) that may potentially belong to other

flows within the start and end of the flow. The main spirit

is grounded in a similar observation as ours in §II.
LDA. This solution is designed to obtain aggregate latency

statistics over a measurement period (say 1 second). We

compare RLI with LDA to evaluate the performance of RLI

for obtaining the statistics and the tradeoff between them.

V. RESULTS

We divide our results into four major parts: First, we

evaluate reference packet generator in terms of injection rate

and mechanism. Second, we evaluate the accuracy of our RLI

estimator, both mean and standard deviation estimates, for

different traces and different utilizations. Third, we compare

our architecture with other solutions such as the trajectory

sampling, MFE, and LDA described in §IV-B. Finally, we

evaluate the overhead involved in our architecture.

As a primary metric to evaluate the accuracy of RLI, we fo-

cus on the relative error (defined as |true−estimated|/true)

 0

 0.2

 0.4

 0.6

 0.8

 1

adaptive 1-in-n 1-in-τ combination

R
e

la
ti
v
e

 e
rr

o
r

20%
55%
70%
88%

Fig. 6. Comparison of reference packet injection methods. In the figure,
combination means the method to combine 1-in-n and 1-in-τ methods. Bar in
histogram denotes median relative error and whisker indicates 75th percentile.
Percentage in legend indicates link utilization.

of mean and standard deviation estimations of each flow

with the ground truth. In addition to relative error, sometimes

absolute error serves as a secondary metric to provide deeper

understanding about our results (e.g., high relative error under

low utilization discussed in §V-B).

Although our experimental settings and scenarios cover

essential performance issues of RLI, we note that a few

additional experiments and analyses will be also useful. One

such experiment is understanding absolute errors and impact

of parameterization on accuracy with real workloads captured

from various vantage points (e.g., ToR, aggregate, and core

switches) in a data center.

A. Impact of reference packet injection rate and mechanisms

We investigate two different aspects of reference packet

generator: injection rate and mechanism. By changing values

of these two knobs, we observe with SANJ trace how the

accuracies of per-flow latency estimates are impacted.

Impact of injection rate. We statically configure injection

rate to study the impact of injection rate. While there are four

injection mechanisms, we use 1-in-n mechanism because of its

simplicity for controlling injection rate. We vary n accordingly

to control reference packet injection rate from 0.001 to 0.8. We

test out these injection rates under several different utilization

conditions. In general, as we increased injection rate, the

accuracy of per-flow latency estimates was improved. We only

show two interesting graphs that illustrate 20% and 70% link

utilization cases. The curve for 20% utilization in Figure 5

shows very slow decrease in relative error that remains high

(around 28-36% median relative error) regardless of injection

rate. At higher injection rate than 20%, we observe that the

variance of errors is narrower than any other injection rate

cases. Low accuracy under low link utilization stems from the

fact that average per-flow latency is just a few microseconds,

serialization time is a dominant factor of packet delay, and

queueing delay is negligible. The serialization time is more

dependent on the packet size, which in turn causes more

jitter in interpolation process. Thus, our estimators yield low

accuracy because even high injection rate is hard to capture

serialization time accurately.

Compared to 20% link utilization, the curve of 70% link

utilization shows a quite different pattern where as injection

rate increases, errors rapidly decrease. At the begining, median

relative error is about 43%, but at 10% injection rate, median

relative error is only about 5% (8x reduction).

10

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-3

10
-2

10
-1

10
0

10
1

C
D

F

Relative error

CHIC
SANJ

WISC

(a) High utilization (≈ 88%)

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-3

10
-2

10
-1

10
0

10
1

C
D

F

Relative error

CHICSANJ

WISC

(b) Moderate utilization (≈ 55%)

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-3

10
-2

10
-1

10
0

10
1

C
D

F

Relative error

CHICSANJ

(c) Low utilization (≈ 22%)

Fig. 7. CDF of mean per-flow delay estimates using RLI estimator for different utilizations and different traces.

