
This is a repository copy of Hawk: Rapid Android Malware Detection Through
Heterogeneous Graph Attention Networks.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/177116/

Version: Accepted Version

Article:

Hei, Y, Yang, R orcid.org/0000-0001-6334-4925, Peng, H et al. (6 more authors) (2024)
Hawk: Rapid Android Malware Detection Through Heterogeneous Graph Attention
Networks. IEEE Transactions on Neural Networks and Learning Systems, 35 (4). 4703
-4717. ISSN 2162-2388

https://doi.org/10.1109/TNNLS.2021.3105617

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XXX, NO. XXX, XXX 2021 1

HAWK: Rapid Android Malware Detection through
Heterogeneous Graph Attention Networks

Yiming Hei, Renyu Yang, Member, IEEE, Hao Peng, Lihong Wang, Xiaolin Xu, Jianwei Liu, Hong Liu,

Jie Xu, Member, IEEE, Lichao Sun

Abstract—Android is undergoing unprecedented malicious
threats daily, but the existing methods for malware detection
often fail to cope with evolving camouflage in malware. To
address this issue, we present HAWK, a new malware detection
framework for evolutionary Android applications. We model
Android entities and behavioural relationships as a heterogeneous
information network (HIN), exploiting its rich semantic meta-
structures for specifying implicit higher-order relationships. An
incremental learning model is created to handle the applications
that manifest dynamically, without the need for re-constructing
the whole HIN and the subsequent embedding model. The model
can pinpoint rapidly the proximity between a new application
and existing in-sample applications and aggregate their numerical
embeddings under various semantics. Our experiments examine
more than 80,860 malicious and 100,375 benign applications de-
veloped over a period of seven years, showing that HAWK achieves
the highest detection accuracy against baselines and takes only
3.5ms on average to detect an out-of-sample application, with the
accelerated training time of 50x faster than the existing approach.

Index Terms—Android, malware detection, graph representa-
tion learning, HIN

I. INTRODUCTION

W ITH the highest market share worldwide on mobile de-

vices, Android is experiencing unprecedented depend-

ability issues. Due to Android’s extensibility and openness

of development, users are put at high risk of a variety of

threats and illegal operations from malicious software, i.e.,

malware including privacy violations, data leakage, adver-

tisement spams, etc. Common Vulnerabilities and Exposures

Manuscript received Mar 2021, revised June 2021, accepted August
2021. This work was supported by the NSFC Grants (62002007, U20B2053,
62073012 and 62072184), S&T Program of Hebei Grant (20310101D), Fun-
damental Research Funds for the Central Universities, Project of Science and
Technology Commitment of Shanghai Grant 20511106002, the UK EPSRC
(EP/T01461X/1) and UK White Rose University Consortium, and Opening
Project of Shanghai Trusted Industrial Control Platform. R.Yang would also
appreciate the birth of Ruisi and numerous sleepless but encouraging nights
with her when preparing this manuscript. (Corresponding author: Hao Peng.

R.Yang and Y.Hei are co-first authors with equal contribution.)

Y.Hei, H.Peng and J.Liu are with the School of Cyber Science and Tech-
nology, Beihang University, Beijing 100083, China. Email:{black, penghao,
liujianwei}@buaa.edu.cn.

R.Yang and J.Xu are with the School of Computing, University of Leeds,
Leeds LS2 9JT, UK. Email: {r.yang1, j.xu}@leeds.ac.uk.

L.Wang and X.Xu are with the National Computer Network Emergency
Response Technical Team/Coordination Center of China, Beijing 100029,
China. Email: {wlh, xxl}@isc.org.cn.

H.Liu is with the School of Computer Science and Software Engineering,
East China Normal University, and with Shanghai Trusted Industrial Control
Platform Co., Ltd., Shanghai 200062, China. Email: liuhong@ticpsh.com.

L.Sun is with the Department of Computer Science and Engineering, Lehigh
University, Bethlehem, USA. Email: james.lichao.sun@gmail.com.

(CVE) reveals 414 Android vulnerabilities that can be easily

attacked in realistic environments. This phenomenon calls for

more reliable and accessible detection techniques.

Conventionally, Android Applications (Apps) are ana-

lyzed by either static analysis, through pre-determined sig-

natures/semantic artifacts, or dynamic analysis through multi-

level instrumentation [1]. However, static analysis could be-

come invalid by simple obfuscation, while dynamic analysis

heavily depends on OS versions and the Android runtime,

which is inherently cost-expensive and time-consuming. To

tackle this, numerous machine-learning based detection tech-

niques [2]–[8] typically leverage feature engineering to extract

key malware features and apply classification algorithms –

each app is represented as a vector – to distinguish benign soft-

ware from malicious software. Nevertheless, these approaches

often fail to capture emerging malware that either conducts

evolving camouflage and attack type or hides certain features

deliberately1. Hence, it is imperative to build an inductive and

rapid mechanism for constantly capturing software evolution

and detecting malware without heavily relying on domain-

specific feature selection.

Graph neural network (GNN), which is used to model the

relationship between entities, is developing rapidly in both

theoretical [9]–[12] and applied fields [13], [14]. Heteroge-

neous information network (HIN) [15], [16], as a special

case of graph neural network, has been widely adopted in

many areas such as operating systems, Internet of Things and

cyber-security by exploiting the abundant node and relational

semantic information before embedding into representation

vectors [17]–[20]. More specifically, in the context of malware

detection, if App1 and App2 share permission SEND_SMS

while App2 and App3 share permission READ_SMS, HIN

is able to capture the implicit semantic relationship between

App1 and App3 that can be hardly achieved by feature engi-

neering based approaches. HIN-based modelling is even more

meaningful because malware developers are extremely difficult

to hide such implicit relationships [18]. While promising, HIN

is inherently concerned about static networks/graphs [21]. The

complication is, however, how to efficiently embed the out-

of-sample nodes (i.e., incoming nodes out of the established

HIN). Considering the continuous software updates and the

huge volume of Apps, it is impossible to involve all Apps in

the stage of HIN construction and inefficient to re-construct

the entire embedding model when new Apps are seen emerg-

ing. This drawback impedes the practicality and the scale

1https://www.mcafee.com/blogs/other-blogs/mcafee-labs

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XXX, NO. XXX, XXX 2021 2

this native technique can perform. Although AiDroid [21]

attempts to tackle this problem and represents each out-of-

sample App with convolutional neural network (CNN) [22], it

requires heavily multiple convolution operations resulting in

non-negligible time inefficiency.

In this paper, we present HAWK, a novel Android malware

detection framework with the aid of network representation

learning model and HIN to explore abundant but hidden

semantic information among different Apps. In particular,

we extract seven types of Android entities – including App,

permission, permission type, API, class, interface and .so file

– from the decompiled Android application package (APK)

files and establish a HIN mainly through transforming entities

and their relationships into nodes and edges, respectively. We

exploit rich semantic meta structures as the templates to define

relation sequence between two entity types. This includes both

meta path [23] and meta graph [24] that can specify the

implicit relationships among heterogeneous entities. A certain

meta structure corresponds to an adjacency matrix associated

with a homogeneous graph. The graph only contains App

nodes and is the target in the procedure of malware detection.

At the core of HAWK is the numerical embedding of all

App entities that can be then fed into a binary classifier. In

particular, HAWK involves two distinct learning models for in-

sample and out-of-sample nodes, respectively. To embed an

in-sample App, we propose MSGAT, a meta structure guided

graph attention network mechanism [25] that incorporates its

neighbors’ embedding within any meta structure and integrates

the embedding results of different meta structures into the

final node embedding. This design takes into account not

only the informative connectivity of neighbor nodes but also

the diverse semantic implications over different entity rela-

tionships. In addition, to efficiently embed an out-of-sample

App, we present MSGAT++, a new incremental learning

model upon MSGAT to make good use of the embedding of

certain existing nodes. Given a specific meta structure and its

corresponding graph, our model firstly pinpoints a specific set

of in-sample App nodes that are most similar to the target new

node, before aggregating their embedding vectors to form the

node embedding under this meta structure. Likewise, we entitle

particular weights to individual embedding vector of each meta

structure and aggregate them to obtain the final embedding.

This incremental design can quickly calculate the embedding

based on the established HIN structures without re-learning

the holistic embedding for all nodes, thereby significantly

improving the training efficiency and model scalability.

We demonstrate the effectiveness and efficiency of HAWK

based on 80,860 malicious and 100,375 benign Apps collected

and decompiled across VirusShare, CICAndMal and Google

AppStore. Experiments show that HAWK outperforms all

baselines in terms of accuracy and F1 score, indicating its

effectiveness and suitability for malware detection at scale. It

takes merely 3.5 milliseconds on average to detect an out-of-

sample App with accelerated training time of 50× against the

native approach that rebuilds the HIN and reruns the MSGAT.

To enable replication and foster research, we make HAWK

publicly available at: github.com/RingBDStack/HAWK.

This paper makes the following contributions:

• It examines 200,000+ Android Apps and decompiled

180,000+ APKs, spanning over seven years across multiple

open repositories. This discloses abundant data source to

establish the HIN and uncovers the hidden high-order semantic

relationships among Apps (§ III).

• It presents a meta-structure guided attention mechanism

based on HIN for node embedding, by fully exploiting neigh-

bor nodes within and across meta structures (§ IV-A). Exper-

iments show the capture of semantics can support excellent

forward and backward compatible detection capabilities.

• It proposes an incremental aggregation mechanism for

rapidly learning the embedding of out-of-sample Apps, with-

out compromising the quality of numerical embedding and

detection effectiveness. (§ IV-B).

Organization. § II depicts the motivation and outlines the

system overview. § III discusses the procedure of feature

engineering and data reshaping by leveraging HIN while § IV

details the core techniques to tackle in-sample and out-of-

sample malware detection. Experimental set-up and results are

presented in § V and § VI. Related work is discussed in § VIII

before we conclude the paper and discuss the future work.

II. BACKGROUND AND OVERVIEW

A. Motivation and Problem Scope

The Android platform is increasingly exposed to various

malicious threats and attacks. As malware detection for An-

droid systems is a response-sensitive task, our work addresses

two primary research challenges – inductive capability and

detection rapidness. Anomaly identification should allow for

forecasting new applications that we have not seen (the so-

called out-of-sample Apps) and rapidly catch up the up-to-date

malicious attacks and threats, particularly considering the vast

diversity and rapid growth of emerging malicious software.

The detection procedure is typically regarded as a binary

classification. Formally, we aim to take as input features X
of Android Apps and their previous labels (malicious/benign)

T to predict the type t of any target App either old or new.

