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Learning Target Domain Specific Classifier for
Partial Domain Adaptation

Chuan-Xian Ren, Pengfei Ge, Peiyi Yang, Shuicheng Yan

Abstract—Unsupervised domain adaptation (UDA) aims at
reducing the distribution discrepancy when transferring knowl-
edge from a labeled source domain to an unlabeled target
domain. Previous UDA methods assume that the source and
target domains share an identical label space, which is unrealistic
in practice since the label information of the target domain is
agnostic. This paper focuses on a more realistic UDA scenario, i.e.
partial domain adaptation (PDA), where the target label space
is subsumed to the source label space. In the PDA scenario,
the source outliers that are absent in the target domain may
be wrongly matched to the target domain (technically named
negative transfer), leading to performance degradation of UDA
methods. This paper proposes a novel Target Domain Specific
Classifier Learning-based Domain Adaptation (TSCDA) method.
TSCDA presents a soft-weighed maximum mean discrepancy
criterion to partially align feature distributions and alleviate
negative transfer. Also, it learns a target-specific classifier for
the target domain with pseudo-labels and multiple auxiliary
classifiers, to further address classifier shift. A module named
Peers Assisted Learning is used to minimize the prediction dif-
ference between multiple target-specific classifiers, which makes
the classifiers more discriminant for the target domain. Extensive
experiments conducted on three PDA benchmark datasets show
that TSCDA outperforms other state-of-the-art methods with a
large margin, e.g. 4% and 5.6% averagely on Office-31 and Office-
Home, respectively.

Index Terms—Partial domain adaptation, Classifier shift, Dis-
tribution gap, Maximum mean discrepancy, Consistency regular-
ization

I. INTRODUCTION

DEEP Convolutional Neural Networks (CNNs) have made
remarkable advances in a variety of machine learning

tasks such as image classification [1]–[3], clustering analy-
sis [4] and object detection [5], [6]. Unfortunately, a model
trained in the source domain (training set) usually suffers
severe performance degradation in a target domain (test set)
with a distribution difference from the source domain [7]. This
difference is termed domain shift, which is the bottleneck of
many practical cross-domain applications. To solve it, UDA
methods [8]–[12] try to transfer knowledge from a label-rich
source domain to an unlabeled target domain. However, these
methods need to assume the source domain shares the same
label space with the target domain, i.e., Ys = Yt, where Ys

and Yt denote the label spaces of source and target domains,
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respectively. This assumption is hard to satisfy since in the real
world, it is almost unrealistic to find a source domain that has
the identical label space with the target domain considering
the label information of the target domain is agnostic. In this
paper, we consider a more realistic task setting, i.e., PDA [13]–
[15], where the target label space is a subset of the source
label space, i.e., Yt ⊂ Ys. Specifically, we divide the source
domain into a source-shared-domain where the subjects are
covered by both domains, and a source-outlier-domain where
the subjects only exist in the source domain.

Many UDA algorithms learn a domain-invariant and trans-
ferable feature space by matching the feature spaces of the
source and target domains [8], [9], [16]–[19]. Their classifi-
cation performance would drop greatly in the PDA scenario,
as the intrinsic conditional distribution changes dramatically
from one to the other. These models may incorrectly match the
target samples to the source outliers, which is called negative
transfer in prior literature [13], [14], [20]. As depicted in
Fig. 1(a), some target samples (triangles and pentagons) are
misclassified to the source-outlier classes (squares and circles).
An intuitive strategy to address this problem is reweighing
the samples in the source domain, through endowing source-
shared samples with large weights while source-outliers with
small weights during transferring. Then, domain-invariant
features are learned from the reweighed source domain and
the target domain, and a shared classifier is also learned to
complete the classification knowledge transfer.

Following this inspiration, several methods deal with PDA
tasks by weighed cross-entropy loss [20] or weighed adversar-
ial training [13], [14], with good performance achieved. How-
ever, the weighed cross-entropy loss based methods ignore the
alignment of feature spaces, which is considered the key to
success of domain adaptation [21], and the weighed adversarial
training based methods may suffer training instability and
mode collapse. Besides, these methods ignore the classifier
incompatibility problem caused by the huge label space shift
between different domains in PDA scenario. Consequently,
the optimal classifier of the source domain is sub-optimal
for the target domain. This problem is also called classifier
shift, as the classification over the source domain is a |Ys|-
class problem while that over the target domain is a |Yt|-class
problem. As shown in Fig. 1(b), the target domain has only
two categories while the source classifier is trained to classify
five classes, and some samples of the target domain may be
mis-classified by the source classifier. A more suitable solution
is to classify the target domain samples by the target specific
classifier as Fig. 1(c). Therefore, the strategy of sharing a
classifier between the two domains may be invalid in PDA
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Fig. 1. Illustrations of negative transfer and classifier shift. (a) In a PDA task, UDA methods are likely to map some target samples into the feature space
of source outliers, leading to negative transfer. (b) Existing PDA methods may suffer from label space shift. The classifier pays more attention to circle and
square outliers due to their large sample size, and as a result, classifies triangles and pentagons (in the target domain) incorrectly. (c) TSCDA exploits a
target-specific classifier to deal with label space shift, which effectively improves classification accuracy in the target domain.

problems. Furthermore, there are some target samples locating
outside the support of source-shared-domain, and they also
contain discriminant information that benefits classification in
the target domain. However, such information is often ignored.

In this paper, we propose a novel deep learning model
for addressing PDA problem, termed Learning Target Domain
Specific Classifier for Domain Adaptation and abbreviated as
TSCDA. It contains two interdependent modules, a partial
features alignment module and a target-specific classifier learn-
ing module. In the first module, a Soft Weighed Maximum
Mean Discrepancy (SWMMD) is proposed to mitigate the
negative transfer between the source-outlier-domain and the
target domain. The feature distributions of the source-shared-
domain and the target domain are therefore aligned in the
feature space. The weights are automatically calculated using
the source classifier on the target data, which indicate the
probabilities of a source class appears in the source-shared-
domain. In the second module, TSCDA learns a target-specific
classifier based on the pseudo-labels of high-confidence sam-
ples in the target domain. In particular, we propose a PEers
Assisted Learning (PEAL) method to improve the classifi-
cation performance and alleviate the over-fitting problem of
the target classifier. PEAL minimizes the difference between
prediction outputs of the target domain-specific and auxiliary
classifiers, i.e., consistency loss. We conduct extensive exper-
iments on three PDA benchmarks to evaluate effectiveness of
the proposed TSCDA, and the results show it achieves state-of-
the-art performance. Our main contributions are summarized
as follows.

