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Connectivity in Interdependent Networks
Jianan Zhang, and Eytan Modiano

Abstract—We propose and analyze a graph model to study
the connectivity of interdependent networks. Two interdependent
networks of arbitrary topologies are modeled as two graphs,
where every node in one graph is supported by supply nodes
in the other graph, and a node fails if all of its supply nodes
fail. Such interdependence arises in cyber-physical systems and
layered network architectures.

We study the supply node connectivity of a network: namely,
the minimum number of supply node removals that would
disconnect the network. We develop algorithms to evaluate the
supply node connectivity given arbitrary network topologies and
interdependence between two networks. Moreover, we develop
interdependence assignment algorithms that maximize the supply
node connectivity. We prove that a random assignment algorithm
yields a supply node connectivity within a constant factor from
the optimal for most networks.

I. INTRODUCTION

The development of smart cities and cyber-physical systems

has brought interdependence between once isolated networks

and systems. In interdependent networks, one network depends

on another to achieve its full functionality. Examples include

smart power grids [1], [2], transportation networks [3], [4],

and layered communication networks [5], [6]. Failures in

one network not only affect the network itself, but also may

cascade to another network that depends on it. For example, in

the Italy blackout in 2003, an initial failure in the power grid

led to reduced functionality of the communication network,

which led to further failures in the power grid due to loss of

communication and control [1], [7]. Thus, the robustness of a

network relies on both its own topology and the interdepen-

dence between different networks.

Interdependent networks have been extensively studied in

the statistical physics literature based on random graph models

since the seminal work of [7]. Nodes in two random graphs

are interdependent, and a node is functional if both itself

and its interdependent node are in the largest component of

their respective graphs. If a positive fraction of nodes are

functional as the total number of nodes approaches infinity,

the interdependent random graphs percolate. The condition

for percolation measures the robustness of the interdependent

networks. While these models are analytically tractable, per-

colation may not be a key indicator for the functionality of

infrastructure networks. For example, a network would lose

most of its functionality when a large fraction of nodes are

removed, while the graph still percolates.

A few models have been proposed for specific applications

to capture the dependence between networks, such as interde-

pendent power grids and communication networks [2], [8], and
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IP-over-WDM networks [6], [9]. These models consider finite

size, arbitrary network topology, and incorporate dynamics

in real-world networks. Instead of percolation, more realistic

metrics are used to capture the robustness of interdependent

networks, such as the amount of satisfied power demand, or

traffic demand. These models are able to capture important

performance metrics in real-world networks, at the cost of

more complicated modeling and analysis.

We develop an analytically tractable model for interdepen-

dent networks which aims to capture key robustness metrics

for infrastructure networks. In contrast to the random graph

models where some assumptions are difficult to justify in

infrastructure networks (e.g., very large network size and

randomly placed links), we use a deterministic graph model to

represent each network, where nodes and edges are specified

by the topology of an infrastructure network. We develop met-

rics that measure the robustness of interdependent networks,

by generalizing canonical metrics for the robustness of a single

network. Moreover, our model is simple enough to allow for

the evaluation of the robustness of interdependent networks,

and allows us to obtain insights and principles for designing

robust interdependent networks.

A. Related work

A closely related model is the shared risk group model [10],

[11], [12], [6], where a set of edges or nodes share the same

risk and can be removed by a single failure event. The model

is used to study the robustness in layered communication

networks such as IP-over-WDM networks. In interdependent

networks, multiple demand nodes in one network may depend

on the same node in another network, and they share the same

risk (of the supply node’s failure). Suppose that a demand

node has multiple supply nodes, and is content to have at

least one supply node. The interdependent networks can be

viewed as a generalized shared risk group model, given that

the occurrences of multiple risks, instead of one single risk,

are required to remove a node in the interdependent networks.

The shared risk group model can be represented by a colored

graph (or labeled graph), in which edges or nodes that share

the same risk have the same color (or label) [12], [13], [14].

Complexity results and approximation algorithms have been

developed to compute the minimum number of colors that

appear in an edge cut that disconnects a colored graph [12],

[15]. In interdependent networks, we study node failures due

to the removals of their supply nodes. Thus, our focus is on

the node cut in a colored graph with colored nodes and regular

edges. While most results for edge cuts that separate a pre-

specified source-destination pair (i.e., st edge cuts) can be

naturally extended to st node cuts, the extension is not obvious

when the global edge or node cuts of a graph are considered.

http://arxiv.org/abs/1709.03034v2
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Although it is possible to transform a node cut problem in an

undirected graph into an edge cut problem in a directed graph,

the nature and analysis of the problem in a directed graph are

different from the problem in an undirected graph, when global

cuts are considered [16], [17]. Thus, new techniques need to

be developed in this paper to study the global node cuts in a

colored graph.

While most studies on the shared risk group model have

focused on the evaluation of robustness metrics of a given

network, there have also been previous works that take a

network design approach to optimize the metrics. For example,

in optical networks, where two logical links share the same risk

if they are supported by the same physical link, [6], [9] devel-

oped lightpath routing algorithms that maximize the number of

physical link failures that a given logical topology can tolerate.

In this paper, we study the interdependence assignment that

maximizes the number of supply node failures that a network

can tolerate (to stay connected). Instead of solving difficult

integer programs as in most network design literature, we

apply graph algorithms, e.g., the vertex sampling and graph

partitioning techniques [18], [19], to develop polynomial time

algorithms that have provable performance guarantees. The

vertex sampling techniques provide bounds on the probability

that the graph is connected after random node removals. We

build connections between the node removals in a single graph

and the node failures in interdependent networks, and study

the connectivity of interdependent networks.

B. Our contributions

We propose an analytically tractable model for two interde-

pendent networks, and study the impacts of node failures in

one network on the other network. We add a minimal ingre-

dient to the classical graph model to capture interdependence,

and define supply node connectivity as a robustness metric

for our model, analogous to the widely accepted cut metric

(node connectivity) for the classical graph model. We prove

the complexity, and develop integer programs to evaluate the

supply node connectivity, both for a given pair of nodes and

for the entire network. Moreover, we propose a polynomial

time algorithm that computes the supply node connectivity

for a special class of problems, based on which we develop

an approximation algorithm for the general problem.

In addition, we study the network design problem of im-

proving the robustness of interdependent networks by assign-

ing interdependence between two networks. We propose a

simple assignment algorithm that maximizes the supply node

connectivity of an st pair, by assigning node-disjoint paths

with different supply nodes while allowing nodes in the same

path to have the same supply node. Based on a similar idea

and considering disjoint connected dominating sets, we de-

velop an assignment algorithm that approximates the optimal

global supply node connectivity to within a polylogarithmic

factor. Finally, we propose a random assignment algorithm

under which, with high probability, the global supply node

connectivity is within a constant factor from the optimal in

most cases, and at worst is within a logarithmic factor from

the optimal.

The rest of the paper is organized as follows. In Section II,

we develop a one-way dependence model, where a demand

network depends on a supply network. This allows us to

deliver key results and intuitions for studying the impacts of

node failures in one network on its interdependent network,

using simplified notations and presentations. We study this

one-way dependence model in Sections III and IV. In Section

III, we evaluate the supply node connectivity of the demand

network. In Section IV, we develop algorithms, which assign

supply nodes to demand nodes, to maximize the supply node

connectivity. In Section V, we focus on the bidirectional in-

terdependence model and generalize the above results. Section

VI provides simulation results. Finally, Section VII concludes

the paper.

II. ONE-WAY DEPENDENT NETWORK MODEL AND

COLORED GRAPH REPRESENTATION

A. One-way dependence model

We start by considering a one-way dependence model,

where nodes in a demand network depend on nodes in a

supply network. This simplified model allows us to focus on

the impacts of node failures in one network on the other net-

work. Let two undirected graphs G1(V1, E1) and G2(V2, E2)
represent the topologies of the demand and supply networks,

respectively. Each node in the demand network depends on

one or more nodes in the supply network. The dependence is

represented by the directed edges in Fig. 1. Every supply node

provides substitutional supply to the demand nodes. A demand

node is functional if it is adjacent to at least one supply node.

Figure 1 illustrates the failure of a demand node due to the

removals of its supply nodes.

As a more concrete example, we use G1 to represent a

communication network and G2 to represent a power grid.

Each node in G1 represents a router, and each node in G2

represents a power station. A router receives power from one

or more power stations, and fails if all of the supporting power

stations fail.

3

Fig. 1. Demand node 3 fails if both supply nodes 1 and 2 fail.

We aim to characterize the impacts of node removals in the

supply network on the connectivity of the demand network.

Recall that (see, e.g. [20]), in a single graph, a node cut (i.e.,

vertex cut) is a set of nodes whose removals either disconnect

the graph into more than one connected component, or make

the remaining graph trivial (where a single node remains).

The node connectivity of a graph is the number of nodes

in the smallest node cut. In the one-way dependence model,

the connectivity of the demand network depends not only



3

on its topology G1(V1, E1), but also on the supply-demand

relationship. We define the supply node cut and supply node

connectivity of the demand network as follows.

Definition 1. A supply node cut of the demand graph is a

set of supply nodes whose removals induce a node cut in the

demand graph. (Mathematically, a supply node cut of G1 is a

set of nodes Vs ⊆ G2, such that nodes Vd ⊆ G1 do not have

any supply nodes other than Vs, and that Vd contain a node

cut of G1.)

