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Filippo M. Bianchi, Gabriele Moser, Robert Jenssen, and Stian Normann Anfinsen

Abstract—Image translation with convolutional autoencoders
has recently been used as an approach to multimodal change
detection in bitemporal satellite images. A main challenge is the
alignment of the code spaces by reducing the contribution of
change pixels to the learning of the translation function. Many
existing approaches train the networks by exploiting supervised
information of the change areas, which, however, is not always
available. We propose to extract relational pixel information
captured by domain-specific affinity matrices at the input and use
this to enforce alignment of the code spaces and reduce the impact
of change pixels on the learning objective. A change prior is
derived in an unsupervised fashion from pixel pair affinities that
are comparable across domains. To achieve code space alignment
we enforce that pixel with similar affinity relations in the input
domains should be correlated also in code space. We demonstrate
the utility of this procedure in combination with cycle consistency.
The proposed approach are compared with state-of-the-art deep
learning algorithms. Experiments conducted on four real datasets
show the effectiveness of our methodology.

Index Terms—unsupervised change detection, multimodal im-
age analysis, heterogeneous data, image regression, affinity ma-
trix, deep learning, aligned autoencoder

I. INTRODUCTION

CHANGE detection (CD) methods in remote sensing
aim at identifying changes happening on the Earth by

comparing two or more images acquired at different times [1].
Multitemporal analyses with satellite data include land use
mapping of urban and agricultural areas [2], [3], and monitor-
ing of large scale changes such as deforestation [4], lake and
glacier reduction [5], [6], urbanisation [7], etc. Bitemporal ap-
plications mainly concerned with the detection and assessment
of natural disasters and sudden events, like earthquakes [8],
floods [9], forest fires [10], and so forth.

Traditional CD methods rely on homogeneous data, namely
a set of images acquired by the same sensor, under the
same geometry, seasonal conditions, and recording settings.
However, these restrictions are too strong for many practical
examples. First of all, the satellite revisit period sets the upper
limit to the temporal resolution when monitoring long-term
trends, and the lower limit to the response time when assessing
the damages of sudden events. Moreover, even when two
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images are collected with the same configurations, they might
be not homogeneous because of other factors, for example
light conditions for optical data or humidity and precipitation
for synthetic aperture radar (SAR).

Heterogeneous CD methods overcome these limitations, but
at the cost of having to handle more complicated issues;
Heterogeneous data imply different domains, diverse statistical
distributions and inconsistent class signatures across the two
images, especially when different sensors are involved, which
makes a direct comparison infeasible [11]. These problems
have been tackled by use of many different techniques: copula
theory [1], marginal densities transformations [12], evidence
theory [13], [14], graph theory [15], manifold learning [16],
kernelised or deep canonical correlation analysis [10], [17],
[18], dictionary learning [19], scale-invariant local descrip-
tors [20], [21], superpixel segmentation [22], clustering [23],
minimum energy [24], multidimensional scaling [25], nonlin-
ear regression [26], [9], and deep learning (especially autoen-
coders) [27], [28], [29], [30], [31], [32].

A common solution in heterogeneous CD is to apply highly
nonlinear transformations to transfer the data from one domain
to the other and vice versa [30], [33], [34]. Alternatively, all
the data are mapped to a common domain where they can
be compared [12], [27], [28], [32]. Nonetheless, this crucial
step often requires iterative fine-tuning of the transformation
functions starting from unreliable preliminary results, e.g.
random initialisation [28], [32] and clustering [30], or from
manually selected training samples [1], [10], [16] that are not
always available.

One contemporary way to map data across two domains is
image-to-image (I2I) translation using a conditional generative
adversarial network (cGAN) [35], which was extended by
enforcing cyclic consistency in the cycleGAN architecture
[36]. These approaches have inspired many recent hetero-
geneous CD methods [33], [34], [37]. A notable difference
between the cGAN and the cycleGAN is that training of the
former requires paired images that contain the same objects
imaged with different styles or sensor modes, whereas the
cycleGAN does not. Paired I2I translation can only be applied
in heterogeneous CD if change pixels are censored, as these
will otherwise distort the training process and promote a
transformation between different objects.