1) A novel deep learning method is proposed for tackling
unsupervised PDA. It includes partial feature alignment
and target-specific classifier learning, and can simulta-
neously alleviate negative transfer and classifier shift
between the source and target domains.

2) A soft weighed maximum mean discrepancy loss,
SWMMD, is proposed to do partial feature matching. It
essentially alleviates the possibility of negative transfer
between the source-outlier-domain and the target domain.

3) A novel target-specific classifier is used to address the
classifier shift problem. It aims to learn a more powerful

classifier for the target domain. Moreover, a peers assisted
learning approach, PEAL, is proposed to learn the target-
specific classifier and improve the discrimination of the
model.

The rest of this paper is organized as follows. In Section II,
related works are briefly reviewed. In Section III, the TSCDA
algorithm is described in detail. Section IV presents extensive
experiment results and validates the effectiveness of TSCDA.
Section V concludes this paper.

II. RELATED WORKS

A. Unsupervised Domain Adaptation

UDA aims to transfer knowledge from a labeled source
domain to an unlabeled target domain. Recent study [21]
has shown reducing the distribution discrepancy of the two
domains can help learn domain-invariants with good discrim-
ination on the target domain. Existing UDA methods can
generally be divided to statistical feature alignment based
methods [9], [17], [19], [22]–[25] and adversarial learning
based methods [8], [9], [26], [27].

The statistical feature alignment based methods reduce
distribution discrepancy by minimizing the difference of sta-
tistical moments between the source and target domains [28],
[29]. Maximum mean discrepancy (MMD) [30] is the most
commonly used method for statistical feature matching. It
approximately characterizes the difference between the two
domains by using their respective empirical expectation. Due
to its flexible modeling and simple optimization, several
extensions [17], [22], [23] have been developed to improve
UDA performance and applied to other problems. Yan et
al. [23] presented a weighed MMD (WMMD) to align feature
distributions with an unweighed loss, where the weight is
calculated by the ratio of prior distributions for the two
domains. Tzeng et al. [22] proposed a confusion loss based on
MMD to align the domains. Long et al. [17] proposed a joint
MMD principle to directly match the joint distributions. In
addition, Zellinger et al. [24] minimized the domain discrep-
ancy by matching the higher order central moments of domain-
specific probability distributions. Sun et al. [25] proposed to
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minimize domain bias by matching the mean and covariance
of the distributions simultaneously. Some other works also
explore weighted strategies in domain alignment [31], [32].
Ding et al. [31] proposed an iterative refinement scheme to
optimize the probabilistic and class-wise subspace adaptation
term from a graph-based label propagation perspective. In [32],
two coupled deep neural networks were used to extract the
representative features, then a weighted class-wise adaptation
scheme was built for minimizing the distribution gap.

With the development of Generative Adversarial Nets [33],
[34], adversarial learning based methods [8], [9], [26], [27],
[35] achieve significant advances in UDA. These methods train
a domain classifier to distinguish whether a sample is from
source or target, and train a feature extractor to minimize
distribution divergence between the two domains. Tzeng et
al. [8] developed a unified framework for UDA based on
adversarial learning. Bousmalis et al. [26] proposed to learn
the transformation between different domains on pixel level.
Saito et al. [36] proposed two classifiers to consider task-
specific decision boundaries by maximizing the difference
between the outputs of the two classifiers.

In this work, we present a SWMMD module, which is a
new weighed MMD, to mitigate negative transfer between
the source-outlier-domain and the target domain, and align
feature distributions of the source-shared-domain and the
target domain. Note that SWMMD differs from WMMD [23]
in two aspects. First, SWMMD uses the probabilistic outputs
to estimate the weights, while WMMD uses the hard labels,
which would increase uncertainty in both pseudo-labeling
and domain alignment. Second, the weights of SWMMD are
designed for differentiating the source-shared-domain from
the source-outlier-domain, while WMMD only applies to
balance the class-wise distributions between source and target
domains. Thus, the class prior probabilities of the source
domain are not incorporated into the weights of SWMMD.

B. Partial Domain Adaptation

In PDA scenario, many UDA methods suffer noticeable
performance degradation due to the notorious negative transfer,
especially when the target label space is much smaller than the
source label space. Most UDA works build a mechanism to
reweigh source samples so that the reweighed source label
distribution approximates the target label distribution. In other
words, they attempt to reformulate the PDA problem to a
UDA problem. Cao et al. [13] proposed to decrease the
contributions of source-outlier classes, and increase those of
source-shared classes by weighting source samples under an
adversarial framework [18]. It effectively promotes positive
transfer and alleviates negative transfer between the two do-
mains. Zhang et al. [14] presented a two-domain-classifier
strategy to identify the importance scores of source samples,
and match the reweighed source domain and the target domain
based on adversarial learning. In addition, Xu et al. [15]
proposed to adapt feature norms of both domains to achieve
equilibrium, which is free from relationship of the label spaces.
Recently, some methods apply ensemble learning to improve
the discrimination ability of extracted features [37], [38].

French et al. [37] used a mean teacher model [39] to mine the
target domain knowledge. Deng et al. [38] explored the class-
conditional structure of the target domain with an ensemble
teacher model.

In this work, besides the feature alignment module, we also
propose an unshared classifier method to deal with classifier
shift. Specifically, we adopt a discussion strategy to design the
classifier learning module (i.e., PEAL), which minimizes the
output inconsistency between the target-specific classifier and
auxiliary classifiers. We can initialize several (at least two)
classifiers in the target domain and then transfer the decision
knowledge by alternatively optimizing them until all of them
are competitive. Note that these classifiers are parallel, rather
than contrastive as those in the Teacher-Student model [40].