The supply node connectivity is the number of nodes in the

smallest supply node cut.

The above definition is a generalization of the traditional

node cut to include a superset of a cut. This is necessary

because the removals of supply nodes may not correspond

to proper cuts of the demand graph (see Fig. 2). Under this

definition, graphs with larger supply node connectivity are

more robust under supply node failures.

Remark. In Fig. 2, suppose that every node has a single

supply node, and that the red nodes share the same supply

node u ∈ G2. By removing u, the left graph stays connected

after removing all the three red nodes, while the right graph

is disconnected. However, the left graph is less robust under

the removal of supply node u, because the failed nodes in

the left graph include all the failed nodes in the right graph.

Thus, “graph connectivity after supply node removals” does

not serve as a good measure for the robustness of the demand

graph when supply nodes fail. This motivates our definition of

supply node cut and supply node connectivity. According to

our definition, the supply node connectivity of the left graph

is one.

Fig. 2. Let the three red nodes in the left figure be supported by the same
supply node. Removing the supply node leads to the failure of the three red
nodes, which do not form a proper cut but form a superset of a proper cut
(i.e., the red node in the right figure). The supply node is viewed as a supply
node cut.

We study the connectivity of a source-destination pair

(s, t) ∈ G1 as a starting point, which provides insights towards

the graph connectivity with simpler analysis. In a graph, an st
node cut is a set of nodes, excluding s and t, whose removals

disconnect s from t. The number of nodes in the smallest

st node cut is the st node connectivity. Analogously, we define

st supply node cut and st supply node connectivity as follows.

Definition 2. An st supply node cut is a set of supply nodes

whose removals induce an st node cut. (Mathematically, an

st supply node cut is a set of nodes V st
s ⊆ G2, such that

nodes V st
d ⊆ G1 do not have any supply nodes other than

V st
s , and that V st

d contain an st node cut.)

The st supply node connectivity is the number of nodes in

the smallest st supply node cut.

An st supply node cut may induce demand node failures

V st
d including s and/or t, since s, t may share the same supply

nodes with nodes in the st node cut. However, removing V st
d \

{s, t} must disconnect s from t.

We consider non-adjacent s and t throughout the paper.

Otherwise, if s and t are adjacent, they are always connected

when other nodes are removed, and there is no node cut that

disconnects them.

B. Transformation to a colored graph

Our model is closely related to the shared risk node group

(SRNG) model [12], [21]. In the SRNG model, several nodes

share the same risk, and can be removed by a single failure

event. In interdependent networks, if every node has one

supply node, then the demand graph becomes exactly the same

as the SRNG model, where the demand nodes that have the

same supply node share the same risk.

The SRNG model can be represented by a colored graph,

where the nodes that have the same color share a common risk.

We define1 color node cut and st color node cut as follows.

Definition 3. Given a colored graph G(V,E, C) with colored

nodes V , regular edges E, and node-color pairs C that rep-

resent the color for each node, a color node cut is a set of

colors Cc such that the nodes covered by colors Cc contain a

node cut of G.

A minimum color node cut of G is a color node cut Ccmin

that has the minimum number of colors. The number of colors

in Ccmin is the value of the minimum color node cut.

Definition 4. Given a colored graph G(V,E, C) with colored

nodes V , regular edges E, node-color pairs C that represent

the color for each node, and a pair of nodes (s, t) ∈ V , a color

st node cut is a set of colors Cst
c such that the nodes covered

by colors Cst
c contain an st node cut.

A minimum color st node cut is a color st node cut Cst
cmin

that has the minimum number of colors. The number of colors

in Cst
cmin is the value of the minimum color st node cut.

Colored graph provides an intuitive representation of the

correlated node failures using color. If every demand node has

a single supply node, then every demand node has a color that

corresponds to its supply node. After the failure of a supply

node, a demand node fails if it has the color that corresponds

to the supply node.

In general, a demand node can have multiple supply nodes,

and thus the mapping to a colored graph is not straightforward.

We propose Algorithm 1 that transforms the demand network

to a colored graph where every node has a single color, and

use Fig. 3 to illustrate the algorithm.

We study the connectivity of the demand graph based on

the colored graph, due to the following theorem.

1Previous studies on colored graphs focused on color edge cuts in colored
graphs with colored edges and regular nodes. Much less is known about the
color node cut, a counterpart of color edge cut, in colored graphs with colored
nodes and regular edges. In fact, to the best of our knowledge, there is no
formal definition for color node cut.
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Algorithm 1 Transformation from the demand graph G1 to a

colored graph G̃1.

1) If a node vi ∈ G1 has ns(vi) supply nodes, ns(vi) copies

of vi exist in G̃1. Each copy has a color which identifies

a supply node. No edge exists between the copies of vi.
2) If vi and vj are connected by an edge in G1, then all the

copies of vi are connected to all the copies of vj in G̃1.

1

2

3 4

1

1

2

3

4

4

3

2

Fig. 3. Illustration of the transformation algorithm.

Theorem 1. There is a one-to-one mapping between a supply

node cut in the demand network and a color node cut in the

transformed graph of the demand network.

Proof. Let G1 be the demand graph and G2 be the supply

graph. Let G̃1 be the transformed graph of G1 by Algorithm

1. The result trivially holds if every demand node has a single

supply node. Next we focus on the case where a demand node

has more than one supply node.

We first prove that given any supply node cut Vs of G1, there

exists a color node cut Cc of G̃1 where colors Cc correspond to

supply nodes Vs. According to the definition of a supply node

cut, the demand nodes in G1 that have no supply nodes other

than Vs contain a node cut V ∗

d of G1. By removing V ∗

d from

G1, either G1 is separated into at least two components, or a

single node v in G1 remains (by the definition of a node cut

for a graph). In the first case, nodes in G̃1 that correspond to

V ∗

d ⊆ G1 have colors in Cc and they are removed. Among the

remaining nodes, if no edge exists between two nodes in G1,

then there is no edge between their corresponding nodes in G̃1.

Therefore, the remaining nodes in G̃1 are disconnected after

removing the nodes that correspond to V ∗

d and have colors Cc.

In the second case, copies of v are the only remaining nodes

in G̃1 and they are disconnected. Thus, Cc is a color node cut

in G̃1 in both cases.

We then prove that given any color node cut Cc of G̃1, there

exists a supply node cut Vs of G1 where Vs corresponds to

colors Cc. After removing all (or a subset) of nodes in G̃1

that have colors Cc, either a single node remains in G̃1, or G̃1

is separated into multiple connected components. In the first

case, at most a single node remains in G1 after removing Vs,

and thus Vs is a supply node cut. In the second case, if every

component contains a single node, and the node corresponds

to the same node in G1, then at most one node survives in

G1 by removing supply nodes Vs. On the other hand, if these

components correspond to different nodes in G1, there must

exist two disconnected nodes v1, v2 ∈ G1, whose copies are

in different components in G̃1. (Recall that, if two nodes are

connected in G1, then their copies are connected in G̃1. If

all the remaining nodes in G1 form a connected component,

then their corresponding copies in G̃1 also form a connected

component.) In both cases, Vs is a supply node cut of G1.

Moreover, an st supply node cut can be represented by a

color s̃t̃ node cut in the colored graph, where s̃ is any copy

of s and t̃ is any copy of t. By considering cuts that separate

(s, t) in G1 and cuts that separate (s̃, t̃) in G̃1, we obtain the

following result by a similar proof to that of Theorem 1.

Corollary 1. There is a one-to-one mapping between a supply

node st cut in the demand network and a color s̃t̃ node cut

in the transformed graph of the demand network, where s̃ is

any copy of s and t̃ is any copy of t.

Another corollary is a property of the transformed graph

G̃1 when every demand node in G1 has a fixed number

ns of supply nodes. If G1 has n1 nodes and m1 edges,

the transformed graph G̃1 has n1ns nodes and m1n
2
s edges.

Moreover,

Corollary 2. If every demand node has a fixed number ns of

supply nodes, the following results hold.

If the node connectivity of G1 is k1, then the node connec-

tivity of G̃1 is k1ns.

If the st node connectivity is kst1 (s, t ∈ G1), then the s̃t̃
node connectivity is kst1 ns, where s̃ ∈ G̃1 is any copy of s
and t̃ ∈ G̃1 is any copy of t.

Proof. By assigning ns distinct supply nodes to each node in

G1, using a total of n1ns supply nodes, to remove a node

in G1, a distinct set of ns supply nodes must be removed.

Thus, the supply node connectivity of G1 equals the node

connectivity of G1 times ns. Moreover, in G̃1, every node has

a distinct color, and the number of colors in a color node cut

equals the number of nodes in the same node cut. Thus, the

node connectivity of G̃1, without considering colors, equals

the supply node connectivity of G1, because of the one-to-

one mapping proved in Theorem 1. We have therefore proved

that the node connectivity of G̃1 is the node connectivity of G1

times ns. The same relationship holds for st node connectivity

in G1 and s̃t̃ node connectivity in G̃1.