Impact of injection mechanism. We evaluate which injection

method is more effective to obtain high accuracy across differ-

ent link utilization situations out of the four methods discussed

in §III-B1. One may set injection rate of static schemes as large

as 10% for higher accuracy. However, in our experiment, this

high injection rate caused 22% increase in packet loss rate

(0.67% loss rate with no injection and 0.82% with 1-in-10

injection method) at 90% link utilization. To avoid such a high

interference, we set n = 300 for 1-in-n scheme and τ is set to

780µs for 1-in-τ . These parameters were chosen to meet the

injection rate (i.e., 0.35%) that adaptive scheme achieves at

90% link utilization. The combination scheme of 1-in-n and

1-in-τ uses the same values of n and τ , which yields 0.51%

injection rate. For the adaptive scheme, we use parameters

described in §III-B1. The injection rates by the parameters are

10% (at 20% utilization), 9% (at 55%), 4.8% (at 70%) and

0.6% (at 88%).

Figure 6 shows the accuracy of each injection mechanism.

We first see that the adaptive scheme achieves the best accu-

racy among others. In general, as link utilization increases, the

difference in accuracy among all the schemes decreases. On

the contrary, when link utilization is 55%, the other schemes

have at least 40% median relative errors, but the adaptive

scheme achieves 50% less median relative error than the

others. We expected the combination scheme would work as

good as the adaptive scheme, but the scheme just achieves

slightly better accuracy than 1-in-n and 1-in-τ schemes. The

highest error by the static schemes at 55% utilization—where

delay variability is high—is another evidence of inflexibility

of those schemes. The adaptive scheme injects more number

of reference packets than the static schemes when a link is

less loaded, and hence imposes a higher overhead than the

others. The static schemes, however, are inflexible to respond

to the variation of link utilizations, thus leading to either low

accuracy or high interference with regular traffic. Therefore, in

the rest of evaluations, we only use the adaptive scheme. Note

that §V-D discusses the overhead of RLI in greater detail.

B. Accuracy of RLI

Accuracy of mean latency. We plot the cumulative distri-

bution function (CDF) of the relative error of mean delay

estimates for all the flows in Figure 7 for different utilizations

and traces. In our evaluation, we consider the WEB468 as a

moderate utilization scenario with about 55% link utilization,

while WEB700 comprises the high utilization scenario (about

88% utilization). We do not have access to a lower utilization

trace in the WISC data set, hence we do not show the curve

for WISC in Figure 7(c). For high and moderate utilizations,

we can observe that median relative error of latency estimates

among all flows is around 10-12%. The 75%ile relative error

is also less than 20% in these two cases. For low utilization,

median relative error of estimates is around 30%. Across

different curves, we observe that the accuracy is largely similar

both for real router packet traces (WISC) as well as our

backbone traces (CHIC and SANJ traces).

In general, we observe that the accuracy of RLI appears

better for high utilization than low utilization cases. Recall

that this difference stems from the fact that, under low uti-

lization, serialization time takes more portion in latency and

serialization time causes more jitter in interpolation process.

We envision that our architecture is more suitable for

isolating the router where a flow experienced bad end-to-

end latency; we therefore care about flows for which the

delays are significantly higher than the rest. In other words,

for small delays (e.g., 10µs), a relative error of 100% is not

nearly as significant as compared to flows which experience

higher delays (e.g., 100µs). Thus, while one could argue that

network operators may operate typically at low utilizations, the

accuracy of RLI is itself oblivious to the exact utilizations, and

mainly depends on the absolute latency of a given flow. The

fact that the accuracy of our architecture appears significantly

better in the higher utilization case is merely a reflection of

the fact that the number of high latency flows is higher in

this case. (This also explains our rationale in designing our

adaptive reference packet injection strategy to reduce the rate

as utilization grows significantly.) In order to bring this out in

more detail, we group flows by delays and flow sizes.

