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GMILT: A Novel Transformer Network That Can
Noninvasively Predict EGFR Mutation Status
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Abstract— Noninvasively and accurately predicting the epi-
dermal growth factor receptor (EGFR) mutation status is a
clinically vital problem. Moreover, further identifying the most
suspicious area related to the EGFR mutation status can guide
the biopsy to avoid false negatives. Deep learning methods
based on computed tomography (CT) images may improve the
noninvasive prediction of EGFR mutation status and potentially
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help clinicians guide biopsies by visual methods. Inspired by
the potential inherent links between EGFR mutation status and
invasiveness information, we hypothesized that the predictive
performance of a deep learning network can be improved through
extra utilization of the invasiveness information. Here, we created
a novel explainable transformer network for EGFR classification
named gated multiple instance learning transformer (GMILT)
by integrating multi-instance learning and discriminative weakly
supervised feature learning. Pathological invasiveness informa-
tion was first introduced into the multitask model as embeddings.
GMILT was trained and validated on a total of 512 patients
with adenocarcinoma and tested on three datasets (the internal
test dataset, the external test dataset, and The Cancer Imaging
Archive (TCIA) public dataset). The performance (area under
the curve (AUC) = 0.772 on the internal test dataset) of GMILT
exceeded that of previously published methods and radiomics-
based methods (i.e., random forest and support vector machine)
and attained a preferable generalization ability (AUC = 0.856 in
the TCIA test dataset and AUC = 0.756 in the external dataset).
A diameter-based subgroup analysis further verified the efficiency
of our model (most of the AUCs exceeded 0.772) to noninvasively
predict EGFR mutation status from computed tomography (CT)
images. In addition, because our method also identified the “core
area” of the most suspicious area related to the EGFR mutation
status, it has the potential ability to guide biopsies.

Index Terms— Epidermal growth factor receptor (EGFR),
computed tomography, multiple instance learning (MIL),
transformer.

I. INTRODUCTION

NONSMALL cell lung cancer (NSCLC) accounts for more
than 80% of lung cancer cases, and lung adenocarcinoma

is the most common type of NSCLC, with a five-year relative
survival rate of 5% for patients diagnosed with metastatic
disease [1]. The advancement of genomics and precision
medicine has facilitated the development of cancer treatment
paradigms, such as targeted therapy with epidermal growth
factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) [2].

One study found that EGFR-mutant patients have an
objective response rate (ORR) of approximately 80% when
treated with EGFR-TKIs [3]. In contrast, the administration
of the EGFR-TKI gefitinib has no effect or results in even
worse progression-free survival (PFS) and unnecessary costs
when applied to patients without EGFR mutations [4]. More-
over, patients with EGFR mutations who therefore lack an
inflammatory microenvironment have an unfavorable ORR to
immune checkpoint inhibitor (ICI) treatments [5]. Therefore,
an accurate pretreatment estimation of EGFR mutation status
could significantly help clinicians select eligible patients for
EGFR-TKI treatment, thus supporting individualized decision-
making and improving patient outcomes to the greatest extent
possible.
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Informative tissue-based assays, such as next-generation
sequencing (NGS), remain the standard medical procedure
to determine EGFR mutation status. However, the inherent
disadvantages of these approaches, such as the need for
invasive procedures, sampling bias, and high cost, limit their
clinical application in some scenarios. Furthermore, EGFR
mutation status and the immune landscape may change during
cancer progression and/or therapy [6]. In clinical, different
tumor sizes face different clinical issues in EGFR mutation
testing. For example, tumors with sizes less than 1 cm might
not have residual tissues for EGFR testing after histopatho-
logic analysis. Another case is that patients with unresectable
tumors may require repeated sampling to identify the EGFR
mutation status and guide EGFR-TKI therapy. Therefore,
highly efficient, noninvasive, longitudinal, high-throughput
methods for predicting EGFR mutation status, preferably
size-based subgroup analysis, are urgently needed in the
clinic.

Recently, an increasing number of investigators have sug-
gested that CT images contain rich information that may
intrinsically reflect the inherent characteristics of EGFR muta-
tion status. Therefore, many investigators have attempted to
achieve noninvasive EGFR identification using imaging data
mining methods (i.e., radiomics and deep learning) [7]–[9].
However, radiomics involves time-consuming image segmen-
tation and inevitable feature selection, making it difficult to
apply in the clinical environment. In contrast, deep learning
can substantially overcome the abovementioned disadvantages
and outperform radiomics methods in the same task [8], [10],
[11]. Nonetheless, mining CT images to efficiently predict
EGFR mutation status by deep learning remains a substantial
challenge, notably because previous studies only conducted
a single task and ignored the inherent correlations between
mutation status and other biological behaviors that may influ-
ence the mutation status of a gene, such as pathological
categories and the internal microenvironment.

Recently, several scientific papers reported that EGFR muta-
tions can occur in the early stage of lung adenocarcinoma
and during tumor initiation from preneoplastic to neoplastic
lung parenchyma conditions, including atypical adenomatous
hyperplasia (AAH), adenocarcinoma in situ (AIS), minimally
invasive adenocarcinoma (MIA), and invasive adenocarcinoma
(IAC) [6], [12]. In addition, the probability of mutation can
potentially increase as the invasive extent progresses [13].
Thus, it is reasonable to hypothesize that invasiveness infor-
mation can have predictive value in evaluating EGFR mutation
status. To the best of our knowledge, no previous studies
have investigated the hypotheses to date. Multitask learning
aims to improve such generalization by leveraging domain-
specific information contained in the training signals of related
tasks and has shown promising results w.r.t. performance,
computations, and/or memory footprint, by jointly tackling
multiple tasks through a learned shared representation [14].
Recently, a new kind of encoder–decoder neural architecture,
transformer, is proposed, which can effectively extract and
utilize the relational features between different input data
or feature representations [15], [16]. Incorporating multi-
task learning and transformer may improve the predictive