C. Notations

We define notations to be used throughout the rest of the

paper. For a finite set X , the cardinality of X is denoted by

|X |. For a colored graph G(V,E, C), the number of nodes,

edges, and colors are denoted by n,m, nc, respectively. The

graph connectivity is denoted by k, and the st connectivity is

denoted by kst. The subscript i ∈ {1, 2} denotes the identity

of a graph. For example, n1 denotes the number of nodes in

G1. The subscript s denotes supply. For example, ns1 denotes

the number of supply nodes for a node in G1.

We use asymptotic notations in this paper. Let f(x) > 0 and

g(x) > 0 be two functions. If there exists a constant M and a

positive number x0, such that f(x) ≤ Mg(x) for all x ≥ x0,

then f(x) = O(g(x)). Moreover, f(x) = Ω(g(x)) if g(x) =
O(f(x)); f(x) = Θ(g(x)) if both f(x) = O(g(x)) and

f(x) = Ω(g(x)); f(x) = o(g(x)) if limx→∞ f(x)/g(x) = 0;

f(x) = ω(g(x)) if g(x) = o(f(x)).
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III. EVALUATION OF THE SUPPLY NODE CONNECTIVITY

In this section, we study the supply node connectivity of

the demand network. As discussed in the previous section,

supply node cuts in the demand network are equivalent to color

node cuts in a colored graph. To simplify the presentation, we

consider a colored graph G(V,E, C) throughout this section.

A. Complexity

We prove that computing both the global minimum color

node cut of a graph and the minimum color st node cut are

NP-hard. The proof for the complexity of the minimum color

st node cut follows a similar approach to that of the minimum

color st edge cut in [12]. In contrast, the complexity of the

global minimum color edge cut is unknown. The detailed

proofs of Theorems 2 and 3 can be found in the appendix.

Theorem 2. Given a colored graph, computing the value of

the global minimum color node cut is NP-hard.

Theorem 3. Given a colored graph and a pair of nodes (s, t),
computing the value of the minimum color st node cut is NP-

hard.

Given the computational complexity, in the remainder of

this section, we first develop integer programs to compute the

exact values of the minimum color cuts, and then develop

polynomial time approximation algorithms.

B. Exact computation for arbitrary colored graphs

We compute the minimum color st node cut using a

mixed integer linear program (MILP). In this formulation,

each node has a potential. Connected nodes have the same

potential. The source and the destination are disconnected

if they have different potentials. We note that the classical

MILP formulation for computing the minimum edge cut also

uses node potentials to indicate disconnected components after

removing edges [22].

In the MILP formulation, indicator variable cr denotes

whether color r ∈ C is in the minimum color cut, where

C is the set of colors in the colored graph. Indicator variable

yv denotes whether node v ∈ V is a cut node that separates

the st pair, and may take value 1 only if the color of v is in

the color cut. Note that yv may take value 0 even if the color

of v is in the color cut (constraint (4)). This allows the cut

nodes to be a subset of nodes with colors {r|cr = 1} (recall

Definition 4).

The potential of a node v is denoted by pv. After removing

all the cut nodes, the potentials of nodes in a connected

component are the same, guaranteed by constraints (1) under

the condition yi = yj = 0. The same constraints guarantee that

nodes adjacent to the cut nodes may have different potentials

from the cut nodes, if yi = 1 or yj = 1. The potential of the

source is 0, and the potential of the destination is 1, guaranteed

by constraint (2). Moreover, constraint (3) guarantees that

neither s nor t is a cut node. Thus, the component that contains

s and the component that contains t are separated by an

st node cut. The objective is to minimize the number of colors

of the cut nodes.

min
∑

r∈C

cr (MILP)

s.t. −yi − yj ≤ pi − pj ≤ yi + yj , ∀(i, j) ∈ E, (1)

ps = 0, pt = 1, (2)

ys = yt = 0, (3)

yv ≤ cr, ∀r ∈ C, v ∈ {v|r is the color of v}, (4)

pv, yv ≥ 0, ∀v ∈ V,

cr ∈ {0, 1}, ∀r ∈ C.

Next we compute the global minimum color node cut of

a colored graph using an integer program (IP). The variables

c, y, p have the same representations as those in the above

MILP. Recall that a global node cut of a graph either separates

the remaining nodes into disconnected components, or makes

the remaining graph trivial. In the first case, z = 0, and

constraint (6) guarantees that there is at least one node with

potential 1, in addition to all the cut nodes. Constraints (5)

guarantee that all the cut nodes have potential 1. Constraint (7)

guarantees that there is at least one node that has potential 0.

The existence of both potential 0 nodes and potential 1 nodes,

excluding the cut nodes, implies that the remaining graph is

disconnected. In the second case, z = 1, and the number of

cut nodes is at least |V | − 1, guaranteed by constraint (8).

Given that M is sufficiently large (e.g., M = 2|V |), if z = 0,

constraint (8) is satisfied; if z = 1, constraints (6) and (7) are

satisfied. Thus, a node cut that satisfies either condition is a

feasible solution of the following IP.

min
∑

r∈C

cr (IP)

s.t. −yi − yj ≤ pi − pj ≤ yi + yj , ∀(i, j) ∈ E,

pv ≥ yv, ∀v ∈ V, (5)
∑

v∈V

pv −
∑

v∈V

yv − 1 ≥ −Mz, (6)

∑

v∈V

pv − |V |+ 1 ≤ Mz, (7)

∑

v∈V

yv − |V |+ 1 ≥ −M(1− z), (8)

yv ≤ cr, ∀r ∈ C, v ∈ {v|r is the color of v},

cr, pv, yv, z ∈ {0, 1}, ∀v ∈ V, ∀r ∈ C.

C. A polynomially solvable case and an approximation algo-

rithm

Although computing the minimum color node cut is NP-

hard in general, there are special instances for which the

value can be computed in polynomial time. Let Vi denote

the nodes in G that have color i. The induced graph of Vi,

denoted by G[Vi], consists of Vi and edges of G that have

both ends in Vi. We prove that if G[Vi] is connected for all

i, then the minimum color node cuts can be computed in

polynomial time. It is worth noting that these special instances

are reasonable representations for real-world interdependent
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networks, where a supply node is likely to support multiple

directly connected nearby demand nodes.

Algorithm 2 computes the minimum color st node cut in G
where G[Vi] is connected ∀i, for any non-adjacent (s, t) pair.

Algorithm 2 Computation of the minimum color st node cut

in G where G[Vi] is connected ∀i.

1) Construct a new graph G′ from G as follows. Con-

tract the nodes Vi, which have the same color i, into

a single node ui. Connect ui and uj if and only if

there is at least one edge between Vi and Vj . Con-

nect s′ to {ui|s is connected to Vi}, and connect t′ to

{ui|t is connected to Vi}.

2) Compute the minimum s′t′ node cut in G′, in which every

node has a distinct color. The minimum color st node cut

in G is given by the colors of the s′t′ cut nodes in G′.

The following lemma proves the correctness of Algorithm 2.

Lemma 1. The s′t′ node connectivity in G′ equals the value of

the minimum color st node cut in G, if G[Vi] is connected, ∀i,
and (s, t) are non-adjacent.

Proof. We aim to prove that there is a one-to-one mapping

between a color st node cut in G and an s′t′ node cut in G′,

from which the result follows.

One direction is simple. Let C be the set of colors that

appear in G. For any st color node cut Cst
c in G, after

removing all (or a certain subset) of nodes with colors in Cst
c ,

there does not exist a sequence of colored nodes that connect

s and t. Two nodes ui, uj are connected in G′ only if nodes

with color i and nodes with color j are connected in G. Thus,

there does not exist a sequence of nodes with colors in C\Cst
c

that connect s′ and t′ in G′.

To prove the other direction, consider any s′t′ node cut in

G′ and denote it by V s′t′ . Let V st ⊆ G be a set of nodes with

colors in Ccolor = {i|ui ∈ V s′t′}. We aim to prove that V st is

a superset of an st node cut in G.

If V st does not contain s or t, after removing V st from G,

no edge exists between the component that contains s and the

component that contains t. To see this, note that if no edge

exists between ui and uj in G′, then no edge exists between

any color i node and any color j node in G.

If V st contains s, we need to prove that V st \ s is an

st cut in G. In Step 1 of Algorithm 2, s′ is connected to

all neighbors N(s′) := {ui|s is connected to Vi} in G′. After

removing V s′t′ , N(s′) are either removed or disconnected

from t′. Therefore, the neighbors of s in G are either removed

or disconnected from t after removing V st \ s.

The same analysis proves that if V st contains t, then V st \t
is an st cut in G. Similarly, if V st contains both s and t, then

V st \ s, t is an st cut in G. This concludes the proof that V st

is a superset of an st node cut in G.

Remark. A similar result exists in the computation of the

minimum color st edge cut under the condition that all the

edges that have the same color are connected [12]. The

difference in our problem is that the source or destination may

have the same color as the nodes in a cut. Thus, to prove that a

set of colors Cst
c is a color cut, we need to prove that removing

nodes, excluding s and t, with colors Cst
c disconnects s and

t. Thus, the proof has to take care of multiple corner cases.

To compute the global minimum color node cut of a colored

graph, it is necessary to consider two different cases, resulting

from the definition of a node cut that allows the remaining

graph to be either disconnected or reduced to a single node.

Algorithm 3 computes the exact value of the global minimum

color node cut of G where G[Vi] is connected ∀i.

Algorithm 3 Computation of the global minimum color node

cut of G where G[Vi] is connected ∀i.