When generative adversarial frameworks are used in hetero-
geneous CD, the translated (or cyclically translated) images
take the role as fake or generated data, and the network is
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trained to make them indistinguishable from true images from
the relevant domain. The cGAN and cycleGAN may succeed
to align the distributions of translated data and true data,
but they are also seen to suffer from inherent drawbacks:
They rely on large training sets, the iterative training of
generator and discriminator must be judiciously balanced,
training is prone to mode collapse, and reasonable values of
the hyperparameters can be difficult to find due to oscillating
and unstable behaviour of the loss function. We therefore seek
alternative training strategies to the adversarial ones.

In this work, we propose a simple unsupervised, heteroge-
neous CD method, inspired by the paradigm of I2I translation.
The idea is to align the code layers of two autoencoders and
treat them as a common latent space, so that the output of
one encoder can be the input of both decoders, leading in one
case to reconstruction of data in their original domain, and in
the other case to their transformation into the other domain.
Local information extracted directly from the input images
is exploited to drive the code alignment in an unsupervised
manner. Specifically, affinity matrices of the training patches
are computed and compared, and the extracted information is
used to ensure that pixel pairs that are similar in both input
domains also have a high correlation in the common latent
space. The implementation of this principle is inspired by the
deep kernelised autoencoder of Kampffmeyer et al. [38], [39],
where the inner product between the codes produced by two
datapoints is forced to match their precomputed affinity.

To summarise, the contributions of this work are the fol-
lowing:
• We propose a simple, yet effective loss term, able to align

the latent spaces of two autoencoders in an unsupervised
manner.

• We implement a deep neural network for heterogeneous
CD that incorporates this loss term.

• The well-documented TensorFlow 2.0 framework that
we provide can be easily used for the development
of other CD methods and for direct comparison with
ours. Source code is made available at https://github.com/
llu025/Heterogeneous CD.

The remainder of this paper is organised as follows: The
core ideas and the main contribution are presented in Sec. II;
Experiments were conducted on four different real datasets,
and Sec. III shows the results of the proposed approach against
several state-of-the-art methods; Sec. IV concludes the paper.

II. METHODOLOGY

Assume that we have two different sensors (or sensor
modes) whose single-pixel measurements lie in the domains X
and Y . These could be e.g. R≥0 (nonnegative real numbers) for
a single-channel SAR sensor, RC

≥0 for a multispectral radiome-
ter with C bands, or CC×C

�0 for a polarimetric SAR sensor
with C polarisations that records a complex and semipositive
definite covariance matrix for each pixel.

Further assume that these sensors are scanning the same
geographical region at separate times and we obtain an image
IX ∈ XH×W recorded at time t1 and an image IY ∈ YH×W

recorded at t2 > t1. The images and their domains have

common dimensions, the shared height H and width W , which
are obtained after coregistration and resampling. They will in
general have different numbers of channels, denoted as |X |
and |Y|. The two images can be thought of as realisations of
stochastic processes that generate data tensors from domain X
and Y .

An underlying assumption is that a limited part of the image
has changed between t1 and t2. The final goal is to detect all
changes in the scene. However, given the heterogeneity of X
and Y , direct comparison is meaningless, if not unfeasible,
without any preprocessing step. Let X ∈ X h×w and Y ∈
Yh×w be data tensors holding size h× w patches of the full
images IX and IY . We are interested in implementing the
two transformations: Ŷ = F (X) and X̂ = G(Y ), defined as
F : X h×w → Yh×w and G : Yh×w → X h×w, to map data
between the image domains. In this way, the input images can
be transferred to the opposite domain, and the changes can be
detected by computing the difference image as the weighted
average:

∆ =WX · dX (X, X̂) +WY · dY(Y , Ŷ ) , (1)

where dX (·, ·) and dY(·, ·) are sensor-specific distances, cho-
sen according to the statistical distribution of the data, which
operate pixel-wise. The generic weights WX and WX can be
used to balance the contribution of the domain-specific dis-
tances. We may want to use WX = 1/|X | and WY = 1/|Y| in
order to remove undue influence of the number of channels if
dX and dY involve summations on the corresponding channels.
Alternatively, it may be appropriate to compensate for different
noise levels of the sensors that affect the magnitude of the
distances, for instance by boosting the contribution of optical
data with respect to highly speckled radar data. The weights
can be set heuristically or according to empirical optimisation
and theoretical considerations. We prefer to use L2 distances
to limit the computational cost.