The utilization of the inconsistency loss connects our PEAL
to other UDA methods [20], [31], [36], but their motivations
and usages are different. In [31], inconsistency loss is used for
subspace adaptation. Saito et al. [36] maximized the discrep-
ancy of the task-specific classifiers for effectively measuring
the domain distance. However, PEAL minimizes the classifier
inconsistency to deal with the label space shift problem in
PDA. Matsuura et al. [20] also minimized the classifiers
inconsistency on target samples. Note that the classifiers are
trained on the source domain, instead of target-specific. In
PEAL, the inconsistency loss is used to facilitate the collabo-
rative learning between multiple classifiers for improving the
generalization ability of the target-specific classifier.

III. OUR METHOD

A. Notations and Overall Structure

Several important notations are defined here. The source
data X s ∈ Rd×ns and the target data X t ∈ Rd×nt are drawn
respectively from the source domain distribution ps(x) and the
target domain distribution pt(x), where d is the data dimen-
sion, and ns, nt represent the sample sizes of source and target
domains. The label vector of source domain is formulated as
Ys. Due to domain shift, the distributions of source and target
domains are different but similar, i.e. ps(x) 6= pt(x). Besides,
pi(y|x) denotes the predicted category distribution of x by
classifier Ci, i ∈ {1, 2, · · · , n}. Specifically, C1 is the source
classifier, C2 is the target-specific classifier, and C3, · · · , Cn

are auxiliary classifiers. We use F to denote the shared deep
feature extractor.

The proposed TSCDA method contains two interdependent
modules, i.e., partial features alignment and target-specific
classifier learning. The overview of TSCDA is shown in Fig. 2.
On the one hand, in order to control the negative transfer
between the source-outlier-domain and the target domain,
partial features alignment module uses SWMMD to partially
align the feature distributions of the source-shared-domain and
target domains. On the other hand, to consider the label space
shift between the source and target domains, the target-specific
classifier learning module learns a target-specific classifier C2

for the target domain by the pseudo-labels. Specially, PEAL
is implemented by a consistency regularization between the
outputs of the target-specific classifier C2 and the auxiliary
classifier C3.
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Fig. 2. Workflow of TSCDA. The blue line and the red line represent the forward propagation of target domain and source domain, respectively. The source
classifier C1 is trained with a weighed cross-entropy loss. Considering label space shift between the two domains, the target classifier C2 is trained with the
target data and their pseudo-labels predicted by C1. The PEAL module is trained with a consistency regularization term, which uses the outputs of C2 and
C3. At last, the feature extractor F is trained by minimizing all loss functions. Best viewed in color.

B. Partial Features Alignment

Since the existence of the source-outlier-domain seriously
mislead knowledge transfer between the source and target
domains, the first goal of our method is to identify and
distinguish the source-shared-domain and the source-outlier-
domain, then filter out samples in the source-outlier-domain. It
is achieved by a soft weight vector calculated by probabilistic
outputs of target samples on the source classifier C1,

w =
1

nt

∑
xj∈Dt

p1(y|xj), (1)

where w ∈ R|Ys| is initialized with [1/|Ys|, . . . , 1/|Ys|]. A
large wi value indicates a high probability that the i-th class of
the source domain appears in the target domain. Thus, wi can
also be viewed as the probability that the i-th class belongs to
the source-shared domain.

Although MMD has been widely used to solve UDA tasks
by matching feature distributions of the two domains, it aligns
the whole distribution of the source domain with that of
the target domain, and the source-outliers are harmful to the
correct knowledge transfer in PDA tasks. To mitigate negative
transfer, SWMMD is proposed by weighting MMD with the
soft weight vector w. Let F (·) be the mapping function of
the feature extractor and Φ(·) a nonlinear kernel mapping.
We denote zw =

∑
xi∈Ds wyi

for simplicity. The objective
function can be formulated as

LSWD(Xs,Xt)=‖ 1

nt

∑
xj∈Dt

Φ◦F (xj)−
1

zw

∑
xi∈Ds

wyi
Φ◦F (xi)‖2H.

We define kernel function k as k(xi,xj) = 〈Φ(xi),Φ(xj)〉.
Then the loss function can be rewritten as

LSWD(Xs,Xt) =
1

n2t

∑
xj∈Dt

∑
x
′
j∈Dt

k(F (xj), F (x
′

j))

− 2

ntzw

∑
xj∈Dt

∑
xi∈Ds

wyik(F (xj), F (xi))

+
1

z2w

∑
xi∈Ds

∑
x
′
i∈Ds

wyi
wy

′
i
k(F (xi), F (x

′

i)).

(2)

In this way, SWMMD aligns partially the feature distri-
butions of the source-shared-domain and the target domain
to address domain shift, thus effectively boosts the positive
transfer of the source-shared-domain and reduces the negative
transfer of the source-outlier-domain.

C. Learning Domain-specific Classifiers

To reflect the importance of each category in training the
source classifier, we use w learned from Formula (1) to
reweigh the cross-entropy loss. In the weighed and supervised
learning phase, classes with high probabilities are given large
weights while classes absent in the target domain are given
tiny weights. Specifically, the weighed cross-entropy loss is
formulated as

Ls
WCE(Xs, Y s) = − 1

ns

∑
Ds

wyi

|Ys|∑
k=1

1[k=yi] log p1(k|xi), (3)

where wyi is the class-wise weight of source sample xi. Under
this setting, the source classifier pays more attention to the
classes in the source-shared-domain and thus can partially
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address label space shift. We denote the classifier induced by
Ls
WCE as C1 hereinafter for simplicity.
Due to the classifier shift problem, the source classifier C1

may be sub-optimal in the target domain, and thus we propose
to learn a target-specific classifier. Following [38], [41], we use
C1 to label target samples, as it performs well on a majority of
target samples. To obtain reliable pseudo-labels, we impose a
constraint that the confidence of the target sample predicted by
C1 should exceed a threshold ν. It means that a target sample
xt
i will be tagged with a pseudo-label ŷti if

max
y

p1(y|xt
i) ≥ ν.

