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Abstract—In order to deliver the high data rates promised
for 5G networks, mobile base stations need to be deployed in
dense layouts. This results in increased inter-cell interference,
which can be mitigated by leveraging centralized architectures in
radio access networks. Nonetheless, centralizing all the processing
requires prohibitively high link capacities for the fronthaul net-
work connecting centralized and distributed units. In contrast, a
static, partially-centralized architecture yields poor performance
as it fails to adapt to instantaneous interference situations. In
this work, we show that a dynamically centralized architecture
enables drastic interference reductions even when using a very
limited fronthaul network. We propose multiple algorithms to
find the optimal centralization option and evaluate their per-
formance on operator-grade hardware. In addition, owing to the
dynamicity of the problem being solved, we provide a framework
to decide on the best algorithm based on the trade-off between
performance, cost, and adaptation time.

Index Terms—Dynamic, functional split, 5G, flexible, wireless
networks and cellular networks, mathematical optimization, in-
terference, centralization.

I. INTRODUCTION

Every new generation of mobile networks introduces novel

technologies with the intention of providing services to new

markets. For example, in 2G, the possibility to extend mobile

communications beyond voice calls is introduced. In 3G, the

focus is to provide high-speed mobile broadband access. The

4G architecture supports all-IP networking, point-to-multipoint

connections and the broadcast of alarms [1], [2]. In 5G, a

substantial share of the research attention goes towards low-

latency and machine-type communications [3]. Nonetheless,

a common objective for all mobile generations is to provide

faster connectivity than that of the previous generation. Indeed,

being able to provide high data rates (up to 1 Gb/s) is still the

main selling feature of 5G [4].

There are three strategies to increase user data rates over

the air interface: improving spectral efficiency, allocating new

spectrum, or increasing cell density. The first method is the

goal in the development of improved modulations, but physical

limits hinder the achievement of drastic improvements [5]. The

second method is exploited in the research towards enabling

millimeter communication in 5G, but spectrum scarcity and

bad propagation properties also pose important challenges [6].

Finally, the third method can be straightforwardly applied

by mobile operators so as to increase received signal power

and thus data rates. However, increasing cell density also

increases interference, which may counter the benefits of
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higher signal power. As a consequence, interference-mitigation

techniques and efficient network management are required to

take advantage of dense deployments.

Numerous interference-mitigation techniques have been

proposed over the years, such as interference coordination [7],

successive interference-cancellation [8], or coordinated multi-

point [9]. In addition, the emergence of network function

virtualization (NFV) along with the development of faster

optical networks and more affordable data centers has led to

more efficient architectures for the 5G radio access network

(RAN). One example is Cloud-RAN [10], in which all the

processing of the base stations (also referred to as gNodeBs,

or gNBs, in 5G) is centralized into a data center. This

enables fast inter-gNB coordination to easily implement the

aforementioned interference-mitigation techniques.

Nonetheless, it was soon noticed that a fully centralized

architecture requires a high-capacity fronthaul network con-

necting the central data center with the remote antennas,

which renders this architecture infeasible in many cases [10].

To overcome this issue, the concept of functional split is

proposed [11]: instead of centralizing all the processing of

a gNB, we select a subset of its functions to be deployed

in a central unit (CU), whereas the remaining functions run

at the distributed unit (DU). There are multiple functional

splits options that feature different interference-mitigation ca-

pabilities and require different fronthaul capacities [12], [13].

Namely, the larger the number of centralized functions, the

higher the required fronthaul capacity, but also the higher the

effectiveness of interference-mitigation techniques, owing to

the faster coordination between centralized gNB functions.

Therefore, the functional split of each gNB can be tailored

to the specific requirements of the network.

Previous work tackles the problem of statically selecting the

optimal functional split of each gNB based on its average traf-

fic patterns and resource usage. This provides better average

performance than a uniform selection of the functional split,

but it still results in poor performance when the experienced

traffic deviates from its average value. In this work, we go

one step beyond and propose to adapt the functional split

dynamically, during runtime, in accordance with the interfer-

ence experienced by the user equipments (UEs). We model the

dynamic problem, propose multiple algorithms to address it,

and show that a dynamic adaptation of the functional split

is feasible, cost-efficient, and leads to substantial data rate

enhancements. We also provide a simple strategy to trigger

the change in the functional split.

The rest of this paper is structured as follows. In Sec-
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tion II we briefly present the related work on this topic.

Section III describes the system model. In Section IV, we

formulate the main problem and derive several approaches to

solve it. Section V describes the experimental equipment and

setup. In Section VI we present the experimental results. We

evaluate the cost of a dynamic RAN in Section VII. Finally,

Section VIII concludes the paper.

II. RELATED WORK

Previous research works about flexible functional splits can

be divided into two categories: those dealing mainly with

theoretical aspects and those focusing on the implementation.

In the former category, [11] is one of the first works to

propose that the functional split could be selected differently,

yet statically, for each gNB based on the fronthaul limitations.

The authors argue that function centralization is desirable to

reduce interference and cost, but limited by the fronthaul

capacity. A similar idea is explained further in [14], where

a more complete framework is presented.

Building upon the same idea, in [15] the authors formulate

the problem of selecting the optimal functional split for the

deployment phase. Their objective is to minimize network and

computing costs while centralizing as many functions as possi-

ble. In order to do estimate the required fronthaul capacity, the

expected average traffic of each gNB is used. The authors of

[16] face a similar problem with a different objective: minimiz-

ing traffic delay. In [17] the idea of dynamically changing the

functional split is introduced with the intention of allocating

new slices within a virtual RAN framework. Inter-cell interfer-

ence reduction and fronthaul bandwidth minimization are the

main objectives when selecting the functional split, although

this selection is not updated once the slice is implemented.

Finally, the authors of [18] present for the first time the idea

of adapting the functional split dynamically to cope with the

instantaneous interference situation. Nonetheless, they tackle a

simplified version of the problem and focus on confirming that

the network changes slowly enough so that dynamic adaptation

is possible, without providing a detailed strategy on how to

select the functional split.

Regarding the implementation aspects, there are two main

works that focus on realizing a flexible functional split. In

[19], a comprehensive description of a platform supporting

multiple functional splits is presented, although the capability

of changing during runtime is not included. Conversely, in [20]

the authors present a pioneer framework that enables to change

the functional split of a gNB without stopping its operation or

dropping packets. However, the motivation to trigger such a

change is not studied. To the best of our knowledge, this is the

first work addressing in detail the problem of reconfiguring

the functional splits of all gNBs at runtime based on its

experienced interference.

III. SYSTEM MODEL

In this section, we introduce the concepts required to

formulate the dynamic functional split selection problem.

We describe the network components, explain the considered

functional split, and explain the adaptation framework.

DU with macro cell DU with small cell Fronthaul switch CU

Figure 1: Example network with � = 11 gNBs (including

macro and small cells) and eight fronthaul switches.

A. Network description

The considered network consists of � gNBs, whose opera-

tion is divided into a DU and a CU. The CUs of all gNBs are

deployed in a single data center, whereas the DUs are located

close to the radio equipment of the cells. As a result, there are

� different DU locations and a single CU location.

CUs and DUs are connected by means of a packet-switched

fronthaul network [15], which includes layer-2 or layer-3

switches. We assume that these switches are able to steer

and divide the incoming flows as configured by a central

controller at the CU, thus following the software-defined

networking (SDN) paradigm. We model this fronthaul network

by a directed graph D = (N,E), where N is the set of

network nodes (DUs, switches, and CU) and E is the set of

network links. The total number of nodes and eges, that is,

the cardinality of sets N and E is represented as # and � ,

respectively. We denote by =0 the node corresponding to the

CU and by =6 the node corresponding to DU 6, such that

6 ∈ {1, ..., �}. A depiction of a simple network with � = 11

gNBs and eight fronthaul switches is shown in Fig. 1.

In addition to a CU and a DU, recent gNodeB archi-

tectures often include a remote unit (RU), which hosts the

radiofrequency equipment and, optionally, the lower part of

the physical functions. Their presence is not precluded in

our system model, but we assume that DUs are connected to

their corresponding RUs by means of dedicated, high-capacity

links instead of a shared, capacity-limited network [21]. As

a result, the RUs do not modify our problem formulation,

since they do not share network resources with the fronthaul1

network nor impact the interference mitigation capabilities. It

is, nonetheless, possible to drop this assumption and extend

the presented problem formulation for two split configurations

1When RUs are considered, it is usual to reserve the term fronthaul to
the network connecting DUs to RUs, whereas that connecting DUs to CUs
is called midhaul. Since our system model does not require the presence of
RUs, we always refer to the network connecting CUs and DUs as fronthaul.
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Figure 2: Scheme of the considered network, gNB functions,

and functional splits.

(CU/DU and DU/RU splits) without severely affecting the

proposed solution approach.

There are * simultaneously active UEs within the coverage

area of all cells. Each UE D is connected to a serving gNodeB,

which is denoted by ℎD . The vector of serving gNodeBs for

all UEs is h , [ℎ1, ..., ℎ* ]. Throughout the paper, we focus

on the downlink data rates and on the downlink interference

as perceived by the UEs. Nonetheless, an extension of the

analysis to include the uplink is straightforward.

Finally, we assume that all gNodeBs operate in the same

frequency bands, that is, a frequency reuse factor of 1. This

is done to highlight the performance of the interference

mitigation enabled by the dynamic functional split, although

using a different reuse factor is not precluded.

B. Functional splits

The processing chain of every gNB can be divided into

functions, which are often identified with the layer or sublayers

of the RAN protocol stack [12]. For each pair of consecutive

functions we define a functional split option. We denote

by & the number of possible functional split options, also

referred to as centralization levels. For instance, in Fig. 2

there are five functions and & = 4 centralization levels (PDCP-

RLC, RLC-MAC, MAC-PHY, and C-RAN). The instantaneous

centralization level of a gNodeB 6 is denoted by G6, such

that G6 ∈ {0, ..., & − 1}. We consider that G6 = 0 denotes the

lowest centralization level, that is, the functional split option

for which the least amount of functions are centralized. In

Fig. 2, G6 = 0 corresponds to the PDCP-RLC split. Conversely,

G6 = & − 1 denotes the highest centralization level. In Fig. 2,

G6 = 3 corresponds to the C-RAN split. The centralization

vector of all centralization levels is defined as x , [G1, ..., G�].

As indicated in Fig. 2, low centralization levels require less

fronthaul capacity, but their interference-mitigation capabilities

are limited. Conversely, gNBs implementing high centraliza-

tion levels are able to coordinate with each other to reduce

the interference they cause to each other, at the expense of

requiring higher fronthaul capacity [21].

1) Interference mitigation: The activity of neighboring

cells causes downlink interference on nearby UEs, hence

reducing user data rates. Proposed techniques to mitigate

this interference (such as coordinated scheduling, coordinated

beamforming, joint transmission, etc.) require some level

of coordination between the involved gNB functions. This

coordination is, in general, not possible between distributed

functions, since the latency due to propagation, switching, and

processing on the different units may prevent fast communica-

tion between coordinated functions. For example, in order to

employ interference cancellation, gNBs need to generate, com-

municate, and apply the interference cancellation algorithm

to their transmission slots in less than the duration of a 5G

time slot [22], which can be as short as 62.5 `s when using

high numerologies [23]. As result, each interference-mitigation

technique requires a minimum centralization level to be ap-

plied, depending on which functions need to be centralized

for the technique to operate properly. For instance, coordinated

scheduling requires the centralization of the MAC layer [24],

whereas joint transmission also requires the centralization of

the physical layer [25].