1) Compute minimum color st node cut Cst
c for all non-

adjacent st pairs in G by Algorithm 2. Let C1
c denote

the minimum size Cst
c over all st pairs. (The cut C1

c is

the minimum color node cut of G that partitions G into

more than one component.)

2) Compute the minimum set of colors C2
c that cover at least

n−1 out of the n nodes in G. (I.e., if there exists a color

i that is carried by one node, then C2
c include all the

colors except color i. If there is no color that is carried

by a single node, then C2
c include all the colors.)

3) The minimum color node cut of G is given by the smaller

of C1
c and C2

c .

We remark that the global minimum color node cut of G can

not be computed by first contracting nodes that have the same

color and then computing the global minimum node cut in the

new graph, even if G[Vi] is connected ∀i. We only claim that

the minimum color st node cut in G corresponds to the s′t′

node cut in G′ obtained by Algorithm 2, and that the global

minimum color node cut of G can be computed by Algorithm

3. Note that the topology of G′ depends on the choice of s
and t (see Step 1 of Algorithm 2).

The above result can be used to develop an approximation

algorithm to compute the minimum color node cuts in an

arbitrary colored graph where the induced graph G[Vi] is not

necessarily connected. To approximate the value of the mini-

mum color st node cut, the algorithm is a slight modification

of Algorithm 2. Instead of contracting G[Vi] into a single node,

in the new algorithm, each connected component of G[Vi] is

contracted into a single node. Let the new graph be G′′, and

connect s′′, t′′ to the nodes contracted by the components in

G that are connected to s, t, respectively. The performance of

the algorithm is given by Lemma 2.

Lemma 2. The s′′t′′ node connectivity in G′′ is at most q
times the value of the minimum color st node cut in G, where

q is the maximum number of components of G[Vi], ∀i.

Proof. Given that the induced graph G[Vi] has at most q
components, after contracting each component into a node

with color i, the number of nodes with color i in G′′ is at

most q. Let Cst
c denote a color node cut in G. By a similar

reasoning as the proof of Lemma 1, removing nodes with

colors Cst
c disconnects s′′ from t′′ in G′′. Let cstmin denote

the value of the minimum color st node cut Cst
cmin in G. The
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number of nodes in G′′ with colors Cst
cmin is at most cstminq.

Moreover, cstminq is no smaller than the s′′t′′ node connectivity

ks
′′t′′ . Equivalently, cstmin is at least ks

′′t′′/q.

The global minimum color node cut of G can be approxi-

mated to within factor q, by approximating the minimum color

st cuts for all non-adjacent st pairs and taking the minimum

size cut, and continuing Steps 2 and 3 of Algorithm 3. We

conclude this section by summarizing the performance of the

approximation algorithms.

Theorem 4. Given a colored graph G(V,E, C), let Vi be

the set of nodes that have color i. If there are at most q
components in the induced graph G[Vi], ∀i, then the values

of the minimum color st node cut and the global minimum

color node cut can be approximated to within factor q in

O(|V |0.5|E|+ |V |2) and O(|V |2.5|E|) time, respectively. Note

that if q = 1 the exact solutions are obtained.

Proof. The fact that the minimum color st node cut can be

approximated to within factor q follows from Lemma 2. The

contraction of connected nodes that have the same color takes

O(|V |2) time, by updating the adjacency matrix representation

of G. Adding s′′ and t′′ to G′′ takes O(|V |) time, by increasing

the numbers of rows and columns of the adjacency matrix by

two and adding the new connections. Computing the minimum

node s′′t′′ cut in G′′ takes O(|V |0.5|E|) time [20]. The total

time of approximating the minimum color st node cut is

O(|V |0.5|E|+ |V |2).

The global minimum color node cut of G is the minimum

over 1) C1
c : the minimum color node st cut ∀st, and 2) C2

c : the

minimum number of colors that cover at least n − 1 nodes.

Since the value of the minimum color st node cut can be

approximated to within factor q, the minimum over all non-

adjacent st pairs, |C1
c |, can also be approximated to within

factor q. Moreover, the exact value of |C2
c | can be obtained

in O(|V |) time. Thus, the global minimum color node cut of

G can be approximated to within factor q. The number of

non-adjacent st pairs is at most |V |2/2. The contraction of

nodes with the same color can be computed once and reused.

Computing the connections between s′′, t′′ and the contracted

nodes takes O(|V |) time for each (s′′, t′′) pair. Computing

the minimum node s′′t′′ cut in G′′ takes O(|V |0.5|E|) time

for each (s′′, t′′) pair. Thus, the computation of |C1
c | requires

O(|V |2 + |V |0.5|E||V |2 + |V ||V |2) = O(|V |2.5|E|) time.

We remark that although there are faster algorithms to

compute the global minimum node cut (e.g., [23]), not all

the accelerations can be applied to our problem. For example,

computing (k+1)|V | pairs of minimum st node cut is enough

to obtain the global minimum node cut in a graph G, where k
is the node connectivity of G, because at least one node among

k + 1 nodes does not belong to a minimum cut and can be a

source or destination node. However, this does not hold in our

problem, where the number of nodes covered by a minimum

color node cut can be large, and the st node connectivity for

Θ(|V |2) st pairs should be evaluated.

IV. MAXIMIZING THE SUPPLY NODE CONNECTIVITY

In this section, we develop supply-demand assignment al-

gorithms to maximize the supply node connectivity of the

demand network. Given a fixed demand network topology, the

robustness of the demand network depends on the assignment

of supply nodes for each demand node. For example, if every

node in a cut depends on the same set of supply nodes, then

removing these supply nodes could disconnect the demand

network. In contrast, if different nodes in every cut depend on

different supply nodes, then a larger number of supply nodes

should be removed to disconnect the demand network.

For simplicity, in this section, we assume:

1) Every demand node has a fixed number of supply nodes,

denoted by ns.

2) Every supply node can support an arbitrary number of

demand nodes.

The total number of supply-demand pairs is n1ns, where

n1 is the number of nodes in the demand network G1. In

Section V, we study the case where the number of nodes

supported by every supply node is fixed as well, and study the

interdependence assignment that maximizes the supply node

connectivity of both G1 and G2.

The supply-demand assignment problem can be stated as

follows in the context of a colored graph. Given a graph

G(V,E) and colors C, assign a color ci ∈ C to each node,

such that the value of the minimum color node cut of G (or

the minimum color st node cut for s, t ∈ V ) is maximized.

Graph G is the transformed graph of the demand graph G1,

obtained by Algorithm 1, where each node is replicated into

ns nodes.

Under the first assumption, according to Corollary 2, the

node connectivity of G is k = k1ns, where k1 is the

node connectivity of the demand graph G1. Under any color

assignment, the minimum color node cut of G is at most k.

Moreover, the minimum color node cut of G is upper bounded

by nc, the total number of available colors (i.e., the total

number of supply nodes in G2). We aim to assign colors to

nodes in order for the value of the minimum color node cut

to be close to min(k, nc). If the value of the minimum color

node cut is min(k, nc)/α under an assignment algorithm A,

then A is an α-approximation algorithm.

A. Maximizing the st supply node connectivity by path-based

assignment

We first propose Algorithm 4 that maximizes the value of

the minimum color st node cut, which is simple but provides

insight towards maximizing the value of the global minimum

color node cut of a graph.

Algorithm 4 Path-based Color Assignment.

1) Compute the st node connectivity kst. Identify kst node-

disjoint st paths.

2) Assign the same color to all the nodes in a path. If nc ≥
kst, assign a distinct color to each path. If nc < kst,
assign a distinct color to each of nc paths, and assign an

arbitrary color to each remaining path.
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For the kst node-disjoint st paths, any pair of paths do not

share the same color if there are sufficient colors (nc ≥ kst),
by the assignment in Algorithm 4. Thus, s and t stay connected

after removing fewer than kst colors. On the other hand, if

nc < kst, there exist nc paths with distinct colors, and s
and t stay connected after removing fewer than nc colors. To

summarize, the performance of Algorithm 4 is given by the

following theorem.

Theorem 5. The value of the minimum color st node cut is

min(kst, nc) if the colors are assigned according to the Path-

based Color Assignment algorithm, where nc is the number

of colors and kst is the st node connectivity.

It is worth noting that assigning the same color to multiple

nodes in a path does not reduce the value of the minimum

color st node cut, compared with assigning a distinct color to

each node. The reason is that, a path is disconnected as long

as at least one node in the path is removed. To generalize, if a

set of nodes together form a “functional group”, it is better for

nodes in the same group to share the same risk. In contrast,

nodes in different groups should avoid sharing the same risk.

We leverage this idea to maximize the global minimum color

cut of a graph.

B. Maximizing the global supply node connectivity by CDS-

based assignment

In the remainder of this section, we consider the color

assignment that maximizes the global minimum color node

cut of a graph. It is helpful to identify the group of nodes

that support graph connectivity, analogous to nodes in a path

that support st connectivity. Indeed, nodes in a connected

dominating set (CDS) form such a group. A CDS is a set

of nodes S such that the induced graph G[S] is connected

and that every node in V either belongs to S or is adjacent

to a node in S. If none of the nodes S are removed, then the

graph stays connected regardless of the number of removed

nodes in V \ S. Namely, any subset of nodes V \ S is not a

node cut of the graph.

