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Abstract—Typical bidirectional associative memories (BAM) use
an offline, one-shot learning rule, have poor memory storage ca-
pacity, are sensitive to noise, and are subject to spurious steady
states during recall. Recent work on BAM has improved network
performance in relation to noisy recall and the number of spurious
attractors, but at the cost of an increase in BAM complexity. In all
cases, the networks can only recall bipolar stimuli and, thus, are of
limited use for grey-level pattern recall. In this paper, we introduce
a new bidirectional heteroassociative memory model that uses a
simple self-convergent iterative learning rule and a new nonlinear
output function. As a result, the model can learn online without
being subject to overlearning. Our simulation results show that
this new model causes fewer spurious attractors when compared
to others popular BAM networks, for a comparable performance
in terms of tolerance to noise and storage capacity. In addition, the
novel output function enables it to learn and recall grey-level pat-
terns in a bidirectional way.

Index Terms—Associative memories, bidirectional associative
memories (BAM), learning, neural networks.

I. INTRODUCTION

THE question of how the brain associates different patterns
in such a way that, when a given category is presented,

another one is recalled has no final answer yet, but with the de-
velopment of artificial neural networks, particularly heteroasso-
ciative memories, tentative explanations are taking form. In the
1970s, Kohonen [1] was among the first investigators to pro-
pose a model capable of heteroassociative learning. The model
used a linear learning rule and a linear output function. Be-
cause of that, when the input patterns were correlated with each
other or noisy, the network could not correctly perform the recall
task. This weakness led to the development of nonlinear recur-
rent autoassociative and interpolative memories (e.g., [2] and
[3]) whose dynamics, generated by a nonlinear output feedback
function, enable them to exhibit stable fixed-point behavior. As
a result, if the desired patterns were learned to correspond to
given fixed-point attractors, such networks would correctly re-
call them even under noise degradation. These properties en-
abled Kosko [4] to adapt the nonlinear feedback of the Hop-
field model [5] to a heteroassociative memory, thereby creating
a new class of neural network models, the bidirectional associa-
tive memory (BAM).
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BAM learning is accomplished with a simple Hebbian rule

(1)

In this expression, and are matrices that represent
the sets of bipolar vector pairs to be associated, and is
the weight matrix. Equation (1) forces the use of a one-shot
learning process since Hebbian association is strictly additive.
A more natural learning process would make (1) incremental
but, then, the weight matrix would grow unbounded with the
repetition of the input stimuli during learning. This property
may be acceptable for orthogonal patterns, however, it leads to
disastrous results when the patterns are correlated. In such a
case, the weight matrix will be dominated by its first eigenvalue,
and this will result in recalling the same pattern whatever the
input. A compromise is to use a one-shot learning rule to limit
the domination of the first eigenvalue, and to use a recurrent
nonlinear output function to allow the network to filter out
the different patterns during recall. Kosko’s BAM effectively
used a signum output function to recall noisy patterns, despite
the fact that the weight matrix developed by using (1) is not
optimal. Thus, we typically have in a BAM network

(2a)

and

(2b)

where is the signum function

if
if
if .

(3)

By using the weight matrix defined by (1) and the output func-
tion defined by (2a) and (2b), the network is able to recall
from , and by using the weight matrix transpose, the network
is able to recall from . These two processes taken together
create a recurrent nonlinear dynamic network with the potential
to correctly perform binary association.

However, the learning of the BAM network is accomplished
offline and the nonlinear output function of (2a) and (2b) is
not used during that stage. Moreover, the network is limited to
bipolar/binary input patterns and, as such, cannot learn grey-
level patterns. Also, the network develops many spurious attrac-
tors and has limited storage capacity [6].

One approach to overcome these weaknesses uses a projec-
tion matrix based on least mean squared error minimization
[1], [6]. This solution increases the storage capacity and re-
call performance of the network, but its learning rule, based
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on an inverse matrix principle, is not a local process. Several
sophisticated approaches have also been proposed that modify
the learning rule or coding procedure, with the result of both
increasing storage capacity and performance, and decreasing
the number of spurious states (e.g., [7]–[16]). Among them,
some use genetic algorithms [8], [9] or Perceptron learning [10],
which depart drastically from the simple Hebbian correlation
scheme; others use expanded pattern pairs [7], [8], [12], [15],
add a time delay [13], [14], or use interconnections among the
units inside each layer [16]. There exist also asymmetric BAMs
that address the problem of interconnection symmetry, which
limits the BAM performance in storage and recall capacities and
restricts its use in inference [17]. In all cases, the improvement
of BAM performance comes with an increase in network com-
plexity. For example, [18] and [19] add a hidden layer that in-
creases the network dimension in order to facilitate class separa-
tion, and they use different learning rules to update the weights
of the hidden and output layers. In [20], the networks behave
similarly to a feedforward network by not using a correlation
matrix and require extended pattern pairs. As a result, those net-
works lack internal consistency. Also, all the modified networks
still use an offline learning algorithm and can only memorize bi-
nary or bipolar patterns. This inability to learn real-valued, fixed
point attractors limits the models in both cognitive explanations
and engineering applications.