Based on the analysis shown in [26], we model the ef-

fectiveness of an interference-mitigation technique between

two gNBs as a constant factor multiplying their average

received interference power. We relate each centralization level

G with the interference-cancellation factor of the most effective

interference-mitigation technique that is supported by means

of function 2(G). The codomain of function 2(G) is [0, 1],

that is, it ranges from 0 (full interference cancellation) to 1

(no interference cancellation).

Since centralization levels are defined incrementally along

the function chain, the higher the centralization level G, the

lower its related interference-cancellation factor 2(G). More-

over, an interference-mitigation technique can only be used

by two gNBs if both of them are operating at the required

centralization level or higher. As a consequence, the resulting

interference-cancellation factor between gNBs 6 and 6′ is

2(min(G6 , G6′)), that is, the gNB with the lowest centralization

level is the bottleneck to interference mitigation. Knowing this

fact, we can compute the expected total interference power �D
experienced by UE D from all gNBs as:

�D (x) =

�∑
6=1

8D,6 · 2(min(GℎD , G6)), (1)

where 8D,6 is the interference power received by UE D from

gNB 6 and 8D,ℎD , 0, as the UE is not interfered by its serving

gNB. Note that �D is a function of the centralization vector x,

hence selecting the right values of x can be used to reduce

overall interference.

2) Fronthaul network: The capacity required for a fronthaul

link connecting the DU and CU of a gNB depends on its

centralization level, that is, on its functional split. Namely,

previous research has shown that high centralization levels,

such as the Intra-PHY split or full centralization, require large

link capacities (in the order of hundreds of Gb/s), whereas

low centralization levels (such as the PDCP-RLC split) require

capacities barely larger than the user data rate (in the order of

a few Gb/s) [12], [13], [21]. Formally, we model the capacity

required by gNB 6 with centralization level G6 as the function

A (G6). For the sake of simplicity, we assume that all gNBs

offer the same maximum user data rate, hence A (G6) does not

depend explicitly on 6. If required, extending A (G6) to include

this dependency is straightforward.
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Finally, we define Φ4 as the capacity of each fronthaul link

4 ∈ E. For each gNB 6 producing a downlink flow between

its DU and the CU, we denote by 5
6
4 the fraction of this flow

that is carried over link 4. For notation convenience, we also

define f6 =
[
5
6

1
, ..., 5

6

�

]
∀6 ∈ {1, ..., �} and f =

[
f1, ..., f�

]
as the vectors of the flow generated by gNB 6 and all flows,

respectively.

C. Adaptation framework

We have shown in (1) that the centralization vector x affects

the interference experienced by all UEs in the network, thus

being able to change it dynamically is desirable to adapt to

varying UE traffic and mobility. Two components are required

to implement a dynamically-adapting functional split on a real

5G implementation. First, we need a decision-making entity

that continuously monitors the state of the network and selects

the optimal functional split. Second, a migration platform is

also required to realize changes in the functional split without

stopping the operation of the network.

There are multiple strategies to construct the decision-

making entity. For example, we could use reinforcement learn-

ing to derive a set of automatic action rules from the observed

context to trigger a change in the functional split. In fact,

related problems in the field of mobile networks have been

tackled successfully with reinforcement learning [27]. Another

option would be to employ dynamic evolutionary algorithms

to continuously update a previously-selected centralization

vector under a changing environment [28]. These methods are,

nonetheless, metaheuristic approaches, whose effectiveness is

not always close to optimal. Albeit these methods will be

considered in future work, an optimal reference is needed in

order to assess how effective any technique is. In this paper, we

formulate the selection of the centralization vector as a non-

linear optimization problem and propose efficient strategies

to find near-optimal solutions. As a result, we assume that

the decision-making entity works as follows. First, it receives

periodic information regarding either the position of all active

UEs, from which their received interference can be estimated,

or a full report of this interference directly from the active

UEs. Note that the former is already possible in 4G and 5G

networks [29], whereas the latter can be extracted from CSI

reports. Then, the decision-making entity periodically runs an

adaptation algorithm and forward the potential decision to

change the functional split to the migration platform. Note

that, although not included in the theoretical approach, we

can use stored solutions from the past as the starting point for

computing the current solutions. This is allowed by modern

MIP solvers in order to reduce the solving time.

Regarding the migration platform, we assume that there is

an underlying technology that is able to change the functional

split without stopping the network operation. Previous research

has addressed the design of such platform. Indeed, the authors

of [20] developed a dedicated framework that can change

the functional split in less than 20 ms without packet losses.

Alternatively, gNB functions can be implemented as virtual

machines or containers, and off-the-shelf frameworks can be

used to lively migrate them [30].

IV. PROBLEM FORMULATION

In this section, we present the problem of dynamically

selecting the functional split and derive approximative refor-

mulations and heuristics.

A. Proportionally-fair formulation

The objective of dynamically selecting the optimal func-

tional split is to maximize the data rate of all users by mini-

mizing interference. The data rate dD achieved by UE D can be

calculated as dD = �D[D , where �D is the bandwidth allocated

to UE D and [D denotes its downlink spectral efficiency. We

can use Shannon’s formula to estimate the latter as follows:

[D (x) = log2

(
1 +

BD

e + �D (x)

)
, (2)

where BD is the signal power received by UE D from its serving

gNB ℎD, �D (x) is the experienced interference as defined in

(1), and e is thermal noise power (assumed constant over all

UEs). Using (2), we could formulate an optimization problem

to find the centralization vector x∗ that maximizes the sum of

user data rates:

x∗ = arg max
x∈X

∑
D

dD , (3)

where X is the set of vectors x whose required link capacities

are supported by the fronthaul network. However, problem

(3) may lead to unfair situations, since data rates of users

with good signal-to-interference-and-noise ratio (SINR) may

be prioritized over those with poor SINRs. In order to prevent

that, it is a better practice to maximize the sum of the

logarithm of the data rates, which, as shown in [31], provides a

proportionally-fair prioritization. Thus, we define the optimal

centralization vector x∗ as:

x∗ = arg max
x∈X

*∑
D=1

log (dD) = arg max
x∈X

*∑
D=1

log (�D[D (x)) (4)

= arg max
x∈X

*∑
D=1

log([D (x)) . (5)

Note that we can remove �D from the formulation since it

does not depend on x. We refer to the problem of finding the

centralization vector x∗ as defined in (5) as the Funtional Split

Selection Problem (FSSP).

This objective function in (5) is directly related to the

geometric mean of the spectral efficiency over all UEs, which

is defined as:

[̃(x) ,

(
*∏
D=1

[D

) 1
*

= exp

(
1

*

*∑
D=1

log ([D (x))

)
. (6)

Therefore, an equivalent definition of the optimal,

proportionally-fair centralization vector is:

x∗ = arg max
x∈X

[̃(x) . (7)

This formulation allows us to use [̃(x) as performance indi-

cator when comparing alternative solutions, as it is done in

Sec. VI, where experimental results are shown.
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From (2) and the definition of x∗ in (5), we can obtain an

expression for the objective function of the FSSP. Regarding

the constraints of the FSSP, it is clear that the validity of

a solution x is limited by the topology and capacity of the

fronthaul network. In other words, a solution x is valid if

and only if there exists a vector of flows f that satisfies the

flow requirements for every gNB, as mentioned in Sec. III-B2,

and can be implemented on the fronthaul network without

exceeding the capacity of any link. As a result, we can

formulate the FSSP as follows:

max
x,f

*∑
D=1

llog

(
BD

e +
∑�
6=1 8D,6 · 2(min(GℎD , G6))

)
, (P0a)

subject to

∑
4∈E+ (=)

5
6
4 −

∑
4∈E− (=)

5
6
4 =




0 ∀= ∈ N\{=0, =6}

A (G6) for = = =0

−A (G6) for = = =6

∀6 ∈ G, (P0b)

�∑
6=1

5
6
4 ≤ Φ4 ∀4 ∈ E, (P0c)

5
6
4 ≥ 0 ∀4 ∈ E,∀6 ∈ G, (P0d)

x ∈ {1, ..., &}� , (P0e)

where G , {1, ..., �}, E+(=) is the set of edges leaving node

=, E−(=) is the set of edges entering node =, and

llog(b) , log
(
log2 (1 + b)

)
, (8)

is a shorthand function used for notational convenience. Con-

straint (P0b) is the flow conservation constraint, which ensures

that the flow leaving the CU and entering the DU is A (G6)

for each gNB 6. In addition, (P0c) enforces the link capacity

constraint for each link 4.

The FSSP as formulated in (P0) is a mixed integer non-

linear problem (MINLP), which are, in general, NP-Hard.

Moreover, the non-standard expression of the objective func-

tion (P0a) prevents the direct utilization of state-of-the-art

techniques. In order to make it more tractable, we present

two reformulations that simplify the problem structure at the

expense of introducing additional variables.

We start with the following variable change, which allows

us to replace the discrete functions A (·) and 2(·) by polynomial

expressions:

G6 =

&−1∑
@=1

H
@
6 , (9)

such that H
@
6 ∈ {0, 1} and H

@
6 ≥ H

@′

6 if and only if @ ≤ @′.

For compactness, we define y6 ,
[
H1
6, ..., H

&−1
6

]
∀6 ∈ G

and y , [y1, ..., y�]. The purpose of this variable change

is to convert the integer variables G6 into binary variables

in a particularly useful fashion. For instance, given G6 = 2

and & = 4, then y6 = [1, 1, 0]. Note that this is not

the conventional manner of performing an integer-to-binary

conversion in integer programming, which usually consists in

the binary representation of the numbers from 0 to & and

thus requires ⌈log2(&)⌉ new variables per original variable.

Instead, conversion (9) requires & − 1 new variables, but this

increment in the number of additional variables is very small

(since & ≤ 8 in real deployments [12]), and it is compensated

by its useful implications. Indeed, by using the variable change

in (9), we can rewrite function 2(min(G6, G: )) as:

2(min(G6, G: )) = 2(1) −

&−1∑
@=1

X(@)H
@
6H
@

:
, (10)

where X(@) = 2(@ − 1) − 2(@). As a result, we can reformulate

the FSSP as:

max
y,f

*∑
D=1

llog
©­­
«

BD

e + �D −
∑�
6=1 8D,6

(∑&−1
@=1

X(@)H
@
6H
@

ℎD

) ª®®¬
, (P1a)

subject to

∑
4∈E+ (=)

5
6
4 −

∑
4∈E− (=)

5
6
4 =




0 ∀= ∈ N\{=0, =6}

AH (y6) for = = =0

−AH (y6) for = = =6

∀6 ∈ G,

(P1b)

H1
6 ≥ H

2
6 ≥ ... ≥ H

&−1
6 ∀6 ∈ G, (P1c)

y ∈ {0, 1}� , (P1d)

(P0c), and (P0d),

where �D =
∑�
6=1 2(1)8D,6 is the interference power received

by UE D when the lowest centralization level is in operation on

its serving gNodeB, and function AH (·) is defined as follows:

AH (y6) = A (1) −

&−1∑
@=1

(A (@ − 1) − A (@)) H
@
6 , (11)

such that AH (y6) = A (x6).