performance by mining the relational patterns between inva-
siveness and EGFR mutation status. Notably, not all lesion
sections reveal EGFR expression simultaneously due to the
inherent heterogeneity of the tumor, which results in the lack
of valuable features extracted from the lesion patches and
can easily lead to overfitting. Therefore, improving the uti-
lization of valuable features and increasing the signal-to-noise
ratio (SNR) of feature space should be addressed. Multiple-
instance learning methods integrating the attention mechanism
can improve the feature expression ability of the model
while reducing the data annotation requirements [17]–[20].
In addition, the active learning method, which seeks to find the
most informative samples in the model development process,
can improve the model training efficiency and the model
generalization ability [21].

Therefore, to improve the predictive performance of EGFR
mutation status and investigate whether adding the inva-
siveness information of lung adenocarcinoma to the model
could obtain better performance, we propose a novel gated
multiple instance learning transformer (GMILT) architecture
by integrating multiple-instance learning and active learning
(see Fig. 1), which could efficiently exploit and utilize rich
discriminative patterns by bridging the representation gap in
the spatial and global information domains in the tumor. The
main contributions are given as follows. First, we proposed
an innovative online sample selection method to improve the
generalizability of this model in an active learning setting.
To further enhance the feature representation ability of visual
transformers, we first applied the group ensemble method to
incorporate cardinality constraints on visual words in each
minibatch to leverage possible prior knowledge based on
multitask learning, i.e., EGFR classification and pathological
invasiveness classification. To the best of our knowledge,
this is the first study to investigate the interaction effects
between EGFR mutation status and invasiveness information
with a deep learning model, and it is also the first study to
introduce the transformer method to medical tasks to improve
the efficiency of feature learning. Second, we validated our
model on three different datasets and compared it to previous
related deep learning studies to verify the advantages of the
proposed framework. Finally, we designed an attention pooling
that can be used to visualize model decisions and to provide
precision guidance for biopsy procedures.

We collected 726 lung adenocarcinoma patients with
EGFR mutation testing from three datasets. All nodules
were manually segmented, and labeled as EGFR mutant
(EGFR+)/wild-type (EGFR-). An originally proposed GMILT
model, incorporating multiple instance learning (MIL), trans-
former, active learning, and multitask learning algorithms, was
constructed to efficiently utilize invasiveness information as
embeddings to improve the performance of EGFR mutation
status prediction and potentially guide biopsy.

II. METHODS

This retrospective study was approved by The Second
Xiangya Hospital, Institutional Review Board (IRB), which
waived the requirement for informed consent.
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Fig. 1. Workflow of our study. We collected 726 lung adenocarcinoma patients with EGFR mutation testing from three datasets. All nodules were manually
segmented and labeled as EGFR mutant (EGFR+)/wild-type (EGFR-). An originally proposed GMILT model, incorporating MIL, transformer, active learning,
and multitask learning algorithms, was constructed to efficiently utilize invasiveness information as embeddings to improve the performance of EGFR mutation
status prediction and potentially guide biopsy.

A. Patients and Inclusion Criteria

In this study, we collected three datasets for analysis.
Dataset 1, including 640 patients from January 2013 to
December 2018, was collected from Huadong Hospital and
used for model development and validation. Dataset 2, includ-
ing 50 patients from January 2020 to March 2021, was
collected from Second Xiangya Hospital and used for external
testing. Dataset 3, including 36 patients, was collected from
The Cancer Imaging Archive (TCIA) public database [22]
and used to validate the stability and generalization of the
GMILT network. For datasets 1 and 2, the inclusion criteria:
1) patients who underwent thin-slice chest CT (0.75–1.5 mm)
scans prior to biopsies or surgical treatment; 2) patients with
detailed pathological reports diagnosing lung adenocarcinoma;
and 3) patients with detailed EGFR mutation testing reports.
The inclusion criteria for dataset 3 were given as follows:
1) CT images with slice thickness ≤1.5 mm (to avoid
data inconsistency); 2) patients with EGFR mutations testing
reports; 3) patients with pathology reports for the diagnosis
of lung adenocarcinoma; and 4) those lesions that could be
certainly identified as the resected or biopsied lesions. The
exclusion criteria were: 1) CT images with slice thickness
>1.5 mm; 2) patients without EGFR mutation testing reports;
and 3) patients with pathological reports for the diagnosis
other than lung adenocarcinoma. Only malignant nodules with
EGFR testing results were included. The CT scanning and data
preprocessing information were presented in Section 1 in the
Supplementary Material.

B. Design of the Experiments and Model Construction

Considering the inherent relationship between the EGFR
mutation status and pathological invasiveness information,
we designed five deep learning models to comprehensively
investigate the inherent interactions in a multitask environ-
ment, especially focusing on the incremental value of inva-
siveness information for predicting EGFR mutation status from
different aspects (see Fig. 2).

C. Single Task Analysis

In this part, we constructed two single tasks to investigate
the performance of deep learning in two separate tasks.

Model 1: Constructing a 2.5-D network to predict the
invasiveness of lung adenocarcinoma without using EGFR
mutational information.

Model 2: Proposing a novel MIL network (the baseline
network, also called the baseline of GMILT) to predict the
EGFR mutation status of lung adenocarcinoma without using
pathological invasiveness information.

D. Interaction Analysis (Multitask)

In this part, we add the invasiveness information to model 2
in three different scenarios.

Model 3: Consider the invasiveness information as an input
into the network to investigate its influence in predicting the
EGFR mutation status.