Grouping flows by delays. In Figure 8(a), we plot average

relative error of delay mean estimates by grouping relative

errors based on true per-flow delay. In the figure, we only

plot high utilization condition, because 99.99% of per-flow

latencies found in both moderate and low utilization scenarios

are quite low for both traces (at most 90µs and 10µs respec-

tively). Since we are more interested in the high delay flows,

for brevity, we mainly focus on the top 50% that start at an

average latency of about 100µs all the way until about 30ms.

We can observe from Figure 8 that RLI is quite accurate in

measuring latencies of flows that exhibit large delays. Average

relative error of mean delay estimates is close to 12% for flows

with true delay greater than 100µs (in the SANJ trace). For

the CHIC trace, we found that 75% of flows having about

100µs latency have less than 18% relative error, slightly higher

than the SANJ trace. Of course, relative errors typically go

down as the true delay increases as the denominator is getting

bigger. The important thing, however, is that absolute error is

not growing proportionately and remains relatively small and

11

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

A
v
e

ra
g

e
 r

e
la

ti
v
e

 e
rr

o
r

True per-flow delay (second)

CHIC
SANJ
WISC

(a) Binned by delay

 0

 0.5

 1

 1.5

 2

10
0

10
1

10
2

10
3

10
4

10
5

10
6

A
v
e

ra
g

e
 r

e
la

ti
v
e

 e
rr

o
r

True flow size (packets/flow)

CHIC
SANJ

(b) Binned by flow size

Fig. 8. Average relative error of per-flow delay mean estimates binned by
true flow delays and sizes.

-200

-100

 0

 100

 200

10
0

10
1

10
2

10
3

10
4

10
5

10
6

E
rr

o
rs

 (
µ

s
)

Flow size

Fig. 9. Unbiased nature of RLI using SANJ trace.

bounded; thus, our solution can be quite effective in measuring

flow-specific delay spikes of the order of a few 100µs very

efficiently—exactly the level of SLA specifications that Cisco

provides in its trading floor architecture [12].

Our real router trace, WISC, shows similar trends with

CHIC and SANJ in that as true delay increases, average

relative error decreases significantly. Specifically, for top 20%

of delays which is around 3ms true delays, RLI achieves less

than 11% average relative errors. Recall that the WISC trace is

collected over an OC-3 link, that is 64 times less capacity than

the OC-192 backbone traces. Thus, intuitively, 100µs delay in

the OC-192 trace translates loosely to around 6.4ms in the

WISC trace, for which the error in the delay is around 8-9%,

similar to the backbone traces.

Grouping by flow sizes. As we have considered flows with

large delays before, operators may also care more for larger

flows, for which latency effects may be more pronounced

than smaller ones (say with fewer than 10 packets). Thus,

in Figure 8(b), we plot the average relative error for flows

binned by their sizes. In our results, we found that the top 20%

of flows had more than 10 packets in our backbone traces—

average relative error for these is less than 11%. For larger

flows, the error is even lower (around 3% for flows larger

than 100 packets). Flow-size distributions in WISC traces are

synthetic; hence, we did not plot the corresponding curve.

Unbiased nature of RLI. Per-flow latencies are computed

from approximated packet latencies, which may potentially

cause biased estimates. Hence, we empirically demonstrate the

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-3

10
-2

10
-1

10
0

10
1

C
D

F

Relative error

CHICSANJ

WISC

(a) CDF

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

A
v
e

ra
g

e
 r

e
la

ti
v
e

 e
rr

o
r

True per-flow standard deviation (second)

CHIC
SANJ
WISC

(b) Binned by standard deviation

Fig. 10. Average relative error of per-flow delay standard deviation estimates
binned by true deviations.

unbiasedness of estimates by RLI in Figure 9; we can clearly

observe positive as well as negative errors in y-axis. We further

notice that as the flow size increases, the error ranges become

narrow, thus reassuring the efficacy of RLI for large flows.