Formulation (P1) replaces the integer variables and discrete

functions A (·) and 2(·) of (P0) by binary variables and poly-

nomial functions. As a result, linearization techniques can be

now applied to improve the tractability of the FSSP. Namely,

the product of two H
@
6 variables can be linearized via the

variable change I
@

6,:
= H

@
6H
@

:
, which can be enforced with

additional linear inequalities [32]. This leads to the following

reformulation:

max
y,z,f

*∑
D=1

llog
©­­«

BD

e + �D −
∑�
6=1 8D,6

(∑&−1
@=1

X(@)I
@

6,ℎD

) ª®®
¬

(P2a)

subject to

2I
@

6,:
≤ H

@
6 + H

@

:
∀@ ∈ Q,∀6, : ∈ G, 6 < :, (P2b)

1 + I
@

6,:
≥ H

@
6 + H

@

:
∀@ ∈ Q,∀6, : ∈ G, 6 < :, (P2c)

z ∈ {0, 1} (&−1) (�2 ) , (P2d)

(P0c) − (P0d) and (P1b) − (P1d),

where Q , {1, ..., & − 1} and z ,
[
I
@

6,:

]
∀@ ∈ Q, ∀6, : ∈

G such that 6 < :. The number of additional z variables is

(&−1)
(�

2

)
= $ (�2), as one additional variable is required for

every pair of gNBs and consecutive splits. In Section IV-B3,

we exploit the characteristics of the network to reduce the

number of these additional variables.
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Formulation (P2) is still a MINLP, but its simpler objective

function admits further analysis. Indeed, we observe that the

continuous relaxation of the objective function is convex on z,

but since the FSSP is a maximization problem, this implies that

we are in the realm of concave optimization. Thus, there may

be multiple local maxima, making the problem hard to tackle.

It is still possible to use exact global optimization techniques

for concave MINLPs, such as those presented in [33], but these

mainly consist on applying branch-and-bound or branch-and-

cut algorithms, whose convergence time may be high. Since

the FSSP is a real-time problem, we opt instead for deriving

increasingly simpler approximations to the original FSSP, until

a suitable approach within the speed-quality trade-off is found.

B. Fractional approximations

The main obstacle when tackling formulations (P0)–(P2)

is the llog(·) function, which prevents the application of

simplifying reformulations. Fortunately, we can exploit the

slow growth rate of this function, as it can be very well

approximated by a rational function:

llog (b) ≈
U

V + b
+ W. (12)

Coefficients U, V and W can be obtained from rational fitting

within the desired interval. In our case, we choose the interval

0.1 ≤ b ≤ 100, that is, an SINR ranging from −10 dB to

20 dB. After applying (12) to (P2) and some straightforward

algebra, we obtain the following reformulation:

min
y,z,f

*∑
D=1

BD

V (e + �D) + BD−V

�∑
6=1

8D,6
©­
«
&−1∑
@=1

X(@)I
@

6,ℎD

ª®
¬

(P3a)

subject to (P0c)–(P0d), (P1b)–(P1d), and (P2b)–(P2d).

Problem (P3) is now a multiple-ratio fractional mixed-

integer optimization problem, which can be tackled with state-

of-the-art techniques. Indeed, since the continuous variables f

do not appear on the objective function, we can directly apply

existing techniques to reformulate it into an MILP. We present

two such techniques: the Li-Wu-Tawarmalani transformation

and the Borrero-Gillen-Prokopyev transformation.

1) Li-Wu-Tawarmalani transformation: The Li-Wu-Ta-

warmalani transformation (LWT transformation) reformulates

a 0-1 multiple-ratio fractional program into an MILP by

introducing continuous variables w , [FD] and v ,
[
E
@
D,6

]
via the following variable changes [34], [35], [36]:

FD =
1

cD − V
∑�
6=1 8D,6

(∑&−1
@=1

X(@)I
@

6,ℎD

) ∀D ∈ U, (13)

E
@
D,6 = FDI

@

6,ℎD
∀@ ∈ Q,∀D ∈ U,∀6 ∈ G, (14)

where cD = V (e + �D) + BD . These identities can be enforced

by additional constraints, resulting in the following equivalent

formulation:

min
y,z,w,v,f

*∑
D=1

BDFD (P4a)

subject to

cDFD − V

�∑
6=1

8D,6
©­«
&−1∑
@=1

X(@)E
@

6,ℎD

ª®
¬
= 1 ∀D ∈ U, (P4b)

,−D I
@

6,ℎD
≤ E

@
D,6 ≤ ,

+
D I
@

6,ℎD
∀@ ∈ Q,∀6 ∈ G,∀D ∈ U, (P4c)

E
@
D,6 ≤ FD+,

−
D

(
I
@

6,ℎD
− 1

)
∀@ ∈ Q,∀6 ∈ G,∀D ∈ U, (P4d)

E
@
D,6 ≥ FD+,

+
D

(
I
@

6,ℎD
− 1

)
∀@ ∈ Q,∀6 ∈ G,∀D ∈ U, (P4e)

(P0c) − (P0d), (P1b) − (P1d), and (P2b) − (P2d),

where U , {1, ..., *}, and ,−D and ,+D are lower and upper

bounds for FD , respectively, which can be obtained trivially

by setting the z variables in (13) to 0 and 1.

Formulation (P4) is an MILP that requires * + 4(& − 1)�*

new constraints, * additional w variables and (&−1) (�−1)*

additional v variables with respect to (P3). Note that, in the

general case, the number of required v variables would be

(& − 1)
(
�
2

)
* as these variables originate from the product

of z and w variables. However, in our case it is clear that

the interference coefficient corresponding to a triple (D, 6, :),

D ∈ U, 6, : ∈ G is zero unless 6 = ℎD or : = ℎD and 6 ≠ :,

hence we can remove the variables indexed by those triples. As

a result, the number of variables of this reformulation grows

with O(�2), assuming that * scales linearly with � [37],

instead of O(�3).

2) Borrero-Gillen-Prokopyev transformation: The Bo-

rrero-Gillen-Prokopyev transformation (BGP transformation)

is a recent improvement on the LWT transformation, which

aims at reducing the number of required variables and con-

straints by approximating all coefficients in the objective func-

tion with integers [38]. This is accomplished by introducing

the new variables a = [0D] defined as:

0D =
f

_D,0 +
∑�
6=1

∑&

@=1
_
@
D,6I

@

6,ℎD

∀D ∈ U, (15)

where

_D,0 =

⌊
fV(=D + �D)

BD

⌉
+ f, _

@
D,6 = −

⌊
Vf8D,6X(@)

BD

⌉
,

f is a constant factor used to scale the integer coefficients into

the desired range, and ⌊·⌉ represents the rounding operation

to the nearest integer. In addition, new binary variables b =[
1D,?

]
, 1D,? ∈ {0, 1} are defined as:

%D∑
9=1

2 9−11D,? = ΛD+

�∑
6=1

&∑
@=1

_
@
D,6I

@

6,ℎD
∀D ∈ U,∀? ∈ {1, ..., %D},

(16)

where ΛD = −
∑�
6=1

∑&

@=1
_
@
D,6 and %D =

⌊
log2 (ΛD)

⌋
+ 1.

Finally, new variables d =
[
3D, 9

]
are defined as

3D,? = 1D,?0D ∀D ∈ U,∀? ∈ {1, ..., %D}. (17)

The resulting reformulation, including additional constraints

to enforce (15)–(17), is

min
y,z,a,b,d,f

*∑
D=1

0D (P5a)



7

subject to

(_D0 − ΛD)0D +

%D∑
?=1

2?−11D,? = −f ∀D ∈ U, (P5b)

�∑
6=1

&∑
@=1

_D,6I
@

6,ℎD
−

%D∑
?=1

2?−11D,? = −ΛD ∀D ∈ U, (P5c)

0!D 1D,? ≤ 3D,? ≤ 0
*
D 1D,? ∀D ∈ U, ? ∈ PD , (P5d)

3D,? − 0D ≤ 0
!
D 1D,? − 0

!
D ∀D ∈ U, ? ∈ PD , (P5e)

3D,? − 0D ≥ 0
*
D 1D,?− 0

*
D ∀D ∈ U, ? ∈ PD , (P5f)

(P0c) − (P0d), (P1b) − (P1d), and (P2b) − (P2d),

where PD = {1, ..., %D}, 0
!
D =

−f
_D,0

and 0*D =
−f

_D,0−ΛD
.

Formulation (P5) is an MILP that requires 2* + 4
∑
D∈U %D

new constraints, * +
∑
D∈U %D additional continuous variables

(a and d) and
∑
D∈U %D additional binary variables (b) with

respect to (P3). Since
∑
D∈U %D = $ (* log(�)) [38] and

assuming again * = $ (�), this implies that the number of

additional variables and constraints compared to (P3) grow

with $ (� log(�)), at the expense of losing accuracy in the

problem coefficients. Nonetheless, the overall size of the

problem instances still grows with $ (�2), due to the presence

of variables z.

3) Punctured transformations: The fractional reformulation

(P3) relies on the addition of z variables to be tractable by the

LWT and the BGP transformations. These variables replace

the product of y variables by single binary variables, which

eventually enables these MILP reformulations. As there must

be a I6,: variable for each pair of gNBs [6, :] , their number

grows quadratically with the number of gNBs �.

However, in our problem not every pair of gNBs is worth

considering. The interference between two gNBs that are far

apart is negligible, so any variable modeling it contributes little

to the overall solution. Knowing this fact, we can remove

unnecessary variables so that the problem size is reduced

without noticeably affecting the optimal solution. To do so,

we define 96,: as the combined interference caused by gNBs

6 and ::

96,: =
∑
D∈H6

8D,: +
∑
D∈H:

8D,6 (18)

where H6 = {D | ℎD = 6} is the set of the UE indices served

by gNB 6. Now we sort coefficients 96,: and remove those

gNB pairs [6, :] whose combined interference is below a

configurable threshold. For instante, in our experiments, we

remove those gNB pairs with the smallest 96,: such that their

addition contributes less than 5% to the total interference.

This removes the related I6,: variables and all additional

variables and constraints that are defined from them, hence

simplifying the problem. Since removing these variables may

impact the performance of the obtained solutions, we evaluate

them separately for the LWT and BGP transformations, and

refer to them as punctured LWT and BGP transformations,

respectively.