Model 4: Consider the invasiveness information as super-
vised information to the network to simultaneously predict
the EGFR mutation status and the invasiveness.

Model 5: Considering the invasiveness information as
semantical information embedded into the proposed network
to predict the EGFR mutation status of lung adenocarcinoma.
In model 5, we first introduce two skills (embedding and active
learning) to facilitate embedded intermediate feature learning,
thus constructing the final proposed network—GMILT.

As the main purpose of the study was to noninvasively pre-
dict the EGFR mutation status, the performance of identifying
the invasiveness of lung adenocarcinoma was not evaluated in
our model 5.

E. Proposed Approach

In this section, we formulate the problem of EGFR type
classification and describe our proposed GMILT approach.
As illustrated in Fig. 3, compared to traditional MIL,
GMILT first transforms a raw unseparated bag into multiple
pseudo-3-D instances with aggregated semantic representation
fusing the transaxial, coronal, and sagittal representations
based on the transformer architecture. It then combines the
deep pseudo-3-D instances into the bag representation using
attention-based MIL pooling in the transformer encoder mod-
ule. It finally transforms the bag representation into the final
prediction by using a neural network to learn the Bernoulli

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 2. Overall design of the five models. The MLP head contains two fully connected layers that are applied for feature transformation and nonlinearity.

distribution of the bag. Meanwhile, in the transformer encoder
module, we propose the group ensemble module (GEM) and
the sample activation module (SAM) in conjunction with
active smoothing (GAS) loss to improve the discriminative
feature learning and generalization ability of GMILT.

1) Problem Setting: In this part, we will first analyze
the main challenges in EGFR type identification caused by
tumor heterogeneity and multitask learning, and then provide
corresponding countermeasures.

For the annotation of CT images, lesionwise labels directly
come from the gene detection of EGFR, which is concretely
based on the part of sampling through biopsy or surgery. In this
sense, the diagnostic results of EGFR type are restricted by
the sampled parts, and the results of the residual parts of
lesions remain unknown (actually without the ground truth)
even when this image has already been labeled. This poses
a great challenge for the utilization of traditional supervised
learning models. To address this challenge, we borrow an idea
from an MIL framework, which is a typical weakly supervised
learning paradigm to address patient-level (bag-level) predic-
tion without knowledge of any region-level annotation.

In the MIL setting, one lesionwise CT cube is divided into
N 3-D subparts of equal size, which are seen as instances.
We consider a group of N instances (called “Bag”) and assume
that each group from a positive class sample contains at least
a few 3-D instances with positive class-specific information,
whereas each group from a negative sample does not contain
any 3-D instances having positive class-specific information.
However, in conflict with MIL constraints, bag-level false-
negative results in gene detection still exist. To address this
challenge, we introduce the active learning method [22] to
control whether a sample is used to train the model online,
which improves the training efficiency. Nevertheless, it is also
worth noting that 3-D inputs with a low SNR are unfavorable
for feature learning, and a combination of MIL and 3-D
inputs leads to an increase in computation and memory costs,
limiting the usage of minibatch sizes and the convergence
ability of the backpropagation (BP) neural network model.
To address this challenge, we implement an MIL-based visual
transformer using pseudo-3-D inputs, which can preserve
3-D semantic representations and reduce the effects of noise
and memory cost simultaneously. Another challenge is the
interactive effects among multiple supervised tasks in the
multitask learning setting. We noticed that most area under

the curves (AUC) of previous CT image-based EGFR clas-
sification models varies in the range of 65% ∼ 81% [8],
[10], showing the difficulty of feature learning. Thus, it is
essential to construct a multitask learning approach that makes
representations of EGFR mutation status more discriminative
and promotes EGFR classification. To address this issue,
we adopt the ensemble learning technique during training by
structured coding in the process of feature learning with EGFR
and pathology information. In other words, to address the
aforementioned challenges, our proposed approach has four
major components: 1) baseline GMILT; 2) SAM; 3) GEM; and
4) GAS loss. In particular, we build a deep MIL-based visual
transformer with pseudo-3-D inputs to predict the bag level
(i.e., EGFR+ or EGFR-). In the training stage, we incorporate
the three semantic embedding modules—SAM, GEM, and
GAS losses—into the baseline of the GMILT model.

2) Preprocessing: Deep Instance Generation: Considering
a set of patients, {Xi }, i = 1, . . . , N , each patient has an
annotated lesionwise cube based on CT images with its EGFR
mutational label Gi ∈ {0,1} and pathological invasiveness label
G ′i ∈ {0,1}. We first crop the lesionwise cubes from the
original CT scans according to the 3-D annotations (bounding
boxes). Then, each lesionwise cube is divided into m equal
parts, and based on their centroid points, we obtain the transax-
ial, coronal, and sagittal patches. Specifically, the transaxial,
coronal, and sagittal patches, which pass through the same
centroid point, make up an MIL instance representing the 3-D
information of the responding equal part (called a pseudo-3-D
instance). Finally, the m MIL instances constitute a patient-
level MIL bag with a bag-level label (see Fig. 3).

3) Baseline of Gated MIL Transformer: The graphical rep-
resentation of the proposed baseline of the GMILT model
is illustrated in Figs. 4 and 5. GMILT receives as input a
sequence of pseudo-3-D instances. In GMILT, we view a bag
of pseudo-3-D instances as a visual sentence that represents the
3-D lesion, i.e., a visual sentence is composed of a sequence
of visual words

Xi − >
[
x i,1, x i,2, . . . , x i,m

]
(1)

where xi, j is the j th word visual word of the i th visual
sentence, j = 1, 2, . . . , m.