Accuracy of delay standard deviation. While good accuracy

in average latency estimates is nice, it is important to be

able to estimate the variation in delays accurately, at least

for the flows where such a measure is important, i.e., those

that exhibit high amount of standard deviation. We follow a

similar approach as we did for mean delay to compute a CDF

of the standard deviation estimates (shown in Figure 10(a)).

From the figure, we can observe that the median error is

less than 12% with some small fraction of flows exhibiting

high relative error. We also computed similar CDFs for the

moderate and low utilization cases (not shown for brevity).

As in the case of mean, the standard deviation estimates were

more accurate for the high utilization case as compared to the

low utilization scenario. In all utilization cases, when the true

value of the standard deviation is quite low, we found that the

relative error was really high—the exact proportion of flows

that exhibited low standard deviation changed depending on

the utilization characteristics. To show this, we bin the flows

into different groups based on their true standard deviation and

plot the average relative error in Figure 10(b). As before, we

can observe that the average relative error in detecting standard

deviations greater than 100µs is less than 20%, and for higher

standard deviations, it is even smaller.

C. Comparison with other solutions

We largely conduct two different sets of experiments to

compare with other solutions. The first set is to evaluate per-

flow latency measurements and the second set is to understand

the performance of RLI for aggregate latency statistics.

Per-flow latency. We compare our architecture with previously

proposed solutions discussed in §IV-B, trajectory sampling and

MFE, and also study the advantage of using RLI estimator

12

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-3

10
-2

10
-1

10
0

10
1

C
D

F

Relative error of delay mean estimates

RLI

RLI-L

MFE

Trajectory

(a) CDF of relative error

10
-3

10
-2

10
-1

10
0

10
1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
v
e

ra
g

e
 r

e
la

ti
v
e

 e
rr

o
r

Link utilization

RLI
RLI-L
MFE
Trajectory

(b) Average relative error by utilization

Fig. 11. Comparison with other solutions on SANJ trace with a packet
sampling rate of 0.1%.

compared to RLI-L estimator. In these experiments, we intro-

duce a sampling rate of 0.1% in order to keep the trajectory

sampling overhead relatively small. While the MFE and RLI

estimator (both variants) do not care about the packet sampling

rate directly, it affects the set of flows created; typically,

random packet sampling leads to the creation of flow records

for relatively large flows or ‘elephants’. Thus, to make the

accuracy comparison consistent (on the same set of flows), we

subject our RLI to the same sampling rate as both trajectory

and MFE. Note that for RLI, we estimate and update the packet

latency counters for all the packets (similar to sample-and-

hold [26]) that match the flow after the flow is created.

We plot the CDFs comparing the relative errors of mean

delay estimates (standard deviation graphs look very similar)

across different schemes in terms of relative error in Fig-

ure 11(a) for the high utilization case. Trajectory sampling

clearly performs the worst, in part because it contains very

few samples on a per-flow basis. The relative error for about

50% of the flows is larger than 80%; the estimates therefore

are not reliable at all. MFE performs better than trajectory;

the fact that it takes advantage of intermediate background

samples from other flows into consideration allows it to refine

its estimates, allows it to approach the global mean observed

during the duration of that particular flow.

RLI performs the best among all with most estimates well

within 1% relative error—representing two and a half orders

of magnitude improvement over trajectory sampling (500x)

and almost two orders improvement over MFE. We observe a

similar trend with the standard deviation estimates (not shown

in the figure). RLI-L, that uses no interpolation buffer and

assigns the delay observed because of the left reference packet

as the estimate, performs better than both MFE and trajectory,

but loses some amount of accuracy (about half an order of

magnitude) compared to RLI. This is the price RLI pays in

the form of an interpolation buffer to hold packets.

We also compare these solutions across a wide range of

utilizations in Figure 11(b). We again observed that RLI

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 0.002 0.004 0.006 0.008 0.01

R
e

la
ti
v
e

 e
rr

o
r

Packet loss rate

LDA
RLI - 288 Hz

RLI - 1440 Hz

Fig. 12. Aggregate latency estimation accuracy of RLI and LDA.

outperforms the rest significantly; the gap between RLI and

the rest is more pronounced at higher utilizations where the

absolute delays tend to be high for which the accuracy of RLI

is much better. Still, RLI estimates are more than an order of

magnitude more accurate than MFE in many cases.