The natural analog of node-disjoint st paths is (node)

disjoint CDS, which support graph connectivity. The failures

of nodes in one CDS do not affect another disjoint CDS,

while a survived CDS suffices to keep the graph connected.

CDS partitions, which partition nodes of G(V,E) into multiple

disjoint CDS, have been studied in [17], [18], [19]. If the

node connectivity of G(V,E) is k and G(V,E) has n nodes,

then Ω(k/ log2 n) node-disjoint CDS can be obtained in nearly

linear time O(m polylog m), where m is the number of edges

[17], [19].

We propose Algorithm 5 that assigns colors based on CDS

partitions.

The performance of Algorithm 5 can be analyzed in a

similar approach to that of Algorithm 4. If nc ≥ kCDS, each

CDS has a distinct color, and the graph stays connected after

removing fewer than kCDS colors. If nc < kCDS, nc CDS have

distinct colors, and the graph stays connected after removing

fewer than nc colors. Therefore, the value of the minimum

color node cut is at least min(kCDS, nc). The performance of

Algorithm 5 is summarized by the following theorem.

Algorithm 5 CDS-based Color Assignment.

1) Compute the node connectivity k of G. Identify kCDS =
Ω(k/ log2 n) node-disjoint CDS using the algorithm

in [19].

2) Assign the same color to all the nodes in a CDS. If nc ≥
kCDS, assign a distinct color to each CDS. If nc < kCDS,

assign a distinct color to each of nc CDS, and assign an

arbitrary color to each remaining CDS.

Theorem 6. The value of the minimum color node cut of G is

at least min(Ω(k/ log2 n), nc) if the colors are assigned ac-

cording to the CDS-based Color Assignment algorithm, where

nc is the number of colors, n is the number of nodes, and k is

the node connectivity of G. The CDS-based Color Assignment

algorithm is an O(log2 n)-approximation algorithm.

C. Maximizing the global supply node connectivity by random

assignment

Finally, we study a Random Assignment algorithm. The

algorithm is to assign each node a color randomly with equal

probability. The intuition behind the Random Assignment

algorithm is that nodes in a small cut are unlikely to be

assigned with the same color if the number of colors is large.

Thus, removing the nodes associated with a small number of

colors is unlikely to disconnect the graph.

In fact, the Random Assignment algorithm has provably

good performance. The analysis relies on the recently studied

vertex sampling problem in [19]. We first restate a sampling

theorem in [19] as follows.

Lemma 3 (Theorem 6 in [19]). Consider a graph G in which

each node is removed independently with a given probability

1 − p. For 0 < δ < 1, if the probability that a node is

not removed satisfies p ≥ β
√

log(n/δ)/k for a sufficiently

large constant β, then the remaining graph is connected with

probability at least 1− δ, where n is the number of nodes and

k is the node connectivity of G.

This sampling theorem provides a sufficient condition for

a graph to be connected with high probability after its nodes

are randomly removed. In particular, we use the following

corollary.

Corollary 3. Given a graph G with n nodes and node

connectivity k = ω(logn), if each node is removed with up to

a constant probability 1− p < 1, then the remaining nodes in

G are connected with probability 1− δ where δ = O(ne−αk)
for some constant α.

Proof. Given that the probability p that each node remains in

G is at least a constant greater than zero, from Lemma 3 we

know that the probability δ that G is disconnected satisfies the

following equation.

k(p/β)2 = log(n/δ),

δ = ne−αk,

where α = (p/β)2 is a constant.
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Moreover, since k = ω(logn), δ = ne−αk ≤ n−1 = o(1).
The probability that the remaining nodes are connected is high.

On the other hand, if k = O(log n), β
√

log(n/δ)/k ≥
β
√

log(n)/k = Ω(1). The condition in Lemma 3 cannot

be satisfied, unless the hidden constant in k = O(log n) is

large. Thus, the probability that the graph is disconnected

after randomly removing a given fraction of nodes cannot be

bounded using this approach. For simplicity, in the following

we focus on graphs where k = ω(logn).

In a colored graph G where nodes are randomly colored

using a total of nc colors, removing nodes with colors that

belong to a given set of k′ colors is equivalent to removing

each node with probability k′/nc. The probability of removing

a node is at most a constant, by restricting k′ to be at most

(1 − ǫ)nc for a constant ǫ > 0. Thus, by Corollary 3, the

probability that G is disconnected after removing nodes with

a given set of k′ colors is small. By a union bound over
(

nc

k′

)

combinations of k′ colors, the probability punion that G is

disconnected after removing nodes with any set of k′ colors

can be bounded. If punion is small, and the remaining nodes

form a CDS with high probability (such that removing any

subset of nodes with any k′ colors does not disconnect G),

then the value of the minimum color node cut of G is at

least k′ + 1 with high probability. We next fill in the details

of the proof, and our approach closely follows the approach

of computing node connectivity after random node sampling

in [19].

Theorem 7. By assigning a color uniformly at random to each

of the n nodes of G, the value of the minimum color node cut

of G is Θ(min(k, nc)) with high probability, where nc is the

number of colors and k = ω(logn) is the node connectivity of

G. If, in addition, k = ω(nc), then the value of the minimum

color node cut of G is at least (1− ǫ)nc with high probability

for any constant ǫ > 0.

Proof. We prove the theorem under three cases: i) k = Θ(nc);
ii) k = ω(nc); and iii) k = o(nc). In all of the three cases,

k = ω(logn).

i) First we consider the case where k = Θ(nc). For

k′ ≤ (1 − ǫ)nc, where ǫ > 0 is a constant, the probability

that G is disconnected after removing the nodes covered

by a randomly selected set of k′ colors is O(ne−αk), for

a constant α (Corollary 3). The total number of k′ color

combinations among the nc colors is
(

nc

k′

)

≤ ( enc

k′
)k

′

. Thus,

by the union bound, the probability that G is disconnected

after removing nodes with any k′ colors is at most punion-1 =
O(ne−αk( enc

k′
)k

′

). Let k′ = αmin(k, nc)/(2η) ≤ (1 − ǫ)nc,

where η satisfies η = log enc

k′
= log 2ηenc

αmin(k,nc)
and is a

constant.

log punion-1 ≤ log(ne−αk(
enc

k′
)k

′

)

= logn− αk + k′ log
enc

k′

= logn− αk + αmin(k, nc)/2

≤ logn− αk/2

≤ −γ logn,

for a constant γ > 0. The last inequality follows from k =
ω(logn). Therefore, the probability that G is disconnected is

at most n−γ = o(1).

The above approach proves that with high probability,

removing nodes with any k′ colors does not disconnect G.

Before concluding that the value of the minimum color node

cut of G is at least k′, we need to prove that removing any

subset of nodes with any k′ colors does not disconnect G
(recall Definition 3 of a color node cut). A sufficient condition

is that the remaining nodes form a dominating set of G.

Since the node connectivity of G is k, the minimum

degree of a node in G is at least k. The probability that

all the neighbors of a node are removed is (k′/nc)
k. Let

k′ ≤ (1 − ǫ)nc for a constant ǫ > 0. The probability that

there is at least one node whose neighbors are all removed

can be upper bounded using the union bound

punion-2 = n(k′/nc)
k ≤ n(1− ǫ)k = o(1). (9)

The last inequality follows from k = ω(logn). With prob-

ability 1− o(1), there does not exist a node whose neighbors

are all removed. Thus, the remaining nodes form a dominating

set.

To conclude, with probability at least 1−punion-1−punion-2 =
1− o(1), the value of the minimum color node cut of G is at

least k′ = Θ(k) if k = Θ(nc) and k = ω(logn).

ii) Next we consider the case where k = ω(nc). Let k′ =
(1− ǫ)nc.

log punion-1 ≤ log(ne−αk(
enc

k′
)k

′

)

= logn− αk + k′ log
enc

k′

≤ logn− αk + 2k′ ≤ −γ logn,

for a constant γ. The last inequality holds because k′ = o(k)
(equivalently, (1 − ǫ)nc = o(k) and k = ω(nc)) and logn =
o(k) (equivalently, k = ω(logn)). The value of the minimum

color node cut of G is at least (1 − ǫ)nc with probability

1− punion-1 − punion-2 = 1− o(1).

iii) Finally we consider the case where k = o(nc). Directly

using punion-1 would incur an O(log nc) gap from the optimal

k′ (i.e., k′ = Ω(k/ lognc)), because the number of k′ out of

nc choices is large and the union bound punion-1 is too weak.

However, it is possible to reduce the number of choices, at

the cost of removing a larger number of nodes. We use the

same approach as in [19]. Partition the colors into 2k′ = o(nc)
groups. Instead of removing nodes with colors in a selected

set of k′ colors, we consider removing nodes with colors in

a selected set of k′ color groups, which consists of around

nc/2 colors. The probability that each node is removed is
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1/2. The probability that G become disconnected is still δ =
O(ne−αk). The total number of events (i.e., combinations of

k′ color groups out of 2k′ color groups) is reduced to
(

2k′

k′

)

≤

(2e)k
′

. For k′ = αk/(2 log(2e)),

log punion-3 ≤ log(ne−αk(
2ek′

k′
)k

′

)

= logn− αk + k′ log(2e)

≤ logn− αk/2 ≤ −γ logn,

for a constant γ.