According to these pseudo labels, the target domain can be
divided into two disjoint sub-domains, Dt = Dtl∪Dtu, where
Dtl = {(xtl

i , ŷ
tl
i )}ntl

i=1, Dtu = {xtu
i }

ntu
i=1 are target sets with

pseudo-labels and without pseudo-labels, and ntl, ntu are the
number of instances in Dtl and Dtu, respectively.

With the pseudo-labeled target set Dtl, the cross-entropy
loss is used again to train the target-specific classifier C2, i.e.,

Lt
CE(Xtl, Ŷ tl) = − 1

ntl

∑
xi∈Dtl

|Ys|∑
k=1

1[k=ŷi] log p2(k|xi). (4)

We denote the classifier induced by Lt
CE as C2 hereinafter.

By combining Formula (3) and (4), the classification loss
LCE of TSCDA can be written as

LCE = Ls
WCE + Lt

CE . (5)

D. Peers Assisted Learning

Since the target classifier C2 is only trained on Dtl, target
samples from Dtu are likely to be incorrectly classified when
the classifier is over-fitting on Dtl, as shown in Fig. 3. To
improve the generalization ability of C2 and the adaptability
of the decision boundary to the target domain, we present an
auxiliary classifier C3, with a consistency regularization term.
The inconsistency loss is used to minimize the mean difference
between the predicted category distributions, which are outputs
of classifiers C2 and C3.

Intuitively, the learning process between C2 and C3 can
be regarded as the discussion and exchange between peers,
thus they play similar roles in reducing the inconsistent
loss. It is desirable that classifiers C2 and C3 can learn
from each other, and we call this module Peers Assisted
Learning (PEAL). Several (conditional) distribution measure-
ments, such as Kullback-Leibler divergence and Wasserstein
distance [34], can be exploited here to measure the difference
or inconsistency. We use the Euclidean distance in this work
due to its simple numerical optimization. The inconsistency
loss between classifiers C2 and C3 can be written as

LCon(Xt) =
1

nt

∑
xj∈Dt

‖p2(y|xj)− p3(y|xj)‖22. (6)

The working principle of PEAL is shown in Fig 3. The
consistency regularization term forces the target-specific clas-
sifier C2 and the auxiliary classifier C3 to learn from each
other, in this way their decision boundaries move toward

Target samples from
tlD Target samples from

tuD

2C 3C

Fig. 3. The working principle of PEAL. On one hand, the inconsistency loss
impels target-specific classifier C2 and auxiliary classifier C3 to learn from
each other, forcing their decision boundaries to move toward each other. On
the other hand, the inconsistency loss pushes samples lying in the classification
contradiction zone close to their class centers.

consensus and finally reach an equilibrium. At this time,
C2 and C3 are competitive and assimilative to each other.
However, compared with its initial state, the generalization
ability of C2 is improved. In addition, the inconsistency loss
promotes target samples locating at the contradiction area
of the decision boundaries to move toward the support of
their classes in the target domain, which further improves the
discrimination power of the classifiers.

The inconsistency loss can be extended to multiple auxiliary
classifiers C3, · · · , Cn, i.e.,

L̃Con(Xt) =
1

nt

∑
xj∈Dt

∑
m1 6=m2

‖pm1(y|xj)− pm2(y|xj)‖22.

(7)
Note that even though the PEAL module exploits multiple

auxiliary classifiers to improve discriminant performance of
the target-specific classifier, it is essentially different from
the ensemble learning methods [37], [42]. PEAL uses mutual
learning to achieve collaborative improvement, while ensemble
methods focus on classifier reinforcement via dynamically
updating weights of both training samples and sub-classifiers.

With an alternative classifier learning strategy, our method is
also similar to the Teacher-Student model [39] for knowledge
distillation and model compression. Generally, the latter is
used to transfer knowledge from a complex (Teacher) network
to a simple (Student) network. Only the student network is
trained in an iterative manner to learn useful information
from the Teacher network as much as possible. Empirical
results of Hinton et al. [40] have shown that the knowledge
distillation scheme can offer student networks with comparable
accuracy of the Teacher model. However, both motivation and
mechanism of PEAL are different from the Teacher-Student
model. The main difference is that the unequal status between
teacher and student is eliminated from PEAL.

E. Model Training and Test

Based on the above discussion, the classification loss LCE

enables TSCDA to learn a source classifier and a target-
specific classifier with discriminant feature representation. The
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Algorithm 1 The TSCDA Algorithm.
Input: Data: source domain Ds = {(xs

i , y
s
i )}ns

i=1 and target
domain Dt = {xt

j}
nt
j=1. Networks: feature extractor F ,

source classifier C1, target classifier C2 and auxiliary
classifier C3. Parameters: confidence threshold ν, trade-
off coefficients β, γ.

Output: Updated F and C2.
1: Initialize: w = [1/|Ys|, . . . , 1/|Ys|] ∈ R|Ys|.
2: Pre-train: optimize F and C1 by Eq. (3);
3: while not converged do
4: for each batch do
5: Minimize the loss Eq. (3) w.r.t. F and C1;
6: Minimize the loss Eq. (2) w.r.t. F ;
7: Label the target data by F and C1;
8: Minimize the loss Eq. (4) and loss Eq. (6) w.r.t. F ,

C2 and C3;
9: end for

10: Update sample weight w by F and C1 with Eq. (1).
11: end while

inconsistency loss LCon promotes the target-specific classifier
to alleviate over-fitting problem on the pseudo-labeled target
domain. The partial feature alignment loss LSWD controls the
negative transfer between the source-outlier-domain and the
target domain. Combining Formula (2), (5) and (6), the final
objective function of TSCDA is

L = LCE + βLCon + γLSWD, (8)

where β and γ are positive trade-off coefficients.
The most important component of TSCDA is the target

classifier, with performance relying on the pseudo-labeling
accuracy of the source classifier. We pre-train the feature
extractor F and the source classifier C1 on the source do-
main, with cross entropy loss Ls

WCE , to ensure the accuracy
and reliability of pseudo-labeling. Then the total loss (8) is
optimized by back propagation. At last, we update the source
sample weight w. These steps are repeated until pre-fined
convergence conditions are achieved, so as to obtain the feature
extractor F and the target-specific classifier C2. The whole
training algorithm is presented in Algorithm 1.