Unfortunately, the existing approaches for malware detection

are inadequate in tackling inductive problems where new

application is arbitrary and unseen beforehand. Most of prior

work on network embedding [23], [24], [26], [27] are trans-

ductive, i.e., if a new data point is added to the testing dataset,

one has to thoroughly re-train the learning model. Hence,

malware detection is in great need of a generic inductive

learning model where any new data would be predicted, based

on an observed set of training set, without the need to re-run

the whole learning algorithm from scratch.

B. Our Approach of HAWK

Key idea. We consider this problem as a semi-supervised

learning based on graph embedding. The first innovation of

our approach, as a departure from prior work, is to encode

the information as a structured heterogeneous information

network (HIN) [15][16] wherein nodes depict entities and

their characteristics. A HIN is a graph G = (V, E ,A,R)
with an entity type mapping φ : V → A and a relationship

type mapping ψ : E → R, where V and E represent node

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XXX, NO. XXX, XXX 2021 3

Data Modeller

Relationship

Extractor

HIN

Constructor
Feature

Engineering

Graph Constructor

MsGAT

Model

Node Similarity

Analyzer

MsGAT++

Model

Malware Classifier

embedding results

Malware Detector

Figure 1. HAWK architecture overview

and edge set, respectively. A and R denote the type set

of nodes and edge, where |A| + |R|> 2. Edges represent

the relationships between a pair of entities (e.g., an App

owns a specific permission, or a permission belongs to a

permission type). Since the detection problem is App entity

oriented, it is effective to deduce the information from a self-

contained HIN to homogeneous relational subgraphs that can

be directly absorbed by GNN. As the fundamental requirement

of graph embedding is to obtain the graph structure, we need to

calculate the adjacency matrix from the constructed HIN– the

best option to reflect the proximity and the node connectivity

in the graph. GNN models can be subsequently carried out to

learn the numerical embedding for in-sample App nodes. To

underpin the continuous embedding learning for out-of-sample

nodes, the learning model is desired to make the best use of

the embedding result of the existing in-sample App nodes, in

an incremental manner.

Architecture Overview. Fig. 1 depicts HAWK’s architecture,

encompassing Data Modeller and Malware Detector compo-

nents. Specifically, Relationship Extractor in Data Modeller

firstly offers an extraction of Android entities based on feature

engineering - massive Android Apps are compiled and investi-

gated. There are seven types of nodes (”App” together with six

characteristics) and six types of edges. HIN Constructor then

builds up the HIN by organizing entities and the extracted

relationships into nodes and edges of HIN (§ III-B). App

Graph Constructor is responsible for generating homogeneous

relational subgraphs from HIN that only contains App entities.

This is enabled by employing meta structures including both

meta path [23] and meta graph [24] (§ III-C).

Malware Detector then involves two distinct representation

learning models to numerically embed in-sample and out-

of-sample nodes, respectively. It is in great need of fully

exploiting node affinities within a given meta-structure and

aggregate the embeddings of the same node under different

meta-structures. Specifically, we design separate strategies to

learn the embedding:

• To represent in-sample App nodes, the proposed MSGAT,

a meta-structure enabled GAT solution, firstly aggregate intra-

meta-structure attention aggregation mechanism for accumu-

lating the embedding of a target node among its neighbor

nodes within the graph pertaining to a certain meta-structure.

In the second inter-meta-structure phase, we further fuse

the obtained embedding among different meta-structures so

that their semantic meanings can be represented in the final

embedding (§ IV-A).

• To efficiently tackle the out-of-sample node embedding,

we generate the embedding, incrementally, for a new node

through reusing and aggregating the embedding result of

selective in-sample App nodes in close proximity to the target

node. This requires the model to ascertain the similarity

between existing in-sample App nodes and the target node.

Similarly, the embedding is firstly gathered at neighbor node

level under a given meta-structure before conducting the inter-

meta-structure aggregation (§ IV-B).

Malware Classifier digests the learned vector embeddings

to learn a classification model to determine if a given App

is malicious or benign and then validates its effectiveness.

General purpose techniques such as Random Forest, Logistic

Regression, SVM, etc. can be adopted as the classifier imple-

mentation. We select the training set from in-sample Apps to

train our classifier, whilst using the testing set from in-sample

Apps and all out-of-sampling Apps to test the models.

III. HIN BASED DATA MODELLING

A. Feature Engineering

An Android application needs to be packaged in APK

(Android application package) format and installed on Android

system. An APK file contains code files, the configuration

AndroidManifest.xml file, the signature and verification infor-

mation, the lib (the directory containing platform-dependent

compiled codes) and other resource files. To better analyze

Android Apps, reverse tools (e.g., APKTool 2) are widely

leveraged to decompile the APK files so that the .dex source

file can be decompiled into a .smali file. To describe key

characteristics of an App, we extracted the following six types

of entities:

• Permission (P): The permission determines specific oper-

ations that an App can perform. For example, only Apps with

READ_SMS permission can access user’s email information.

• Permission Type (PT): The permission type 3 describes

the category of a given permission. Table I outlines the

permission types and representative permissions.

• Class (C): Class is an abstract module in Android codes,

where APIs and variables can be directly accesses. HAWK uses

the class name in .smali codes to represent a class.

• API: Application Programming Interface (API) provisions

the callable function in Android development environment.

• Interface (I): The interface refers to an abstract data

structure in Java. We extract the name from .samli files.

• .so file (S): .so file is Android’s dynamic link library,

which can be extracted from the decompiled lib folder.

Following this methodology, we downloaded over 200,

000 APKs from open repositories and after de-duplication

and decompilation, 181,235 APKs are finally filtered and

extracted. 63,902 entities are then selected according to [3].

This provisions abundant data sources for establishing the HIN

and mining intrinsic semantics.

2https://ibotpeaches.github.io/Apktool
3https://developer.android.google.cn/guide/topics/permissions

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XXX, NO. XXX, XXX 2021 4

A

API

P

PT

C

S

I

A AAPI

A AC

A AI

A AS

A AP

A APTP P

A

P

P

A

P

PT

A

API

A

S

A

API

A

C

has

has

owns
belongs

toincludes

includes

MP1

MP2

MP3

MP4

MP5

MP6

MG1

MG2

MG3

(a) Meta Schema (b) Meta Structure

Figure 2. (a) Meta-schema and (b) meta-structure

Class

Permission Interface

API So

T

App1 App2

Ljava/io/WriteStream

Ljava/io/PrintStream
Ljava/net/URL/openConnection()

armeabi/
libcrypt_sign.so

armeabi-v7a/
libvinit.so

Ljava/io/File/mkdirs()

READ_SMS

SEND_SMS

Lcom/facebook/ads/internal

Ljava/lang/annotation/
Annotation

SMS

App TPermission Permisson Type API Class Interface .so file

Lcom/print

Figure 3. An example of Android HIN that contains two Android Apps.

Table I
CATEGORIES OF REPRESENTATIVE PERMISSIONS

Type Representative Permissions

NORMAl ACCESS NETWORK STATE, ACCESS WIFI STATE

CONTACTS WRITE CONTACTS, GET ACCOUNTS

PHONE READ CALL LOG, READ PHONE STATE,

CALENDAR READ CALENDAR, WRITE CALENDAR

LOCATION ACCESS FINE LOCATION,
ACCESS COARSE LOCATION

STORAGE READ EXTERNAL STORAGE,
WRITE EXTERNAL STORAGE

SMS READ SMS, RECEIVE MMS, RECEIVE SMS

B. Constructing HIN

Extracting entity relationships into a HIN. Meta-schema

is a meta-level template that defines the relationship and

type constraints of nodes and edges in the HIN. As shown

in Fig. 2(a), we figure out a meta-schema that can encode

necessary relationships between Android entities. Based on

the domain knowledge, we elaborately examine the following

inherent semantic relationships:

• [R1] App-API indicates an App has a specific API. Using

the relationship between App and API is effective to dig out

and represent the link between two Apps [18].

• [R2] App-Permission specifies an App owns a spe-

cific permission. Apps with permissions such as READ_-

SMS, SEND_SMS, WRITE_SMS are strongly correlative [3]. If

SEND_SMS is shared between App1 and App2 and READ_-

SMS is shared between App2 and App3, an implicit association

between App1 and App3 is highly likely to manifest.

• [R3] Permission-PermissionType describes the permis-

Table II
DESCRIPTIONS OF RELATION MATRICES.

Relation Matrix Description

R1 A if App i contains the API j, ai,j is 1; otherwise 0.

R2 P if App i has the permission j, Pi,j is 1; otherwise 0.

R3 T if the type of permission i is j, Ti,j is 1; otherwise 0.

R4 C if App i owns the Class j, Ci,j is 1; otherwise 0.

R5 I if App i uses the interface j, Ii,j is 1; otherwise 0

R6 S if App i calls the so file j, Si,j is 1; otherwise 0.

sion belongs to a specific permission type. Normally, permis-

sions can be categorized into different types 4.

• [R4] App-Class means the App includes a specific class

in the external SDK. A malware tends to generate instances

by using classes in a vicious SDK 5.

• [R5] App-Interface indicates the App includes the spe-

cific interface in the external SDK.

• [R6] App-.so denotes the App has a specific .so file.

[17] demonstrates the effectiveness of associating dynamic

link libraries with software in Windows system.

Fig. 3 depicts a HIN that contains two Apps and

their semantic relationships. For instance, App1 has API

Ljava/net/URL/openConnection. Both App1 and

App2 own the Class Ljava/io/PrintStream”. The per-

mission READ_SMS belongs to the permission type SMS”, etc.

Storing entity relationships. We use a relation matrix to store

each relationship individually. For instance, we generate an

matrix A where the element Ai,j denotes if Appi contains

APIj . Intuitively, the transpose of a matrix depicts the back-

ward relationship, e.g., APIj belongs to Appi. As summarized

in Table II, six matrices are used to represent and store

the relationships [R1] to [R6]. Nevertheless, it is necessary

to obtain the connectivity between two Apps if there are

sophisticated semantic links, i.e., higher-order relationships.

C. Constructing App Graph from HIN

To form a homogeneous graph that only contains App

nodes, the key step is to incorporate the relationship between

App entity and other entities into the combined connectivity

between Apps. To ascertain the hidden higher-order semantic,

we mainly calculate Apps’ proximity via exploiting a meta-

path or meta-graph within a given HIN and then obtain the

node adjacency matrix for the graph. In other words, given

4https://developer.android.google.cn/guide/topics/permissions
5https://research.checkpoint.com/2019/simbad-a-rogue-adware-

campaign-on-google-play

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XXX, NO. XXX, XXX 2021 5

a meta structure, the HIN can be converted to an exclusive

homogeneous graph in which each node has meta-structure

specific neighbor nodes.