An efficient BAM should have the following properties: First,
it should learn online since in most real life applications, a net-
work has rarely access to all the stimuli at the same time; and
it should iteratively develop weight connections that converge
to a stable local optimal solution by incorporating the nonlinear
feedback from the output function. Second, the learning should
be based solely on correlation without the need to use a hidden
layer, a virtual layer, some a priori knowledge about the stimuli
or the creation of extended pattern pairs. Third, the learning rule
should remain as simple as possible and it should be able to as-
sociate patterns of different dimensions as well as of the same
dimensions. Finally, the output function, in conjunction with the
learning rule, should be chosen so that the weight matrix not
only develops stable fixed point attractors for bipolar patterns
but also for real-valued patterns. In this paper, a neural network
that has all these properties is presented. Moreover, simple sim-
ulations reveal that the new model develops less spurious attrac-
tors than the other BAM studied while maintaining a competi-
tive performance regarding noise degradation and storage ca-
pacity on a simple simulation task.

The remainder of the paper is divided as follows. Section II
describes the network architecture and presents some theoret-
ical results. Section III shows simulation results about the net-
work’s performance in learning and recalling: 1) bipolar corre-
lated prototypes; and 2) real-valued correlated prototypes. Sec-
tion IV discusses our results and provides the conclusion of this
work. An annex follows the references and develops some the-
oretical derivations.

II. ARCHITECTURE

Our network architecture is shown in Fig. 1 where and
represent the initial vectors-states, and are the weight

Fig. 1. Architecture of the new heteroassociative model.

matrices, and is the current iteration number. We see that the
network is composed of two Hopfield-like neural networks in-
terconnected in head-to-tail fashion. Taken together, they allow
a recurrent flow of information that is processed bidirectionally.
The figure shows also that the vectors composing the pairs to be
learned need not be of the same dimensions and that, contrary
to typical BAM designs, the weight matrix from one side is not
necessarily the transpose of that from the other side.

A. Output Function

The output function used in our model is based on the classic
Verhulst equation [21]. This logistic growth model is described
by the following dynamic equation:

(4)

where is a general parameter. Equation (4) has two fixed
points [22], and . However, only is a stable
fixed point and, therefore, (4) has only one attractor. The equa-
tion must be modified if we want the existence of two attractors.
One way to accomplish this is to change the right term to a cubic
map. Then, we obtain

(5)

The resulting equation has three fixed points, 1, 0, and 1, of
which both the values and are stable fixed points,
thus giving us two attractors.

If we replace the derivative on the left-hand side of (5) by its
difference equation approximation, we obtain

(6)

where is a small constant term; and if we make the changes
of variables , , (or )
and rearrange the terms of the previous equation, we obtain the
following expressions for the output function:

(7a)

and

(7b)
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Fig. 2. Lyaponov exponent as a function of the transmission parameter value.

In these equations, and represent neural outputs at
time ; and are the corresponding activation func-
tions at time ( ; ) and is a general
output parameter.

The value of is crucial to network performance; if it is too
high, the network may alternately converge to steady, cyclic or
chaotic attractors. By performing a Lyapunov analysis [22], we
can find the adequate range of values for .

The Lyapunov exponent can be approximated by

(8)

where is the number of iterations over the network. In our
case, the derivative term is obtained from (6), so that is given
by

(9)

Fig. 2 illustrates the curve of the Lyapunov exponent when
. It shows that the network exhibits a monotonic ap-

proach to steady states if the value of is between 0 and 0.5. In
the case of bipolar inputs, we see from the bifurcation diagram
that the steady states are effectively 1 and 1.