To implement F (X) and G(Y ), we use a framework that
consists of two autoencoders, each associated with one of the
two image domains X and Y (We will from now suppress the
superscripting with image patch dimensions h × w). Specifi-
cally, they consist of two encoder-decoder pairs implemented
as deep neural networks: the encoder EX (X) : X → ZX and
decoder DX (Z) : ZX → X ; the encoder EY(Y ) : Y → ZY
and decoder DY(Z) : ZY → X . Here, ZX and ZY denote
the code layer or latent space domains of the respective au-
toencoders. These are implemented with common dimensions,
such that the code layer representation Z (also known as the
code) can denote data tensors in both ZX and ZY . When we
need to specify which input space the codes originate from,
they will be written as ZX and ZY .

When trained separately and under the appropriate regu-
larisation, the autoencoders will learn to encode their inputs
and reconstruct them with high fidelity in output. Without any
external forcing, the distributions of the codes in ZX and
ZY will in general not be close (see Fig. 1a for a visual
example). However, we will introduce loss terms that enforce
their alignment, both in distribution and in the location of land

https://github.com/llu025/Heterogeneous_CD
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(a) Not aligned code spaces (b) Aligned code spaces

Fig. 1: Two autoencoders without (a) and with (b) code space alignment.

covers within the distributions1. If the code distributions in ZX
and ZY align successfully, the encoders can be cascaded with
the adjacent decoders to map the latent domain codes back to
their original domains, or with the opposite decoders to map
data across domains, leading to the sought transformations:

Ŷ = F (X) = DY(Z
X ) = DY (EX (X)) ,

X̂ = G(Y ) = DX (Z
Y) = DX (EY (Y )) ,

(2)

as depicted in Fig. 1b.
Autoencoders require regularisation in order to avoid learn-

ing an identity mapping. This is commonly implemented
as sparsity constraints or compression at the code layer by
dimensionality reduction, with the latter measure known as a
bottleneck. In our implementation, we retain the image patch
dimensions (h and w) throughout the hidden layers of the
autoencoder and do not resort to bottlenecking, as this is
seen to produce the best results. The additional constraints
associated with code alignment and crossdomain mapping are
seen to enforce the required regularisation.

In the following, we define the terms of the loss function
L (ϑ). The loss function is minimised with respect to the
parameters of the networks, ϑ, to train the two autoencoders
with the goal of obtaining the desired F (X) and G(Y ). In
order to compare input patches and translated ones, a weighted
distance between patches is defined. Let A and B be two
equal-sized h×w patches, then δ(A,B|π) denotes a general
weighted distance between patches, where π is a vector of
weights, each associated with a pixel i ∈ {1, . . . , n} of the
patches, with n = h ·w. In particular, δ(A,B|1) = δ(A,B),
being 1 a vector of ones. When the pixel measurements
ai ∈ A and bi ∈ B are vectors, the mean squared L2 norm
can be used:

δ(A,B|π) = 1

n

n∑
i=1

πi‖ai − bi‖22 . (3)

1Alignment in distribution is not sufficient, since the arrangement of land
covers within the distributions may have changed, for instance by mode
swapping.