C. Quadratic formulation

Instead of the approximation shown in (12), we can consider

a simpler fractional approximation of the llog(·) function:

llog(b) ≈ U −
V

b
. (19)

This approximation is less tight than (12), but in return it

produces a much simpler problem formulation. Indeed, after

combining (19) with (P1), we arrive at the following equivalent

problem:

max
y,f

*∑
D=1

�∑
6=1

8D,6

BD

©­«
&−1∑
@=1

X(@)H
@
6H
@

ℎD

ª®
¬
, (P6a)

subject to (P0c)–(P0d) and (P1b)–(P1d),

As this reformulation is a quadratic integer problem (QIP),

we refer to it as the quadratic formulation. Its standard form

enables the use of off-the-shelf solvers to tackle it. Nonethe-

less, its structure can be further exploited to reformulate it

into a simple MILP. For this, we first introduce these new

coefficients:

n
@

6,:
=



X(@)

©­«
∑
D∈H6

8D,:

BD
+
∑
D∈H:

8D,6

BD

ª®
¬

if 6 ≠ :,

0 if 6 = :,

∀6, : ∈ G (20)

Finally, we introduce variables t =
[
C
@
6

]
via the following

variable change:

C
@
6 = H

@
6

(
�∑
:=1

n
@

6,:
H
@

:

)
∀@ ∈ Q, 6 ∈ G, (21)

which can be enforced into our optimization problem by

adding new constraints, as follows [39]:

max
y,t,f

&−1∑
@=1

�∑
6=1

C
@
6 (P7a)

subject to

0 ≤ C
@
6 ≤ )

@
6 H

@
6 ∀@ ∈ Q,∀6 ∈ G, (P7b)

C
@
6 ≥

�∑
:=1

n
@

6,:
H
@
6−(1−H

@
6))

@
6 ∀@ ∈ Q,∀6 ∈ G, (P7c)

C
@
6 ≤

∑
:

n
@

6,:
H
@
6 ∀@ ∈ Q,∀6 ∈ G, (P7d)

(P0c) − (P0d) and (P1b) − (P1d),

where )
@
6 =

∑�
:=1 n

@

6,:
.

Formulation (P7) requires (&−1)� additional variables and

4�& additional constraints with respect to formulation (P1).

As a result, problem instances grow with $ (�), leading to

substantially smaller problems when compared to the previous

MILP formulations, which grow with $ (�2). The drawback

of this approach is the approximation (19) is less tight than

(12), which may impact the quality of the solutions.
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D. Heuristic approaches

The previous reformulations approximate the original prob-

lem into MILPs, which can be tackled by dedicated off-

the-shelf software. Nonetheless MILPs are still NP-Hard,

thus exact techniques to solve them may be slow, exhibiting

exponential worst-case performance. Since we are interested

in promptly solving the problem so as to lively adapt to

changes in the interference situation, we propose two heuristics

with the intention of finding good-quality solutions with low

convergence time. The first technique exploits the correlation

between the interference caused by a gNB and its centraliza-

tion level. The second technique is a local-search approach to

improve the solutions of the quadratic reformulation.

1) Heuristic 1: As the objective of centralizing gNBs is to

mitigate interference, it intuitively holds that, given an optimal

solution x∗, the gNBs with the highest centralization levels

may tend to be those causing the most interference. From this,

we can derive a heuristic rule that assigns the centralization

level of a gNB 6 based on the total interference �̂6 that it

causes to all UEs in the absence of interference-mitigation:

�̂6 ,

*∑
D=1

8D,6 . (22)

Such a heuristic must not only produce a solution that is

proportional to �̂6 ∀6 ∈ G, but it must also satisfy constraints

(P0b)–(P0d) and be as centralized as possible.

We propose the following method to accomplish these

objectives. First, we define the accumulated centralization

level - given a (possibly infeasible) solution x as:

- ,

�∑
6=1

G6 . (23)

An upper bound -+ ≥ - for all feasible x can be obtained by

solving the following MILP:

-+ = max
x,f

�∑
6=1

G6 (24)

subject to (P0b)–(P0d). Note that (24) only depends on the

fronthaul network configuration, therefore it can be solved

offline before the network is put into operation. In addition,

a lower bound -− ≤ - for all feasible x can be also easily

found, for example as:

-− =

⌊
min4∈E (Φ4)

2(&)

⌋
, (25)

which is the maximum number of fully-centralized gNBs that

can be supported by the weakest link.

Now, given an initial guess of - within these bounds, we

need a method to assign a value to each G6 ∀6 ∈ G in

accordance to the values of �̂6. We use the Webster/Sainte-

Laguë method (W/S-L method) to do this, an algorithm

originally designed to proportionally allocate seats in party-list

voting systems [40]. This method is selected since it preserves

the proportionality of the original interference levels better

than alternative approaches [41], yet it is simple to implement.

In a nutshell, the W/S-L method starts from x = 0, finds the

index 6 of the maximum interference �̂6, increments G6 by

1, updates �6 to
�6

2G6+1
(or to −∞ if G6 = &) and repeats

the process until the desired value of - is achieved. A more

detailed algorithmic description of this method is included in

Appendix A.
After running the W/S-L method, we have a candidate

centralization vector x for the desired - . At this point, we

can solve the following minimization problem to find the

corresponding flow vector f:

min
f

�∑
4=1

@4 (26a)

subject to (P0b)–(P0d). Note that vector x is not present in

the objective function, but in constraint (P0b). This problem

is a linear program (LP) with � variables, and thus it can be

tackled very efficiently by modern solvers. However, it may

happen that our initial guess of - yields a vector x such that

(26) is infeasible. In that case, we need to find a different

value of - and try again until a feasible value of - is found.

This process can be performed efficiently by exploiting the

properties of our objective function and the W/S-L method

via a binary search of the largest feasible - . This is explained

in Appendix B.
2) Heuristic 2: This heuristic exploits the properties of the

FSSP by using local search so as to improve solutions provided

by a previous algorithm. We start with an initial solution

[x, f] provided by the quadratic approach and we compute

the following parameters from it:

�@ =
1

|G@ |

∑
6∈G(@)

�̂6 (27)

where G@ = {6 ∈ G | G6 = @} ∀@ ∈ Q. The value of �@ is

the average interference power caused by those gNBs whose

centralization level is @. We then calculate deviations Δ�̂6 =

�̂6−�G6 ∀6 ∈ G, which represent how far the total interference

caused by gNB 6 is from the average value among those with

the same centralization level. Based on these deviations, we

can identify two types of gNBs: those producing relatively

high interference (which may benefit from a higher central-

ization level) and those producing relatively low interference

(which might accept a lower centralization). Consequently, we

select pairs of gNBs (:, : ′) ∈ {1, ..., & − 1} × {2, ..., &} such

that : belongs to the former type and : ′ belongs to the latter,

and generate a new candidate solution x′ whose elements are

as follows:

G′6 =



G6 + 1 if 6 = :,

G6 − 1 if 6 = : ′,

G6 otherwise.

(28)

Then, the mean spectral efficiency [̃(x′) of the solution is

evaluated. If [̃(x′) > [̃(x), the feasibility of x′ is evaluated

with (26). If x′ is both feasible and better than x, it is taken as

new initial solution and the procedure repeats until no better

solution is found.

V. EXPERIMENTAL SETUP

In this section, we present the setup used to evaluate the

performance of the adaptation algorithms described in the last
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Figure 3: Visualization of UE concentration index for 2000

UEs. The red dots on the left figure represent the positions

of each UE on the considered area, which is shown in light

blue. The right figure is a color map of the 2-dimensional

empirical distribution of the UEs, showing the UE density of

each 50 × 50 m square bin.

section. We use a MATLAB simulator to create the interfer-

ence coefficients 8D,6 , required by all presented approaches,

based on simulated UE and gNB positions. Then, we evaluate

the algorithms on operator-grade hardware using a commercial

optimization solver.

A. Simulated mobile coverage

In order to produce realistic instances of the FSSP, we

follow the recommendations for simulating dense urban sce-

narios as described in 3GPP TS38.193 [37]. According to this

specification, gNBs are divided into two layers: macro and

micro layer. The macro layer follows an hexagonal layout with

an inter-site distance of 200 m. In addition, the number of

micro gNBs should be three times that of the macro gNBs.

As a result, the average cell density is roughly 115 gNBs/km2.

Regarding the UEs, its recommended number is 10 UEs per

gNB on average, which results in 1150 UEs/km2. Since the UE

distribution may impact the performance of the algorithms, we

derive a dedicate metric to model it. We divide the considered

(a) k = 2, a = 5 (b) k = 2, a = 20

(c) k = 5, a = 5 (d) k = 5, a = 20

Figure 4: Visualization of the average fronthaul network

degree and gNB clustering parameters for the same gNB

distribution. Black lines represent links, red stars represent

macro DUs, red triangles are micro DUs, blue square are

fronthaul switches, and green diamonds are CUs.

network area into square bins of side 50 m. Then, we count

the number of UEs in each bin to compute its 2-dimensional

empirical distribution. From this distribution, we compute its

Gini coefficient and use it as the UE concentration index \. It is

observed that \ = 0.5 corresponds to a uniformely-distributed

random distribution of UEs, as it can be seen in Fig. 3a.

Higher values correspond to higher UE clustering, (Fig. 3b

and Fig. 3c), with a maximum value of \ = 1 when all UEs

are within the same bin. Once the position of the gNBs and

the UEs is generated, we compute the received signal and

interference power by using the log-distance path model for

urban scenarios [42].

B. Fronthaul network

For our performance evaluation, we set the number of

functional split options to & = 4 (such as C-RAN, Intra-

PHY, MAC-PHY, PDCP-RLC). Based on the analytical and

experimental results shown in [26], we use the following

interference-cancellation vector: c = [1, 0.6, 0.2, 0.01], such

that there is no interference mitigation when using the lowest

centralization level (as with PDCP-RLC) and a cancellation

factor of 20 dB when using the highest centralization level.

Note, however, that other values or split options are also

possible, since they do not affect the problem formulation.

Regarding the fronthaul capacity vector, we use the values

r = [4, 8, 80, 160] Gb/s, as provided in [21]. In order to

simulate realistic fronthaul network layouts, we follow the

descriptions provided in [15], which are based on real mobile

networks on Italy, Romania, and Switzerland. Accordingly, we

set the maximum link capacities to 0.5, 1 or 2 Tb/s (the higher

value that makes full centralization infeasible, to prevent trivial
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results). Furthermore, we simulate several types of fronthaul

networks by controlling two parameters: the average fronthaul

network degree k, defined as the ratio of links to fronthaul

switches, and the gNB clustering parameter a, defined as

the average number of gNBs connected to the same switch.

According to [15], the average degree of a typical fronthaul

network ranges from k = 2 (a tree graph) to k = 5, and

the gNB cluster ranges from a = 5 to a = 20. In Fig. 4 we

show the some exemplary layouts resulting from varying these

parameters.

C. Computing platform

After creating the interference coefficients and the fronthaul

network with the MATLAB simulator, we have all the re-

quired components to run our adaptation algorithms. Since

the convergence time of this algorithms is very relevant to

decide on their viability, we use an operator-grade hardware

platform consisting of 48 Intel Xeon E5 cores distributed over

six computing servers [43]. As optimization solver, we use

the commercial Gurobi software [44]. This software is able to

divide large MILP instances and efficiently process them in

parallel.

VI. PERFORMANCE EVALUATION

In this section, a collection of comprehensive experimental

results is shown. We first look into the convergence time of

the proposed approaches, as this is a major factor limiting its

applicability. We then evaluate and compare their performance,

which, in combination with their convergence time, allow

us to select the most appropriate approaches for each case.

Finally, based on the observed results, we provide a strategy

to implement a dynamic adaptation of the functional split.

We depict observed values of convergence time and spectral

efficiency by means of boxplots, with the intention of repre-

senting their distribution. In order to provide as much infor-

mation as possible in little space, we use a compact version

of standard boxplots, whose interpretation is as follows: the

central dot represents the median, the box contains the data

between the first and third quartiles, and the whiskers extend

to the lowest and highest values contained in 1.5 times the

inter-quartile range. Occasionally, we show the (arithmetic)

mean of the distribution as a horizontal bar. For the sake of

clarity, outliers are not shown.