Finally, to insure that no output lies outside the interval
, a saturating limit was added to bound the output be-

tween 1 and 1. The final output function for both network
directions is, thus, expressed by the following equations:

if
if
else

(10a)

if
if
else

(10b)

Fig. 3. Curve of the output function for � = 0:4.

where and are the number of units in each layer and is the
index of the respective vector elements during training or recall.
Fig. 3 illustrates the shape of the output function for .
It is similar to a sigmoid function but reaches its limits in a
finite number of iterations (see Discussion section).

A close look at the proposed output function shows two at-
traction mechanisms. The first one is a hard saturation function
that bounds the output at ; the second one is a mechanism
that balances the positive and negative parts.
Thus, a unit’s output remains unchanged if it reaches a value of
1, 1 or if , where is a limit with real
value (e.g., 0.7). This mechanism enables the network to exhibit
real-valued attractor behavior in addition to being a bipolar at-
tractor.

As an example, consider a neuron whose output is 0.5 when
given an input of 0.5, and suppose that . Then, (10)
can be written as

(11)

and it has three possible solutions: , , and
. Since the weights are initially set to 0 and their

update is additive (17) they will converge to the first positive
root, . We can then rewrite (10) in terms of that root
and to obtain

(12)

When reaching a steady state, we have and the
equation becomes

(13)

with solutions 0.5, 0, and 0.5. To determine the kind of attrac-
tion exerted by each of these fixed points, we need to determine
the slope of (13) at each of them. Thus, we need to compute

(14)
where is one of the fixed point. For the fixed points 0.5 and
0.5, the slope is equal to 0.916 239, indicating a stable mono-
tonic approach. On the other hand, at the fixed point 0, the slope
is equal to 1.041 88, indicating an unstable fixed point. In short,
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Fig. 4. Recall process example using (a) signum output function and (b) modified cubic map output function. Axes represent the value of a network unit.

if a value belongs to the interval , then, the locally stable
attractor is 0.5, and if a value belongs to the interval ,
then, the locally stable attractor is 0.5. On the other hand, the 0
fixed point is a repeller and can only capture a value of 0.

The previous analysis can be repeated for any real value
within the definition domain of the proposed output function,
showing that the latter may be used to recall any grey-level
image whose pixel values belong to the domain.

To compare the effect of this new output function to that of
the signum function usually found in the BAM, we computed
the trajectories of 400 hundreds random patterns in the con-
text of bipolar learning. The network was composed of three
units, which gives a network space of three dimensions. The
task was to learn two correlated independent bipolar stimuli;
so the stimulus space was of two dimensions. We chose this
setup to illustrate the outputs trajectories when the dimension
of the network space is greater than that of the stimuli space

. Fig. 4 shows the results when the network has learned
two such three-dimensional (3-D) bipolar stimuli. In the case
of the signum function, the input stimulus converges from the
network space to one of the stimuli space corners in one time
step. On the other hand, the cubic output function takes several
time steps to converge. The first time step projects the given
stimulus from the network space to the stimuli space. Then, in
the following time steps, the stimulus is progressively pushed
toward one of the stimuli space corners. If one more pattern is
added to the stimulus bank (three 3-D correlated patterns), the
number of attractors becomes equal to six (three for the patterns
and three for their complements). In the case of Kosko’s BAM,
there would have been two additional attractors which are the
linear combination of the three stimuli (Fig. 5). Our network
did not develop these two spurious attractors. Fig. 5 shows that
even if a stimulus is closer to the spurious attractor, it will not
be attracted by it.

B. Learning Rule

Most BAM models learn offline and, basically, solve the fol-
lowing linear equation:

(15)

Therefore, in the best case, the models use the one-shot projec-
tion rule as a solution (e.g., [16]). On the other hand, our model
tries to find a solution to the following nonlinear constraints:

(16a)

(16b)

where is the output function defined previously. The form of
these constraints and the recurrent nature of the underlying net-
work call for a learning process that is executed online. We used
the following learning rule, derived from a Hebbian/anti-Heb-
bian approach [24]–[27]:

(17)

(18)

In the previous equations, and represent the weight
matrices for both network directions, and are the initial
inputs to be associated, is the learning parameter, and is the
learning trial number. We see that the learning rule includes a
feedback from the nonlinear output function via and .
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Fig. 5. Recall process example using (a) signum output function and (b) modified cubic map output function (three stimuli and three units).

This enables the network to learn online and contributes to the
convergence of the weight connections.