Aggregate latency. While RLI is designed for per-flow esti-

mates, one could use the packet latency estimates to compute

aggregate statistics as well, for which LDA has been proposed.

We use the two-bank LDA suggested in [8] with one tuned for

0.5% loss rate and the other for 10%. For RLI, two settings

are used: (1) 288 and (2) 1 440 reference packets per interval.

While the former setting consumes the same communication

bandwidth that LDA requires, the latter roughly translates to

0.34%, the lowest injection rate used in our experiments. For

the experiment, we use a measurement interval of 1s in which

about 0.4 million packets arrived (for the SANJ trace).

Figure 12 shows the aggregate latency estimation accuracy

of three estimators (LDA, RLI-288 Hz, and RLI-1440 Hz)

depending on different packet loss rate. We find two obser-

vations from the figure. Under the same bandwidth constraint

(LDA and RLI-288 Hz), LDA performs better than RLI while

RLI still achieving less than about 2.5% relative error. In

comparison of LDA and RLI-1440 Hz, however, there is a

unique trade-off. When packet loss rate is less than 0.4%, LDA

yields better accuracy than RLI. On the contrary, as packet loss

rate becomes larger than 0.4%, RLI stabilizes relative error

by achieving less than 0.3% relative error, but the accuracy

of LDA varies significantly ranging from 0.1% to 1.3%. The

stable accuracy of RLI is based on the fact that it estimates

delays of all the incoming packets at a receiver, and latencies

of individual packets becomes more similar as queue gets

overloaded (as a result, high packet losses occur). On the other

hand, the pattern of LDA is related to tuned packet loss rates

in two banks and hence varies within increasing loss rates.

For variance, unlike average delay, RLI experiences about

three orders of magnitude lower relative error than LDA. For

instance, while the relative error of RLI is about 0.005% all

the time, the relative error of LDA only varies between 1% and

27%. In interest of space, we omit showing the exact graph.

D. Overhead of RLI

We quantify the direct and obvious overhead associated with

the reference packet traffic, and indirect effects of the reference

packet traffic on actual per-flow latencies and losses. In

Figure 13(a), we show the fraction of link capacity used by the

reference packet traffic for different link utilization levels. As

we can observe, the bandwidth consumed by reference packet

13

10
-5

10
-4

10
-3

10
-2

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

B
a
n
d
w

id
th

 c
o
n
s
u
m

p
ti
o
n

Utilization

CHIC
SANJ

(a) Bandwidth overhead

10
-4

10
-3

10
-2

10
-1

10
0

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n

Per-flow delay interference (seconds)

CHIC-PI

CHIC-NI

SANJ-PI

SANJ-NI

(b) Interference with regular traffic

0x10
0

2x10
-5

4x10
-5

6x10
-5

8x10
-5

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

L
o
s
s
 r

a
te

 d
if
fe

re
n
c
e

Utilization

CHIC
SANJ

(c) Impact to packet losses

Fig. 13. Quantifying overhead in RLI and the interference of reference packet packets on regular flows.

traffic is quite small. At low utilization, where the reference

packet traffic is injected at relatively higher rate (at roughly 1-

in-10 packets), still, the overall bandwidth consumed is about

0.1%. As utilization increases, the bandwidth consumption

falls down steeply to 0.007% at 90% utilization.

Low bandwidth is nice, but it is also important for the

reference packet traffic to not interfere too much with regular

traffic, although some amount of interference is unavoidable.