A. Convergence time

The applicability of the seven approaches presented in this

work is heavily influenced by their convergence times, that is,

the time required for the approaches to reach a (sub)optimal

solution. This is due to the fact that the position and activity

of the UEs are used as inputs of the optimization algorithms

and not updated during the solving process. Consequently, it

is possible that the solutions yielded by the algorithms are

outdated if their convergence time is too long. Previous work

has shown that mobile traffic is highly variable, and may often

sharply deviate from average patterns [45]. In addition, in

certain region types (such as entertainment or transport areas),

Quadratic

Figure 5: Time of convergence of the MILP reformulations.

even the average patterns may be fast-changing [46]. In fact,

the analysis of recent mobile traffic traces show that the user

traffic experienced by a 5G RAN may abruptly change in

few minutes [47], [48]. As a result, approaches with long

convergence times will not be useful for dynamic adaptation.

In this work, we allow a maximum of 15 minutes for an

algorithm converge to a solution, since solutions taking longer

times are unlikely to be usable.

In Fig. 5 we show the distributions of the convergence time

of the five MILP reformulations (quadratic, LWT, BGP, and

punctured LWT and BGP formulations) as a function of the

number of gNBs. The solver is configured for a maximum

running time of 15 minutes with a relative gap tolerance of

0.01% and each boxplot represents at least 100 runs. We

observe that the convergence times of unpunctured LWT and

BGP formulations reach the 15-minutes limit with only 40

gNBs, and with 50 gNBs all instances take longer or equal

than this limit. Assuming a cell density of 115 gNBs/km2,

this implies that they may be suitable only for areas smaller

than 0.4 km2. The running time of the punctured LWT and

BGP formulations is noticeably smaller, although the limit is

once again reached with only 60 or 70 gNBs, corresponding

to an area of ca. 0.6 km2.

In contrast, the convergence time of the quadratic approach

remains below 1 s for areas with less than 80 gNBs. In Fig. 6

we show an expanded range of gNBs and include Heuristics

1 and 2 in the comparison. We can see that the instances

of the quadratic approach do not reach the 15-minutes limit

until � = 350, and by � = 400 almost all instances hit this

limit. This translates into an area of 3 to 3.5 km2 and 3500 to

4000 simultaneously active UEs, which is enough to cover the

densely populated centers of most cities. We can also observe

that the convergence time of Heuristic 2 is approximately twice

that of the quadratic approach, which is also expected. Finally,

all instances of Heuristic 1 converge in less than 1 s for the

whole shown range.

B. Performance evaluation

After evaluating the running time of the approaches, we

measure their performance in terms of the achieved geometric

mean of the spectral efficiency [̃(x), as it is defined in (6). We

first evaluate [̃(x) for all considered approaches over a set of

extreme cases so as to compare them. Then, we analyze the
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Quadratic

Figure 6: Time of convergence of the quadratic reformulation

and Heuristics 1 and 2.

Quadr.

(a) Sparse fronthaul, uniform popula-
tion

(b) Dense fronthaul, uniform popula-
tion

(c) Sparse fronthaul, concentrated
population

(d) Dense fronthaul, concentrated
population

Figure 7: Distributions of the mean spectral efficiency [̃(x)

achieved by the proposed approaches, a fully distributed

approach, a static approach, and a fully centralized approach

in four extreme scenarios.

impact of the configuration of the fronthaul network and the

user concentration.

1) Approach comparison: In order to compare the perfor-

mance of all proposed approaches, we evaluate their spectral

efficiency [̃(x) on the same scenario. Since the LWT and

BGP formulations are only applicable to small networks, we

choose � = 50 gNBs for this comparison, corresponding to

* = 500 UEs and an area of approximately 0.4 km2. We

now generate four types of scenarios to cover a wide range of

interference cases: (i) a sparse fronthaul (k = 2) with uniform

population (\ = 0.5); (ii) a dense fronthaul (k = 5), with

uniform population (\ = 0.5); (iii) a sparse fronthaul (k = 2),

with concentrated population (\ = 0.95); and (iv) a dense

fronthaul (k = 5), with concentrated population (\ = 0.95).

The simulation results after 200 runs are shown in Fig. 7,

with scenarios (i)–(iv) being used in Fig. 7a–7d, respectively.

Apart from the proposed approaches, we also include in the

comparison the spectral efficiencies of a fully distributed

solution (G6 = 0 ∀6 ∈ G), a static solution (in which the

optimal G is precomputed for a uniform population), and a

fully centralized solution (G6 = & ∀6 ∈ G). The fully dis-

Quadr.

Figure 8: Average spectral efficiency achieved by the quadratic

approach, Heuristics 1 and 2, a static and a fully distributed

network for � = 300 and a UE concentration index of 0.75

as the fronthaul average degree varies.

tributed solution represents a network in which all processing

is distributed, thus providing a lower bound to all solutions.

The static solution is the one proposed in works such as [15],

[17], in which the functional split of every gNB is calculated

for the average traffic and not adapted to the instantaneous

interference situation. The fully centralized solution, in which

all gNBs are centralized, is infeasible in all cases, but it serves

as a upper bound for the other approaches.

From these results we can observe two general trends.

First, the denser the fronthaul network, the higher the spectral

efficiency of all solutions, but also the better the performance

of our proposed solutions with respect to the static solutions.

This trend is discussed in more detail in Section VI-B2.

Second, the more concentrated the population, the higher the

variance and the mean spectral efficiency achieved by our

solutions with respect to the static solutions. This phenomenon

is explored in more detail in Section VI-B3. As a result, when

the fronthaul is dense and the population is concentrated,

our approaches achieve similar spectral efficiencies to that

achieved by full centralization.

Apart from these general trends, we can compare the

performance of our proposed approaches. We can conclude

that, with the exception of Heuristic 1, all these approaches

perform very similarly in all cases. Under close examination,

we can see that the best performance is achieved by LWT

and BGP transformations and Heuristic 2, followed closely

by the quadratic approach and the punctured LWT and BGP

transformations. Nonetheless, the maximum difference in their

average spectral efficiency is less than 2% in all scenarios.

Given their good-quality solutions and their fast conver-

gence time, we conclude that the quadratic approach and

Heuristic 2 are the most efficient approaches, and hence the

most suitable for actual deployments. Heuristic 1 may be

still adequate for large networks or medium-sized networks

in which convergence time needs to be very short. Similarly,

the punctured and unpunctured LWT and BGP transformations

may be applicable to small networks in which maximizing the

spectral efficiency is of utmost importance, such as industrial

or ultra-reliable networks, or for medium-size networks with

slow adaptation rates.

2) Impact of the fronthaul network: In Fig. 7 we can see

how the density of the fronthaul network affects the quality
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Quadr.

Figure 9: Average spectral efficiency achieved by the quadratic

approach, Heuristics 1 and 2, a static and a fully distributed

network for � = 300 and a fronthaul average degree of 3.5

the fronthaul average degree varies as the UE concentration

index varies.

of the solutions achieved by all approaches for a deployment

with � = 50 gNBs. When using a sparse fronthaul network of

k = 2, few centralization vectors are feasible because of the

limited number of paths, which leads to mean optimal spectral

efficiencies of around 1.57 b/s/Hz for dispersed UEs and 2.14

b/s/Hz for concentrated UEs. With a denser fronthaul network

of k = 5, the average spectral efficiency grows up to around

2.7 b/s/Hz for dispersed UEs and 3.31 b/s/Hz for concentrated

UEs.

With the intention of observing this trend more clearly, we

perform another experiment on a larger network (� = 300,

2.6 km2), with partially concentrated UEs (\ = 0.75) and let

the density of the fronthaul vary from k = 2 to k = 5. The

results are shown in Fig. 8. We conclude that with sparse, tree

networks (k = 2) the benefits of implementing an adaptive

solution are marginal, improving only from 1.07 b/s/Hz (static

solution) to 1.18 b/s/Hz (Heuristic 2), a 10% improvement.

With an average degree of k = 3 this improvement increases

up to 28% (Heuristic 2), and with k = 5 it reaches 36%

(Heuristic 2).

3) Impact of UE concentration: Implementing an adaptive

functional split is specially beneficial when the UEs tend to

be clustered in time-varying clusters. This can be observed

once again in the experiment shown in Fig. 7: as the UE

concentration index changes from \ = 0.5 to \ = 0.95, the

average spectral efficiency increases from 1.57 b/s/Hz to 2.7

b/s/Hz for k = 2, and from 2.14 b/s/Hz to 3.31 b/s/Hz for

k = 5. Conversely, the average spectral efficiency of the static

solution barely changes. This is due to the fact that, when UEs

are concentrated around the same spots, an adaptive network

can mitigate their interference more efficiently than when they

are spread apart.

In order to evaluate the effect of UE concentration in more

detail, we perform another experiment on a larger network

(� = 300, 2.6 km2) with a constant fronthaul average degree of

k = 3.5 and let the UE concentration index vary from \ = 0.5

to \ = 0.95. The results are shown in Fig. 9. We conclude that

an adaptive approach may achieve substantially better spectral

efficiency when UEs are concentrated with respect to a static
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Figure 10: Examples of UEs positions for the single-cluster

scenario (a and b) and double-cluster scenario (c and d) at

normalized times C = 0 and 1.

solution. Indeed, when \ = 0.8, the mean spectral efficiency

can be improved from 1.18 b/s/Hz to 1.75 b/s/Hz, a 48%

improvement. For \ = 0.95, this improvement reaches almost

90%. Interestingly, the mean spectral efficiency of a static

solution is barely affected by the UE concentration, although

its variance does increase. This is because clusters form at any

point of the covered area with equal probability, combined

with the fact that the static solution explicitly optimizes for

the average UE position, regardless of the instantaneous UE

concentration. Finally, note also that even if Heuristic 1 is

used, a precomputed static solution can be always available

and used instead if its performance is better. Thus no perfor-

mance degradation should be expected from implementing an

adaptive approach.

C. Dynamic adaptation strategy

Thus far we have presented and evaluated the performance

of multiple approaches to select the optimal functional split

of a RAN, emphasizing on the adaptive nature of the problem

being solved. However, it is not stated how frequently the

adaptation algorithm should run so as to adapt to a chang-

ing interference situation. There are two naive approaches

to decide on this update frequency. One possibility is to

run the adaptation algorithm continuously, that is, restart it

with updated information immediately after convergence. This

would guarantee that the network always operates with the

best known centralization vector, but it may be costly for the

operator, as the CPU utilization of the optimization servers

would always be close to 100%. Another option is to run

the adaptation algorithm periodically, based on known traffic

patterns, as those shown in [45], [46]. This is a more resource-

efficient approach, but it partially defeats the purpose of

implementing an adaptive system. That is, unpredicted UE
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Quadratic (current)

Quadratic (obsolete)

(a) Single-cluster scenario

Quadratic (current)

Quadratic (obsolete)

(b) Double-cluster scenario

Figure 11: Average spectral efficiency achieved by current

and obsolete (initial) solutions of the quadratic approach and

Heuristic 1 for the single- and double-cluster scenarios with

� = 300 and average fronthaul degree 3.5

concentrations or unusual patterns would be ignored, even

though the network has the ability to adapt.