To handle pseudo-3-D instances, we prepend a learnable
embedding on the sequence of transaxial, coronal, and sagittal
patches with a Siamese MobileNet-V2 network outputting the
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Fig. 3. Overview of deep instance generation. The origin CT volumes were first preprocessed using cropping to extract the lesionwise cubes. Then, the
cubes were partitioned equally to construct the MIL instances.

Fig. 4. Framework of the transformer encoder module. In this module, we first fused the patch-based features within an instance using a shared feature
aggregation module, which is based on an attention mechanism, to obtain the instance-level latent vectors. Then, we used the attention pooling block to fuse
the instance-level latent vectors, which belongs to the same bag, obtaining the bag-level embedding feature vectors. In addition, with the help of the K-means
algorithm, the SAM clusters the instance-level latent vectors and obtains the gating values of the instance level and the bag level by comparing the clustering
results with the real labels. Meanwhile, using instance-level latent vectors and instance-level gating values as input, the GEM uses group convolutions to
perform structural encoding on the instance-level latent vectors.

corresponding patch embeddings. In this way, we transform
the visual words into a sequence of word embeddings

Y i = [
yi,1, yi,2, . . . , yi,m

]
(2)

where yi, j is the j th word embedding, which contains a
group of patch embeddings—(v0,i, j , v1,i, j , v2,i, j ), v0,i, j is
the transaxial patch embedding, v1,i, j is the coronal patch
embedding, and v2,i, j is the sagittal patch embedding.

Clinical information embeddings (such as pathological inva-
siveness information) or position embeddings can be added to
patch embeddings. The resulting sequence of latent vectors
serves as input to the transformer encoder. In the baseline of
GMILT, the transformer encoder consists of alternating layers
of self-attention and FC layers, as shown in Figs. 4 and 5.
We first use attention pooling and multilayer perception (MLP)
to aggregate the patch features for each word, obtaining a
single word representation �i, j in the shared word embedding
aggregation module. Subsequently, we implement a second
attention pooling layer that performs attention-based permuta-
tion invariant pooling to obtain a single sentence representation
zi . Most notably, the two attention-based operations allow
GMILT to learn both local information and 3-D global infor-
mation in a visual word and across the visual sentence. Next,

zi is passed to the MLP head module to obtain predictions for
the entire bag.

Attention Pooling: The self-attention operator is an inter-
pretable symmetric function [23]. Formally, we denote H =
{h1, . . . , h N} as the inputs with N embeddings. Then, the
operator is defined as

z =
N∑

k=1

αkhk (3)

αk = exp
{
wT tanh

(
V hT

k

)}
∑N

j=1 exp
{
wT tanh

(
V hT

j

)} (4)

where w ∈ RN×1 and V ∈ RN×D are trainable parameters.
In addition, αk is considered the attention score per input
embedding, indicating its contribution to the drawn conclu-
sion, which is helpful for interpreting the trained model,
i.e., interpretable analysis for identifying the potential core
area. Importantly, the processing flow of the transformer
encoder implements attention in attention architecture on patch
embeddings and word embeddings using the basic operator
differentiating to the existing attention mechanism.

4) SAM: In the training phase, given the bags input by
each minibatch, our goal is to assess the beneficial effect
of word embeddings (instance-level latent vectors) for the
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Fig. 5. Framework of the GMILT. First, based on the MIL setting, we used the generated “bag” of pseudo-3-D instances as input into the transformer-
based model. Then, we used the Siamese MobileNet-V2 network to encode the multisectional patches from the three different 2-D view directions (i.e.,
transaxial, coronal, and sagittal axes) for each pseudo-3-D instance, obtaining the three corresponding latent vectors. Second, these latent vectors were fed to
the transformer encoder module to obtain the bag-level embedding features. Third, the MLP head further integrated the bag-level feature vectors to output
the predictive values of EGFR+/-. During training, GAS loss performed discriminative feature learning for EGFR classification using bag-level features and
gating values.

discriminative learning of EGFR mutation status and define
a sample weight to coordinate model training online with an
adaptive gating technique. To achieve this, we infer that word
embeddings with the same EGFR label should be matched to
a single centroid that represents the EGFR type. Specifically,
we set each batch containing the same number of positive
and negative bags and perform K-means clustering on all
instances in the batch to obtain two clusters using visual
word embeddings x . Then, each instance’s EGFR label is
assigned by its bag’s EGFR label. Based on the majority
voting method, we mark the two clusters as the “EGFR−” and
“EGFR+” clusters. Generally, in the MIL setting, the instances
in a negative bag are largely negative. Therefore, the cluster,
which contains most of negative instances, is firstly seen as
“EGFR−” cluster; then the other cluster is seen as “EGFR+”
naturally. On this basis, for each instance, if its cluster tag
is the same as its EGFR label, its gate value is recorded as
1; otherwise, it is recorded as 0. Furthermore, for each bag,
if the cluster labels of all instances in the bag are consistent
with the EGFR label of the bag, its gate value is set to 1;
otherwise, it is set to 0. Significantly, for positive (EGFR+)
bags, its bag-level gate values are set to 1 because there are
little fake positive bags based on the clinical scenario. Taking
the gate values as the sample weights of the weighted loss
function, we control whether the model performs supervised
learning on the input samples online, as shown in Fig. 4. The
formula is given as follows:

δ(x) =
{

1, label == labelKmeans

0, otherelse
(5)

where label denotes the input sample’s real label based on
annotation and labelKmeans denotes the input sample’s cluster-
ing label by k-means.