To quantify this, we measure the difference between the

average latency experienced by a flow with and without our

architecture. In Figure 13(b), we show the cumulative fraction

of flows which experienced a particular amount of additional

delay for the high utilization case, where interference is

(expectedly) the most predominant. It is natural to expect that

flows will potentially experience a positive additional delay

(curves x-PI, PI means positive interference), but, we also

found about 10% flows for which the average delay went down

(curves x-NI, NI is negative interference). Upon investigation,

we found a significant variation in the number of packets

that were dropped from flows; for flows with reduced packet

delay, a lot of packets that were not dropped before were

getting dropped in the presence of reference packet traffic.

Similarly, for flows that experienced increase in delay, we

observed the opposite phenomenon, where packets that were

dropped before somehow survived, although with a huge delay.

Put differently, both these incidents—a packet getting dropped

or getting delayed significantly—are really related to how

close to being full the queue is. Reference packets cause a

small perturbance to only the packets at the fringe, with some

dropped packets getting converted to high delay and vice-

versa; thus, the interference is therefore quite minimal.

In terms of overall loss, RLI introduces very little increase

in the loss rate as can be seen in Figure 13(c). On the whole,

we can find that the packet loss rate differs by at most 0.001%

even at almost 80% utilization for either traces. SANJ trace

experienced slightly more losses than the other because the

arrivals are a little bit more bursty in that trace.

VI. IMPLEMENTATION

While the packet generator component itself can be imple-

mented in software as the reference packet rate is not too

high, it needs a precise timestamp at the sender side for

which hardware is preferable. Our adaptive reference packet

generation scheme maintains a little bit of state in the form of

a few utilization counters that can be accommodated within

the line-card ASICs. Because the two interfaces are operating

within the same time-domain we may not need extra time

synchronization (e.g., using GPS clocks). On the receiver side,

we mainly require three hardware counters on a per-flow basis

for flows of interest. Given the high line rates, counters need to

be in SRAM. One can also leverage the hybrid SRAM-DRAM

architecture commonly used in managing counters [27] and

packet buffers [28], to ensure that high speed counter updates

happen in SRAM that are flushed periodically to cheaper

DRAMs. Another solution is to report per-flow measurements

only for a subset of flows, by sampling or with the help of

other mechanisms (e.g., ProgME [29]).

VII. RELATED WORK

While designing router-based passive measurement solu-

tions is a well-established area of research, designing solutions

for fine-grain latency estimation is a relatively new line of

research. Tomography techniques (e.g., [6], [7], [30]) have

been proposed in the past to infer hop and link characteristics

from end-to-end measurements (conducted using tools such

as [31]) and topology information. They provide aggregate

measurements, but not on a per-flow basis. In this context

of flow measurement, there have been a wide variety of

solutions proposed (e.g., [29], [26], [32], [33]) that employ

sampling to control flow selection. Our latency measurement

approach proposed in this paper should, for the most part,

work seamlessly in many of the sampling frameworks; we

have shown how our results compare with other solutions

in the context of random packet sampling used by sampled

NetFlow. Researchers have in the past conducted measurement

studies to understand single-hop delays [34], [35] and delays

across PoPs in [19]. They do not propose any architecture for

measuring per-flow delays however.

The three most relevant works are trajectory sampling [25],

Multiflow estimator [18] and LDA [8]. Because of their

relevance, we have already described them in great detail and

compared them with our approach.

VIII. CONCLUSION

Many new applications such as algorithmic trading and

data center applications demand low end-to-end latency in

the order of microseconds. We propose a scalable architec-

ture called RLI for obtaining per-flow latency measurements

across interfaces within routers. Our architecture is based on

14

two key ideas. First, packets within a given burst encounter

similar queueing and other behavior and hence, exhibiting

similar delays. Thus, we inject periodic reference packets at

the sender with a timestamp that the receiver can use as

a reference latency sample. Second, the delay experienced

by packets that arrive between two reference packets can

be approximated by linearly interpolating the delays of the

two reference packets. Using simulations on packet traces,

we find that RLI achieves a median relative error of 10-12%

(§V-B), and one to two orders of magnitude lower relative

error compared to previous solutions for per-flow latency

measurements (§V-C). For aggregate latency measurements,

we observe that RLI obtains a comparable accuracy of LDA

(§V-C). Another big win for RLI comes from the fact that

measurements are obtained directly at the receiver without the

need for sender-side packet timestamps for all the regular data

packets, in contrast to solutions that require correlating large

numbers of packet timestamps collected from multiple points.