In the test stage, given a target sample xt, we first extract
the feature of xt by F . Then the target-specific classifier C2

is used to predict the labels via

ŷt = argmaxC2(F (xt)).

In particular, there are three classifiers, C1, C2, and C3, and
each one can be used to classify samples in the target domain.
In Section IV, we will conduct experiments to evaluate the
classification performance of different classifiers.

IV. EXPERIMENT RESULTS AND ANALYSIS

We conduct extensive experiments on three benchmark
datasets to evaluate the effectiveness of our TSCDA through
comparisons with some state-of-the-art UDA and PDA meth-
ods. All experiments are performed in the unsupervised PDA
settings. Besides, we also perform ablation studies to show the
effects of key components of the proposed method.

A. Experiment Setup and Implementation Details

1) Datasets: The datasets are briefly introduced here.

• Digits We build PDA experiments with the full train-
ing sets of MNIST [43], USPS [44] and SVHN [45]
as three different domains. Some exemplar images
are shown in Fig. 4(a). Each domain consist of ten
classes of digits. In each transfer task, the source
domain contains all images while the target domain
contains only the first five classes following an as-
cending order of the source domain [20]. We conduct
three PDA tasks (MNIST→USPS, USPS→MNIST, and
SVHN→MNIST) on this dataset.

• Office-31 [46] It includes a total of 4, 652 images of 31
categories from three domains: Amazon (A), DSLR (D)
and Webcam (W), which are website images, digital SLR
camera images and web camera images, respectively.
Examples from this dataset are shown in Fig. 4(b).
Following the setting of [13], we take samples of ten
classes shared by Office-31 and Caltech-256 [47] as target
domains. We evaluate the methods across all the six
transfer tasks, i.e., A→D, A→W, · · · , W→D.

• Office-Home [48] It is a more challenging dataset for vi-
sual domain adaptation. It contains four domains: Artistic
(Ar), Clipart (Cl), Product (Pr) and Real-World (Rw),
which are artistic images, real-world images, clipart im-
ages and product images, respectively. They have a total
of 15, 500 images in 65 categories of daily objects. Some
examples are shown in Fig. 4(c). To be consistent with
protocols in [13], [15], we use the first 25 categories
following the alphabetic order to form target domains.
We conduct all the twelve transfer tasks, i.e., Ar→Cl,
Ar→Pr, · · · , Rw→Pr.

2) Baselines: To evaluate the effectiveness of TSCDA, we
compare its performance with the baseline method, which fine-
tunes ResNet-50 on the source domain, and also several state-
of-the-art UDA and PDA methods based on deep network
architectures, including Deep Adaptation Network (DAN) [9],
Domain Adversarial Neural Network (DANN) [18], Adversar-
ial Discriminative Domain Adaptation (ADDA) [8], Residual
Transfer Networks (RTN) [19], Joint Adaptation Network
(JAN) [17], Selective Adaptation Networks (SAN) [10], Par-
tial Adversarial Domain Adaptation (PADA) [13], Impor-
tance weighed Adversarial Nets (IWAN) [14], Two weighed
Inconsistency-reduced Network (TWINs) [20] and Adaptive
Feature Norm (AFN) [15]. Among them, DAN, DANN,
ADDA, RTN, JAN and AFN are UDA methods, while SAN,
PADA, IWAN, TWINs and AFN are PDA methods.

We perform ablation study with three variants, i.e., TSCDA-
v1, TSCDA-v2 and TSCDA-v3, which are built by subtracting
from TSCDA the target-specific classifier learning module, the
PEAL module and the SWMMD module, respectively.

3) Implementation Details: Following the standard proto-
cols [13]–[15], we use all labeled source data and all unlabeled
target data to conduct experiments on PyTorch platform. The
ResNet-50 model pre-trained on ImageNet [49] is adopted as
the initial feature extractor F .
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Fig. 4. Example images used in the experiments. (a) Digits. (b) Office-31. (c) Office-Home.

TABLE I
ACCURACY(%) ON DIGITS DATASET FOR PARTIAL UNSUPERVISED DOMAIN ADAPTATION.

Method MNIST→USPS USPS→MNIST SVHN→MNIST Avg

UDA
Source Only 85.2 80.0 73.9 79.7

DAN [9] 83.5 80.7 70.9 78.4

DANN [18] 67.1 72.1 39.8 59.7

PDA
IWAN [14] 90.6 85.7 75.6 84.0

PADA [13] 90.6 86.7 81.4 86.2

Ours TSCDA 97.4± 0.2 90.1± 0.6 84.5± 3.8 90.7

SWMMD is placed onto the last layer of F , and the weights
of SWMMD are updated in each epoch. A Gaussian kernel
with bandwidth 1 is used to calculate SWMMD. Classifiers
C1, C2 and C3 share the same architecture which places two
fully connected layers (2048-512-ω) onto the feature extractor
F , where ω is the number of source domain classes. The
classifiers are initially equipped with a Gaussian distribution
N (0, 0.05), and the activation function is LeakyReLU with a
slope of 0.2.

The Adam optimizer with β1 = 0.9 and β2 = 0.999 is
uniformly used in mini-batch based optimization. The learn-
ing rate is 2e-4. The hyper-parameters are uniformly set to
β = 0.1, γ = 0.4, and ν = 0.9. For inputs, we use 224× 224
center crops of 256×256 resized images on these datasets. As
for the experiments on Digits, the images are uniformly resized
to 32 × 32. Although tuning hyper-parameters can improve
the performance of each subtask, we do not tune parameters
for each transfer task because it will greatly increase the
computational cost.

B. Comparison with State-of-the-Art Methods

We compare the performance of TSCDA against state-of-
the-art UDA, PDA methods. We report the mean accuracy
and standard deviation (STD) of TSCDA for twenty repeated
random trials. The accuracies of state-of-the-art methods are
directly cited from the original papers.