We propose a better alternative to both methods that ex-

ploits the similarities between Heuristic 1 and the quadratic

approach. It is observed that, although Heuristic 1 often yields

poor-quality solutions with respect to the other algorithms, its

behavior (regarding when and how solutions change) remains

similar to any of the other algorithms. In order to show

this, we present two additional experiments representing two

extreme scenarios. In the first, single-cluster experiment, we

vary the UE concentration between uniform and clustered as

(normalized) time passes from C = 0 to C = 1, as shown in

Fig. 10a and 10b. In the second, double-cluster experiment,

we use vary the UE population between an initial cluster

and a final cluster, as shown in Fig. 10c and 10d. For both

experiments, the performance of the optimal solutions pro-

vided by the quadratic formulation and Heuristic 1 is recorded

for each time increment. Since these are the best solutions

that each approach can provide for the current scenario, we

refer to them as current solutions. In addition, we store

the solutions provided by both approaches when C = 0 and

record their performance for every new UE position between

C = 0 and C = 1, as if the network did not adapt during the

experiments. We refer to these initial, outdated solutions as

obsolete solutions.

In Fig. 11, we show the geometric mean of the spectral ef-

ficiencies achieved by the current and obsolete solutions, after

500 runs of the single-cluster and double-cluster experiments.

We observe that, although there is always a performance

gap between the quadratic formulation and Heuristic 1, their

solutions corresponding evolve similarly. In the single-cluster

experiment (Fig. 11a), current solutions tend to yield better

performance in a similar fashion, whereas obsolete solutions

remain almost constant for both approaches. The latter be-

havior is consistent with the performance of a static solution

shown in Fig. 9, as the formation of a cluster of UEs brings

an opportunity for enhanced interference mitigation, which

a static approach misses. In the double-cluster experiment

(Fig. 11b), obsolete solutions optimize for a disappearing

cluster while ignoring the one appearing, leading to a steep

performance degradation. Also in this case current and ob-

solete solutions behave similarly for both approaches. As a

consequence, we can exploit the low running time of Heuristic

1 and run it frequently to serve as a predictor of a network

change by comparing it with the performance of previous

solutions. Once a solution change has been detected, a better

adaptive algorithm, such as the quadratic approach, can be

used to decide on the optimal functional split.

VII. COST ANALYSIS

The main objective of this work is to find a fast and accu-

rate optimization approach to select a throughput-maximizing

functional split, so that it can be used in a dynamically-

adapting RAN. Nonetheless, the viability of such a RAN is

unclear unless the cost of finding, applying, and operating the

selected functional splits is taken into account. In this section,

we assess the deployment and operating costs of implementing

a throughput-maximizing approach and compare it to alter-

native approaches, such as a fully distributed RAN, a fully

centralized RAN or a static RAN in which the operating cost is

minimized. Moreover, we briefly discuss the cost implications

of a dynamic adaptation of the functional split.

A. Deployment cost

In order to be able to implement a dynamic functional split,

both CU and DUs need to have the capacity to host those func-

tions whose placement can be configured. As a result, there

is always redundant, unused processing capacity on either the

CU or the DUs for every possible configuration. Compared

to fully distributed or fully centralized static configurations,

this may lead to higher operating costs, which are investigated

in the next section, and also to higher deployment costs.

Conversely, the main advantage of a dynamic functional split

is the possibility to reuse the fronthaul (or backhaul) network

while still allowing for partial centralization. Since deploying

a new fronthaul network can be very expensive for operators

[49], the cost of a well-planed dynamic RAN may still be

substantially lower than that of a fully centralized RAN, while

offering higher data rates than a fully distributed RAN.

According to [50], the cost of deploying a distributed gNB

is $50, 000 per macro cell and $20, 000 per micro cell, whereas

deploying a centralized gNB costs $25, 000 for a macro cell

and $10, 000 per micro cell. Assuming that there are three

times more micro cells than micro cells (as recommended in

3GPP TS38.193 [37]), this results in an average deployment
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cost of $27, 500 for a distributed gNB and $13, 750 for a

centralized gNB. In addition, the estimated deployment cost of

the data center to host the CU is $40, 000. Finally, an operator

implementing a fully centralized RAN would probably need

to deploy a new optical fronthaul network in order to support

the large capacity requirements of C-RAN [49]. In [50], the

cost of deploying such a network is estimated as $100, 000

per kilometer2. As a result, we can estimate the deployment

cost  D-RAN of a fully distributed RAN as:

 D-RAN = $27, 500 · �, (29)

and the deployment cost  C-RAN of a fully centralized RAN as:

 C-RAN = $40, 000 + $13, 750 · � + $100, 000 · Z , (30)

where Z is the total length (in km) of the fronthaul network.

A RAN implementing a dynamic functional split can be

regarded as a hybrid between full centralization and full

distribution, thus its deployment cost can be calculated as

follows. Firstly, since the DUs need to have enough capacity

to host all functions, their cost should also be $27, 500 per

gNB, as in a fully distributed RAN. Secondly, the data center

hosting the CU is still needed, so that its cost has to be

included. Finally, although the fronthaul network does not

need to be replaced, some extensions and optimizations may

be still required in order to leverage its full capacity. The

estimated cost of these extensions is $5, 000 per kilometer,

according to [50]. As a consequence, we estimate the cost

 Dyn-RAN of deploying a dynamic RAN as:

 Dyn-RAN = $40, 000 + $27, 500 · � + $5, 000 · Z , (31)

We conclude from this expression that the deployment cost of

a dynamic RAN is always higher than that of a fully distributed

RAN, although the superior performance of the former may

render it more profitable. Furthermore, since the fronthaul

network can be reused, the cost of a dynamic RAN can be

substantially lower than that of a centralized RAN.

In order to illustrate this, we consider three different RAN

sizes, � = {150, 300, 450}, that use a fronthaul network of

average degree of k = 3.5 and a = 10, that is, a medium-

density fronthaul network. After simulating this scenario in the

same conditions as described in Sec. V, we observe that the

average taxicab lengths of the resulting fronthaul networks are

Z = {31.6, 60.4, 88.9} km. If we feed these input parameters

into (29), (30) and (31), we obtain the values shown in Table I.

We conclude that for this example scenario, the deployment

cost of a dynamic RAN is around 4.5% higher than that of

a distributed RAN, whereas the cost of a centralized RAN

is around 25% higher. This suggests that a dynamic RAN

can indeed compete with distributed and centralized options

in terms of deployment cost.

B. Operating cost

We use the model provided in [51] for the operating cost of

a RAN implementing a configurable functional split, which

2Note that this is a rough estimate of the actual cost, since it does not take
into account the network topology, legal fees, etc.

�  D-RAN  C-RAN  Dyn-RAN

150 $4, 125, 000 $5, 263, 000 $4, 323, 000
300 $8, 250, 000 $10, 205, 000 $8, 592, 000
450 $12, 375, 000 $15, 118, 000 $12, 860, 000

Table I: Estimated deployment cost of a fully distributed RAN,

a fully centralized RAN, and a RAN implementing a dynamic

functional split.

consists of three components: (i) the cost of instantiating

mobile functions at the CU or DU, (ii) the computational costs

of running these functions, and (iii) the routing costs. We refer

to the first component as ^1, which can be calculated as:

^1 = (hCU + hDU) · �, (32)

where hCU and hDU are the costs of providing resources for

a single gNB at the CU and DU, respectively. Based on the

data presented at [51], we assume values of hDU = 1 ncu and

hCU = 0.5 ncu, where ncu stands for “normalized cost units”.

The second component, denoted by ^2 (x), can be computed as:

^2 (x) =

�∑
6=1

(
gCU (G6)qCU + gDU(G6)qDU

)
`6, (33)

where `6 is the instantaneous user data rate experienced by

gNB 6, gCU (gDU) is the CPU cycles per Gb/s required to cope

with user traffic at the CU (DU) when using split G6, and qCU

(qDU) is the relative cost per CPU cycle at the CU (DU).

Values for `6 can be estimated directly from the number of

active users, as shown in [52], and values for gCU (G), gDU(G),

qCU, and qCU are taken directly from [51]. Function gCU (G6)

is not linear in x, but it can be redefined as a linear function

of y6, with slight abuse of notation:

gCU (y6) = gCU (0) +

&−1∑
@=1

YCU(G6)H6, (34)

where YCU(G) = gCU (G + 1) − gCU (G). The same derivation

applies to gDU(G6), so that we can redefine ^2 (x) as ^2 (y).

Finally, the routing costs can be calculated as:

^3 (f) =

�∑
6=1

∑
4∈E+ (=6 )

l 5
6
4 , (35)

where l is the average normalized cost per Gb/s over all links.

Cost components ^1, ^2 (y), and ^3 (f) can be used to calcu-

late the total operating cost ^(y, f) of the solutions provided

by our proposed approaches as follows:

^(y, f) = ^1 + ^2 (y) + ^3 (f) . (36)

Moreover, we can use this expression to figure out a cost-

optimal solution, i. e., a solution that minimizes the operating

cost, by using it as the objective function of a new optimization

problem:

min
y,f

^1 + ^2 (y) + ^3 (f) (P8a)

subject to (P0c)–(P0d) and (P1b)–(P1d).

Problem (P8) is equivalent to that presented in [51], using

an edge formulation instead of a path formulation for flow
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Figure 12: Relative operating cost achieved by fully dis-

tributed, fully centralized, quadratic, cost-optimal, and heuris-

tic approaches when � = 300, average fronthaul degree

k = 3.5, and UE concentration index \ = 0.75.

modeling. In addition, it is an MILP of the same form as

(P7), our quadratic formulation, so that it can be solved using

the same methods in comparable time.

Although the FSSP and problem (P8) have different objec-

tives, their solutions may not be radically different. Indeed,

there may be a positive correlation between cost minimization

and throughput maximization as a result of the influence of

computational costs ^2 (y). Since the cost of running mo-

bile functions at the CU is much smaller than at the DU

(qCU = 0.017 ncu/cycle vs. qDU = 1 ncu/cycle, according

to [51]), minimizing this cost component also entails central-

izing as many functions as possible, which is also desired

by the throughput-maximization approach. Nonetheless, the

routing costs ^3 (f) have the opposite effect, since function

centralization increases network usage. As a result, the value

of l greatly influences how exceedingly costly a throughput-

maximizing solution is, and how much throughput is lost by

a cost-optimal solution.

Fig. 12 shows the impact of l on the operating cost of

solutions provided by the quadratic approach and heuristics 1

and 2, along with that of the cost-optimal solution from (P8).

For reference, we also include the cost of fully distributed

and fully centralized networks, although the latter is always

infeasible. We observe that when l = 0, the cost of our

proposed approaches is very similar to that of the cost-optimal

approach. In fact, the average cost difference between the cost-

optimal and quadratic approaches is less than 1%. As l grows,

the cost-optimal solution converges to the distributed solution,

since centralization incurs in high routing costs. Conversely,

the cost of our proposed approaches increases linearly with

l, as this parameter is not taken into account for solution

selection. As a consequence, at l = 0.5, the average cost

difference between the cost-optimal and quadratic approaches

is 22%, and if l = 1 this difference increases up to 45%.