In fact, a meta-path connects a pair of nodes with a

semantically meaningful relationship. We enrich the meta-

structures further to involve the meta-graph – in the form of

directed acyclic graph (DAG) – that can be used as an extended

template to capture arbitrary but meaningful combination of

existing relationships between a pair of nodes. In effect, a

meta structure provides a filter view to extract a homogeneous

node graph, wherein all nodes satisfy particular complicated

semantics. Arguably, depending upon different meta structures,

nodes will be organized distinctly within different graphs. To

some extent, each graph can be regarded as a sub-graph of the

holistic HIN under a certain view – each sub-graph satisfies

the semantic constraints given by the meta-structure.

Meta structures. We leverage domain knowledge from system

security expertise to elaborately pick up meta structures for

covering the inherent relationships. We first combine all pos-

sible meaningful semantic meta-structures, and then carefully

select those meta-structures with sufficient precision through

numerous experiments. The detailed procedure is discussed

in §VI-C. As shown in Fig. 2(b), we eventually present six

meta paths and three meta graphs that can effectively outline

the structural semantics and capture rich relationships between

two Android Apps in the HIN. For example, A-P-A describes

the relationship where two Apps have the same permis-

sion (MP5) and A-P-PT-P-A indicates two Apps co-own

the same type of permission (MP6). MG2 simultaneously

combines A-API-A with A-S-A. Accordingly, the semantic

constraints will be tightened, i.e., the selected nodes have to

satisfy all pre-defined constraints. Nevertheless, models [28],

[29] without the manual design of original meta structures

could also be applied into our scheme.

Homogeneous App graph for each meta structure. Per-

forming a sequence of matrix operations over the modeled

relationship matrices, we can precisely calculate the adja-

cency of nodes within a graph. For a given meta-path MP ,

(A1, . . . , An), the adjacency matrix can be calculated by

ΨMP = RA1A2
·RA2A3

· · · ·RAn−1An
, (1)

where RAjAj+1
is the relation matrix between entity Aj and

Aj+1 (one instance of [R1] to [R6] in Table II). For example,

the adjacency matrix for the graph under MP1 A-API-A

is ΨMP1 = A · AT . Ψi,j>0 indicates Appi and Appj are

associated with each other, i.e., they are neighbors based on

the meta-path MP1. Specifically, the value represents the

count of meta-path instances, i.e., the number of pathways,

between node i and j. Likewise, for a given meta-graph MG,

a combination of several meta-paths, i.e., (MP1, . . . ,MPm),
the node adjacency matrix is:

ΨMG = ΨMP1 ⊙ · · · ⊙ΨMPm , (2)

where ⊙ is the operation of Hadamard Product. For instance,

MG2, the adjacency matrix can be calculated by ΨMG2 =
(A ·AT)⊙ (S · ST). By conducting graph modelling for each

meta structure, the original HIN is converted to multiple App

homogeneous graphs, each of which pertains to an adjacency

Table III
SYMBOL NOTATIONS

Symbol Definition

Mk , MP , MG kth meta-structure, a meta-path or meta-graph

RAiAj
Relation matrix between two entities in the HIN

SimMk
(vi, vj) The similarity value between node vi and node vj under

meta-structure Mk

XMk
Similarity matrix under meta-structure Mk

ΨMk Adjacency matrix under Mk that can depicts node connec-
tivity in a homo graph

Ψ̂Mk incremental segment of the adjacency matrix, connecting in-
sample nodes to new nodes

ΦMk Embedding matrix under Mk; each single row Φ
Mk
i rep-

resents the vector embedding for ith node

Φ̂Mk Embedding matrix under Mk for new nodes

EGAT

 Attention

MsGAT

Node

Similarity

Get

Vector

Get

Vector

Intra-ms Aggregation Inter-ms Aggregation

MsGAT ++

βM1

βMk

βM1

βM1 βMk
...

βMk

M1

M1

Mk

Mk

αM1
v1

αM1
vj

αMk
v1

αM1
v1 ...α

Mk
vj

ΦMk

vout

ΦM1

vout

Φ
vout

ΦMk

EGAT

Φ

Intra-ms Aggregation Inter-ms Aggregation

ΦM
 1

Get

Vector

^

^

^

In-Sample App Out-of-Sample App App Vectors Addition Multiplication

Figure 4. MSGAT and MSGAT++ models for node embedding.

matrix. Given K meta-structures, we have a collection of K

adjacency matrices, i.e., {ΨM1 , ... , ΨMK}.

IV. NODE EMBEDDING MODELS

A. MSGAT: In-Sample Node Embedding

We introduce a series of innovative Graph Attention Net-

work (GAT) optimizations enhanced by meta-structures – we

employ the attention mechanism [25] among neighbor nodes

within a given meta-structure (intra-ms) and coordinate the

attention among different meta structures (inter-ms). Fig. 4

depicts the flowchart of our models and important notations

used in the models are outlined in Table III.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XXX, NO. XXX, XXX 2021 6

Intra-ms aggregation. Intra-ms aggregation learns how a

node pay different attention to its neighbor nodes in a graph

pertaining to a meta-structure. Formally, it aggregates the

neighbors’ representation vectors with weights considering

the feature information of entities and the edge information

between entities. To do so, we initially encode the vector of

each in-sample App in the form of one-hot and concatenate

them into a matrix H . Hi·, the ith row of H , represents the

embedding vector of ith App node. Thereafter, we design an

edge weight aware GAT model (EGAT) to combine H and

the adjacency matrix pertaining to a given meta-structure Mk.

To implement the EGAT model, feature information and edge

weight information are fully utilized to aggregate features from

neighbors. More specifically, we firstly construct the adjacency

matrix ΨM
′

k with a normalization operation:

ΨM
′

k = Normalize(H ·HT ⊙ΨMk), (3)

and elements in ΨM
′

k that are lower than a pre-defined

threshold τ (τ is set to be 0.1 in our model) will be set zero.

Thereafter, we update the ΦMk with GAT model [10]:

ΦMk = GAT (H; ΨM
′

k). (4)

Eventually, the low dimensional vector embedding for all in-

sample App nodes, in a form of matrix ΦMk with a collection

of row vectors, can be obtained in this stage.

We then repeatedly calculate the vector matrix for all pre-

defined meta-structures, and obtain a collection of embedding

vectors, i.e., [ΦM1 , . . . ,ΦMK], where K is the totality of

meta-structures. Concretely, the embedding matrix ΦMk is of

shape L×D, where L denotes the number of in-sample Apps

in the HIN and D denotes the dimension of each App vector.

As a result, the embedding of Appi node can be identified as

the ith row, i.e., ΦMk

i· .

Inter-ms aggregation. Since each meta structure provisions

an individual semantic view, we propose an inter-ms attention

aggregation to integrate embedding [ΦM1 , . . . ,ΦMK] under

different semantics and thus enhance the quality of node

embedding. Specifically, we exploit a multi-layer perceptron

(MLP) procedure for learning the weight βMk of each meta-

structure Mk in the fusion:

(βM1 , . . . , βMK) = softmax(NN(ΦM1), . . . ,NN(ΦMK)),
(5)

where NN is a native Neural Network that maps a given matrix

to a numerical value. Consequently, the final embedding for

all in-sample App nodes can be obtained through adding up

the weighted representation matrices:

Φ =

K∑

k=1

βMk · ΦMk . (6)

we then pass Φ on to another Neural Network so that the loss

function between the Neural Network’s outputs and ground-

true labels can be calibrated via iterative back-propagation.

B. MSGAT++: Incremental Embedding

To best embed unknown Apps not included in the training

procedure, we present MSGAT++, an increment learning

mechanism for utilizing the in-sample embedding already

learned from MSGAT to rapidly represent those out-of-sample

Apps. To make clear, we use vout to generally stand for any

out-of-sample node out of the HIN.

Exploring node similarity. Pinpointing the underlying con-

nections between new nodes and existing nodes in the HIN

plays a pivotal role in providing rapid numerical representation

and cost-effective malware detection. To do so, it is imperative

to calculate and accumulate the similarity between vout and

existing nodes. Following similar methodology presented in

[30], the node similarity between node vi and node vj under

a given meta path is defined as:

SimMP(vi, vj) =
2 ∗ΨMP

ij

ΨMP
ii +ΨMP

jj

, (7)

where ΨMP
ij implies the number of meta structures between

two connected nodes and thus a higher similarity indicates a

tighter association between these two nodes. Accordingly, the

node similarity between node vi and node vj under a meta

graph MG is:

SimMG(vi, vj) = SimMP1(vi, vj)⊙ ...⊙ SimMPm(vi, vj).
(8)

Incremental aggregation for embedding learning. The ini-

tial task is to catch the incremental relationships and construct

the graph information. Within a given meta-structure, we

aim to only update an adjacency matrix that quantifies the

connectivity between the out-of-sample nodes and existing in-

sample App nodes. This should be done in an incremental

manner to reduce the training cost. In practice, we first repeat

the steps aforementioned in § III-B to calculate all relation

matrices in Table II merely for out-of-sample App nodes.

Secondly, we concatenate the relation matrices of new App

nodes and those of existing App nodes to form an incremental

segment of the node adjacency Ψ̂Mk – a pathway from an in-

sample App node to a new node. Take MP1 as an example;

we first obtain the relation matrix Aout for all new nodes

and then generate the matrix by Ψ̂M1 = Ain · AT
out. This

design ensures the incremental adjacency matrix Ψ̂Mk can

function independently from the established adjacency matrix

ΨMk whilst they together serve as the holistic abstract of

connectivity among all nodes.

We propose MSGAT++ to entitle numerical embedding to

new nodes whilst calibrating existing node’s representation.

Similar to MSGAT, the model consists of two steps: intra-

ms and inter-ms aggregation. Given a semantic meta-structure

Mk, we substitute Ψ̂Mk into Eq. 7 or Eq. 8 to calculate

SimMk(vj , vout), the similarity between a new node vout
and any in-sample App node vj . Repeating this for all out-of-

sampling nodes and all in-sample App nodes forms a similarity

matrix X
Mk where a larger value inherently indicates a

closer proximity between two nodes. Accordingly, we can

obtain a collection of similarity matrix for all meta-structures

{XM1 , . . . ,XMK}.