5) GEM: As mentioned before, existing popular approaches
of multitask learning with neural networks learn multiple
related tasks simultaneously based on the underlying shared
representation to improve their generalization ability. How-
ever, this approach neglects the impact of the complex rela-
tion between tasks in modeling, which may make multitask
learning less efficient. GENet [24] is an efficient way to
improve model capacity across a wide range of learning tasks.
Here, we propose an instance-level semantic structured coding
approach (i.e., GEM) to provide an extra regularization for
the shared representation, as shown in Fig. 4. First, we apply
group convolutions to each word embedding and divide the
output vector into several groups. Then, we use a multihead
structure to implement multitask learning by calculating the
responding loss functions of the tasks simultaneously, i.e.,
EGFR classification and pathology classification. In particular,
each group is one constituent member of our ensemble and has
its own independent head classifier, which introduces diversity
among the learning tasks. We conduct two tasks (EGFR and
pathology) to train the model end to end simultaneously with
its own objective function

LossGEM =
n∑

m=1

Losse,m + Lossp,m (6)

where LossGEM is the total objective function in this module, m
is the group index, and n is the number of groups, i.e., Lossm=1

and Lossm=2 denote the instance-level loss functions of
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EGFR classification and pathology classification, respectively.
In particular, the loss function Lossm is implemented with
GAS loss, which is defined in the following section.

6) GAS Loss: To reduce the effect of noise labels while
enhancing the discrimination of features, we design a loss
function called GAS loss. The loss function draws on the
idea of active learning and uses the gating values given by
the SAM during forwarding propagation for online sample
weighting to actively learn valuable samples. Meanwhile, the
center constraint is applied to the feature space, which pushes
the encoded features to the center of the cluster and reduces
the differences within the class [25]. Finally, the weighted
cross-entropy loss function and label smoothing algorithm are
incorporated to further alleviate the impact of noise labels and
balance the positive and negative samples. The loss function
is given as follows:

LGAS = 1

N

∑
i

−[
δ · wpos ŷi log(pi) + δ · wneg (1 − ŷi)

× log(1 − pi)
] + 1

2

∥∥z′
i − cyi

∥∥2
2

ŷi = ε(1 − yi) + (1 − ε)yi (7)

where N represents the number of training samples; yi rep-
resents the label of sample i , the positive class is set to 1,
and the negative class is set to 0; pi is the probability that
sample i is predicted to be a positive class; wpos and wneg

are the weights of positive and negative samples, respectively,
the value range is [0,1], and the values in this part are set to
0.75 and 0.25, respectively; ε is a small modulation parameter,
and the value is set to 0.1 in this part; and ci denotes the yith
class center of latent feature manifold z′i and is updated based
on the following feature distances [25].

Finally, with the previously defined loss functions, the
overall objective to optimize our model (GMILT) can be
formulated as

L total = LGEM + LEGFR (8)

where LEGFR denotes the bag-level loss functions with the final
prediction of GMILT based on LGAS, as shown in Fig. 4.

7) Implementation Details: A total of 640 patients in
dataset 1 were randomly divided into a development set
(n = 513) and a test set (n = 129) at a 4:1 ratio. For
training the proposed deep learning model, we use the
Ranger [26] optimization with a batch size of 32 and a learning
rate of 0.001. Ranger is a synergistic optimizer combining
RAdam [27], LookAhead [28], and gradient centralization [29]
in one optimizer, which accelerates convergence and reduces
training difficulty. In addition, the Siamese MobileNet-V2
network is initialized using the pretrained parameter of Ima-
geNet [30], and the dropout technique [31] is applied during
training. To test the deep learning model, we select middle
patches in the transaxial, coronal, and sagittal axes for each
pseudo-3-D instance in the MIL setting to construct the input
sample.

8) Visualization and Interpretation Analysis: For a given
3-D lesion, the two attention pooling layers assign impor-
tance values to each visual word, and the patches highlight

the important spine regions. A new gradient-weighted class
activation mapping (Grad-CAM) network was used to produce
a coarse localization map highlighting the important regions
in the image for predicting the concept [32].

9) Ablation Study: To assess the effect of bag size and
group size on the GEM model during training on the proposed
method, we performed two ablation studies to select the best
hyperparameters k (k = 5) in MIL and μ (μ = 0.125) in
GEM (see Sections 2 and 3 in the Supplementary Material).
Our deep learning model is implemented using the popular
open-source framework PyTorch (1.6.0) and runs on an Nvidia
GTX 1080Ti GPU.

F. Validation Analysis and Comparison Analysis With
Related Publishers

We tested our proposed model on three datasets, including
one internal dataset one external dataset, and a public dataset.
To verify the efficiency of our newly proposed network,
we also trained and tested three publishers’ models [7], [8],
[10] on our Dataset 1, and evaluated and compared the
performance outcomes.

G. Validation Analysis, Comparison Analysis With Related
Publishers, and Subgroup Analysis

In clinical scenarios, small lesions may have inadequate
samples for gene analysis, and larger lesions without the
indication for surgery may require repeated biopsies during
systemic therapy. Given the different clinical demands and
T-stage classification criterion, we further investigated the
performance of our proposed model in four different subgroups
categorized by the maximum diameter (MD) of the nodule
(0 < MD < 1 cm; 1 ≤ MD < 2 cm; 2 ≤ MD < 3 cm; and
3 cm ≤ MD). Several subgroups had zero samples (i.e., the
0 < MD < 1 cm subgroup in dataset 3 and the 1 ≤ MD <
2 cm subgroup in dataset 2), so we merged them with the
adjacent subgroup and calculated the AUC.

H. Data Availability

The model code is available at https://github.com/
TXVision/GMILT or on request to the corresponding author.

III. RESULTS

A. Patients and Datasets

In Dataset 1, 640 patients were finally included and ran-
domly divided into the model training dataset (383 patients),
the validation dataset (129 patients), and the internal testing
dataset (129 patients). Fifty patients from Dataset 2 were
finally included and used for model external testing. Dataset 3
from the TCIA, finally including 36 patients, was used to
validate the stability and generalization of the GMILT network
as a public testing dataset. The distributions of patients were
presented in Table I.