A. Reconstruction Loss
Consider two training patches of h × w pixels extracted

at the same location from IX and IY . The first requirement
for the autoencoders is to reproduce their input as faithfully
as possible in output, which means that for the reconstructed
image patches X̃ and Ỹ ,

X̃ = DX (EX (X)) 'X
Ỹ = DY (EY (Y )) ' Y

(4)

must hold true. We introduce the mean squared error between
the desired and the predicted output as the reconstruction loss
term:

Lr(ϑ) = EX

[
δ(X̃,X)

]
+ EY

[
δ(Ỹ ,Y )

]
. (5)

B. Cycle-consistency Loss
Cycle-consistency implies that data transformed from X to
Y and back to X should match exactly the input data we
started from. The same applies to the transformations from Y
to X and back. If F (X) and G(Y ) are close to be perfectly
adapted, it must hold true that

Ẋ = G(Ŷ ) = G (F (X)) 'X ,

Ẏ = F (X̂) = F (G(Y )) ' Y ,
(6)

where Ẋ = G(Ŷ ) and Ẏ = F (X̂) indicate the data cyclically
transformed to the original domains. Hence, we define the
cycle-consistency loss term as:

Lc(ϑ) = EX

[
δ(Ẋ,X)

]
+ EY

[
δ(Ẏ ,Y )

]
. (7)

We note that cycle-consistency, like reconstruction, can be
evaluated with unpaired data, since X̃ and Ẋ are computed
from X while Ỹ and Ẏ are computed from Y .

C. Weighted Translation Loss
For those pixels not affected by changes, we require

Ŷ = F (X) ' Y
X̂ = G(Y ) 'X .

(8)
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From the opposite perspective, pixels that are likely to be
changed shall not fulfil these same requirements. Thus, the
weighted translation loss term is defined as follows:

Lt(ϑ) = EX,Y

[
δ(X̂,X|π)

]
+ EX,Y

[
δ(Ŷ ,Y |π)

]
, (9)

where the contribution to the translation loss of the pixels
is weighted by the prior π, whose elements {πi}ni=1 can be
interpreted as the probability of pixel i ∈ {1, . . . , n} not being
changed. The πi for the entire image are stored in a matrix
Π ∈ [0, 1]H×W , from which the patch corresponding to X
and Y is extracted and flattened into the vector π. These
probabilities are not available at the beginning of training,
so all entries of Π are initialised as 0. After several training
epochs, a preliminary evaluation of the difference image ∆ is
computed and scaled to fall into the range [0, 1], so that the
prior can be updated as Π = 1 − ∆. In this way, pixels
associated with a large ∆ entry are penalised by a small
weight, whereas the opposite happens to pixels more likely to
be unchanged. The Π is updated iteratively at a rate that we
can tune to accommodate both performance and computational
cost. This form of self-supervision paradigm has already
proven robust in other tasks such as deep clustering [40] and
deep image recovery [41].

The translation loss must be evaluated with paired data,
since X̂ is computed from Y and compared with X , while
Ŷ is computed from X and compared with Y . The code
correlation loss, presented in the next section, also requires
paired data.

D. Code Correlation Loss

The main contribution of this work lies in the way the codes
are aligned. It therefore rests on the design and definition of
the specific loss term associated with code alignment, referred
to as the code correlation loss.

The distances in the input spaces between all pixel pairs
(i, j) in the co-located training patches are computed as
dXi,j = dX (xi,xj) and dYi,j = dY(yi,yj) for i, j ∈ {1, . . . , n},
where xi and yj denote the feature vectors of pixel i ∈ X
and pixel j ∈ Y , respectively. The appropriate choice of
distance measure depends on the underlying data distribu-
tion, but should also consider complexity. The hypothesis
of normality for imagery acquired by optical sensors is
commonly assumed [42], [43]. Concerning SAR intensity
data, a logarithmic transformation is sufficient to bring it
to near-Gaussianity [23], [31]. This qualifies the use of the
computationally efficient Euclidean distance for both these
data sources.

Once computed, the distances between all pixel pairs can
be converted to the affinities

A`
i,j = exp

{
−
(
d`i,j
)2

σ2
`

}
∈ (0, 1] , i, j ∈ {1, . . . , n} .

(10)
Here, A`

i,j are the entries of the affinity matrix A` ∈ Rn×n

for a given patch and modality ` ∈ {X ,Y}, and σ` is the
kernel width, which must be automatically determined. Our
choice is to set it equal to the average distance to the kth

nearest neighbour for all data points in the patch of modality
`, with k = 3

4n. This heuristic, which can be traced back to
[44], captures the scale of local affinities within the patch and
is robust with respect to outliers. Other common approaches
to determine the kernel width, such as the Silverman’s rule
of thumb [45], were discarded because they have not proven
themselves as effective.