Arguably, to better represent the new node in a numerical

vector, we should fully aggregate existing embedding results

of existing nodes in closely proximity to the new node. To

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XXX, NO. XXX, XXX 2021 7

Algorithm 1 Incremental embedding algorithm in MSGAT++

Input: An out-of-sample App vout
Output: vout’s vector embedding Φ̂vout and the updated embedding

matrix Φ for existing in-sample App nodes
1: for k ∈ {1, ...,K} do
2: // select σ in-sample App nodes with the highest similarity
3: {vn1, . . . , vnσ} ← DescendSort(XMk).topK(σ)
4: // Calculate the weights

5: {α
Mk
v1 , . . . , α

Mk
vσ } ← Eq.10

6: // Calculate the embedding of vout under Mk

7: Φ̂
Mk
vout ← Eq.9.

8: end for
9: // Embedding fusion from all meta structures

10: Φ̂vout ← Eq. 11

11: return Φ̂vout , Φ

this end, we select top-σ in-sample App nodes (vn1, . . . , vnσ),
based on the similarity matrix X

Mk , and aggregate their

vectors for the embedding of the new node:

Φ̂Mk
vout

=

σ∑

s=1

αMk
vns

· ΦMk
vns

, (9)

where αMk
vj

denotes the weight of the node vj (vj ∈

(vn1, . . . , vnσ)) under Mk and Φ̂ implies the incremental

embedding information for the out-of-sample node exclusively.

The weight can be easily calculated by:

αMk
vj

=
SimMk(vout, vns)∑σ

s=1
SimMk(vout, vns)

. (10)

Eventually, we re-calibrate the embedding by conducting inter-

ms aggregation over K individual representations under all

meta-structures:

Φ̂vout
=

K∑

k=1

βMk · Φ̂Mk
vout

, (11)

where βMk can be obtained from Eq. 5 (In fact, to improve the

performance of our model, we need to fine-tune these weights).

Alg. 1 outlines the whole procedure of our rapid incremental

embedding learning in the malware detection.

Time complexity. Alg. 1 demonstrates a simple but efficient

approach with an acceptable complexity. The overall complex-

ity is O(KLNlogN) where K and L are the number of meta-

structures and the number of out-of-sample Apps, respectively

while N represents the number of in-sample Apps.

V. EXPERIMENT SETUP

A. Methodology

Environment. HAWK is evaluated on a 16-node GPU cluster,

where each node has a 64-core Intel Xeon CPU E5-2680

v4@2.40GHz with 512GB RAM and 8 NVIDIA Tesla P100

GPUs, Ubuntu 20.04 LTS with Linux kernel v.5.4.0. HAWK

depends upon tensorflow-gpu v1.12.0 and scikit-learn v0.21.3.

ApkTool and aapt.exe are used for parsing Apps.

Datasets. According to the aforementioned discussion of

feature engineering in §III-A, we overall decompiled 181,235

APKs (i.e., 80,860 malicious Apps and 100,375 benign Apps)

Table IV
DESCRIPTIONS OF EVALUATION METRICS.

Metrics Description

TP The number of malicious Apps that are correctly identified

TN The number of benign Apps that are correctly identified

FP The number of benign Apps that are mistakenly identified

TN The number of malicious Apps that are mistakenly identified

Precision TP/(TP + FP)

Recall TP/(TP + FN)

FP -Rate FP/(FP + TN)

F1 2 ∗ Precision*Recall/(Precision+Recall)

Acc (TP + FN)/(TP + TN + FP + FN)

from 2013 to 2019. with the help of AndroZoo6, benign Apps

are primarily collected from GooglePlay store while malicious

Apps are obtained from VirusShare and CICAndMal. To

validate the compatibility, both forward and backward, of the

proposed model in HAWK, we train our model based on Apps

released in 2017 (amid the seven time span), and then utilize

it to detect Apps published from 2013 to 2019.

Specifically, we extracted 14,000 benign and 9,865 mali-

cious Apps released in 2017, as in-sample Apps, to construct

the HIN and train the detection model. For generating the

out-of-sample sample data, we collected 7 malware subsets

(v2013 to v2019), each of which contains roughly 10,000

samples, from VirusShare over consecutive seven years, to-

gether with another 2 subsets from CICAndMal, including 242

scarewares/adwares samples in 2017 (c2017) and 253 samples

in 2019 (c2019). Meanwhile, we extracted benign Apps to

match the same number of benign Apps in each subset above.

Methodology and Metrics. The experiments are three-fold:

we firstly evaluate the effectiveness of HAWK against tradi-

tional feature-based ML approaches and numerous baselines

in terms of in-sample and out-of-sample scenarios (§VI-A).

Afterwards, we demonstrate the efficiency of HAWK by com-

paring the training time consumption with other approaches

(§VI-B). We further conduct several micro-benchmarkings,

including an ablation analysis of performance gains, an eval-

uation of meta-structure’s importance and the impact of the

sampled neighbor number on detection precision (§VI-C).

We use metrics Precision, Recall, FP -Rate, F1 and

Accurate to measure the effectiveness (see Table IV), and

use time consumption to measure the efficiency. The execution

time includes the process of generating embedding vectors and

detecting Apps whilst excluding the process of extracting Apps

relation matrix. We use 5-fold cross validation and calculate

the average accuracy to provide an assurance of unbiased and

accurate evaluation.

B. Baselines

To evaluate the performance of MSGAT in HAWK, the

baselines encompasses generic models and specific models

used by some well-known malware detection systems.

Generic models. We firstly implement the following generic

models as comparative approaches:

6https://androzoo.uni.lu

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XXX, NO. XXX, XXX 2021 8

• Node2Vec [31] is a typical model generalized from Deep-

Walk [32] based on homogeneous graph network.

• GCN [9] is a semi-supervised homogeneous graph convo-

lutional network model that retains feature information and

structure information of the graph nodes.

• RS-GCN represents the approach to converting the HIN into

homogeneous graphs, applying native GCN to each graph and

reporting the best performance among different graphs.

• GAT [10] is a semi-supervised homogeneous graph model

that utilizes attention mechanism for aggregating neighbor-

hood information of graph nodes.

• RS-GAT denotes the approach to converting the HIN into

homogeneous graphs based on rich semantic meta-structures,

applying native GAT to each homogeneous graph and report-

ing the best performance among different graphs.

• Metapath2Vec [23] is a heterogeneous graph representation

learning model that leverages meta-path based random walk to

find neighborhood and uses skip-gram with negative sampling

to learn node vectors.

• Metagraph2Vec [24] is an alternative model to Metap-

ath2Vec; both meta paths and meta graphs are applied to the

random walk.

• HAN [26] is a heterogeneous graph representation learning

model that utilizes predefined meta paths and hierarchical

attentions for node vector embedding.

For Node2Vec, GCN and GAT, we treat all the nodes in

HIN as the same type to obtain the homogeneous graph.

Since all these models are towards static graphs, we compare

the capability of out-of-sample detection between MSGAT++

and three generic strategies that can be easily adopted in any

comparative models:

• Neighbor averaging (NA) directly averages the vector

embedding of the in-sample neighbors pertaining to a given

new App as the targeted embedding.

• Sampled neighbor averaging (SNA) further filters the

neighbor range by sampling a fixed number of in-sample

neighbors based on the sorted node similarity and simply

averaging their embedding as the targeted embedding.

• Re-running (RR) primarily merges the out-of-sample Apps

with in-sample Apps and rebuilds the entire HIN and the

malware detection model.

Specific models deriving from specialized systems. Sec-

ondly, we compare our models in HAWK against the following

models used by the existing malware detection systems:

• Drebin [33] is a framework that inspects a given App by

extracting a wide range of features sets from the manifest

and dex code and adopts the SVM model in the classifier.

• DroidEvolver [34] is a self-evolving detection system to

maintain and rely on a model pool of different detection

models that are initialized with a set of labeled Apps using

various online learning algorithms. It is worth noting that we

do not directly compare against MamaDroid [35], because it

has been demonstrated less effective than DroidEvolver.

• HinDroid [18] constructs a heterogeneous graph with enti-

ties such as App and API and and the rich in-between rela-

tionships. It aggregates information from different semantic

meta-paths and uses multi-kernel learning to calculate the

representations of Apps.

Table V
THE F1 VALUE AND ACCURACY OF IN-SAMPLE APPS DETECTION.

Metrics Approaches 20% 40% 60% 80%

F
1

Node2Vec 0.8355 0.8378 0.8542 0.8601

GCN 0.8653 0.8677 0.8721 0.8763

GAT 0.8435 0.8633 0.8752 0.8801

Metapath2Vec 0.9231 0.9321 0.9328 0.9395

RS-GCN 0.9212 0.9510 0.9515 0.9560

RS-GAT 0.9507 0.9631 0.9653 0.9664

HAN 0.9511 0.9617 0.9671 0.9705

Metagraph2Vec 0.9750 0.9766 0.9764 0.9771

SVM (Drebin) 0.9312 0.9387 0.9446 0.9477

DroidEvolver 0.9412 0.9517 0.9566 0.9605

HinDroid 0.9643 0.9669 0.9684 0.9746

MatchGNet 0.9395 0.9511 0.9604 0.9753

Aidroid 0.9321 0.9399 0.9414 0.9455

MSGAT (HAWK) 0.9857 0.9859 0.9871 0.9878

A
cc

Node2Vec 0.8254 0.8388 0.8405 0.8593

GCN 0.8558 0.8663 0.8630 0.8692

GAT 0.8461 0.8645 0.8758 0.8833

Metapath2Vec 0.9259 0.9321 0.9335 0.9388

RS-GCN 0.9199 0.9494 0.9527 0.9544

RS-GAT 0.9486 0.9620 0.9652 0.9664

HAN 0.9521 0.9657 0.9675 0.9699

Metagraph2Vec 0.9686 0.9698 0.9748 0.9762

SVM (Drebin) 0.9295 0.9356 0.9407 0.9455

DroidEvolver 0.9329 0.9506 0.9557 0.9623

HinDroid 0.9688 0.9698 0.9722 0.9764

MatchGNet 0.9302 0.9508 0.9536 0.9689

Aidroid 0.9227 0.9356 0.9367 0.9437

MSGAT (HAWK) 0.9843 0.9855 0.9867 0.9854

• MatchGNet [19] is a graph-based malware detection model

that regards each software as a heterogeneous graph and learns

its representation. It determines the threat of an unknown

software primarily through matching the graph representation

of the unknown software and that of benign software.

Aidroid [21] is among the first attempts to tackle out-of-

sample malware representations with heterogeneous graph

model and CNN network. Following the detailed description

in the paper, we utilize one-hop and two-hop neighbors to best

function its model performance.

Model parameters. For Node2Vec and Metapath2Vec, we set

the number of walks per node, the max walk length, and the

window size to be 10, 100, 8, respectively. For GCN, GAT and

HAN, we set up the parameters suggested by their original

papers. For the fairness of comparison, each model will be

trained 200 times. The length of embedding vectors delivered

by these models are set to be 128.