Our architecture is simple to implement and is cost effective

making it practical for ubiquitous deployment. We believe

that it offers a compelling alternative to high-end expensive

monitoring boxes for network operators.

REFERENCES

[1] “Hp expands high-performance computing offering with infini-
band solutions from cisco,” http://www.hp.com/hpinfo/newsroom/press/
2007/070524xa.html.

[2] INCITS, “Fibre channel backbone-5 (FC-BB-5),” Oct. 2008, ver. 1.03.
[3] R. Martin, “Wall street’s quest to process data at the speed of light,”

http://www.informationweek.com/news/infrastructure/showArticle.jhtml
?articleID=199200297.

[4] Arista Networks, Inc., “7100 series datasheet,”
http://www.aristanetworks.com, 2008.

[5] Woven Systems, Inc., “EFX switch series overview,”
http://www.wovensystems.com.

[6] Y. Chen, D. Bindel, H. Song, and R. H. Katz, “An Algebraic Approach
to Practical and Scalable Overlay Network Monitoring,” in ACM SIG-

COMM, 2004.
[7] N. Duffield, “Simple network performance tomography,” in

ACM/USENIX IMC, 2003.
[8] R. R. Kompella, K. Levchenko, A. C. Snoeren, and G. Varghese, “Ev-

ery MicroSecond Counts: Tracking Fine-grain Latencies Using Lossy
Difference Aggregator,” in ACM SIGCOMM, 2009.

[9] “Next-generation routers: A comprehensive product analysis,” http://
www.heavyreading.com/details.asp?sku id=662&skuitem itemid=673
&promo code=&aff code=&next url=%2Fdefault.asp%3F.

[10] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center TCP (DCTCP),” in
ACM SIGCOMM, 2010.

[11] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen,
G. R. Ganger, G. A. Gibson, and B. Mueller, “Safe and effective fine-
grained TCP retransmissions for datacenter communication,” in ACM

SIGCOMM, 2009.
[12] “Cisco trading floor architecture,” http://www.ciscocapital.info/en/US/

docs/solutions/Verticals/Trading Floor Architecture-E.html.
[13] J. Sommers, P. Barford, N. Duffield, and A. Ron, “Improving accuracy

in end-to-end packet loss measurement,” in ACM SIGCOMM, 2005.
[14] C. Shannon, E. Aben, kc claffy, and D. E. Andersen, “CAIDA

Anonymized 2008 Internet Traces Dataset (collection).”
[15] V. Paxson and S. Floyd, “Wide-area traffic: The failure of poisson

modeling,” IEEE/ACM Transactions on Networking, 1995.
[16] K. Park and W. Willinger, Self-Similar Network Traffic and Performance

Evaluation, 1st ed. John Wiley & Sons, Inc., 2000.
[17] S. Uhlig, “Non-stationarity and high-order scaling in tcp flow arrivals:

a methodological analysis,” ACM Computer Communication Review,
vol. 34, pp. 9–24, 2004.

[18] M. Lee, N. Duffield, and R. R. Kompella, “Two Samples are Enough:
Opportunistic Flow-level latency estimation using Netflow,” in IEEE

Infocom, 2010.

[19] B. Choi, S. Moon, Z.-L. Zhang, K. Papagiannaki, and C. Diot, “Analysis
of point-to-point packet delay in an operational network,” in IEEE

INFOCOM, 2004.
[20] J. Eidson and K. Lee, “IEEE 1588 standard for a precision clock syn-

chronization protocol for networked measurement and control systems,”
in Sensors for Industry Conference, 2002. 2nd ISA/IEEE, 2002.