Thus, the value of the minimum color node cut of G is

at least k′ = αk/(2 log(2e)) = Θ(k) with high probability

1− punion-3 − punion-2 = 1− o(1).

Theorem 7 proves that the Random Assignment algorithm

is an O(1)-approximation algorithm if k = ω(logn). If k =
O(log n), under any assignment the minimum color node cut

value is at least one, and the approximation ratio is at most

O(log n).

V. BIDIRECTIONAL INTERDEPENDENCE

In the previous sections, we considered a one-way depen-

dence model. In this section, we extend the results to a bidirec-

tional interdependence model. Let G1(V1, E1) and G2(V2, E2)
denote two interdependent networks. Interdependence edges

connect nodes between two networks, which represent their

supply-demand relationship. The key difference from the one-

way dependence model is that the interdependence edges are

bidirectional (i.e., if node v ∈ G1 depends on node u ∈ G2,

then u depends on v as well).

If a node v in G1 fails due to the failures of its supply

nodes in G2, then the failure of v does not lead to further

node failures (due to a lack of supply) in G2, because all the

nodes in G2 that depend on v have failed. Otherwise, v would

not have failed in the first place. Therefore, the evaluation of

supply node connectivity in the bidirectional interdependence

model follows the same methods as the one-way dependence

model. What remains to be developed is the interdependence

assignment that maximizes the supply node connectivity of

both networks.

We assume that there are nsi interdependence edges adja-

cent to each of the ni nodes in Gi (∀i = {1, 2}). The total

number of bidirectional interdependence edges is n1ns1 =
n2ns2. Under this assumption, a node in Gi is functional

if at least one of its adjacent nsi interdependence edges is

connected to a remaining node (i.e., a node that has not been

removed) in Gj (∀i, j = {1, 2}, i 6= j).

We now give an overview of the bidirectional interdepen-

dence assignment algorithms. To extend the CDS-based color

assignment to interdependence assignment, we aim to avoid

disjoint CDS sharing the same supply nodes as much as

possible, in both networks. Nodes in G1 are partitioned into

groups of size ns2, and nodes in G2 are partitioned into groups

of size ns1. Interdependence is assigned between each group

in G1 and each group in G2. Consider a group P1 ∈ G1, and

a corresponding group P2 ∈ G2. Every node v1 ∈ P1 depends

on all the nodes in P2, and every node v2 ∈ P2 depends on all

the nodes in P1. The key is to partition nodes in G1 and G2

into groups. The partition is obvious when the number of nodes

in each CDS in Gi is a multiple of nsj (∀i, j = {1, 2}, i 6= j),

in which case disjoint CDS do not share any supply node. See

Fig. 4 for an illustration. Otherwise, in general, disjoint CDS

may have to share some supply nodes. As we will prove later,

the supply node connectivity will be reduced by at most a half,

compared with the ideal case where disjoint CDS do not share

any supply node. The same analysis applies to the path-based

assignment that maximizes the st supply node connectivity,

and is omitted.

Fig. 4. An example of the partition of CDS nodes into groups. Every node in
G1 and G2 has ns1 = 1 and ns2 = 2 supply nodes, respectively. Each CDS
in Gi is partitioned into two groups of size nsj (i, j ∈ {1, 2}, i 6= j). In
each graph, nodes that have the same color are in the same group. Between
two graphs, nodes in groups with the same color are interdependent. The
partition achieves the optimal supply node connectivity: 2 and 4 for G1 and
G2, respectively.

A. CDS-based interdependence assignment

We develop an algorithm to partition the nodes in G1 into

groups of size ns2, and to partition the nodes in G2 into groups

of size ns1. A group of size nsj is empty if it contains no

node, is full if it contains nsj nodes, and is occupied if it

contains more than zero but fewer than nsj nodes. If |Vi|/nsj

is an integer, we aim to partition Vi into |Vi|/nsj full groups.

Otherwise, if |Vi|/nsj is not an integer, we aim to partition

Vi into ⌊|Vi|/nsj⌋ full groups and one occupied group that

contains |V ∗

i | = |Vi|−⌊|Vi|/nsj⌋nsj nodes (∀i, j ∈ {1, 2}, i 6=
j), where V ∗

i denotes the nodes in the occupied group. Since

|V1|/ns2 = |V2|/ns1 , the total number of groups are the same

in both G1 and G2.

Interdependence is assigned between nodes in two groups,

one from each graph. For each node in Vi \ V ∗

i , there are

nsi supply nodes. For each node in V ∗

i , there are |V ∗

j | < nsi

supply nodes. (Multiple interdependence edges exist between

some nodes in V ∗

i and some nodes in V ∗

j ). Given that nodes

within a group depend on the same set of supply nodes

while different groups of nodes depend on different supply

nodes, we aim to partition nodes into groups such that a large

number of groups need to be removed in order to disconnect

all the CDS. Consequently, a large number of supply nodes

need to be removed in order to disconnect all the CDS. The

partition of Vi into ⌊|Vi|/nsj⌋ full groups follows Algorithm

6. The remaining nodes (if any) form an occupied group V ∗

i

if |Vi|/nsj is not an integer.

We denote by h the number of disjoint CDS in Gi. Using

the algorithm in [19], h = Ω(ki/ log
2 ni) disjoint CDS can be

computed. If there are extra nodes in Vi that do not belong

to the h CDS, then these nodes are added to the largest CDS.
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Note that adding extra nodes to a CDS still yields a CDS, since

these nodes are adjacent to the nodes in the original CDS.

Algorithm 6 Assign nodes Vi into ⌊|Vi|/nsj⌋ full groups of

size nsj .

1) Sort the h disjoint CDS in the ascending order of their

sizes. Denote the nodes in the l-th CDS in Gi by N l,

l = 1, 2, . . . , h.

2) For l from 1 to h, start with an empty group if available,

and assign nodes from N l into the group. Repeat until

all nodes are assigned. If there are not enough empty

groups, assign the rest nodes into occupied groups until

these groups become full.

3) The algorithm terminates when the ⌊|Vi|/nsj⌋ groups

become full.

The following example illustrates Step 2 of the algorithm.

Before assigning N l, there are enough empty groups if

the number of empty groups is at least ⌈|N l|/nsj⌉. Nodes

N l are assigned to ⌊|N l|/nsj⌋ groups, which then become

full. If |N l|/nsj is not an integer, the remaining |N l| −
⌊|N l|/nsj⌋nsj ≤ nsj−1 nodes are assigned to another empty

group and the group becomes occupied. On the other hand,

if there are nr < ⌈|N l|/nsj⌉ empty groups before assigning

N l, then nrnsj nodes in N l are assigned to the nr groups.

The remaining nodes in N l and nodes in N l+1, . . . , Nh are

assigned to the already occupied groups.

The algorithm is further illustrated by Fig. 5. Suppose that

G1 has 12 nodes, and has three disjoint CDS, consisting of

|N1| = 2, |N2| = 4, |N3| = 6 nodes, respectively, and that

ns2 = 3. Our goal is to assign the 12 nodes in G1 to 4 groups

of size 3. Before assigning nodes in N1, all the four groups are

empty. Thus, the two nodes in N1 can be assigned to an empty

group. After the assignment, the group becomes occupied,

illustrated by the left figure in Fig. 5. Before assigning nodes

in N2, there are three empty groups. The assignment of N2

uses two groups, one of which becomes full and the other

becomes occupied (groups 2 and 3 in Fig. 5). Finally, when

assigning N3, there is only one empty group, and thus there

are not enough empty groups to hold all the nodes in N3. The

last empty group can be assigned with 3 nodes. The remaining

3 nodes in N3 are assigned to the occupied groups (i.e., groups

1 and 3 in Fig. 5).

3 4 5

6

3 4 5

6

7 8 9

1 2 1 2 1 2 10

11 12

group 1

group 2

group 3

group 4

Fig. 5. Partition the CDS nodes {N1, N2, N3} into four groups of size
three. The left, middle, right figures represent the snapshots after assigning
nodes in N1, N2, N3 in Step 2 of Algorithm 6, respectively.

We prove that disjoint CDS are sufficiently group-disjoint,

by characterizing the number of groups that need to be

removed to disconnect all the CDS.

Lemma 4. Let Vi be assigned to groups according to Al-

gorithm 6. The minimum number of full groups that need to

be removed, in order for each CDS to contain at least one

removed node, is at least min(⌈(h− 1)/2⌉, ⌊|Vi|/nsj⌋).

Proof. Let |N l| denote the number of nodes in the l-th CDS

of Gi, ∀l ∈ {1, . . . , h}. If |N l| is a multiple of nsj , ∀l ∈
{1, . . . , h}, then nodes in N l1 are assigned to different groups

from nodes in N l2 , ∀l1, l2 ∈ {1, . . . , h}, l1 6= l2. To remove

at least one node from each of the CDS, h full groups need

to be removed. In the rest of the proof, we focus on the case

where |N l| is not a multiple of nsj for some l ∈ {1, . . . , h}.

In the first few assignments in Algorithm 6 when there are

enough empty groups, nodes in N l1 are assigned to different

groups from nodes in N l2 , ∀l1, l2 ∈ {1, . . . , kth}, l1 6= l2. In

order to disconnect all the CDS, at least one node should be

removed from each CDS. The removed nodes in CDS N l, l =
1, . . . , kth belong to at least kth distinct groups. Therefore, at

least kth groups need to be removed in order to disconnect all

the CDS. (Note that these groups become full by the end of

Algorithm 6.)