VI. EXPERIMENT RESULTS

A. Detection Effectiveness

In-sample malware detection against DL models. We

choose 20%, 40%, 60%, 80% of the in-sample Apps to train

the Logistic Regression model and the residual for testing.

Table V illustrates the F1 and Acc scores of each models.

In general, MSGAT can achieve competitive classification

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XXX, NO. XXX, XXX 2021 9

v2013 v2014 v2015 v2016 v2017 v2018 v2019 c2017 c2019

H
aw

k
G
BD

T
D
T

Ad
aB

oo
st

LR
R
F

0.9284 0.9804 0.9736 0.9687 0.9695 0.9865 0.9858 0.9561 0.9493

0.8184 0.729 0.7861 0.8438 0.9599 0.7226 0.8807 0.6915 0.6499

0.8217 0.669 0.789 0.8467 0.9449 0.7249 0.8845 0.7495 0.6505

0.8186 0.629 0.7849 0.8435 0.9592 0.7248 0.8807 0.6885 0.6489

0.843 0.6756 0.7656 0.8048 0.923 0.7109 0.8906 0.6639 0.6185

0.8191 0.6468 0.7825 0.8448 0.9563 0.7217 0.8832 0.6921 0.6485

0.64

0.72

0.80

0.88

0.96

(a) F1 Score

v2013 v2014 v2015 v2016 v2017 v2018 v2019 c2017 c2019

H
aw

k
G
BD

T
D
T

Ad
aB

oo
st

LR
R
F

0.9217 0.9783 0.9728 0.9682 0.9689 0.9865 0.9858 0.9554 0.9483

0.8254 0.7516 0.8001 0.8429 0.9599 0.7544 0.8771 0.7486 0.725

0.8285 0.6616 0.8028 0.846 0.9499 0.756 0.8814 0.6921 0.726

0.8283 0.6516 0.7988 0.8421 0.9592 0.7549 0.8771 0.7457 0.7231

0.8423 0.6701 0.7659 0.7764 0.9235 0.7157 0.8928 0.691 0.6623

0.8262 0.6516 0.7982 0.8447 0.9564 0.7539 0.8801 0.7495 0.725

0.66

0.72

0.78

0.84

0.90

0.96

(b) Acc Score

Figure 5. Comparisons with Traditional Machine Learning Methods.

Table VI
THE F-P RATE OF IN-SAMPLE APPS DETECTION.

Metrics Approaches 20% 40% 60% 80%

F
P

−
R
a
te

Node2Vec 0.0425 0.0393 0.0388 0.0342

GCN 0.0350 0.0323 0.0333 0.0318

GAT 0.0343 0.0334 0.0299 0.0268

Metapath2Vec 0.0177 0.0175 0.0169 0.0165

RS-GCN 0.0184 0.0118 0.0109 0.0107

RS-GAT 0.0115 0.0088 0.0079 0.0075

HAN 0.0108 0.0098 0.0085 0.0087

Metagraph2Vec 0.0071 0.0068 0.0059 0.0057

SVM (Drebin) 0.0163 0.0155 0.0135 0.0139

DroidEvolver 0.0154 0.0116 0.0101 0.0108

HinDroid 0.0075 0.0078 0.0071 0.0068

MatchGNet 0.0193 0.0129 0.0122 0.0081

Aidroid 0.0184 0.0171 0.0150 0.0139

MSGAT (HAWK) 0.0038 0.0034 0.0032 0.0035

accuracy when compared the popular malware detectors such

as Drebin, DroidEvolver, MatchGNet, HinDroid and AiDroid.

Compared with F1 and Acc scores, similar observations can

be found in Table VI when measuring False Positive rate. This

is because our graph-based representation learning models

can fully integrate the feature information of Apps and the

implied semantic information between Apps, which improves

the expression ability. In addition, the accuracy of RS-GCN

and RS-GAT can be improved by over 5% compared with

native GCN and GAT. Such approaches convert the original

HIN into homogeneous graph and the improvement derives

from preserving the semantic information in the heterogeneous

networks through our proposed semantic meta-structures.

It is worth noting that Metagraph2Vec and MSGAT achieve

the highest precision, particularly compared against Metap-

ath2Vec and HAN that only involve meta-paths. The accuracy

gain, obviously, stems from introducing meta-graphs that bring

rich semantics to mine more complex semantic associations.

In addition, MSGAT outperforms Metagraph2Vec as our

models adopt the aggregation mechanisms for both inter-

meta-structure and intra-meta-structure, thereby aggregating

semantic information from far more comprehensive views.

Out-of-sample malware detection against DL models. Ta-

ble VII and Table VIII show the F1 score and False Positive

rate, respectively, when we adopt different in-sample models

and out-of-sample policies. Overall, the NA and SNA policies

have the lowest detection accuracy under all cases due to

the substantial loss of semantic information. Obviously, direct

averaging operation ignores the discrepancies among neigh-

bors thereby reducing the precision of node embedding and

the resultant detection effectiveness. It is also observable that

NA and SNA have very similar precision in almost all cases.

This indicates sampling a certain number of neighbor nodes

is able to achieve approximate information in comparison to

averaging all neighbor nodes.

Intuitively, the re-running policy will deliver the best perfor-

mance of detection over all datasets since all data either new or

old will involve in the embedding retraining. Metagraph2Vec,

RS-GAT and RS-GCN outperforms Metapath2Vec, GAT and

GCN due to the benefit from abundant meta-structures. This

performance improvement again demonstrates applying abun-

dant semantic meta-structures into embedding models can

bring a stronger generalization capacity.

As shown in Table VII, MSGAT, together with the re-

running policy, achieves the best detection effectiveness on

2/3 datasets. This can be attributed to the highly rich meta-

structures used to include all possible contributions from

both intra- and inter- meta-structure aspects. Nevertheless,

rerunning has non-negligible overheads particularly in terms of

long training time (we will demonstrate the time consumption

later). By contrast, MSGAT++ is proved to be a compromising

but competitive solution; the precision of MSGAT++ is in

close proximity to the rerunning baselines over all datasets.

To demonstrate the generalization, we also implement our

MSGAT++ mechanism upon the HAN model. Similarly, the

incremental learning scheme makes far better improvements

when compared against native NA and SNA, only with ne-

glectable margin from the rerunning baseline.

Hindroid, MatchGNet, HG2Img and Drebin observably de-

liver unstable outcomes across different datasets, indicating

a limited generalization ability. This is probably because

Hin2Img and Hindroid are more dependent upon large train-

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XXX, NO. XXX, XXX 2021 10

Table VII
THE F1 VALUE OF OUT-OF-SAMPLE APPS DETECTION.

Metrics In-sample
Approaches

Out-of-sample
Approaches

v2013 v2014 v2015 v2016 v2017 v2018 v2019 c2017 c2019
F
1

Node2Vec

NA 0.5888 0.6746 0.6965 0.6740 0.6811 0.6744 0.6680 0.6533 0.6995

SNA 0.6541 0.6732 0.6965 0.6935 0.6851 0.6665 0.6685 0.6638 0.6845

Rerunning 0.7564 0.8102 0.7956 0.8124 0.8236 0.7549 0.7968 0.7765 0.7945

GCN Rerunning 0.8637 0.8705 0.8459 0.8496 0.8697 0.8743 0.8637 0.8567 0.8537

GAT

NA 0.7364 0.7423 0.7153 0.7155 0.7545 0.6225 0.7203 0.6352 0.6442

SNA 0.7433 0.7521 0.7056 0.6962 0.6842 0.7121 0.6831 0.6720 0.6318

Rerunning 0.8242 0.8448 0.8531 0.8474 0.8731 0.8595 0.8457 0.8511 0.8476

NA 0.7414 0.8424 0.7835 0.7784 0.7537 0.8243 0.8473 0.8160 0.8183

Metapath2Vec SNA 0.7564 0.8531 0.7765 0.7496 0.7365 0.8359 0.8363 0.8242 0.8156

Rerunning 0.9240 0.9321 0.9195 0.9214 0.9342 0.9326 0.9285 0.9094 0.9052

HAN

NA 0.7455 0.7405 0.6361 0.7433 0.7292 0.7443 0.7245 0.7101 0.7253

SNA 0.7593 0.7635 0.7793 0.7723 0.8046 0.7803 0.7566 0.7543 0.7768

Rerunning 0.9155 0.9626 0.9678 0.9588 0.9758 0.9522 0.9677 0.9482 0.9574

MSGAT++ 0.8896 0.9611 0.9512 0.9462 0.9466 0.9655 0.9583 0.9358 0.9386

RS-GCN Rerunning 0.9532 0.9549 0.9487 0.9499 0.9656 0.9651 0.9745 0.9539 0.9471

RS-GAT

NA 0.7564 0.9400 0.8104 0.6755 0.7345 0.6423 0.7520 0.6152 0.5931

SNA 0.7564 0.9400 0.8601 0.6744 0.5290 0.7253 0.7323 0.5807 0.7707

Rerunning 0.9260 0.9321 0.9428 0.9582 0.9498 0.9392 0.9372 0.9485 0.9593

NA 0.7658 0.9763 0.8041 0.7955 0.7693 0.8665 0.7614 0.8267 0.8084

Metagraph2Vec SNA 0.7672 0.7769 0.8155 0.7996 0.7805 0.8665 0.7628 0.8239 0.8084

Rerunning 0.9533 0.9688 0.9255 0.9382 0.9201 0.9667 0.9718 0.9234 0.9040

Drebin 0.7442 0.7723 0.7856 0.8277 0.9432 0.7761 0.7891 0.7559 0.7413

DroidEvolver 0.7972 0.8469 0.8519 0.8996 0.9605 0.9265 0.9028 0.8539 0.8584

HinDroid 0.8946 0.9232 0.9298 0.9277 0.9712 0.9159 0.9466 0.9396 0.9245

MatchGNet 0.8981 0.8965 0.9323 0.8833 0.9675 0.9265 0.9053 0.9123 0.9137

HGiNE (AiDroid) HG2Img 0.8842 0.9723 0.9556 0.9272 0.9455 0.8761 0.8991 0.8959 0.9013

NA 0.7693 0.7601 0.6465 0.7725 0.7693 0.7741 0.7741 0.7401 0.7454

MSGAT SNA 0.7795 0.7845 0.7996 0.8058 0.8241 0.7955 0.7832 0.7791 0.8071

Rerunning 0.9569 0.9824 0.9876 0.9720 0.9769 0.9808 0.9805 0.9621 0.9693

MSGAT++ 0.9007 0.9804 0.9736 0.9687 0.9695 0.9665 0.9658 0.9461 0.9393

ing samples and thus has lower precision on some specific

datasets. MatchGNet may have limited its performance by

neglecting the correlation information between Apps during

the construction of the graph. In Drebin, SVM is leveraged

as the feature-based machine learning technique, making it

difficult to deal with malware with rapidly changing features.