Table I lists the results of our TSCDA for three transfer tasks
on Digits. To evaluate the source only model, we only use the
data from source domain to train a network with the same ar-
chitecture as our method. We also compared our methods with
a series of UDA and PDA methods as shown in Table I. On one

hand, we observe that UDA methods cannot outperform the
Source Only model. This is potentially because UDA methods
transfer the incorrect knowledge of the source-outlier-domain
to the target domain by aligning the whole source distribution
and the target distribution. Besides, PDA methods outperform
traditional UDA methods with a large margin. It indicates that
controlling negative transfer is critical for successful PDA.
On the other hand, the mean accuracy of TSCDA for all three
subtasks is 90.7%, which is much higher than that of the state-
of-the-art methods by a large margin 4.5%. Besides, TSCDA
outperforms the existing methods for all subtasks. Specifically,
the classification accuracies of TSCDA on these three tasks are
94.7%, 90.1% and 84.5%, which outperform the the state-of-
the-art method PADA by 6.8%, 3.4% and 3.1%. All of these
results validate the effectiveness of our method.

Results on Office-31 dataset are shown in Table II. We ob-
serve that the classification results obtained by UDA methods,
such as DANN, ADDA and JAN, are worse than directly
finetune the ResNet-50 due to negative transfer. TSCDA
achieves higher average accuracy (97.61%) than the existing
DA methods with large margins (4%) on Office-31. In addition,
TSCDA outperforms state-of-the-art methods across all the
six tasks. In particular, for the more difficult transfer tasks,
such as A→W and A→D, TSCDA achieves higher accuracy
(96.84% and 98.09%) than the state-of-the-art method TWINS
with large improvements (10.8% and 11.3%), which further
validates the effectiveness of our method.

Results on Office-Home benchmark are shown in Table III.
Compared with Office-31, Office-Home has more categories
and the four domains are more dissimilar. These can be
verified by the classification accuracy of ResNet-50, with
an average classification accuracy of only 53.71%, which is
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TABLE II
ACCURACY(%) ON Office-31 DATASET FOR PDA TASKS.

Method A→W D→W W→D A→D D→A W→A Avg

UDA

ResNet [3] 54.52 94.57 94.27 65.61 73.17 71.71 75.64

DAN [9] 46.44 53.56 58.60 42.68 65.66 65.34 55.38

DANN [18] 41.35 46.78 38.85 41.36 41.34 44.68 42.39

ADDA [8] 43.65 46.48 40.12 43.66 42.76 45.95 43.77

JAN [17] 43.39 53.56 41.40 35.67 51.04 51.57 46.11

RTN [19] 75.25 97.12 98.32 66.88 85.59 85.70 84.81

PDA

SAN [10] 80.02 98.64 100 81.28 80.58 83.09 87.27

IWAN [14] 76.27 98.98 100 78.98 89.46 81.73 87.57

PADA [13] 86.54 99.32 100 82.17 92.69 95.41 92.69

TWINS [20] 86 99.30 100 86.80 94.70 94.50 93.60

TSCDA 96.84± 0.98 100± 0.00 100± 0.00 98.09± 0.64 94.75± 0.32 96± 0.16 97.61

TABLE III
ACCURACY(%) ON Office-Home DATASET FOR PDA TASKS.

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

UDA

ResNet [3] 38.57 60.78 75.21 39.94 48.12 52.90 49.68 30.91 70.79 65.38 41.79 70.42 53.71

DAN [9] 44.36 61.79 74.49 41.78 45.21 54.11 46.92 38.14 68.42 64.37 45.37 68.85 54.48

DANN [18] 44.89 54.06 68.97 36.27 34.34 45.22 44.08 38.03 68.69 52.98 34.68 46.50 47.39

RTN [19] 49.37 64.33 76.19 47.56 51.74 57.67 50.38 41.45 75.53 70.17 51.82 74.78 59.25

PDA
PADA [13] 51.95 67.00 78.74 52.16 53.78 59.03 52.61 43.22 78.79 73.73 56.60 77.09 62.06

AFN [15] 58.93 76.25 81.42 70.43 72.97 77.78 72.36 55.34 80.40 75.81 60.42 79.92 71.83

TSCDA 63.64 82.46 89.64 73.74 73.93 81.43 75.36 61.61 87.87 83.56 67.19 88.80 77.44

±0.06 ±0.15 ±0.64 ±0.61 ±1.63 ±0.84 ±0.56 ±0.26 ±0.43 ±0.47 ±0.97 ±0.57 –

TABLE IV
ACCURACY (%) OF TSCDA VARIANTS ON Office-Home FOR PDA TASKS.

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg
TSCDA-v1 56.42 76.47 85.86 65.56 64.43 75.70 65.93 51.40 81.45 75.30 57.73 83.14 69.95

TSCDA-v2 58.51 81.90 89.18 73.19 71.54 80.45 73.00 55.04 86.20 81.45 60.90 86.67 74.84

TSCDA-v3 60.18 81.18 89.23 72.91 70.64 77.91 75.11 61.67 86.53 83.29 66.63 86.27 75.96

TSCDA 63.64 82.46 89.64 73.74 73.93 81.43 75.36 61.61 87.87 83.56 67.19 88.80 77.44

TABLE V
ACCURACY(%) OF TSCDA WITH DIFFERENT WEIGHTING STRATEGIES ON OFFICE-HOME FOR PDA TASKS.

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg
TSCDA(with MMD) 63.04 72.61 87.74 70.06 69.58 78.52 68.32 61.43 84.02 82.46 59.64 86.22 73.64

TSCDA(with WMMD) 64.30 79.78 88.07 72.64 71.82 79.73 73.92 63.82 86.64 83.47 63.16 86.50 76.15
TSCDA(with SWMMD) 63.64 82.46 89.64 73.74 73.93 81.43 75.36 61.61 87.87 83.56 67.19 88.80 77.44

much lower than the Office-31 result of 75.64%. Thus, Office-
Home dataset provides a more challenging PDA task. TSCDA
achieves higher average accuracy (77.44%) than the existing
PDA methods with large margins (5.6%) on Office-Home. In
particular, TSCDA achieves accuracy of 89.64% and 88.80%
on the tasks of Ar→Rw and Rw→Pr, and it outperforms the
state-of-the-art method AFN by large margins of 8.2% and
8.9% respectively. It can be seen that TSCDA outperforms
the existing UDA and PDA methods on all the twelve tasks
with larger rooms of improvement. This indicates that our
TSCDA can effectively handle the PDA Problems by filtering
out the classes in the source-outlier-domain to control negative
transfer and learning a target-specific classifier to address label
space shift. On the other hand, for the stability of model, the
STDs of TSCDA are smaller than 1 except for Cl→Pr. In
particular, the STDs on Ar→Cl and Ar→Pr are near zero,

showing the stable performance of TSCDA for repetitiveness.