At this point, one can consider the rows

AXi =
[
AXi,1, . . . , A

X
i,n

]
and AYj =

[
AYj,1, . . . , A

Y
j,n

]
as representations of pixel i from patch X and pixel j from
patch Y , respectively, in a new affinity space with n features.
Moreover, we can define a novel crossmodal distance between
these pixels as

Di,j =
1√
n
‖AXi −AYj ‖2 ∈ [0, 1] , i, j ∈ {1, . . . , n}, (11)

noting that since the affinities are normalised to the range
[0, 1], then so is Di,j . This crossmodal distance allows to
compare data across the two domains directly from their input
space features. It further allows us to distinguish pixels that
have consistent relations to other pixels in both domains from
those that do not. This information can be interpreted in terms
of probability of change.

The crossmodal input space distances Di,j for i, j ∈
{1, . . . , n} are stored in D. We next want to make sure that
these are maintained in the code layer. We do this by defining
similarities Sij = 1 −Dij and forcing them to be as similar
as possible to correlations between the codes of corresponding
pixels. Let zXi and zYj denote the entry of code patch ZX

corresponding to pixel i and the entry of code patch ZY

corresponding to pixel j, respectively. In mathematical terms,
we enforce that

Ri,j ,

(
zXi
)T
zYj + |Z|

2 |Z|
' Si,j , i, j ∈ {1, . . . , n} , (12)

where the Si,j are elements of S = 1−D. The normalisation
of the codes, zXi , z

Y
j ∈ [−1, 1]|Z|, and their dimensionality

|Z| is such that the code correlations Ri,j falls in the range
[0, 1]. Note that the elements on the diagonal of S represent
the similarity between xi and yi, that are not identical, so Si,i

can be different from 1. Also observe that S is not symmetric,
because the similarity between xi and yj is not necessarily
the same as between xj and yi.

Based on the above definitions and considerations, the code
correlation loss term is defined as

Lz (ϑ) = EX,Y [δ(R,S)] , (13)

where the code correlation matrix R stores the Ri,j from the
left-hand side of Eq. (12). Note that only encoder parameters
are adjusted with this loss term.

E. Total Loss Function

Finally, the loss function minimised in this framework is
the following weighted sum:

L (ϑ) = λr Lr(ϑ) + λc Lc(ϑ) + λt Lt(ϑ) + λz Lz(ϑ) , (14)
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where the weights λr, λc, λt and λz are used to balance
the loss terms and their impact on the optimisation result.
Together, the cycle-consistency and the code correlation let
us achieve the sought alignment, while at the same time the
other two terms keep focus on a correct reconstruction and
transformation of the input.

After the training and the computation of ∆, the CD
workflow includes an optional step and a mandatory step.
The former consists of spatial filtering of ∆ to reduce errors,
based on the simple idea that spurious changed (unchanged)
pixels surrounded by unchanged (changed) ones are most
likely outliers that have been erroneously classified. For our
method we selected the Gaussian filtering presented in [46],
which uses spatial context to regularise ∆. The last step of a
CD pipeline is to obtain the actual change map by thresholding
∆, and so all the pixels whose value is below the threshold
are considered unchanged, vice versa for those with a larger
value. The optimal threshold can be found by visual inspection
or automatically by exploiting an algorithm such as [47], [48],
[49]. We opted for the classical Otsu’s method [50].