Using binomial identities, we can rewrite the learning rule in
compact form as

(19)

(20)

Equations (19) and (20) show that the weight matrices will
converge only when or . Thus, each
weight matrix converges when the feedbacks is the same as the
initial inputs or, in other words, when the two are in resonance
[28].

We can have another perspective on the learning rule from
its error definition by comparing it to that of another neural net-
work. For instance, the Adaline error is defined by the following
quadratic function

(21)

where represents the desired value and is the activation func-
tion . The error will be zero only if is equal to .
From (21), one can easily specify the Adaline standard update
learning rule [29].

The error function of our model is different. If the output
function is analyzed under the assumption of linear constraints
(i.e., the output function is the same as the activation function
instead of being given by (10)), we can show (see Appendix)
that the forward and backward errors are expressed by

(22a)

and

(22b)

As these expressions show, the errors are conditioned by the
feedback at times one and two prior to the current time, and they
become nil when the current values are equal to their respective
previous values. This indicates that the learning rule tries to find
fixed point attractors as a solution.

The solution the weight matrices converge to can be deter-
mined if we make the assumption that the number of iterations
before each update of the weight connections takes place is

, and that learning is accomplished with the prototype
matrices. In this case, we have (see the Appendix)

(23)

and

(24)

Equations (23) and (24) show that each of the final weight
matrices develops as a function of the nonlinear output func-
tion, a cross-correlation matrix and a normalization factor. In
addition, each of the weight matrices depends on the value of
the other one, thus, making the updates a recurrent nonlinear dy-
namic process. Because of this, it is likely that the final weight
matrix can only be found by iteration.

Finally, the learning rule can be simplified in the case of an
autoassociative memory. In this case, the weight matrix is square
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Fig. 6. Bipolar pattern pairs to be associated.

TABLE I
PARAMETERS AND PROPERTIES COMPARISON FOR DIFFERENT BAM MODELS

and symmetric, with the effect of canceling the cross terms in
(17) and (18), and the general autoassociative learning rule is

(25)

Thus, in the case of an autoassociative network, the learning
rule is simply the sum of a Hebbian and an anti-Hebbian term. In
this respect, the learning rule described in (17) and (18) may be
viewed as a generalization of several autoassociative networks
(e.g., [3], [5], [24]–[27]) whose updates also consist of the sum
of Hebbian and anti-Hebbian terms. For details about the au-
toassociative model see [27].

III. SIMULATIONS

In order to study the performance of our model and confirm
its distinguishing properties in comparison to other BAM net-
works, we performed several computer simulations to learn and
recall bipolar and real-valued correlated patterns.

A. Simulation 1: Learning and Recall of Bipolar Stimuli

The purpose of this simulation was to compare the perfor-
mance of the proposed BAM with several BAM networks found
in the literature. More precisely, the simulations were made fol-
lowing the ones described in [19].

1) Methodology: The network task was to associate 26 cor-
related patterns consisting of 7 7 pixels images where a white
pixel was given the value 1 and a black pixel the value 1. Fig. 6

illustrates the stimuli used for the simulation. The images were
converted to vectors of 49 dimensions before being input to the
network. This led to a memory load equal to 53% (26/49) of
the 49-dimensional space capacity. Normally, such a high load
value cannot be handled by Kosko’s BAM.

The output function parameter was set to 0.1 and the learning
parameter was set to 0.01. Also, to limit the simulation time, we
set the number of output iterations before each weight matrix
update to 1.

Learning was carried according to the following procedure:

1) random selection of a pattern pair;
2) computation of and according to the output func-

tion [(10)];
3) computation of the weight matrix update according to

(17) and (18);
4) repetition of steps 1) to 3) until the weight matrix con-

verges (about 2000 learning trials).
After completing the learning phase, the network perfor-

mance was tested on a noisy recall task. The task was to recall
the correct associated stimulus from a noisy input obtained by
randomly flipping pixels in the input pattern. The number of
pixel flips varied from 0 to 10, thus, corresponding to a noise
proportion of 0 to 20%. We compared the network recall per-
formance with the ones reported in [19], which corresponded
to the symmetrical BAM (SBAM) [15], asymmetrical BAM
(ABAM) [17], general BAM (GBAM) [20] and generalized
asymmetrical BAM (GABAM) [19] networks . Table I shows
the comparisons between the different models that were con-
sidered. There exist newer symmetric models in the literature
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Fig. 7. Squared error as a function of the number of learning trials.

Fig. 8. Performance of the various BAM models for the recall task.