Determining kth: Consider one CDS N l (l ∈ {1, . . . , kth}).

If |N l|/nsj is not an integer, one group occupied by N l is not

full, and the group can still be assigned with rl ≤ nsj−1 extra

nodes. If |N l|/nsj is an integer, then rl = 0. The total number

of extra nodes that can be assigned into these occupied groups

is
∑kth

l=1 r
l ≤ kth(nsj − 1).

Consider the assignment when there are not enough empty

groups to hold all the nodes in N l, ∀l = kth + 1, . . . , h.

1) If |Nkth+1| ≤ nsj , then |N l| ≤ nsj , l = 1, . . . , kth.

(Recall that the CDS are sorted in the ascending order of their

sizes.) Nodes in each CDS N l belong to a single occupied

group, l = 1, . . . , kth. Moreover, since there is no empty

group available when assigning nodes in Nkth+1, all the empty

groups have been used, and kth = ⌊|Vi|/nsj⌋.

2) If |Nkth+1| ≥ nsj + 1, the number of remaining CDS is

at most

h− kth ≤ ⌊

∑kth

l=1 r
l + nsj − 1

nsj + 1
⌋+ 1

≤ ⌊
(kth + 1)(nsj − 1)

nsj + 1
⌋+ 1 ≤ kth + 1.

To see this, note that there is no empty group available when

assigning nodes in ∪h
l=kth+2N

l. Otherwise, all the nodes in

Nkth+1 would have been assigned to empty groups, which

contradicts the assumption. Let No ⊆ ∪h
l=kth+2N

l denote the

nodes that will be assigned to the occupied groups (occupied

by nodes in N l, l ∈ {1, . . . , kth}). Let N∗ ⊆ ∪h
l=kth+2N

l

denote the remaining nodes that cannot be assigned to the

⌊|Vi|/nsj⌋ groups when |Vi|/nsj is not an integer. By def-

inition, No ∪ N∗ = ∪h
l=kth+2N

l. We know that |No| is

at most
∑kth

l=1 r
l, which is the number of extra nodes that

the occupied groups can fit. Moreover, |N∗| is at most

|Vi|−⌊|Vi|/nsj⌋nsj ≤ nsj−1. Therefore,
∑kth

l=1 r
l+nsj−1 is

an upper bound on the number of nodes in ∪h
l=kth+2N

l. Since



12

the size of N l (kth + 2 ≤ l ≤ h) is at least nsj + 1, the first

term in the summation is an upper bound on the number of

CDS Nkth+2, . . . , Nh. The additional one (second term in the

summation) accounts for the CDS Nkth+1.

In summary, given that the total number of CDS h = kth +
(h− kth) ≤ kth + (kth + 1), we obtain kth ≥ (h− 1)/2. Since

kth is an integer, kth is at least ⌈(h− 1)/2⌉.

Given that nsi supply nodes need to be removed in order

to remove a full group of nodes of Vi, we have the following

result.

Theorem 8. Given Gi with ni nodes and node connectivity

ki, and that every node has nsi supply nodes, ∀i ∈ {1, 2},

assign interdependence between nodes in G1 and the nodes

in G2 by groups, obtained in Algorithm 6. Then, the supply

node connectivity of Gi is Ω(min(kinsi/ log
2 ni, nj)), ∀i, j ∈

{1, 2}, i 6= j.

Proof. Using the algorithm in [19], h = Ω(ki/ log
2 ni)

disjoint CDS can be found in Gi. By Lemma 4, the number

of full groups that should be removed in order to remove at

least one node from each CDS is min(⌈(h−1)/2⌉, ⌊ni/nsj⌋),
∀i, j ∈ {1, 2}, i 6= j.

Each group of Vi can be removed by removing nsi sup-

ply nodes in Gj . Noting that h = Ω(ki/ log
2 ni) and that

ninsi/nsj = nj , the supply node connectivity of Gi is

Ω(min(kinsi/ log
2 ni, nj)), ∀i, j ∈ {1, 2}, i 6= j.

We have proved that the CDS-based interdependence assign-

ment algorithm is an O(log2 ni)-approximation algorithm in

maximizing the supply node connectivity of Gi, ∀i ∈ {1, 2}.

B. Random interdependence assignment

We study the random assignment in order to maximize

the supply node connectivity of both graphs. The random

assignment algorithm is to randomly match ns1 copies of

nodes in G1 with ns2 copies of nodes in G2, and assign in-

terdependence between matched nodes. Under the assignment,

each of the ni nodes in Gi is supported by nsi nodes in Gj

(i, j ∈ {1, 2}, i 6= j).

The key difference of the analysis from the random as-

signment algorithm for the one-way dependence model is as

follows. By randomly removing k′ nodes in G2, k′ns2 nodes

in the transformed graph of G1 (by Algorithm 1) are removed.

In contrast, in the one-way dependence model (Section IV-C),

every node is removed with probability k′ns2/n1ns1, and the

total number of node removals follows a binomial distribution

with mean k′ns2. We derive the following lemma that bounds

the probability of a graph being disconnected after a constant

fraction of nodes are removed, instead of each node being

removed with a constant probability as in Corollary 3.

Lemma 5. Given graph G with n nodes and node connectivity

k = ω(logn), after randomly removing up to a constant (less

than one) fraction of n nodes, the remaining nodes in G are

connected with probability 1 − δ where δ = O(ne−α′k) for

some constant α′.

Proof. We prove a stronger result that the remaining nodes

form a connected dominating set (CDS) with high probability.

In particular, we prove for the case where (1−ǫ)(1−p)n nodes

are randomly removed, for a constant ǫ < 1 and a constant

p ∈ (0, 1).

Let A(nrm) denote the event that the remaining nodes in G
form a CDS after randomly removing nrm nodes, where nrm

is a deterministic value. Since adding extra nodes to a CDS

still yields a CDS, Pr(A(nrm)) is decreasing in nrm.

Consider the case where each node is randomly removed

with probability 1−p ∈ (0, 1). The number of removed nodes,

Nrm, follows a binomial distribution with mean (1−p)n. Using

the Chernoff bound, for a constant ǫ < 1,

Pr(Nrm < (1 − ǫ)(1− p)n) ≤ e−(1−p)nǫ2/2.

The probability that the remaining nodes in G form a CDS

after removing Nrm nodes is:

Pr(A(Nrm)) =

n
∑

nrm=0

Pr(A(nrm)) Pr(Nrm = nrm) (10)

≤Pr(A((1 − ǫ)(1− p)n)) Pr(Nrm ≥ (1− ǫ)(1 − p)n)

+ 1Pr(Nrm < (1 − ǫ)(1− p)n) (11)

≤Pr(A((1 − ǫ)(1− p)n)) + e−(1−p)nǫ2/2, (12)

where Eq. (10) follows from the law of total probability,

Eq. (11) follows from that Pr(A(nrm)) is non-increasing in

nrm, and Eq. (12) follows from the Chernoff bound. Thus,

Pr(A((1 − ǫ)(1− p)n)) ≥ Pr(A(Nrm))− e−(1−p)nǫ2/2.

From the proof of Corollary 3, we know that by removing

Nrm nodes, G is disconnected with probability at most ne−αk,

where α is a constant. Moreover, let k′/nc = 1−p in Eq. (9),

the probability that the remaining nodes in G do not form

a dominating set is at most n(1 − p)k. Thus, by the union

bound, the probability that the remaining nodes in G do not

form a connected dominating set is at most 1−Pr(A(Nrm)) ≤
ne−αk + n(1− p)k.

We now bound the probability that the remaining nodes in

G form a CDS, after randomly removing p′n nodes, where

p′ = (1− ǫ)(1− p) is a constant.

Pr(A((1 − ǫ)(1− p)n)) ≥ Pr(A(Nrm))− e−(1−p)nǫ2/2

≥1− ne−αk − n(1− p)k − e−(1−p)nǫ2/2

Let α′ = min(α,− log(1 − p), (1 − p)nǫ2/2k). Then

ne−αk, n(1 − p)k, e−(1−p)nǫ2/2 ≤ ne−α′k. Therefore,

Pr(A(p′n)) ≥ 1 − O(ne−α′k). Moreover, since α, p are

constants and n = Ω(k), α′ is a constant.

Then, following the analysis in Theorem 7, and noting

Corollary 2, we obtain the following result.

Theorem 9. Given Gi with ni nodes and node connectivity ki,
if each node in Gi has nsi supply nodes, by randomly matching

nsi copies of nodes in Gi to nsj copies of nodes in Gj , and as-

signing interdependence between each pair of matched nodes,

then the supply node connectivity of Gi is Θ(min(kinsi, nj))
with high probability, if kinsi = ω(log(ninsi)), ∀i, j ∈
{1, 2}, i 6= j. If, in addition, kinsi = ω(nj), then the supply
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node connectivity of Gi is at least (1 − ǫ)nj with high

probability for any constant ǫ > 0.