In order to make a meaningful analysis, the cost differ-

ence between a cost-optimal and a throughput-maximizing

approach must be evaluated against the possible additional

revenue of the latter, resulting from being able to operate with

higher spectral efficiency. In Fig. 13 we show the influence

of the routing costs l on the spectral efficiencies achieved by

Figure 13: Average spectral efficiency achieved by fully dis-

tributed, fully centralized, quadratic, cost-optimal, and heuris-

tic approaches when � = 300, average fronthaul degree

k = 3.5, and UE concentration index \ = 0.75.

the same approaches as in Fig. 12. We observe that the cost-

optimal approach always achieves noticeably lower spectral

efficiencies than throughput-maximizing approaches, as we

might expect. At l = 0, our quadratic approach achieves a

15% higher spectral efficiency than the cost-optimal approach,

this increases to 45% at l = 0.5, and finally to 86% for l ≥

0.75, as the cost-optimal approach converges to the distributed

solution. We conclude that the additional cost of throughput-

maximizing approaches translates into proportionally higher

improvements in the spectral efficiency. If the operator is

able to profit from these improvements, then throughput-

maximizing approaches may lead to a higher revenue with

respect to static or cost-optimal approaches.

With the intention of providing a detailed cost analysis,

we also study how the fronthaul network density and the

UE concentration influence the trade off between spectral

efficiency and cost in two scenarios. First, we investigate the

case where routing costs are negligible (l = 0), and thus the

operator is motivated to centralize as many functions as possi-

ble, either pursuing minimal cost or maximum throughput. The

results for this scenario are depicted in Fig. 14. We observe

that, in this case, higher fronthaul densities lead to higher

spectral efficiencies (Fig. 14a) and lower costs (Fig. 14c) for

all approaches, since more functions can be maximized. Never-

theless, our proposed throughput-maximizing approaches take

more advantage of dense fronthaul networks, achieving better

spectral efficiency than the cost-optimal approach while having

comparable cost. Indeed, when k = 5, the quadratic approach

achieves a 16.5% higher spectral efficiency while being only

1.3% more costly than the cost-optimal approach. A similar

trend can be observed as the UEs become more concentrated:

if \ = 0.95, the quadratic approach achieves a 15.1% higher

spectral efficiency while being only 6.3% more costly.

Finally, we examine a scenario where routing costs are not

negligible, but still low enough so that a fully distributed

configuration is not the least costly option. We set the routing

cost to l = 0.5 ncu·s/Gb to illustrate this scenario, which

is the midpoint between the value where the throughput-

maximizing approach becomes more costly than the fully

distributed configuration (l ≈ 0.25 ncu·s/Gb), and the
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(a) Spectral efficiency, \ = 0.75 (b) Spectral efficiency, k = 3.5

(c) Relative operating cost, \ = 0.75 (d) Relative operating cost, k = 3.5

Figure 14: Spectral efficiency and relative operating cost

achieved by fully distributed, quadratic, cost-optimal and

heuristic approaches when � = 300 and l = 0 ncu·s/Gb.

value where the cost optimal approach converges to the fully

distributed configuration (l ≈ 0.75 ncu·s/Gb). The results are

depicted in Fig. 15. For this scenario, we observe that the

cost and spectral efficiency gaps between the cost-optimal and

throughput-maximizing approaches are noticeably larger than

in the previous scenario, since the former is now very limited

by the routing costs. When k = 5, the quadratic approach

achieves a 54.4% higher spectral efficiency (Fig. 15a) while

being 47.5% more costly than the cost-optimal approach

(Fig. 15c). A similar trend can be observed as the UEs

become more concentrated: if \ = 0.95, the quadratic approach

achieves a 116.7% higher spectral efficiency (Fig. 15b) while

being 90.7% more costly (Fig. 15d). These results suggest

that, when the routing costs as high, throughput-maximizing

approaches can only compete with the cost-optimal one as long

as the higher spectral efficiency translates into higher profit.

C. Profitability in dynamic conditions

In the previous section, we show that throughput-

maximizing approaches are able to deliver instantaneous net-

work configurations that may be more profitable than other

approaches, such as static or cost-optimal configurations.

However, the changing nature of mobile networks still poses

significant challenges at the task of evaluating the profitability

of a dynamically-managed network. These challenges are

discussed in [53], where the costs of operating such a flexible

network are divided into two categories: readiness cost, which

reflects the cost of operating in stable conditions, and action

cost, which denotes the cost of sensing network changes and

adapting the network configuration accordingly.
In order to carry out a meaningful cost analysis of a dynamic

network, a large number of variables has to be taken into

account. In this work we already consider some of them, such

as network size, fronthaul density, UE distribution, and split-

selection algorithm. Nonetheless, there are other aspects which

(a) Spectral efficiency, \ = 0.75 (b) Spectral efficiency, k = 3.5

(c) Relative operating cost, \ = 0.75 (d) Relative operating cost, k = 3.5

Figure 15: Spectral efficiency and relative operating cost

achieved by fully distributed, quadratic, cost-optimal and

heuristic approaches when � = 300 and l = 0.5 ncu·s/Gb.

still play a role, such as the type of covered area (residential,

business, entertainment), UE mobility patterns, and a model

of the performance degradation of the current configuration

[54]. As a consequence, the complete analysis of the cost

and potential profitability of a 5G network implementing a

dynamic functional split is out of the scope of this paper and

the matter of a separate future work.

VIII. CONCLUSION

The ambitious performance objectives of 5G regarding user

data rates force operators to increase cell density. Nonetheless,

increased cell density causes additional interference, which

may be countered by means of centralized RAN architec-

tures. The feasibility of these architectures is limited by the

capacity of the fronthaul network, which frequently can only

support partial function centralization, leading to the so-called

functional split. The functional split affects the interference-

mitigation capabilities of the network as well as the required

fronthaul capacity, so that it has to be carefully chosen to

ensure an efficient network utilization.

In this work, we tackle the problem of dynamically selecting

the functional split of all gNBs in the network according to

the instantaneous interference situation. We formulate it as a

mixed-integer non-linear program and derive reformulations,

approximations, and heuristics to enable solving it during run-

time. We comprehensively evaluate each approach on operator-

grade hardware using realistic network parameters obtained

from 3GPP specifications and measurement traces. We also as-

sess the impact of the fronthaul network topology and the UE

concentration on the quality of the solutions. We observe that

adaptive approaches perform best when the fronthaul network

is dense and when the UEs are concentrated, although they

outperform static alternatives in all scenarios. In conclusion,

we show that adaptive architectures may yield average spectral
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efficiencies up to 90% higher than those of static architectures

while being comparable to static approaches in terms of cost.

APPENDIX A

ALGORITHMIC DESCRIPTION OF HEURISTIC 1

See Algorithm 1.

Algorithm 1: Heuristic 1 (Webster/Saint-Laguë

method and binary search).

Input: -+, -−, �̂6 ∀6 ∈ G

Output: x, f

1 G6 ← 0 ∀6 ∈ G

2 - ← -+

3 repeat // Binary search

4 repeat // W/S-L assignment

5 6∗ ← arg max6{ �̂6 | 6 ∈ G}

6 G6∗ ← G6∗ + 1

7 if G6∗ < & then

8 �6∗ ←
�6∗

2G6∗+1

9 else

10 �6∗ ← −∞

11 end

12 until
∑�
6=1 G6 = -

13 if (26) feasible then // Feasibility check

14 -−← -

15 f ← f∗(x) as in (26).

16 else

17 -+ ← - − 1

18 end

19 until -+ = -−

APPENDIX B

BINARY SEARCH FOR HEURISTIC 1

As 2(·) is a monotonically decreasing function, it can

be trivially proven that [̃(x) ≥ [̃(x′) whenever G6 ≥ G′6
∀6 ∈ G, and vice-versa. In words, this means that increasing

(decreasing) the centralization level of any gNB can only

increase (decrease), on average, the mean spectral efficiency,

as intuitively expected. Similarly, given constant �6 ∀6 ∈ G

and two accumulated centralization levels - and - ′ such that

- > - ′, it can be easily shown that the resulting centralization

vectors x and x′ yielded by the W/S-L algorithm fulfill G6 ≥ G
′
6

∀6 ∈ G. Finally, it is also clear that if x is feasible, then x′

must be as well. We conclude that there is a single maximum

value of - such that for all - ′ < - the W/S-L method returns

feasible but lower-performance solutions, and for all - ′′ > -

the W/S-L method returns infeasible solutions. In the light of

the above, we can implement a binary search of the highest

feasible value of - as shown in Algorithm 1.

ACKNOWLEDGMENT

This work is part of a project that has received funding from

the European Research Council (ERC) under the European

Union’s Horizon 2020 research and innovation program (grant

agreement No 647158 - FlexNets). The authors alone are

responsible for the content of the paper.

REFERENCES

[1] D. Lecompte and F. Gabin, “Evolved multimedia broadcast/multicast
service (eMBMS) in lte-advanced: Overview and Rel-11 enhancements,”
IEEE Communications Magazine, vol. 50, no. 11, pp. 68–74, 2012.

[2] M. Iwamura, A. Umesh, and W. A. Hapsari, “Further enhancements of
LTE –LTE release 9–,” NTT Docomo Technical Journal, vol. 12, no. 1,
pp. 45–53, 2010.

[3] P. Popovski, K. F. Trillingsgaard, O. Simeone, and G. Durisi, “5G wire-
less network slicing for eMBB, URLLC, and mMTC: A communication-
theoretic view,” IEEE Access, vol. 6, pp. 55 765–55 779, 2018.

[4] NGMN Alliance, “5G white paper,” Next generation mobile networks,

white paper, vol. 1, 2015.
[5] S. Nagul, “A review on 5G modulation schemes and their comparisons

for future wireless communications,” in 2018 Conference on Signal

Processing And Communication Engineering Systems (SPACES). IEEE,
2018, pp. 72–76.

[6] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N.
Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave
mobile communications for 5G cellular: It will work!” IEEE access,
vol. 1, pp. 335–349, 2013.

[7] B. Soret, A. De Domenico, S. Bazzi, N. H. Mahmood, and K. I.
Pedersen, “Interference coordination for 5G new radio,” IEEE Wireless

Communications, vol. 25, no. 3, pp. 131–137, 2017.
[8] N. H. Mahmood, L. G. Uzeda Garcia, P. Popovski, and P. E. Mogensen,

“On the performance of successive interference cancellation in 5g small
cell networks,” in 2014 IEEE Wireless Communications and Networking
Conference (WCNC). IEEE, 2014, pp. 1154–1159.

[9] V. Jungnickel, K. Manolakis, W. Zirwas, B. Panzner, V. Braun, M. Los-
sow, M. Sternad, R. Apelfröjd, and T. Svensson, “The role of small
cells, coordinated multipoint, and massive MIMO in 5G,” IEEE com-

munications magazine, vol. 52, no. 5, pp. 44–51, 2014.
[10] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S.

Berger, and L. Dittmann, “Cloud RAN for mobile networks–a technol-
ogy overview,” IEEE Communications surveys & tutorials, vol. 17, no. 1,
pp. 405–426, 2014.

[11] A. Maeder, M. Lalam, A. De Domenico, E. Pateromichelakis,
D. Wübben, J. Bartelt, R. Fritzsche, and P. Rost, “Towards a flexible
functional split for cloud-RAN networks,” in 2014 European Conference

on Networks and Communications (EuCNC). IEEE, 2014, pp. 1–5.
[12] U. Dötsch, M. Doll, H.-P. Mayer, F. Schaich, J. Segel, and P. Sehier,

“Quantitative analysis of split base station processing and determination
of advantageous architectures for LTE,” Bell Labs Technical Journal,
vol. 18, no. 1, pp. 105–128, 2013.