(e.g., [8], [9]), however, their performance compares to that of
the SBAM model; we ignored them as a result.

We also determined the proportion of spurious attractors by
calculating the number of vectors that stabilize in a spurious
state in relation to the total number of vectors. We generated
1000 random vectors in order to conduct that experiment.

Network storage capacity was evaluated by using random
10-dimensional bipolar vectors as done by [19] and [20]. We
varied the number of pairs to be learned from 1 to 15 and, in
each case, generated 1000 different test sets and computed the
resulting network recall accuracy.

Finally, a simulation was added to demonstrate the online
learning capacity of the network. A series of 100 patterns pairs
was randomly generated, using only the first four characters in
the training set for simplicity (instead of the 26 characters used
previously). For each pair, the output was calculated based on
one output iteration and on 25 output iterations. The last condi-
tion is closer to real-life applications where the number of output
iterations during the recall task is about the same as that during
learning. Fig. 9. Percentage of spurious memories during recall.
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Fig. 10. Storage capacity comparison.

2) Results: Fig. 7 shows that the weight matrices were able
to stabilize within a relatively short number of learning trials.
After 2000 learning trials, the average squared error was less
than 0.0005. Fig. 8 illustrates the network performance on the
recall task. It shows that the performance was better than that of
SBAM and ABAM; it was comparable to that of GBAM; and
it was inferior to that of the best GABAM version composed
of a hidden layer of 52 units and using the backpropagation
error learning algorithm. The good recall performance is also
expressed by the reduced number of spurious attractors: Fig. 9
shows that the network developed only 36% spurious attractors,
which is 50% less than the best other network, the GABAM.

The storage capacity results (Fig. 10) show a network storage
capacity similar to that of SBAM, ABAM, and GABAM, how-
ever, it is inferior to the storage capacity of GBAM. Fig. 10
shows that the storage capacity decreases gradually until the
number of stimuli pairs reaches the number of units; then, it falls
sharply. For a good recall performance under noise degradation,
the number of stimuli pairs to be learned should be about half
that threshold.

Finally, Fig. 11 illustrates the network’s ability to learn
online. There was no need for particular pattern sequences for
the network to develop the appropriate stable fixed points. In
addition, the network was able to develop the correct stable
fixed points regardless of the number of output iterations
during the learning phase. On the other hand, the duration of
training before convergence appears to be directly proportional
to the number of output iterations conducted, thus, imposing a
constraint about the recall/learning procedure: The number of
output iterations performed during the learning must be equal
or greater than the one during recall. For example, if it takes 50
iterations for a given stimulus to convergence, then, the number
of iterations performed by (10) must be over 50 during learning.

B. Simulation II: Learning and Recall of Grey- Level Images

In this simulation, the network’s task was to associate five
grey-level images with five alphabetic letters of a different di-
mension.

Fig. 11. Online learning of random sequence. (a) One output iteration before
learning. (b) 25 output iterations before learning.

1) Methodology: The grey-level images were computer
icons of 16 16 pixels and the letters were 7 5 pixels in size.
The icons with the corresponding arbitrarily chosen letters are
shown in Fig. 12.

Each icon pixel was 8-bit coded with an initial value in the
interval before being scaled down to the range .
The mid-grey value of 0 was set to 0.1 to avoid the 0 unstable
fixed points. The letter patterns were coded with a white pixel
having the value 1 and a black pixel the value 1. As a result,
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Fig. 12. Pattern pairs for Simulation II.

an associated vector pair was composed of a real-valued vector
of 256 dimensions and a bipolar vector of 35 dimensions. The
learning methodology was the same as in the previous section,
with the same choice of free parameters.

2) Results: Fig. 13 shows the recall accuracy squared error
as a function of the number of learning trials. We see that the
error is almost zero after 100 learning trials, and it is less that
0.00015 after 200 learning trials. Consequently, the weight ma-
trices were still able to converge when learning grey-level im-
ages. The network also exhibited the expected BAM properties
of pattern completion and noise tolerance. Fig. 14 shows three
different examples that confirm those properties.

IV. DISCUSSION AND CONCLUSION

As our results show, the bidirectional associative memory
presented in this paper exhibits good performance even though
its learning rule is based solely on local cross-correlation,
without any additional optimization constraints. For instance,
it only uses two layers of units instead of the three layers found
in GABAM [19] and the feedforward BAM [18], and it does
not need any extended pattern pairs like GBAM [20] or SBAM
[15]. In addition, contrary to other BAM networks, its learning
is iterative and accomplished online without overgeneralization
or first eigenvalue dominance.