DroidEvolver is also based on feature engineering and updates

its model in an online manner according to out-of-sample

Apps, leading to a competitive classification accuracy. Nev-

ertheless, purely relying on explicit features is intrinsically

deficient compared with semantic-rich approaches.

Comparison against traditional feature-based ML models.

We mainly use Random Forest (RF), Logistic Regression (LR),

Decision Tree (DT), Gradient Boosting Decision Tree (GBDT)

and AdaBoost as comparative baselines. In this experiment, we

particularly use v2017 as the train set to build the HIN, whilst

leveraging the out-of-sample Apps with various released time

or various source as the test set. Following the method in

[3], we extract information from permission, API, class name,

interface name and .so file to construct the feature vector with

63,902 dimensions, which are reduced to 128 dimensions via

principal component analysis (PCA).
Fig. 5 illustrates the F1 score and accuracy score pro-

duced by different models over different test sets. Observably,

HAWK stably outperforms all traditional baselines in all cases

when carrying out the App classification. Traditional ML

approaches are competitive (with Acc or F1 score around

0.95) only when the testing set is aligned with the training set

(v2017) while HAWK can constantly deliver precise results.

Interestingly, the performance of traditional approaches is

constantly poor over the dataset of some specific years, e.g.,

v2014 and c2019. After examining the features involved in

the PCA, we infer the root cause for this phenomenon is

because some features are preferably used by malicious Apps

in those years but have yet been captured in the training

set. For example, ’Ljava/lang/Cloneable’ and the .so

file ’libshunpayarmeabi’ manifests in v2014 as the

dominating features in the PCA but they are less important in

the principle components in v2017. Similar observations can

also be found for the c2019. This is an interesting research

finding while the further in-depth study is currently beyond

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XXX, NO. XXX, XXX 2021 11

Table VIII
THE FALSE POSITIVE RATE OF OUT-OF-SAMPLE APPS DETECTION.

Metrics In-sample
Approaches

Out-of-sample
Approaches

v2013 v2014 v2015 v2016 v2017 v2018 v2019 c2017 c2019
F
P

−
R
a
te

Node2Vec

NA 0.1052 0.0846 0.0819 0.0782 0.0776 0.0846 0.0763 0.0971 0.0819

SNA 0.0968 0.0831 0.0758 0.0811 0.0862 0.0883 0.0852 0.0806 0.0789

Rerunning 0.0682 0.0531 0.0576 0.0534 0.0508 0.0698 0.0579 0.0643 0.0569

GCN Rerunning 0.0377 0.0359 0.0428 0.0412 0.0366 0.0356 0.0374 0.0394 0.0406

GAT

NA 0.0711 0.0708 0.0754 0.0736 0.0648 0.0981 0.0727 0.0963 0.0911

SNA 0.0675 0.0655 0.0779 0.0804 0.0836 0.0754 0.0830 0.0859 0.0966

Rerunning 0.0461 0.0408 0.0387 0.0403 0.0334 0.0370 0.0406 0.0394 0.0403

NA 0.0690 0.0419 0.0575 0.0593 0.0655 0.0460 0.0398 0.0474 0.0459

Metapath2Vec SNA 0.0616 0.0371 0.0565 0.0634 0.0667 0.0416 0.0415 0.0455 0.0467

Rerunning 0.0192 0.0173 0.0205 0.0201 0.0167 0.0171 0.0182 0.0230 0.0241

HAN

NA 0.0644 0.0657 0.0921 0.0650 0.0686 0.0647 0.0701 0.0737 0.0701

SNA 0.0614 0.0603 0.0563 0.0581 0.0496 0.0559 0.7566 0.0625 0.0568

Rerunning 0.0215 0.0094 0.0091 0.0104 0.0061 0.0121 0.0081 0.0131 0.0108

MSGAT++ 0.0279 0.0098 0.0123 0.0136 0.0135 0.0087 0.0105 0.0162 0.0165

RS-GCN Rerunning 0.0119 0.0115 0.0131 0.0127 0.0087 0.0088 0.0065 0.0117 0.0134

RS-GAT

NA 0.0619 0.0153 0.0484 0.0822 0.0672 0.0906 0.0628 0.0975 0.1039

SNA 0.0622 0.0153 0.0358 0.0835 0.1203 0.0702 0.0683 0.1071 0.0585

Rerunning 0.0189 0.0172 0.0145 0.0106 0.0127 0.0154 0.1586 0.0130 0.0106

NA 0.0591 0.0059 0.0494 0.0521 0.0586 0.0339 0.0607 0.0441 0.0485

Metagraph2Vec SNA 0.0591 0.0565 0.0467 0.0507 0.0556 0.0338 0.0599 0.0444 0.0483

Rerunning 0.0117 0.0079 0.0188 0.0156 0.0202 0.0084 0.0071 0.0196 0.0242

Drebin 0.0653 0.0583 0.0547 0.0440 0.0145 0.0572 0.0538 0.0623 0.0653

DroidEvolver 0.0517 0.0391 0.0376 0.0255 0.0101 0.0187 0.0248 0.0372 0.0365

HinDroid 0.0241 0.0177 0.0253 0.0157 0.0061 0.0201 0.0149 0.0153 0.0162

MatchGNet 0.0257 0.0218 0.0137 0.0236 0.0065 0.0156 0.0201 0.0185 0.0173

HGiNE (AiDroid) HG2Img 0.0295 0.0071 0.0113 0.0185 0.0139 0.0316 0.0257 0.0265 0.0252

NA 0.0589 0.0608 0.0895 0.0576 0.0584 0.0572 0.0577 0.0659 0.0648

MSGAT SNA 0.0561 0.0549 0.0510 0.0494 0.0448 0.0521 0.0552 0.0563 0.0491

Rerunning 0.0109 0.0044 0.0032 0.0071 0.0058 0.0049 0.0049 0.0097 0.0078

MSGAT++ 0.0232 0.0049 0.0067 0.0079 0.0077 0.0085 0.0086 0.0136 0.0154

the scope of this paper and will be left for future work.

To sum up, the disparity of precision implies the difficulty

in applying traditional ML models – merely relying on explicit

feature extraction – into reliable malware detection considering

the explosively growing types and numbers of Apps in the

market. In comparison, HAWK is able to mine the high-order

relations between Apps, with the help of HIN, and thus has

strong generalization, i.e., high effectiveness regardless the

type and size of datasets.

B. Detection Efficiency

Time consumption. In this experiment, we compare the time

efficiency of our incremental detection design MSGAT++

against those comparative approaches with an acceptable

detection accuracy (demonstrated in §VI-A), i.e., rerunning

HAN, rerunning Metagraph2Vec, Drebin, DroidEvolve and

HG2Img. It is worth mentioning that we exclude the extraction

time from calculating the overall execution time for the sake of

simplicity because all approaches in our experiment share the

same procedure of feature extraction. In fact, it approximately

takes 6.9 seconds per App to extract the feature information

from its original APK file.
As observed in Fig. 6, the execution time of MSGAT++

is much shorter than other approaches. MSGAT++ takes only

3.5 milliseconds on average to detect a single out-of-sample

App. This millisecond level detection by HAWK illustrates its

suitability in the real-time malware detection scenario at scale.

In particular, MSGAT++ can accelerate the training time by

50× against the native approach that rebuilds the HIN and

reruns the MSGAT. The acceleration primarily derives from

our incremental learning design that can make full use of

previously learned information without the need of rerunning

the entire model. In addition, MSGAT++ merely selects a

fixed number of neighbor nodes to re-calibrate the embedding

so that the time consumption only increases linearly with the

increment of out-of-sample number.
By contrast, other rerunning HIN-based baselines is pre-

dominantly dependent upon updating embedding for all nodes

based on the starting relation matrix. This leads to discrepan-

cies between MSGAT++ and others with the rerunning policy

when tackling out-of-sample Apps. HG2Img relies on a certain

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XXX, NO. XXX, XXX 2021 12

200 400 800 1600
The number of out-of-sample Apps

0

50

100

150

200

Ti
m

e
co

st
 (s

)
MsGAT++
Drebin
DroidEvolver

HG2Img
Rerun HAN

Rerun MsGAT
Rerun Metagraph2Vec

Figure 6. Efficiency comparison of detecting out-of-sample Apps.

Table IX
ABLATION ANALYSIS

Model Acc F1 AvgDetectionTime

HAWK 0.9695 0.9689 3.5ms

HAWK-I (w/o MSGAT) 0.8731 0.8725 1.8ms

HAWK-R (w/o MSGAT++) 0.9769 0.9769 205ms

amount of update operations to learn new features, resulting

in a non-negligible time consumption.

System overhead. Overall, the overheads are generally low,

mainly generated from loading model data and carrying out

the multi-tiered aggregation operations. Runtime memory con-

sumption is typically determined by the number of nodes and

features involved in the model training. The total memory

consumption of HAWK is roughly 330MB on average, far

lower than the consumption of re-running based baselines

(20.88GB on average). This is because all in-sample and out-

of-samples have to fully loaded into memory and involved in

the embedding calculation while our incremental design sig-

nificantly reduce such costs. Correspondingly, HAWK merely

uses 3.1% additional CPU utilization on average, mainly for

sorting out top-σ samples. By contrast, the CPU utilization

is up to 76% in rerunning baselines wherein CPU-intensive

matrix operations have to be performed. The low system cost

also indicates the suitability of applying HAWK into massive-

scale malware detection.

C. Microbenchmarking

Ablation analysis. To investigate the impact of each compo-

nent, we remove one component at a time from our model and

study the individual impact on the effectiveness of detecting

the out-of-sample Apps. We identify two tailored subsystems:

i) HAWK-I by only retaining native GAT model and removing

the hierarchical GAT structure from HAWK and ii) HAWK-R

by excluding the incremental design. Table IX reports their

accuracy and average time to detect a single App on v2017.

Without multi-step and hierarchical aggregation within a

meta-structure and across meta-structures, HAWK-I can reduce

the average detection time to 1.8ms. However, both accuracy

and F1 score are reduced by 9.9% compared with HAWK.

This phenomenon demonstrates the accuracy gain stemming

from fusing embedding results under different meta-structures.

HAWK-R takes far longer time to detect a malware App,

simply because no incremental model is loaded and everything

Precision Recall F1 Acc
0.92

0.93

0.94

0.95

0.96

0.97
MP1

MP2

MP3

MP4

MP5

MP6

MG1 MG2 MG3

Figure 7. Model performance under different path combinations.