C. Analysis

This subsection presents more analysis for TSCDA. Several
algorithmic aspects, including ablation study, the weighting
strategy, accuracy of pseudo-labeling, parameter sensitivity,
feature visualization, sensitivity of the number of target classes
and the role of different classifiers are demonstrated as follows.

1) Ablation Study: The loss function of TSCDA contains
four different losses, i.e., the classification loss on the source
domain Ls

WCE , the SWMMD loss LSWD for partial features
alignment, the classification loss Lt

CE on target domain, and
the inconsistency loss LCon. In order to verify the role of
target-specific classifier learning module, we perform ablation
study with the variant TSCDA-v1, which is built by elimi-
nating from TSCDA the losses Lt

CE and LCon. To further
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Fig. 5. Label distribution of target samples. (a) Real label distribution of the whole target domain. (b) Real label distribution of target samples with
pseudo-labels. (c) Estimated label distribution of target samples with pseudo-labels.

illustrate the role of PEAL, we perform ablation study with
the variant TSCDA-v2, which is built by only eliminating
the inconsistency loss LCon. To illustrate the role of partial
feature alignment, we perform ablation study with the variant
TSCDA-v3, which is built by eliminating the loss LSWD.

Results of ablation study of TSCDA on Office-Home are
shown in Table IV. We obtain the following observations: 1)
Compared with TSCDA, the performance of TSCDA-v1 drops
7.49%. It shows that the target-specific classifier learning
module is effective in learning the target-specific classifier and
dealing with the classifier shift problem. 2) The classification
performance of TSCDA-v2 is higher than TSCDA-v1 and
lower than TSCDA. This further indicates the effectiveness
of the target-specific classifier learning module and PEAL. 3)
TSCDA outperforms TSCDA-v3 on 11 tasks except for the
Pr→Cl task, which has a little decline (0.06%). It indicates
that SWMMD can promote TSCDA to get rid of negative
transfer by assigning small weights to source-outlier classes.

2) Evaluation of Different Weighting Strategies: To evalu-
ate the effectiveness of the proposed SWMMD module, we
conduct more experiments by replacing SWMMD with MMD
and WMMD, respectively, and present the results in Table V.

In all the twelve PDA tasks, the results of MMD are inferior
than those of WMMD and SWMMD. Moreover, SWMMD
outperforms WMMD on ten of twelve tasks. Finally, the aver-
age accuracy of WMMD on these tasks is 76.15%, while that
of SWMMD is 77.44%. These results validate the effectiveness
of SWMMD on differentiating the source-shared-domain from
the source-outlier-domain, which is helpful to addressing the
domain alignment and classifier shift problems of PDA tasks.

3) Pseudo-Labeling Accuracy: Since the performance of
target-specific classifier relies on the accuracy of pseudo-
labels for the target domain, we record the accuracy of
pseudo labeling to analyze effectiveness of the PEAL mod-
ule. Experimental results show that the average classification
accuracy of the target domain is up to 98% when ν = 0.9.
Fig. 5 depicts a comparison between the real label distribution
and the estimated label distribution for the target samples.
Fig. 5(a) and Fig. 5(b) show the real label distributions of the
entire target domain and the target sample with pseudo-labels,
respectively. Fig. 5(c) shows the pseudo-labels predicted by the
source classifier C1. The comparison of Fig. 5(a) and Fig. 5(c)

shows that pseudo labels predicted by the source classifier
cover all source-shared classes and no outliers classes. The
comparison of Fig. 5(b) and Fig. 5(c) shows that the estimated
label distribution of the target samples with pseudo labels
is highly approximative to the real label distribution. These
results show that the target-specific classifier learning can
effectively address label space shift. They also show that the
target-specific classifier is able to learn a more discriminative
decision boundary specific for the target domain with high
confidence.

4) Sensitivity of Parameters: We now show the empirical
analysis results for the sensitivity of hyper-parameters β, γ
and ν, by conducting experiments on A→W and W→A.
Specifically, we use the trial-error approach to obtain the
optimal value for each hyper-parameter.

We first fix γ = 0.4, ν = 0.9 and vary β-value within
{1e-4, 1e-3, 1e-2, 1e-1, 5e-1, 1e-0}. The classification results
are shown in Fig 6(a). Generally, TSCDA obtains the best
result around β = 0.1. For task W→A, the accuracy keeps
stable but drops greatly when β = 1. For task A→W, we
can see the accuracy increases as the β-value becomes larger,
but it declines when β-value exceeds 1e-1. These results also
indicate the usefulness of the PEAL module. Accordingly, we
use β = 0.1 hereinafter experiments.

The parameter γ should be a small value, as a large γ
is probably to project the source and target data onto the
same point with LSWD = 0. We fix β = 0.1, ν = 0.9
and vary γ within {1e-4, 1e-3, 1e-2, 1e-1, 4e-1, 8e-1, 1e-
0}. The classification results are shown in Fig. 6(b). In the
case of A→W, the accuracy has continuous increment when γ
changes from 1e-4 to 4e-1. It means that the method pays more
attention to the SWMMD term, thus, it shows effectiveness of
the partial feature alignment module in PDA. We empirically
set γ = 0.4 since TSCDA performs well around it.

The parameter ν ∈ [0, 1] is used to control the confidence
level for pseudo labels, thus, it should be a large value to
ensure the accuracy and reliability. We vary it within the range
{0, 0.3, 0.6, 0.9, 0.95, 0.99}. with β = 0.1 and γ = 0.4. The
classification results are shown in Fig. 6(c). We observe that
the accuracy of TSCDA is stable on the W→A task when ν
is smaller than 0.95, but it degrades rapidly when ν is very
close to 1. For the A→W task, it obtains the best result at
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Fig. 6. Accuracies of different parameter values. (a) Accuracy w.r.t. β. (b) Accuracy w.r.t. γ. (c) Accuracy w.r.t. ν.
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Fig. 7. t-SNE feature visualization. Best viewed in color.