III. RESULTS

A. Implementation details
For the proposed framework we deploy fully convolu-

tional neural networks designed as follows: Conv(3 × 3 ×
100)–ReLU–Conv(3×3×100)–ReLU–Conv(3×3×C)–Tanh.
Conv(3×3×C) indicates a convolutional layer with C filters
of size 3 × 3, being C = 3 for the encoders, C = |X | for
DX and C = |Y| for DY . All the layers are non-strided
and we apply padding to preserve the input size. Leaky-
ReLU [51] with slope of β = 0.3 for negative arguments
is used. Tanh indicates the hyperbolic tangent [51], which
normalises data between −1 and 1, as this has shown to
speed up convergence [52]. Dropout [53] with a 20% rate is
applied. A low number of features in the latent space allows
to achieve the sought alignment more easily, whereas the
number of layers and filters has been set to find a balance
between flexibility of the network representations and the
limited trainability of the networks, due to a small amount of
training data. Concerning the latter, at every epoch 10 batches
containing 10 random patches of 100×100 pixels are extracted
and randomly augmented (90 degrees rotations and upside-
down flips). As specified, the code correlation loss term Lz

requires computation of a size N × N crossmodal distance
matrix D when the training patch is h × w. Due to memory
constraints, only the inner 20 × 20 pixels of the training
patches have been used to compute D. For normalisation
of the matrix D between 0 and 1, the framework responded
better when applying contrast stretching between the empirical
batch minimum and maximum values of D. The four λ values
controlling the weighted sum of L were all set to 1.

The Adam optimiser [54] was selected to perform the
minimisation of L for 100 epochs with a learning rate of 10−4,
which experienced a stair-cased exponential decay with rate
0.96. Actually, we found it beneficial to reduce the learning
rate associated with Lz more aggressively with rate 0.9. This
was implemented because it turned out most beneficial to cor-
relate the code spaces at the beginning, when the autoencoder

just started to learn a meaningful representation of the latent
spaces and a reasonable transformation of the data. After some
updates of Π, Lz was experienced to function more as a
regulariser, whereas the translation loss Lt came more into
play. These updates were made every 25 epochs, so at epoch
25, 50, and 75.

B. Evaluation criteria

The performance of the proposed approach is measured in
terms of two metrics. The overall accuracy, OA ∈ [0, 1], is the
ratio between correctly classified pixels and the total amount
of pixels. Cohen’s kappa coefficient, κ ∈ [−1, 1], indicates
the agreement between two classifiers [55]. κ = 1 means total
agreement, κ = −1 means total disagreement, κ = 0 means no
correlation (random guess). When comparing against a ground
truth dataset, Cohen’s kappa is expressed as

κ =
po − pe
1− pe

. (15)

Here, po stands for the observed agreement between predic-
tions and labels, i.e. the OA, while pe is the probability of
random agreement, which is estimated from the observed true
positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN) as:

pe =

(
TP + FP
N

· FN + TN
N

)
+

(
TP + FN

N
· FP + TN

N

)
.

(16)

In general, a high κ implies a high OA, but not vice versa.
In any case, the papers presenting state-of-the-art methods do
not always report both, so we compare algorithm performance
dataset by dataset in terms of the available metrics.

C. Methods compared

We will in the following present four datasets that are
used to test the proposed method and reference algorithms.
On the first two datasets, the proposed method is compared
to four similar deep learning approaches. The first two are
the conditional adversarial network (CAN) of Niu et al. [33]
and the symmetric convolutional coupling network (SCCN)
of Liu et al. [28], which represent seminal work on unsuper-
vised multimodal change detection with convolutional neural
networks. The final two are are the ACE-Net and the X-Net
recently proposed by the current authors in [37]. To be aware
of the characteristics of the training strategies employed by
these methods, it should be noted that the CAN and the ACE-
Net apply adversarial training, the ACE-Net and the SCCN
exploit code alignment, while the ACE-Net and the X-Net
use similar weighted image-to-image translation schemes as
the proposed method. The final two datasets have been used
extensively by others in testing of methods whose source code
we do not have access to. For these datasets we compare our
results with the performance reported in Zhang et al. [27]
for post-classification comparison (PCC) and a deep learning
model based on stacked denoising autoencoders (SDAE). We
also compare with several methods proposed by Touati et al.,
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namely a method that obtains its result my filtering a textural
gradient-based similarity map (TGSM) [56], a method using
energy-based encoding of nonlocal pairwise pixel interactions
(EENPPI) [24], a method based on modality invariant mul-
tidimensional scaling (MIMDS) [25], and a Markov model
for multimodal change detection (M3CD) [57]. Finally, we
compare with results obtained with the manifold learning-
based statistical model (MLSM) of Prendes et al. [16], [58].