1 2 3 4 5 6
The number of sampling neighbors

0.90

0.92

0.94

0.96

0.98

F1
 S

co
re

v2013
v2014
v2015

v2016
v2017
v2018

v2019
c2017
c2019

1 2 3 4 5 6
The number of sampling neighbors

0.88

0.90

0.92

0.94

0.96

0.98

Ac
c

Sc
or

e

v2013
v2014
v2015

v2016
v2017
v2018

v2019
c2017
c2019

Figure 8. Impact of sampling neighbor number.

needs to be re-trained from scratch. Inherently, although the

accuracy experiences a negligible increase due to the full data

involved in the model training, the detection efficiency of

HAWK-R is still unacceptable taking into account the long

execution time. Hence, it is necessary to adopt the incremental

MSGAT++ to ensure a reliable and rapid malware detection.

Importance of meta-structures. In our model design, a

group of meta-paths and meta-graphs are adopted to represent

different semantic information. To ascertain the individual

contribution to the detection effectiveness, we select a single

meta structure at a time in this experiment. Fig. 7 depicts

the metric disparities among different meta structures. More

specifically, among all meta-paths, MP1 and MP4 have the

highest and lowest contribution to the detection precision. In

fact, when analyzing the decompiled codes, we are able to

extract far more API information than .so files so that the

relation matrix A is denser than S, and thus contains more

connection information for node embedding.

Observably, using meta-graphs can achieve higher detection

precision when compared to purely using meta-paths, for a

combination of meta-paths can find neighbors with closer

affinity. Likewise, if comparing with the results in Table V,

MSGAT that involves the full set of semantic meta-structures

unsurprisingly outperforms any situation where only a single

semantic meta-structure is adopted. This implicates that in-

troducing sophisticated semantics is significantly meaningful

to precisely uncover hidden association between entities for

better classification.

Impact of the sampling neighbor number. As shown in

Fig. 8, the precision will first pick up within a certain range

but descend once the number of sampling neighbors becomes

larger (surpassing four in our experiment setting). In effect,

increasing neighbors can provide more relevant and informa-

tive embedding for the reference of the new nodes. However,

as the neighbors begin to accumulate, noises generated by

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XXX, NO. XXX, XXX 2021 13

more irrelevant neighbors will, in turn, negatively impact the

embedding aggregation, i.e., diminishing the representation

learning effectiveness. This implication reveals that gauging an

appropriate number of neighbors is very critical to the holistic

performance of embedding incoming Apps and identifying

their types. We choose 3 to 4 neighbors to generate a good

enough effectiveness, but one can tune the number either

manually according to specific datasets or automatically em-

powered by reinforcement learning. This is currently beyond

the scope of this paper and will be left for future work.

A case study of True Negative detection. The experiments

also reveal that the true negative result manifests occasion-

ally. In other words, a small minority of malicious Apps

may not be correctly identified by our model. For example,

VirusShare_ecc4c2e7, VirusShare_f21ff00cf in

v2013 bypass our detection. An in-depth investigation ascer-

tains that the embedding of such malicious apps will be assim-

ilated by its benign neighbor nodes which are overwhelming

in the process of MSGAT++. In fact, since these malicious

Apps have far fewer entities (no more than 30 entities) than

others (normally with more than 200 entities) used in the

training, the neighbors of these malicious apps obtained by

HAWK are sparser and tend to be benign Apps, resulting in

the inaccurate classification. To address this problem, we plan

to employ a label-aware neighbor similarity measure based on

node attribute to better navigate the neighbor selection and

distinguish the malware more efficiently in the future. Never-

theless, HAWK can achieve better detection accuracy against

the up-to-date baselines, with far lower time consumption,

particularly when detecting the out-of-sample Apps.

VII. DISCUSSION

Interpretablity. HAWK is a data-driven modeling and detect-

ing mechanism based on Heterogeneous Information Network

and network representation model empowered by Graph At-

tention Networks (GATs). The model’s interpretability can

be significantly enhanced due to the inherent nature of rich

semantics, stemming from the combinations of meta-paths

and meta-graphs, in the HIN and the multi-tiered aggrega-

tion of attention from different semantics. Such an approach

intrinsically outperforms the SVM based approaches such as

Drebin [33] and Random Forest based approaches such as

MaMaDroid [35] which has inadequate interpretability.

Scalability. The current HIN-based data modeling is scalable

and can be easily extended, to any arbitrary entities and

relationships, as long as the semantics can be demonstrated

beneficial to the process of detection, either by domain knowl-

edge or experimental assessment. In addition, since our design

does not require any model rerun, the scalability can be

inherently guaranteed when coping with sizable samples.

Robustness to obfuscation. The semantic meta-structures

based on multiple entities - including permission, permission

types, classes, interfaces, etc. - can overcome the inefficiency

of API-alone detection approaches and provide a robust and

accurate mechanism for detecting potential malware, in the

face of API obfuscation, packing, or dataset skew (e.g.,

samples with less visible features such as .so files in the dataset

v2013). Particularly, the multi-tiered attention aggregation can

automatically set the weight of different meta-paths or meta-

graphs, thereby substantially reducing the impact of a single

factor, e.g., the API obfuscation, on the numerical embedding

and increasing the capability of generalization over different

datasets and scenarios.

Model aging and decays. Concept drift (aka. model aging,

model decays) usually makes trained models fail to function

on new testing samples, primarily due to the changed statistical

properties of samples over time. The existing work [36]–

[38] measured how a model performs over time facing the

concept drift, underpinned the root causes for such drift and

proposed enhanced approaches to improve the model sustain-

ability. However, active learning typically involves massive

labeling for tens of thousands of malware samples, usually

at a significant cost of human efforts. By far, this issue is not

the focus and objective of HAWK; In contrast, MSGAT++ in

HAWK aims to rapidly embed and detect the out-of-sample

Apps, based upon the existing embedding results, assuming

a relatively stable statistical characteristics of the existing

Apps. At present, model evolving will be carried out through

rerunning of MSGAT, which is demonstrated acceptable in

terms of accuracy and time consumption (detailed in §VI-B).

More advanced mechanism for improving the model evolution

will be left for the future work.

VIII. RELATED WORK

Malware detection based on traditional feature engineer-

ing. Feature engineering and machine learning based malware

detection methods are two-fold: static/dynamic feature anal-

ysis. Static features analysis approaches [2]–[4], [33]–[35]

typically include features including permissions, signatures,

API sequences, etc. and directly employ such machine learning

models as Random Forest, SVM or CNN for malware detec-

tion. However, they inevitably over-assume that all behaviors

reflected by features should be involved within the model train-

ing, thereby having inadequate capability of tackling unknown

out-of-sample cases and causing much higher false positive

[3]. Meanwhile, cunning developers can also use obfuscation

techniques to hide the malicious codes [7] or perform repack-

aging attacks [39] to bypass detection. [34] can automatically

and continually update itself when detecting malware without

any human involvement. Nevertheless, this scheme only proves

that it has ability to adapt to updates, but does not show its

compatibility with previous data sets. In comparison, dynamic

feature analysis rely on behavior detection at runtime. Specif-

ically, [5], [6] extract Linux kernel system calls from Apps

executed in Genymotion (Android Virtual Machine) while log

analysis [7], [40] and traffic analysis [8], [41] facilitate

to capture Apps’ real-world behavior. However, it is time-

consuming and unrealistic to be applied in malware detection

at scale. Other models from natural language processing and

image recognition can be customized and re-used in malware

detection. [2] uses a deep convolutional neural network (CNN)

to analyze raw opcode sequence. [42] transforms sequences

of Android permissions into features by using LSTM layer

and uses non-linear activation function for classification. [43]

exploits LSTM to investigate potential relationships from

system call sequences before classification. However, since

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XXX, NO. XXX, XXX 2021 14

Apps are constantly updated, explicit features extraction from

limited Apps is ineffective in detecting unseen Apps.

Malware detection based on graph networks. Gotcha [17]

builds up a HIN and utilizes meta-graph based approach

to depict the relevance over PE files, which captures both

content- and relation-based features of windows malware.

HinDroid [18] is primarily on the basis of a HIN built upon re-

lationships between APIs and Apps, and employs multi-kernel

SVM for software classification. MatchGNet [19] combines

HIN model with GCN [9] to learn graph representation and

node similarity based on the invariant graph modeling of the

program’s execution behaviors. [20] constructs heterogeneous

program behavior graph, particularly for IT/OT systems, and

then introduces graph attention mechanism [25] to aggregate

information learned through GCN on different semantic paths

with weights. However, all these methods are impeded by the

static nature of the heterogeneous information network, i.e.,

they have limited capability of tackling emerging Apps outside

the constructed graph. AiDroid [21] represents each out-of-

sample App with CNN [22]. However, the non-negligible time

inefficiency stemming from multiple convolution operations

becomes a potential bottleneck. HAWK presents the first at-

tempt to bridge the HIN-based embedding model and graph

attention network to underpin incremental and rapid malware

detection particularly for out-of-sample Apps.

IX. CONCLUSION AND FUTURE WORK

Malware detection is a critical but non-trivial task par-

ticularly in the face of ubiquitous Android applications and

the increasingly intricate malware. In this paper, we propose

HAWK, an Android malware detection framework to rapidly

and incrementally learn and identify new Android Apps.

HAWK presents the first attempt to marry the HIN-based

embedding model with graph attention network (GAT) to

obtain the numerical representation of Android Apps so that

any classifier can easily catch the malicious ones. Particularly,

we exploit both meta-path and meta-graph to best capture

the implicit higher-order relationships among entities in the

HIN. Two learning models, MSGAT and incremental MS-

GAT++, are devised to fuse neighbors’ embedding within

any meta-structure and across different meta-structures and

pinpoint the proximity between a new App and existing in-

sample Apps. Through the incremental representation learning

model, HAWK can carry out malware detection dynamically

for emerging Android Apps. Experiments show HAWK outper-

forms all baselines in terms of accuracy and time efficiency.

In the future, we plan to integrate HAWK to smart mobile

devices by devising lightweight and efficient graph convolution

models, such as [44], [45] to replace the existing modules.

We also plan to investigate more advanced mechanism for

underpinning the model evolving in the face of model decays

particularly in federated learning environments.

REFERENCES

[1] Y. Ye, T. Li, D. Adjeroh, and S. S. Iyengar, “A survey on malware
detection using data mining techniques,” ACM Computing Surveys,
vol. 50, no. 3, pp. 1–40, 2017.

[2] N. McLaughlin, J. Martinez del Rincon, B. Kang, S. Yerima, P. Miller,
S. Sezer, Y. Safaei, E. Trickel, Z. Zhao, A. Doupé et al., “Deep android
malware detection,” in ACM CODASPY, 2017, pp. 301–308.