B. Model Construction

We constructed five models to comprehensively investigate
the inherent interactions in a multitask environment, especially
focusing on the incremental value of invasiveness information
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TABLE I

DISTRIBUTIONS OF PATIENTS IN THREE DATASETS

for predicting EGFR mutation status from different aspects
(see methods for detail). The finally designed original deep
learning scheme, named GMILT, incorporated MIL, trans-
former, active learning, and multitask learning algorithms.
MIL, which reduced the annotation requirements using coarse-
grained input information, was conducive to solving the
problem of uncertain positive areas in the lesion. In this
article, attention-based MIL was used to purify and merge the
effective feature information of each instance and then improve
the model characterization ability. Moreover, the concept of
pseudo-3-D was adopted in MIL. Drawing on the idea of active
learning, we innovatively proposed the combined use of SAM
and GAS loss by selecting valuable samples online for feature
learning to improve the convergence speed and generalization
ability of the deep learning model.

Considering that EGFR classification is related to the
invasiveness characteristics of the lesion itself, we use the
ensemble learning method to carry out multitask learning on
visual words implemented by GEM to realize the structured
coding of instance-level representation and further improve the
representation ability.

C. GMILT Can Improve the Performance in Predicting
EGFR Mutation Status

To mine highly discriminative features and improve the per-
formance of EGFR prediction using CT images, we designed a
multiple-instance learning transformer network (the baseline of
GMILT). The baseline GMILT (model 2) achieved an AUC of
0.759 by using CT images only for predicting EGFR mutation
status. To explore the interaction between the invasiveness
information and EGFR mutation status, we designed three
additional (models 3–5) by considering the invasiveness infor-
mation as different supplemental information to the EGFR
predictive network. Model 3, in which lung nodule mask
and invasiveness information were both fed as the inputs,
demonstrated a similar predictive efficiency for EGFR muta-
tion status (model 3: AUC = 0.721 versus model 2: AUC =
0.759), indicating that the given information of invasiveness
may be a confounding factor rather than a contributing factor.
In model 4, inspired by the inherent link between invasiveness
and EGFR mutation status, we considered both the invasive-
ness and EGFR mutation information as supervised factors
and constructed a multitask model to simultaneously predict
both. However, model 4 showed no improvement over model 2
in performance for predicting EGFR mutation status (AUC =
0.700 versus model 2: 0.759). However, its performance for
predicting invasiveness substantially improved relative to that
of model 1 (AUC = 0.926 versus model 1: 0.879). Finally,

model 5 (GMILT) considered the invasiveness information
as supplemental information embedded into the intermediate
features, and the performance for predicting EGFR mutation
status was improved, with the highest AUC of 0.772 in all
models [see Table II and Fig. 6(a)]. Furthermore, the AUC
of model 5 was significantly higher than that of model 4
(P = 0.042). It indicated that the invasiveness information
may be related to the EGFR mutation status and can be
appropriately used to improve the performance in predicting
EGFR mutation status.

D. GMILT Obtained a Robust Performance on External and
Public Testing Datasets and Excelled Over Other Methods

One of the limitations of data-dependent deep learning is
the relatively weakened performance on external datasets due
to the inconsistent data distribution. To validate the stability
and generalizability of GMILT, we further tested the model
on an independent external dataset and a public dataset. Our
model obtained similar performance outcomes on the external
dataset (AUC = 0.756) and even better performance outcomes
on the TCIA dataset (AUC = 0.856) (see Table III) than on the
internal testing dataset. Moreover, to investigate the efficiency
of our proposed model, we selected three representative pub-
lished papers and repeated their deep learning methods on our
Dataset 1, constructed as model 2.5-D [8], model 3-D [10], and
model SE-CNN [7]. Our proposed GMILT network excelled
over the previous three methods (AUC: 0.772 versus 0.720,
0.741, and 0.649) [see Table III and Fig. 6(b)]. Together, these
findings support the advantage of multi-instance learning and
active learning in predicting EGFR mutation status. The pre-
cision curves and confusion matrix information are described
in Sections 4–7 in the Supplementary Material.

E. GMILT Achieved Better Performance in Different
Diameter-Based Subgroups

Inspired by the different tumor sizes observed in clinical
scenarios, we further investigated the performance of GMILT
on four size-based subgroups. As described in Table IV, most
of the results were superior to those of model 5 (AUC = 0.772)
on the testing dataset of Dataset 1, obtaining state-of-the-art
performance. GMILT obtained good performance in each sub-
group, indicating that the constructed model had discriminative
features for each sample data point (see Table IV).

F. Ablation Study of GMILT

The ablation study was typically used when testing a net-
work by removing individual parts. To verify the effectiveness
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TABLE II

PERFORMANCE OUR DESIGNED MODELS IN PREDICTING EGFR MUTATION STATUS

Fig. 6. Performance of 5 proposed models in (a) our study and (b) comparative results with 2.5-D, 3-D, and SE-CNN models (trained and validated on our
dataset).

of our newly proposed parts in GMILT, we performed the
ablation study on our two key modules (GEM and SAM+
GAS). We investigated the effect of separately adding these
two modules to GMILT on performance outcomes. Both mod-
ules outperformed the baseline of GMILT (AUC: 0.769 and
0.763 versus 0.759) (see Table V and Fig. 7), indicating the
efficiency of the two modules in representation learning.