D. First dataset: Forest fire in Texas

(a) Landsat 5 (t1) (b) EO-1 ALI (t2) (c) Ground Truth

Fig. 2: Forest fire in Texas: Landsat 5 (t1), (b) EO-1 ALI (t2),
(c) ground truth. RGB false color composites are shown for
both images.

A Landsat 5 Thematic Mapper (TM) multispectral image
(Fig. 2a) was acquired before a forest fire that took place
in Bastrop County, Texas, during September-October 20112.
An Earth Observing-1 Advanced Land Imager (EO-1 ALI)
multispectral acquisition after the event completes the dataset
(Fig. 2b)1. Both images are optical, with 1534 × 808 pixels,
and 7 and 10 channels respectively. The ground truth of the
event (see Fig. 2c) is provided by Volpi et al. [10].

Fig. 3 displays the results obtained on this dataset by the
proposed framework as compared to the reference methods.
As one can notice, the proposed network produces consistently
higher accuracy than the competitors and also maintains a low
variance. We also report that Volpi et al. [10] and Luppino et
al. [9] achieved a κ of 0.65 and 0.91 respectively with respect
to the same ground truth. Concerning the training times, their
averages are listed in Table I. These are comparable because
the computation of the affinity matrices is time-consuming,
but the proposed method is implemented with relatively small
networks and trained for fewer iterations.

TABLE I: Average training time of the five methods on the
Texas dataset.

CAN SCCN ACE-Net X-Net Proposed

70 min 16 min 13 min 7 min 11 min

2Distributed by LP DAAC, http://lpdaac.usgs.gov
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Fig. 3: κ obtained on the Texas dataset by the proposed
approach and several state-of-the-art methods.

E. Second dataset: Flood in California

(a) Landsat 8 (t1) (b) Sentinel1-A (t2) (c) Ground Truth

Fig. 4: Flood in California: Landsat 8 (t1), (b) Sentinel1-A
(t2), (c) ground truth. RGB false color composites are shown
for both images.

Fig. 4a shows the RGB channels of the Landsat 8
acquisition1 covering Sacramento County, Yuba County and
Sutter County, California, on 5 January 2017. In addition, the
multispectral sensors mounted on Landsat 8 provides another
8 channels, going from deep blue to long-wave infrared. The
same area was affected by a flood, as it can be noticed
in Fig. 4b. This is a Sentinel-1A3 acquisition, recorded in
polarisations VV and VH on 18 February 2017 and augmented
with the ratio between the two intensities as the third channel.
The ground truth in Fig. 4c is provided by Luppino et al. [9].
Originally of 3500×2000 pixels, these images were resampled
to 850× 500 pixels as in [37] to compare the results.

The metrics obtained on this dataset are summarised in Fig.
5. Also in this case, the proposed framework outperforms the
state-of-the-art counterparts, both in terms of high quality and
low variance. For this dataset, κ = 0.46 was achieved in [9].
Table II contains the average training times on this dataset.

3Data processed by ESA, http://www.copernicus.eu/
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TABLE II: Average training time of the five methods on the
California dataset.

CAN SCCN ACE-Net X-Net Proposed

21 min 15 min 12 min 6 min 8 min

0.2

0.25

0.3

0.35

0.4

0.45

0.5

CAN SCCN ACE-Net X-Net Proposed

Fig. 5: κ obtained on the California dataset by the proposed
approach and several state-of-the-art methods

Again, the proposed approach required a training time which
is in line with the state-of-the-art algorithms.

F. Third dataset: Lake overflow in Italy

(a) Landsat 5 NIR(t1) (b) Landsat 5 RGB (t2) (c) Ground Truth

Fig. 6: Lake overflow in Italy: Landsat 5 Near InfraRed (NIR)
band (t1), (b) Landsat 5 red, green, and blue (RGB) bands
(t2), (c) ground truth.