[21] V. Paxson, “End-to-end internet packet dynamics,” in ACM SIGCOMM,
1997.

[22] J. Copas, “Regression, prediction and shrinkage,” Journal of the Royal

Statistical Society. Series B (Methodological), vol. 45, no. 2, pp. 311–
354, 1983.

[23] “YAF: Yet Another Flowmeter,” http://tools.netsa.cert.org/yaf/.
[24] S. Floyd and V. Jacobson, “Random Early Detection Gateways for

Congestion Avoidance,” IEEE/ACM Transactions on Networking, 1993.
[25] N. G. Duffield and M. Grossglauser, “Trajectory sampling for direct

traffic observation,” in IEEE/ACM Transactions on Networking, 2000.
[26] C. Estan and G. Varghese, “New directions in traffic measurement and

accounting,” in ACM SIGCOMM, 2002.
[27] S. Ramabhadran and G. Varghese, “Efficient implementation of a

statistics counter architecture,” in ACM SIGMETRICS, 2003.
[28] S. Iyer, R. R. Kompella, and N. McKeown, “Designing Buffers for

Router Line Cards,” IEEE/ACM Transactions on Networking (ToN),
vol. 16, no. 3, 2008.

[29] L. Yuan, C.-N. Chuah, and P. Mohapatra, “ProgME: towards pro-
grammable network measurement,” in ACM SIGCOMM, 2007.

[30] Y. Zhao, Y. Chen, and D. Bindel, “Towards unbiased end-to-end network
diagnosis,” in ACM SIGCOMM, 2006.

[31] J. Sommers, P. Barford, N. Duffield, and A. Ron, “Accurate and efficient
SLA compliance monitoring,” in ACM SIGCOMM, 2007.

[32] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a Better
NetFlow,” in ACM SIGCOMM, 2004.

[33] R. R. Kompella and C. Estan, “The power of slicing in internet flow
measurement,” in ACM/USENIX IMC, 2005.

[34] K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, F. Tobagi, and C. Diot,
“Analaysis of measured single-hop delay from an operational backbone
network,” IEEE JSAC, vol. 21, no. 6, 2003.

[35] N. Hohn, D. Veitch, K. Papagiannaki, and C. Diot, “Bridging router
performance and queuing theory,” in ACM SIGMETRICS, 2004.

Myungjin Lee (M’12) is currently an Assistant
Professor and Chancellor’s Fellow in the School
of Informatics at the University of Edinburgh. He
received his Ph.D. degree from Purdue University
in 2012, M.S. from KAIST in 2002, and B.E. from
Kyungpook National University, Korea in 2000. His
major research focuses on scalable measurement ar-
chitectures and algorithms for data center networks,
scheduling resources in cloud networks, and net-
worked application monitoring and characterization.

Nick Duffield (M’97, SM’01, F’05) received the
Ph.D. degree from the University of London, Lon-
don, U.K., in 1987. He is a Distinguished Member of
Technical Staff and an AT&T Fellow in the Internet
and Network Systems Research Center, AT&T Labs-
Research, Florham Park, NJ, where he has been
since 1995. He previously held post-doctoral and
faculty positions in Dublin, Ireland, and Heidelberg,
Germany. He is a co-inventor of the Smart Sampling
technologies that lie at the heart of AT&Ts scal-
able Traffic Analysis Service. His current research

focuses on measurement and inference of network traffic. Dr. Duffield was
Charter Chair of the IETF working group on Packet Sampling. He is an
Associate Editor for the IEEE/ACM TRANSACTIONS ON NETWORKING.

Ramana Rao Kompella (M’07, ACM M’07) is
currently an Assistant Professor in the Department of
Computer Sciences at Purdue University. His main
research interests include fault-management in IP
networks, scalable algorithms and architectures for
high speed switches and routers, and scheduling in
wireless networks. He received his Ph.D degree from
UCSD in 2007, M.S from Stanford University in
2001, and B.Tech degree from IIT Bombay in 1999.