G. Visualization and Interpretation Analysis

Considering the heterogeneous nature of tumors, we tried to
identify the core area from which the pathological character-
istics were most likely to originate. The two attention pooling
layers in our GMILT block, inner attention pooling and outer
attention pooling, model the relationships among transaxial,
coronal, and sagittal patches and visual words, respectively.
We constructed attention maps of different queries in the
transformer encoder to reveal the potential areas that con-
tributed most to the predicted results (see Fig. 8). After 3-D

transformation, the potential “core area” (red dot in Fig. 9)
could be visualized and used to guide biopsy and minimize
false negatives.

H. t-SNE Visualization of the Features Learned by GMILT

To intuitively explore the manifold structure of the fea-
tures, we visualized the features by testing Dataset 1 using
t-distributed stochastic neighbor embedding (t-SNE) [33],
which is particularly suitable for the visualization of high-
dimensional data. As illustrated in Fig. 10, the EGFR+ [yellow
dots in Fig. 10(a)] and EGFR- [purple dots in Fig. 10(a)] sam-
ples formed two distinct sample clusters. Samples predicted to
be EGFR+ were more likely to be located closer to the upper
left corner, and those predicted as EGFR- were more likely to
be located closer to the lower right corner [see Fig. 10(a)].
The prediction scores are consistent with the ground truth
[see Fig. 10(b)]. Furthermore, our model was verified to be
effective in representation learning and could construct highly

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE III

PERFORMANCE ON TESTING DATASETS AND COMPARISON RESULTS

TABLE IV

DISTRIBUTIONS AND PERFORMANCE OF SUBGROUP ANALYSIS

discriminative features, allowing for improved performance in
predicting EGFR expression status.

IV. DISCUSSION

Noninvasively predicting the EGFR mutation status is a
persistent challenge but represents an urgent need in the
clinic. While deep learning has its own advantages in this
area, its performance is limited by the need to learn effi-
cient and discriminative features related to EGFR mutation
status. Inspired by the potential inherent links between EGFR
mutation status and invasiveness information, we hypothesized
that the predictive performance of a deep learning network
can be improved through extra utilization of the invasiveness
information. Thus, in this study, we proposed a new deep

learning model, GMILT, to predict EGFR mutation status.
To the best of our knowledge, this is the first study to
investigate the interaction effects between EGFR mutation
status and invasiveness information, and it is also the first
study to introduce the transformer method to medical tasks.
Our study found that utilizing invasiveness information as
embedding features in the network can substantially improve
its performance. Our proposed model achieved an AUC of
0.772, with favorable generalizability to a public dataset
and external validation dataset (AUC = 0.856 and 0.756,
respectively). In addition, the proposed model performed better
for size-specific subgroups with state-of-the-art (65% ∼ 81%
in previous studies) classification AUCs and, thus, can be
applied in different clinical scenarios. Finally, our model can
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TABLE V

PERFORMANCE OF THE ABLATION STUDY

Fig. 7. ROC curves of three ablation studies.

visualize the potential “core area” that most correlates to
EGFR expression to guide biopsy or pathological evaluation
procedures.

In comparisons of data mining approaches in medical sce-
narios, deep learning seems to be superior to other methods
(e.g., radiomics). This superiority has also been seen in the
task of predicting EGFR mutation status [8], [10]. In this
study, our findings demonstrated the same tendency (see
Section 8 in the Supplementary Material). However, the cur-
rent deep learning models in predicting EGFR mutation status
could be further improved by efficiently and deeper mining
the higher dimensional features or relationships Invasiveness
information has been proven to have potential inherent links
with EGFR mutation status [12], [13]. However, no previous
study had investigated the incremental value of this link to
deep learning models for predicting EGFR mutation status.
In this context, we proposed a new network, GMILT, which
can efficiently exploit and utilize all discriminative patterns
(i.e., the relationship between EGFR mutation status and
invasiveness) bridging the representation gap in the spatial and
global information of the tumor to predict the EGFR mutation
status.

Ideally, adding the label as an input into the network may
improve the performance. However, the opposite result was

obtained (AUC: 0.721 < 0.759). This finding suggests that
directly using a pathological label as an input cannot make the
deep learning model efficiently mine its intrinsic relationship
with EGFR typing. Inspired by the successful experience in
our previous multitask study (i.e., applying the segmentation
task to improve the classification task), we also investigated
the potential mutual promotion of these factors in a mul-
titask environment, considering the invasiveness information
as supervised learning information instead of an input. The
performance of predicting EGFR mutation status also failed
to be improved, indicating that the features or links related
to EGFR mutation status are more complicated and high
level (AUC: 0.700 < 0.759). In contrast, the performance
of predicting invasives was improved. This may indicate
that features related to EGFR mutation status might provide
valuable supplemental information in predicting the invasive-
ness of lung adenocarcinoma. Meanwhile, features related
to the invasiveness status were relatively more obvious and
relevant, and could easily be learned by the model. Since
pathological invasiveness information and the EGFR category
belong to two completely different dimensions of information,
the inherent correlation is unclear, which makes it difficult to
effectively drive the model to use pathological information to
directly promote EGFR classification. In this context, we used
ensemble learning to structure and quantitatively construct the
representation space of supervised learning in the study so that
the network can effectively improve the efficiency of EGFR
classification by facilitating auxiliary tasks in control. This
strategy improved the performance of the model in predicting
EGFR mutation status (AUC: 0.772 > 0.759).

Although the improvement was slight, it is difficult to
make a breakthrough in predicting EGFR mutational status
using CT images. This may be partly attributed to the reason
that the features or correlates regarding gene status are more
comprehensive and difficult to learn than those correlated with
other tasks, such as the prediction of benign or malignant
tumors [34], the prediction of multiple pathological types [35],
and the risk stratification of lung adenocarcinoma [36]. Several
clinical factors, such as smoking and sex, are well-known
factors related to EGFR mutations [37]. Adding these clinical
factors can improve predictive performance. Note that our
proposed model presented a more effective result than clinical
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Fig. 8. Suspicious areas (heat map) of EGFR mutant generated by Grad-CAM network within 15 patches from transaxial, coronal, and sagittal levels.