ν = 0.9, and the accuracy decrease when larger µ value is
chosen. Therefore, we set ν = 0.9 throughout this paper.

5) Feature Visualization: To understand TSCDA better, we
present t-SNE feature visualization [50] on the pre-adaptive
and post-adaptive features of TSCDA, as shown in Fig. 7.

In particular, to guarantee the class-level alignment could be
observed, we use different shapes for samples from different
classes and different colors for different domains. The task
A→W with ten shared classes is used for demonstration. The
left diagrams show the features obtained by ResNet-50 which
is trained only on the source domain, while the right diagrams
show the features obtained by TSCDA.

The top line shows the samples annotated in the domain-
level, i.e., source-shared-domain, source-outlier-domain and
the target domain. As we can see, features of the source
domain and the target domain before adaptation are highly
mixed. It is difficult to distinguish samples in the target domain
are closer to the source-shared domain or the source-outlier-

domain. As a result, negative transfer can be easily occurred
that the target data are mapped to the feature space of the
source-outlier-domain, and then the domain adaptation per-
formance degenerates. However, in the feature space obtained
by TSCDA, we observe that the target features are highly
adapted to those of the source-shared-domain. It shows that
TSCDA can effectively address label space shift to obtain
reliable decision boundary for the target domain. In addition,
classes in the source-outlier-domain are more compact than
those before adaptation. It is helpful for us to pay attention
to classes appearing in the target domain while neglect the
source-outliers.
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Fig. 8. Accuracy with respect to the number of target classes.

To present the class-level alignment results, the second line
just shows samples in the shared classes. We can see that
most samples are aligned correctly, and the margins between
different classes are larger than before adaptation. In this
perspective, it validates the effectiveness of TSCDA in dealing
with the classifier shift and negative transfer problems of PDA
tasks.
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TABLE VI
ACCURACY(%) OF DIFFERENT CLASSIFIERS ON OFFICE-31 DATASET

Classifier A→W A→D D→A W→A
C1 89.15 92.36 91.54 93.84
C2 96.95 97.45 94.78 95.82
C3 96.95 98.09 94.36 96.03

6) Sensitivity of the Number of Target Classes: We now
investigate the performance of TSCDA when the number of
target classes changes. DANN [18] and PADA [13] are used
as two baselines. The experiments are conducted on Office-31
and Office-Home datasets.

In the experiments of Office-31, we fix source domain
(|Ys| = 31) and reduce the number of target classes |Yt|
from 31 to 5. The classification results on two tasks, i.e.,
A→W and W→A, are shown in Fig. 8(a) and Fig. 8(b). In
the experiments of Office-Home, we also fix source domain
(|Ys| = 65) and reduce the number of target classes |Yt| from
65 to 5. The classification results on two tasks, i.e., Ar→Pr
and Pr→Ar, are shown in Fig. 8(c) and Fig. 8(d). We can
see that the classification accuracy of DANN continuously
degrades as the number of target classes decreases, since
the size of shared classes becomes small and the classifier
shift problem becomes serious. Also note that DANN was
just designed for UDA, rather than PDA, thus, it cannot
deal with the classifier shift problems well. In contrary, the
classification performance of both PADA and TSCDA has a
global even continuous improvement as the number of target
classes decreases, and TSCDA outperforms PADA on all of
these four tasks. In particular, TSCDA has a faster increment in
the classification accuracy than PADA. In other words, TSCDA
shows remarkable superiority especially when the source label
space is much larger than the target label space in PDA tasks.

7) The role of different classifiers: In the TSCDA method,
we design three different classifiers, i.e., source classifier
C1, target classifier C2 and auxiliary classifier C3. In order
to display the role of different classifiers, we evaluate the
target domain classification accuracy of different classifiers
on four difficult tasks on the Office-31 dataset, i.e., A→D,
A→D, D→A and W→A. Experiment results are shown in
Table VI. We observe that the performance of C2 and C3 is
significantly better than C1, which verifies our motivation that
the source classifier is sub-optimal for the target domain in
PDA tasks. At the same time, C2 and C3 achieve similar high
classification accuracies, which indicates that PEAL allows
the target classifier and auxiliary classifier learn from each
other and makes the classifiers more discriminative for the
target domain. Both C2 and C3 can be used as the final target
domain classifier. In all other experiments in Section IV, we
uniformly report the classification accuracy of C2.

We further conduct more experiments to show the per-
formance of C2 and C3 during and after learning. Fig. 9
presents the classification accuracies with different training
strategies, namely, one learns with both C2 and C3, while
the other learns with C2 only. Fig. 9(a) shows the results on
task A→W and Fig. 9(b) on task Ar→Pr. When C3 is used
in the PEAL module, we can see that the results of C2 are
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Fig. 9. The role of C3 in classification performance. (a) A→W. (b) Ar→Pr.

higher than those of C3 at the beginning of the iterations,
but soon they start to approach each other and converge to
the same classification accuracies. In contrary, when C3 is
removed from PEAL, the accuracies of C2 which are shown
by “C2(w/o C3)” in the figures cannot achieve the high level
obtained by the other manner. Therefore, the role of C3 in
improving the final classification performance is validated.

V. CONCLUSION

This paper presents a novel method to tackle PDA problems.
Previous methods do not consider the essential classifier shift
scenario, and they just share and use the source classifier to
test directly samples in the target domain. These are obviously
sub-optimal for PDA tasks. The proposed TSCDA can not only
deal with the negative transfer between the source-outlier-
domain and the target domain by partial feature alignment
with SWMMD, but also address the classifier shift problem
by learning a target-specific classifier. In particular, the PEAL
module forces features to distribute compact in the shared
feature space, thus, it is helpful to learn a more discriminative
decision boundary for the target domain. Comprehensive ex-
periments and comparisons show that TSCDA achieves state-
of-the-arts performance for PDA problems.

How to extend the PEAL module to more extensive learning
scenes, and formulate solid theoretical foundations, are our
future works.
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