[13] A. Martínez Alba, J. H. G. Velásquez, and W. Kellerer, “Traffic charac-
terization of the MAC-PHY split in 5G networks,” in 2019 IEEE Global
Communications Conference (GLOBECOM). IEEE, 2019, pp. 1–6.

[14] D. Sabella, P. Rost, Y. Sheng, E. Pateromichelakis, U. Salim, P. Guitton-
Ouhamou, M. Di Girolamo, and G. Giuliani, “RAN as a service:
Challenges of designing a flexible ran architecture in a cloud-based
heterogeneous mobile network,” in 2013 Future Network & Mobile

Summit. IEEE, 2013, pp. 1–8.
[15] A. Garcia-Saavedra, X. Costa-Perez, D. J. Leith, and G. Iosifidis,

“FluidRAN: Optimized vRAN/MEC orchestration,” in IEEE INFOCOM

2018-IEEE Conference on Computer Communications. IEEE, 2018, pp.
2366–2374.

[16] L. Diez, V. Gonzalez, and R. Agüero, “Minimizing delay in NFV 5G
networks by means of flexible split selection and scheduling,” in 2019
IEEE 90th Vehicular Technology Conference (VTC2019-Fall). IEEE,
2019, pp. 1–6.

[17] D. Harutyunyan and R. Riggio, “Flex5G: Flexible functional split in 5G
networks,” IEEE Transactions on Network and Service Management,
vol. 15, no. 3, pp. 961–975, 2018.

[18] A. Martínez Alba and W. Kellerer, “A dynamic functional split in
5G radio access networks,” in 2019 IEEE Global Communications
Conference (GLOBECOM). IEEE, 2019, pp. 1–6.

[19] C.-Y. Chang, N. Nikaein, R. Knopp, T. Spyropoulos, and S. S. Ku-
mar, “FlexCRAN: A flexible functional split framework over ethernet
fronthaul in cloud-RAN,” in 2017 IEEE International Conference on

Communications (ICC). IEEE, 2017, pp. 1–7.
[20] A. Martínez Alba, J. H. G. Velásquez, and W. Kellerer, “An adaptive

functional split in 5G networks,” in IEEE INFOCOM 2019-IEEE

Conference on Computer Communications Workshops (INFOCOM WK-

SHPS). IEEE, 2019, pp. 410–416.
[21] 3GPP, “Study on new radio access technology: Radio access architecture

and interfaces,” 3rd Generation Partnership Project (3GPP), Technical
Report (TR) 38.801, 03 2017, version 14.0.0.



18

[22] C.-H. Fang, P.-R. Li, and K.-T. Feng, “Joint interference cancellation and
resource allocation for full-duplex cloud radio access networks,” IEEE
Transactions on Wireless Communications, vol. 18, no. 6, pp. 3019–
3033, 2019.

[23] 3GPP, “NR; Physical channels and modulation,” 3rd Generation Part-
nership Project (3GPP), Technical Specification (TS) 38.211, 01 2021,
version 16.4.0.

[24] G. Nardini, G. Stea, A. Virdis, A. Frangioni, L. Galli, D. Sabella, and
G. M. Dell’Aera, “Practical feasibility, scalability and effectiveness of
coordinated scheduling algorithms in cellular networks towards 5G,”
Journal of Network and Computer Applications, vol. 106, pp. 1–16,
2018.

[25] Y. Zhang, J. Ding, M.-W. Kwan, J. Ni, E. K. Tsang, Y.-N. R. Li, and
J. Li, “Measurement and evaluations of coherent joint transmission for
5G networks,” in 2017 IEEE 85th Vehicular Technology Conference

(VTC Spring). IEEE, 2017, pp. 1–5.
[26] H. Paixão Martins, “Analysis of CoMP for the management of interfer-

ence in LTE,” Master Thesis, 2017.
[27] Y. He, F. R. Yu, N. Zhao, V. C. Leung, and H. Yin, “Software-defined

networks with mobile edge computing and caching for smart cities: A
big data deep reinforcement learning approach,” IEEE Communications

Magazine, vol. 55, no. 12, pp. 31–37, 2017.
[28] J. Branke and H. Schmeck, “Designing evolutionary algorithms for dy-

namic optimization problems,” in Advances in evolutionary computing.
Springer, 2003, pp. 239–262.

[29] M. Koivisto, A. Hakkarainen, M. Costa, P. Kela, K. Leppanen, and
M. Valkama, “High-efficiency device positioning and location-aware
communications in dense 5G networks,” IEEE Communications Maga-

zine, vol. 55, no. 8, pp. 188–195, 2017.
[30] K. Govindaraj and A. Artemenko, “Container live migration for latency

critical industrial applications on edge computing,” in 2018 IEEE
23rd International Conference on Emerging Technologies and Factory

Automation (ETFA), vol. 1. IEEE, 2018, pp. 83–90.
[31] G. Song and Y. Li, “Cross-layer optimization for ofdm wireless

networks-part i: theoretical framework,” IEEE transactions on wireless

communications, vol. 4, no. 2, pp. 614–624, 2005.
[32] F. Glover and E. Woolsey, “Converting the 0–1 polynomial programming

problem to a 0–1 linear program,” Operations research, vol. 22, no. 1,
pp. 180–182, 1974.

[33] R. Horst, “A general class of branch-and-bound methods in global
optimization with some new approaches for concave minimization,”
Journal of Optimization Theory and Applications, vol. 51, no. 2, pp.
271–291, 1986.

[34] H.-L. Li, “A global approach for general 0–1 fractional programming,”
European Journal of Operational Research, vol. 73, no. 3, pp. 590–596,
1994.

[35] T.-H. Wu, “A note on a global approach for general 0–1 fractional
programming,” European Journal of Operational Research, vol. 101,
no. 1, pp. 220–223, 1997.

[36] M. Tawarmalani, S. Ahmed, and N. V. Sahinidis, “Global optimization
of 0–1 hyperbolic programs,” Journal of Global Optimization, vol. 24,
no. 4, pp. 385–416, 2002.

[37] 3GPP, “Study on scenarios and requirements for next generation access
technologies,” 3rd Generation Partnership Project (3GPP), Technical
Report (TR) 38.913, 07 2018, version 15.0.0.

[38] J. S. Borrero, C. Gillen, and O. A. Prokopyev, “A simple technique
to improve linearized reformulations of fractional (hyperbolic) 0–1
programming problems,” Operations Research Letters, vol. 44, no. 4,
pp. 479–486, 2016.

[39] F. Glover, “Improved linear integer programming formulations of nonlin-
ear integer problems,” Management Science, vol. 22, no. 4, pp. 455–460,
1975.

[40] M. Gallagher, “Proportionality, disproportionality and electoral system,”
Electoral studies, vol. 10, no. 1, pp. 33–51, 1991.

[41] K. Schuster, F. Pukelsheim, M. Drton, and N. R. Draper, “Seat biases
of apportionment methods for proportional representation,” Electoral

Studies, vol. 22, no. 4, pp. 651–676, 2003.
[42] P. K. Sharma and R. Singh, “Comparative analysis of propagation

path loss models with field measured data,” International Journal of

Engineering Science and Technology, vol. 2, no. 6, pp. 2008–2013, 2010.
[43] A. Basta, A. Blenk, K. Hoffmann, H. J. Morper, M. Hoffmann, and

W. Kellerer, “Towards a cost optimal design for a 5G mobile core
network based on SDN and NFV,” IEEE Transactions on Network and

Service Management, vol. 14, no. 4, pp. 1061–1075, 2017.
[44] L. Gurobi Optimization, “Gurobi optimizer reference manual,” 2020.

[Online]. Available: http://www.gurobi.com

[45] H. D. Trinh, L. Giupponi, and P. Dini, “Urban anomaly detection by
processing mobile traffic traces with LSTM neural networks,” in 2019
16th Annual IEEE International Conference on Sensing, Communica-

tion, and Networking (SECON). IEEE, 2019, pp. 1–8.
[46] F. Xu, Y. Li, H. Wang, P. Zhang, and D. Jin, “Understanding mobile

traffic patterns of large scale cellular towers in urban environment,”
IEEE/ACM transactions on networking, vol. 25, no. 2, pp. 1147–1161,
2016.

[47] A. Martínez Alba and W. Kellerer, “Large-and small-scale modeling of
user traffic in 5G networks,” in 2019 15th International Conference on

Network and Service Management (CNSM). IEEE, 2019, pp. 1–5.
[48] R. K. Polaganga and Q. Liang, “Self-similarity and modeling of

LTE/LTE-A data traffic,” Measurement, vol. 75, pp. 218–229, 2015.
[49] A. Checko, A. P. Avramova, M. S. Berger, and H. L. Christiansen,

“Evaluating c-ran fronthaul functional splits in terms of network level
energy and cost savings,” Journal of Communications and Networks,
vol. 18, no. 2, pp. 162–172, 2016.

[50] V. Suryaprakash, P. Rost, and G. Fettweis, “Are heterogeneous cloud-
based radio access networks cost effective?” IEEE Journal on Selected

Areas in Communications, vol. 33, no. 10, pp. 2239–2251, 2015.
[51] A. Garcia-Saavedra, G. Iosifidis, X. Costa-Perez, and D. J. Leith,

“Joint optimization of edge computing architectures and radio access
networks,” IEEE Journal on Selected Areas in Communications, vol. 36,
no. 11, pp. 2433–2443, 2018.

[52] J.-G. Choi and S. Bahk, “Cell-throughput analysis of the proportional
fair scheduler in the single-cell environment,” IEEE Transactions on

Vehicular Technology, vol. 56, no. 2, pp. 766–778, 2007.
[53] A. Martínez Alba, P. Babarczi, A. Blenk, M. He, P. Krämer, J. Zerwas,

and W. Kellerer, “Modeling the cost of flexibility in communication
networks,” in IEEE INFOCOM 2021-IEEE Conference on Computer

Communications. IEEE, 2021.
[54] A. Martínez Alba, S. Janardhanan, and W. Kellerer, “Dynamics of the

flexible functional split selection in 5g networks,” in 2020 IEEE Global

Communications Conference: Mobile and Wireless Networks, 2020.

Alberto Martínez Alba received his Bachelor’s and
Master’s degrees in Telecommunication Engineering
from the Technical University of Madrid, Spain. He
is currently pursuing the Ph.D. degree with the Chair
of Communication Networks, Technical University
of Munich, Germany. His current research interests
include the design, optimization, and implementa-
tion of flexible next-generation mobile networks,
adaptive radio access networks, and software-defined
mobile networks.

Shakthivelu Janardhanan received his Bachelor’s
degree in Electronics and Communication in 2019,
from Sri Sivasubramaniya Nadar College of Engi-
neering, Kalavakkam, India. He is currently pursuing
his Master’s degree in Communication Engineering
at the Technical University of Munich, Germany.
His research interests include Computer Networks,
Wireless sensor networks, 5G - New Radio and
Functional split of Cloud RAN architecture.

Wolfgang Kellerer (M’96, SM’11) is a Full Profes-
sor with the Technical University of Munich (TUM),
heading the Chair of Communication Networks at
the Department of Electrical and Computer Engi-
neering. Before, he was for over ten years with
NTT DOCOMO’s European Research Laboratories.
He currently serves as an associate editor for IEEE
Transactions on Network and Service Management
and as the area editor for Network Virtualization for
IEEE Communications Surveys and Tutorials.