Fig. 9. Visualization of the attention mechanism in our method. The attention weights of visual words and transaxial, coronal, and sagittal patches for a
lesion are presented above as orange and green boxes. The orange box shows the highest weight value of 0.75, which indicates the most probable EGFR
mutant area in the lesion. 0.2, 0.6, and 0.2 represent the probability of EGFR mutant in the transaxial, sagittal, and coronal patches, respectively.

Fig. 10. Visualization of features in our internal test dataset using the t-SNE technique in a 2-D space. (a) Yellow and purple represent EGFR+ and EGFR-
samples, respectively. (b) t-SNE visualization scatter plot colored by the EGFR probability score predicted by GMILT . The prediction scores are consistent
with the ground truth.

models [38] or radiomics combined with clinical factor models
[39], [40], only using CT images. Moreover, our proposed
model also outperformed traditional machine learning methods
(i.e., radiomics) and previous deep learning methods in com-
parative analysis (AUC: 0.772 versus 0.720, 0.741, and 0.649).
This indicates that our model may facilitate high-level feature
learning by embedding invasive information into the network
to fully utilize the potential correlations or patterns hidden
behind the tumor. Images from other modalities, e.g., PET-
CT, have also recently been used to predict EGFR mutation
status with deep learning [41]. The authors found that models
fed fusion images (i.e., PET/CT images) outperformed the
CT image-based model. However, the data sample size was
relatively small, and the performance of the CT image-based

model (AUC = 0.72) was inferior to ours. Moreover, their net-
work SE-ResNets neglects the interactive information between
the two layers, resulting in an inefficient and unnecessary way
to channel attention learning [42].

The performance of our model was substantially improved
in the subgroup analysis (most of the AUCs were over 0.772).
The current results also illustrated the effectiveness of our
model in the process of feature learning and the improvement
of the feature discrimination ability. Generally, the larger the
lesion is, the more heterogeneous it will be, leading to a more
complex feature distribution. In this case, using our model
to construct the discriminant characterization of the sample
and then subgroup prediction could achieve higher predictive
efficacy.
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In the clinic, false negatives may lead to an inappropriate
treatment regimen, thus compromising the prognosis. False
negatives are possibly attributed to intratumor heterogeneity
[43], [44]. In this context, predicting the core area most
likely to be related to the true EGFR mutation status in
advance can substantially minimize false negatives. Motivated
by this clinical need, we used multiple attention layers in our
model to visualize the importance of lesion areas affecting
EGFR typing and improved the interpretability of the model.
It is worth noting that our proposed model uses a nested
hierarchical structure to realize the uncoupling of feature
learning and abstraction processes, which can not only obtain
the probability of lesionwise cubes but also further obtain the
probability of the three axial planes corresponding to each
cube. This strategy is similar to the decision tree. Therefore,
an alternative way of interpretability is innovatively proposed
in this study, which can locate the significant area of the lesion
volume. With this guidance provided by the model, clinicians
can better find the area expressing EGFR and excise tissue
cores.

In general, images contain a lot of background information
(i.e., noise) and limited effective or valuable information.
In another word, images in the real world are generally low-
quality data or low-SNR data. CNNs are generally prone to
noise interruptions, i.e., small image noise can cause drastic
changes in the output and lead to overfitting [45]. In this
study, we adopted MIL and transformer to reduce the noise
effect and improve the SNR of the input information. This
strategy has been proven to resolve low-quality data [46].
Based on previous MIL, we innovatively built pseudo-3-D
instances to ensure that each instance had enough spatial and
semantic information. The transformer structure is designed
to improve the discrimination of characterization information
and efficiently use spatial and global information to improve
the SNR in the representation space. Considering that EGFR
classification is related to the invasiveness characteristics of
the lesion itself, we used the ensemble learning method to
carry out multitask learning on visual words implemented
by GEM to realize the structured coding of instance-level
representation. At the same time, the organic combination of
SAM and GEM promotes the effectiveness of online sample
selection, thus improving the performance (AUC: model 5 >
model 2). Our proposed method provides a new approach
for analyzing medical data that could be considered either a
reference or method for investigators performing other tasks
(i.e., predicting prognosis or treatment of cancers).

There were still several conceived limitations in our study.
First, this was a retrospective study and only verified it in
the current task. A further prospectively designed study and
application in other tasks are warranted to verify the efficiency
of the model. Second, the sample size was relatively small,
and the data distribution may be unbalanced and biased due
to the limited number of centers that participated in our study.
Larger sample size and more participating centers can lead
to better performance. However, despite such a small dataset,
we yielded comparable and promising results compared with
other studies, especially in subgroup analysis. The newly
proposed technique for analyzing medical data introduced

in our study can provide a novel methodology for other
medical tasks. Finally, although attention pooling can present
the potential core area to help clinicians in the biopsy, it is
at the “proof-of-concept” stage. Slice-level comparisons with
gross tissues (for pathological analysis) are needed to confirm
the efficiency of this technique. However, our model uses an
attention mechanism to define the weight of the “core area,”
which can substantially improve the accuracy of key area
identification [17], [47].

V. CONCLUSION

In this article, we proposed a novel network-GMILT to
noninvasively predict EGFR mutation status, which can be
applied in different clinical scenarios regarding patients with
lung adenocarcinoma. Moreover, the visualization analysis
shows the ability of our model to reveal the potential “core
area” that most correlates to EGFR expression and, thus,
facilitate the application of precision medicine.
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