The previous properties are interesting by themselves, how-
ever, perhaps the network’s most interesting feature is its ca-
pacity to learn real-valued patterns. It can learn and recall grey-
level images without resorting to any prior bipolar coding or
adding inflection points into the output function. This property
is a clear advantage over the other BAMs, and it makes the net-
work a more plausible model for cognition since the real-valued
network states we introduce can be compared to rate models,
instead of just representing the usual presence or absence of an
action potential [31]. By using this representation of firing fre-
quencies, the network acquires the ability to model more cogni-
tive processes than the others BAMs.

This property of the network comes from the incorporation
of the nonlinear output function of (7) into the learning rule,
which not only enables the model to learn online but also in-
creases its performance. Other nonlinear output functions that
are bistable (e.g., signum, piecewise linear, etc.,) may increase
the performance but they cannot develop real-valued attractors,
as reported in [23]. The incorporation of a logistic function may
in certain conditions output real values, however, those values
must be near 1 and 1. Thus, networks that use it may not be

able to correctly output the grey-level images shown in Fig. 12,
where the pixel values lie anywhere in the range .

Our output function contrasts with the one proposed by
Zurada et al. [23] who use a normal sigmoid function that is
modified by the addition of inflection points. Each inflection
point divides the attractor space according to the number of
grey-levels needed. However, each time an inflection point is
added to the function, the radius of attraction decreases and so
does the tolerance to noise. For example, in a bipolar setting,
there is only one inflection point, giving a maximum distance of
1. On the other hand, when trying to recall eight levels of grey,
we need seven inflection points giving a maximum distance of
0.25. In contrast, the output function expressed in (10) only
needs one inflection point at 0 to accomplish its task, regardless
of whether we have bipolar or grey-level images. As a result,
the function does need not any prior information on the number
of shades of grey present in the input in order for the network
to operate correctly.

The type of learning rule is less critical, aside from the re-
quirement that it must incorporate the output—not the activa-
tion—of the neurons (e.g., [10]). In regards to this output, the
weight matrices must be able to self-stabilize in local fashion.
The rule must also be incremental and tolerant to overlearning
without loss of performance. Thus, the overall performance of
the network depends on the interaction of the nonlinear learning
rule with the nonlinear output function.

In summary, we introduced a simple new heteroassociative
neural network that can learn bipolar and real-valued patterns.
The new model offers good performance in comparison to other
BAM architectures, without an increase in learning or architec-
tural complexity. We showed that the network is able to stabi-
lize its weights to fixed point attractors in a local fashion. The
model is immune to overlearning and develops fewer spurious
attractors compared to other BAM. Although more simulations
are needed to determine its dynamic behavior with greater pre-
cision, the bidirectional associative memory introduced in this
paper represents a good alternative to other BAMs and models
of cognition.

Further research includes the investigation of the learning of
two grey level patterns that share the same quadrant without
loss of stability, multistep pattern recognition [30] and non-
linear classification in a multilevel architecture. Further research
should also investigate the possibility of modifying the output
function to handle nonlinearly separable problems.

APPENDIX

A. Derivation of the Output Function

A differential equation of the form

can be rewritten as

If we assume that is small but finite, we obtain the following
approximation:
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Fig. 13. Squared error as a function of the number of learning trials.

Fig. 14. Network performance for incomplete or noisy inputs.

With

we obtain

Setting and rearranging the terms yields

Finally, setting to the output and
to the output leads to

B. Error Minimization and Learning Rule

Given the linear output functions

we define the error as

The gradient of this error with respect to the weight matrix
is

Because we want the weights to update in the opposite direc-
tion of the gradient, we multiply this last result by 1. In addi-
tion, the weight updates must be small since we do not want the
network to oscillate around the solution. We, thus, replace the
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value 2 by a general learning parameter, , and the 1/2 value by
another general learning parameter, . We then obtain

Finally, if we set and generalize and to
and , we end up with the following learning rule:

Thus, this learning rule is a specific case of the more general
update rule defined previously.

C. Final Solutions for the Weight Update Equations

Given and , the stimuli matrices, the values of the
output function in each direction are

and

The weights update for matrix is, then, given by

Setting this equation to 0 and solving it for provides the
desired expression, as shown at the top of the page.
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