[3] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye, “Significant
permission identification for machine-learning-based android malware
detection,” IEEE TII, vol. 14, no. 7, pp. 3216–3225, 2018.

[4] S. Hou, A. Saas, Y. Ye, and L. Chen, “Droiddelver: An android malware
detection system using deep belief network based on api call blocks,”
in WAIM, 2016, pp. 54–66.

[5] M. Dimjaševic, S. Atzeni, I. Ugrina, and Z. Rakamaric, “Evaluation of
android malware detection based on system calls,” in ACM CODASPY,
2016, p. 1–8.

[6] S. Hou, A. Saas, L. Chen, and Y. Ye, “Deep4maldroid: A deep learning
framework for android malware detection based on linux kernel system
call graphs,” in ACM WIC, 2016, pp. 104–111.

[7] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “Dl-droid: Deep learning
based android malware detection using real devices,” Computers &

Security, vol. 89, p. 101663, 2020.
[8] S. Wang, Z. Chen, Q. Yan, K. Ji, L. Peng, B. Yang, and M. Conti,

“Deep and broad url feature mining for android malware detection,”
Information Sciences, vol. 513, pp. 600–613, 2020.

[9] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in ACM SIGKDD, 2017, pp. 1–14.

[10] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[11] Z. Hu, Y. Dong, K. Wang, K.-W. Chang, and Y. Sun, “Gpt-gnn:
Generative pre-training of graph neural networks,” in ACM SIGKDD,
2020, p. 1857–1867.

[12] Y. G. Wang, M. Li, Z. Ma, G. Montufar, X. Zhuang, and Y. Fan, “Haar
graph pooling,” in PMLR ICML, 2020, pp. 9952–9962.

[13] H. Peng, J. Li, Y. Song, R. Yang, R. Ranjan, P. S. Yu, and L. He,
“Streaming social event detection and evolution discovery in heteroge-
neous information networks,” ACM TKDD, vol. 15, no. 5, pp. 1–33,
2021.

[14] H. Peng, J. Li, S. Wang, L. Wang, Q. Gong, R. Yang, B. Li, P. Yu,
and L. He, “Hierarchical taxonomy-aware and attentional graph capsule
rcnns for large-scale multi-label text classification,” IEEE TKDE, 2019.

[15] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu, “Pathsim: Meta path-based
top-k similarity search in heterogeneous information networks,” VLDB,
vol. 4, no. 11, pp. 992–1003, 2011.

[16] H. Peng, R. Yang, Z. Wang, J. Li, L. He, P. Yu, A. Zomaya, and R. Ran-
jan, “Lime: Low-cost incremental learning for dynamic heterogeneous
information networks,” IEEE Transactions on Computers, 2021.

[17] Y. Fan, S. Hou, Y. Zhang, Y. Ye, and M. Abdulhayoglu, “Gotcha-sly
malware! scorpion a metagraph2vec based malware detection system,”
in ACM SIGKDD, 2018, pp. 253–262.

[18] S. Hou, Y. Ye, Y. Song, and M. Abdulhayoglu, “Hindroid: An intelligent
android malware detection system based on structured heterogeneous
information network,” in ACM SIGKDD, 2017, pp. 1507–1515.

[19] S. Wang, Z. Chen, X. Yu, D. Li, J. Ni, L. Tang, J. Gui, Z. Li, H. Chen,
and P. S. Yu, “Heterogeneous graph matching networks for unknown
malware detection,” in IJCAI, 2019, pp. 3762–3770.

[20] S. Wang, Z. Chen, D. Li, Z. Li, L.-A. Tang, J. Ni, J. Rhee, H. Chen, and
P. S. Yu, “Attentional heterogeneous graph neural network: Application
to program reidentification,” in ICDM, 2019, pp. 693–701.

[21] Y. Ye, S. Hou, L. Chen, J. Lei, W. Wan, J. Wang, Q. Xiong, and F. Shao,
“Out-of-sample node representation learning for heterogeneous graph in
real-time android malware detection,” in IJCAI, 2019, pp. 4150–4156.

[22] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in ICLR, 2015, pp. 1–372.

[23] Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec: Scalable
representation learning for heterogeneous networks,” in ACM SIGKDD,
2017, pp. 135–144.

[24] D. Zhang, J. Yin, X. Zhu, and C. Zhang, “Metagraph2vec: Complex se-
mantic path augmented heterogeneous network embedding,” in PAKDD,
2018, pp. 196–208.

[25] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in NIPS, 2017,
pp. 5998–6008.

[26] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu,
“Heterogeneous graph attention network,” in WWW, 2019, pp. 2022–
2032.

[27] H. Zhao, Q. Yao, J. Li, Y. Song, and D. L. Lee, “Meta-graph based
recommendation fusion over heterogeneous information networks,” in
ACM SIGKDD, 2017, pp. 635–644.

[28] S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim, “Graph transformer
networks,” in NIPS, 2019, pp. 11 983–11 993.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XXX, NO. XXX, XXX 2021 15

[29] Z. Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous graph trans-
former,” in WWW, 2020, pp. 2704–2710.

[30] Y. Gao, L. Xiaoyong, P. Hao, B. Fang, and P. Yu, “Hincti: A cyber threat
intelligence modeling and identification system based on heterogeneous
information network,” IEEE TKDE, pp. 1–1, 2020.

[31] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in ACM SIGKDD, 2016, pp. 855–864.

[32] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in ACM SIGKDD, 2014, pp. 701–710.

[33] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of android
malware in your pocket,” in NDSS, 2014, pp. 23–26.

[34] K. Xu, Y. Li, R. Deng, K. Chen, and J. Xu, “Droidevolver: Self-evolving
android malware detection system,” in IEEE EuroS&P, 2019, pp. 47–62.

[35] E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro, G. Ross,
and G. Stringhini, “Mamadroid: Detecting android malware by building
markov chains of behavioral models,” arXiv preprint arXiv:1612.04433,
2016.

[36] X. Zhang, Y. Zhang, M. Zhong, D. Ding, Y. Cao, Y. Zhang, M. Zhang,
and M. Yang, “Enhancing state-of-the-art classifiers with api semantics
to detect evolved android malware,” in ACM CCS, 2020, pp. 757–770.

[37] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro,
“Tesseract: Eliminating experimental bias in malware classification
across space and time,” in USENIX Security, 2019, pp. 729–746.

[38] R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, I. Nouretdinov,
and L. Cavallaro, “Transcend: Detecting concept drift in malware
classification models,” in USENIX Security, 2017, pp. 625–642.

[39] K. Tian, D. D. Yao, B. G. Ryder, G. Tan, and G. Peng, “Detection of
repackaged android malware with code-heterogeneity features,” IEEE

TDSC, vol. 17, no. 1, pp. 64–77, 2017.
[40] S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, and T. Yagi,

“Malware detection with deep neural network using process behavior,”
in COMPSAC, 2016, pp. 577–582.

[41] Z. Li, L. Sun, Q. Yan, W. Srisa-an, and Z. Chen, “Droidclassifier:
Efficient adaptive mining of application-layer header for classifying
android malware,” in SecureComm, 2016, pp. 597–616.

[42] R. Vinayakumar, K. Soman, and P. Poornachandran, “Deep android
malware detection and classification,” in IEEE ICACCI, 2017, pp. 1677–
1683.

[43] X. Xiao, S. Zhang, F. Mercaldo, G. Hu, and A. K. Sangaiah, “Android
malware detection based on system call sequences and lstm,” Multimedia

Tools and Applications, vol. 78, no. 4, pp. 3979–3999, 2019.
[44] R. S. Srinivasa, C. Xiao, L. Glass, J. Romberg, and J. Sun, “Fast graph

attention networks using effective resistance based graph sparsification,”
arXiv preprint arXiv:2006.08796, 2020.

[45] M. Li, Z. Ma, Y. G. Wang, and X. Zhuang, “Fast haar transforms for
graph neural networks,” Neural Networks, vol. 128, pp. 188–198, 2020.

Yiming He is a PhD student at the School of Cy-
ber Science and Technology in Beihang University,
Beijing, China. His research interests include deep
learning, information security and applied cryptog-
raphy.

Renyu Yang is an EPSRC-funded Research Fellow
with the University of Leeds, UK. He was previously
with BDBC Reseach Center China, Alibaba Group
China and Edgetic Ltd. UK, having industrial experi-
ence in building large-scale distributed systems with
ML and co-authored/co-led many research grants
including UK EPSRC, Innovate UK, EU Horizon
2020, etc. His research interests include distributed
systems, resource management and applied machine
learning. He is a member of IEEE.

Hao Peng is currently an Assistant Professor at
the School of Cyber Science and Technology, and
Beijing Advanced Innovation Center for Big Data
and Brain Computing in Beihang University. His
research interests include representation learning,
machine learning and graph mining.

Lihong Wang is a professor in National Com-
puter Network Emergency Response Technical
Team/Coordination Center of China. Her current
research interests include information security, cloud
computing, big data mining and analytics, Informa-
tion retrieval and data mining.

Xiaolin Xu is a professor in National Com-
puter Network Emergency Response Technical
Team/Coordination Center of China. Her current
research interests include information security, big
data mining and analytics, network security detec-
tion.

Jianwei Liu is now a professor at the School of Cy-
ber Science and Technology in Beihang University.
His current research interests include information
security, communication network and cryptography.

Hong Liu is currently an associate professor in
East China Normal University and Shanghai Insti-
tute of Intelligent Science and Technology, Tongji
University. She is also the CTO in Shanghai Trusted
Industrial Control Platform Ltd. China. Her research
interests include the security and privacy issues in
vehicular edge computing, and industrial internet of
things. She has published more than 30 SCI papers,
and Google Scholar citations are 2800 times.

Jie Xu is the Chair Professor of Computing at
University of Leeds, the leader for a Research Peak
of Excellence at Leeds, Director of UK EPSRC
WRG e-Science Centre, Executive Board Member of
UK Computing Research Committee (UKCRC), and
Chief Scientist of BDBC, Beihang University, China.
He is a Steering/Executive Committee member for
numerous IEEE conferences and led or co-led many
research projects to the value of over $30M, and
published in excess of 400 academic papers, book
chapters and edited books. His research interests

include large-scale dependable distributed systems, cloud systems, big data
processing, etc. He is a member of IEEE.

Lichao Sun is currently an Assistant Professor
in Lehigh University, USA. He obtained his PhD
from the University of Illinois at Chicago, US. His
research interests include deep learning and data
mining. He mainly focuses on security and privacy,
social network and natural language processing ap-
plications.