Proof. By Corollary 2, the transformed graph (by Algorithm

1) G̃i has ninsi nodes and node connectivity kinsi, ∀i ∈
{1, 2}. The number of colors in Gi is the number of nodes nj

in Gj , ∀i, j ∈ {1, 2}, i 6= j. Given Lemma 5, the supply node

connectivity of Gi can be computed in the same approach as

the proof for Theorem 7.

Thus, the random assignment is an O(1)-approximation

algorithm in maximizing the supply node connectivity of

both G1 and G2, if kinsi = ω(log(ninsi)), ∀i ∈ {1, 2}. If

kinsi = O(log(ninsi)), the approximation ratio is at most

O(log(ninsi)), since the supply node connectivity is at least

one under any assignment, ∀i ∈ {1, 2}.

VI. NUMERICAL RESULTS

In this section, we apply the algorithms in the previous

sections and provide numerical results. We use MATLAB to

generate network topologies and dependence assignment, and

use JuMP [24] to compute the supply node connectivity by

calling CPLEX to solve the integer programs in a workstation

that has an Intel Xeon Processor (E5-2687W v3) and 64GB

RAM.

The key observations are as follows. First, the supply node

connectivity for a network of reasonable size can be computed

using the integer program in a short time. For example, the

results can be obtained within one minute, for a network that

has around 180 nodes and 650 edges. Second, the assignment

algorithms have good performance even when the value of

supply node connectivity is moderate. This complements the

theoretical results that the assignment algorithms are optimal

up to a constant or polylogarithmic factor. The numerical

results therefore suggest that the algorithms are practical in

the design of interdependent networks.

A. st supply node connectivity

We use the XO communication network [25] of 60 nodes

as an example of the demand network, and randomly generate

36 supply nodes (marked as triangles in Fig. 6) within the

continental US.

Let each node in the XO network be supported by three

nearest supply nodes. After transforming the network into

a colored graph by Algorithm 1 and solving the MILP,

we obtain that the supply node connectivity of the st pair

Seattle-Denver is 5. In contrast, the maximum st supply node

connectivity is 9, by assigning distinct supply nodes to each of

the three node-disjoint paths (i.e., the path-based assignment

outlined in Algorithm 4). As another example, the supply node

connectivity of the st pair Seattle-Miami is only 3, because

one node in an st path has the same set of three supply nodes

as another node in a disjoint st path. By assigning distinct

supply nodes to two disjoint paths (Algorithm 4), the supply

node connectivity of Seattle-Miami can be increased to 6.

-120 -110 -100 -90 -80

20

30

40

50 Seattle

Denver

Miami

Fig. 6. XO network as a demand network, with randomly generated
supply nodes. The x-axis represents longitude degrees (west), and the y-axis
represents latitude degrees (north).

B. Global supply node connectivity

If each node in the XO network is supported by its three

nearest supply nodes, the global supply node connectivity is

3. In contrast, if each node is supported by three randomly

chosen supply nodes, the global supply node connectivity can

be increased to 5. It is close to the maximum possible global

supply node connectivity 6, given that the node connectivity

of the XO network is two and each node has three supply

nodes. However, the CDS-based assignment (Algorithm 5)

only guarantees that the supply node connectivity is at least 3,

since there do not exist two disjoint CDS in the XO network.

C. Bidirectional interdependence assignment

We implement the bidirectional interdependence assignment

algorithms on randomly generated Erdos-Renyi graphs. Let Gi

be an Erdos-Renyi graph with ni nodes. Let the probability

that an edge exists between any two nodes be pi. Each node

in Gi has nsi supply nodes from Gj . Let ki denote the node

connectivity of Gi. Recall that the maximum supply node

connectivity is ksimax = min(kinsi, nj) (i, j ∈ {1, 2}, i 6= j).

Table I depicts the supply node connectivity ksi of Gi un-

der the CDS-based and random interdependence assignment

algorithms. To obtain the numerical results for CDS-based

interdependence assignment algorithm, instead of using the

CDS partition algorithm in [19], we use a greedy approach

to compute the disjoint CDS, which has good performance

for Erdos-Renyi graphs. The results are averaged over 10

instances for each of the two combinations of interdependent

networks: 1) n1 = 50, n2 = 75, p1 = p2 = 0.1; 2) n1 = 50,

n2 = 75, p1 = p2 = 0.2. From the results, we observe

that the (near-linear time) CDS-based and the (linear time)

random interdependence assignment algorithms yields near-

optimal supply node connectivity in both graphs.

VII. CONCLUSION

We studied the robustness of interdependent networks based

on a finite-size, arbitrary-topology graph model. We defined

supply node connectivity as a robustness metric, by generaliz-

ing the node connectivity in a single network. We developed
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TABLE I
SUPPLY NODE CONNECTIVITY ksi OF RANDOM GRAPHS UNDER

CDS-BASED AND RANDOM ASSIGNMENTS.

n1 p1 k1 ns1 ks1max ks1 CDS ks1 random

50 0.1 1.6 3 4.8 4.8 4.7

50 0.2 3.6 3 10.8 10.2 10.0

n2 p2 k2 ns2 ks2max ks2 CDS ks2 random

75 0.1 2.4 2 4.8 4.6 4.6

75 0.2 7.0 2 14.0 12.4 12.2

integer programs to compute the supply node connectiv-

ity both for an st pair and for a network, and developed

approximation algorithms for faster computation. Moreover,

we develop interdependence assignment algorithms to design

robust interdependent networks.

Our study extends the shared risk group model, by consid-

ering that multiple risks together lead to the failure of a node.

The color assignment algorithms in Section IV can be used as

solutions to the less intensively studied design problems for

the shared risk group model, to maximize the number of risks

that a network can tolerate.

APPENDIX

Proof of Theorem 2. The minimum color node cut problem

can be reduced from the vertex cover problem. Given a graph

G′(V ′, E′), the minimum vertex cover problem aims to select

the minimum number of nodes V ∗ ⊆ V ′ such that every edge

in E′ is incident to at least one node in V ∗.

We construct a colored graph G in which the value of the

minimum color node cut equals the size the the minimum

vertex cover in G′. Let m′ denote the number of edges in

G′. Without loss of generality we assume that m′ is even.

(Otherwise, one edge can be added parallel to any existing

edge, which does not change the size of the minimum vertex

cover.) Graph G consists of four cliques of size m′ each.

Nodes in every clique are divided into two disjoint sets of

size m′/2. Four cliques are joined into a ring, by matching

two disjoint set of m′/2 nodes of a clique to m′/2 nodes in

each of the two adjacent cliques (see Fig. 7).

Then, assign colors to nodes in G. Consider two matchings

M1 and M2 that connect two pairs of cliques. There are m′

edges in the union of the two matchings. Each edge (v1, v2)
in this union corresponds to an edge (v′1, v

′

2) in G′. Let each

node in G′ have a distinct color, and assign v1 (v2) the same

color as v′1 (v′2). Finally, assign each remaining node in G a

distinct color, and these remaining nodes are not adjacent to

matchings edges M1 or M2. See Fig. 7 for an example of G,

where m′ = 8 and the number on each node represents its

color, and the corresponding G′ represented by Fig. 8.

By removing at least one node incident to each of the m′

matching edges, G becomes disconnected. In particular, the

minimum color node cut of G consists of a set of colors Cc

such that all the matching edges M1 and M2 are incident to

at least one node that has a color in Cc. The nodes in G′ that

have colors Cc form the minimum vertex cover in G′, since

every edge in G′ is adjacent to at least one node that has a
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2 4
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Fig. 7. In a colored graph G where the number on each node represents its
color, the minimum color node cut is {2, 4, 5}.
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64 5

a b

c d e f

g h

Fig. 8. The minimum vertex cover in G′ is {2, 4, 5}.

color in Cc. (Note that the minimum color node cut of G has

size smaller than m′, because the number of nodes in a cut

of G is m′ and some nodes have the same color. Therefore,

colors of nodes incident to the other two unlabeled matchings

in Fig. 7 cannot be in the minimum color node cut.)

Finally, to see that the reduction can be done in polynomial

time, note that G has 4m′ nodes, 2m′2 edges, and n′ + 2m′

colors, where n′ and m′ are the number of nodes and edges

in G′, respectively. This concludes the proof.

Proof of Theorem 3. The minimum color st node cut prob-

lem can be reduced from the hitting set problem. Given a

universe U of elements, sets Si consisting of elements in U
(i = 1, 2, . . . , p), the minimum hitting set problem aims to

select a minimum number of elements from U such that each

set Si contains at least one selected element.

We construct a colored graph in which the minimum color

st node cut is identical to the minimum hitting set. Construct

p node-disjoint paths between an st pair, each of which corre-

sponds to a set Si. If Si has j elements, then its corresponding

path has j nodes with colors that represent the elements in Si.

Nodes that correspond to the same element have the same

color. The reduction can clearly be done in polynomial time.

A minimum color st node cut contains a set of colors Cst
c

such that every path has at least one node with a color in Cst
c .

This is exactly the minimum set of elements such that every

set contains at least one such element.

We illustrate the reduction by the following example.

Consider a hitting set problem where U = {1, 2, 3, 4, 5},

S1 = {1, 2, 5}, S2 = {1, 3}, S3 = {1, 4, 5}. A minimum
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1 2 5

s 1 3 t

4 51

Fig. 9. The minimum color st node cut is {1}.

hitting set is {1}. The equivalent minimum color st node cut

problem is represented by Fig. 9.
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