The next two datasets were provided by Touati et al. [57].
In Fig. 6a and Fig. 6b are two Landsat 5 images of 412×300
pixels: the first is the Near InfraRed (NIR) band of an image
acquired in September 1995, the second represents the red,
green, and blue (RGB) bands sensed on the same area in July
1996. These images were recorded before and after a lake
overflow in Italy, whose profile is highlighted as ground truth
in Fig. 6c. Table III presents the average overall accuracy for
several methods. For the proposed method, the standard devi-
ation is provided as well, and one may see that the results are
very stable and close to the state-of-the-art. The small amount
of data in terms of the number of pixels does not in general
favour deep learning approaches, and the relative performance
could potentially change with larger training samples. In this
respect, Zhang et al. [27] proposed a method that seems to be
an exception, as this deep learning approach produces the best

TABLE III: Average accuracy of several methods on the lake
overflow dataset. Best on top, proposed method in bold.

Lake overflow dataset OA

SDAE [27] 0.975
M3CD [57] 0.964

MIMDS [25] 0.942
Proposed 0.922 ± 0.007
PCC [27] 0.882

performance on this dataset. However, it must be pointed out
that, unlike us, they adapt their architectures to the dataset,
which is infeasible in a completely unsupervised setting. The
average training time for the proposed framework on this
dataset was a few seconds below 7 minutes.

G. Fourth dataset: Construction site in France

(a) Pleiades (t1) (b) WorldView 2 (t2) (c) Ground Truth

Fig. 7: Constructions in France: Pleiades (t1), (b) WorldView
2 (t2), (c) ground truth.

The last dataset includes two RGB images captured by
Pleiades (Fig. 7a) and WorldView 2 (Fig. 7b), showing the
work progress of road constructions in Toulouse, France,
during May 2012 and July 2013. The ground truth in Fig. 7c
depicts such progress. For computational reasons, the images
were reduced from 2000×2000 pixels to 500×500 as in [57],
leading to an average training time of 7 minutes. The average
accuracy obtained by several methods on this dataset is listed
in Table IV. Again, the accuracy of the proposed method
comes with a standard deviation, and also in this case it is
very stable and close to the state-of-the-art.

Finally, in Fig. 8 we present a visual example of the
transformations obtained with the proposed method on the
datasets used in this section. As it can be seen, the data

TABLE IV: Average accuracy of several methods on the
constructions dataset. Best on top, proposed method in bold.

Constructions dataset OA

MIMDS [25] 0.877
TGSM [56] 0.870
M3CD [57] 0.862
Proposed 0.859 ± 0.003

EENPPI [24] 0.853
MLSM [16] 0.844
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Fig. 8: Examples of final results, organized in one row for each dataset. Col. 1: input image X; Col. 2: input image Y ; Col.
3: transformations of X into the code space ZX = EX (X); Col. 4: transformations of Y into the code space ZY = EY(Y );
Col. 5 transformations Ŷ = F (X); Col. 6: transformations X̂ = G(Y ); Col. 7: d filtered; Col. 8: Confusion map (TP: white;
TN: black; FP: green; FN: red) (g)

from one input domain are transformed into the other in a
meaningful way, and the resemblance between the styles of
the fake images and the original images is clear. In the two
last datasets, one could speculate that the low amount of data
and features (few pixels consisting of few channels) did not
allow to achieve a proper alignments of the code spaces. This
endorses the choice to compute d as a weighted sum of the
difference images in the input spaces rather than just the
difference image in the latent space, although it still remains
a valid option.

IV. CONCLUSIONS

In this work, we presented a novel unsupervised method-
ology to align the code spaces of two autoencoders based on
affinity information extracted from the input data. In particular,
this is part of a heterogeneous CD framework that allows to
achieve this latent space entanglement even when the input
images contain changes, whose misleading contribution to
the training is considerably reduced. The method proved to
perform consistently on par with or better than the state-of-

the-art across four different datasets. Its performance worsen
when handling a limited amount of features in input, especially
when only one channel is available in one of the images,
implying a regression from one variable to many, which is
an ill-posed problem. On the other hand, it deals properly
with multispectral and multipolarisation images, by being able
to map data appropriately across domains in a meaningful
manner.
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