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Abstract—Clustered federated Multitask learning is introduced
as an efficient technique when data is unbalanced and distributed
amongst clients in a non-independent and identically distributed
manner. While a similarity metric can provide client groups
with specialized models according to their data distribution,
this process can be time-consuming because the server needs
to capture all data distribution first from all clients to perform
the correct clustering. Due to resource and time constraints
at the network edge, only a fraction of devices is selected
every round, necessitating the need for an efficient scheduling
technique to address these issues. Thus, this paper introduces a
two-phased client selection and scheduling approach to improve
the convergence speed while capturing all data distributions.
This approach ensures correct clustering and fairness between
clients by leveraging bandwidth reuse for participants spent a
longer time training their models and exploiting the heterogeneity
in the devices to schedule the participants according to their
delay. The server then performs the clustering depending on
predetermined thresholds and stopping criteria. When a specified
cluster approximates a stopping point, the server employs a
greedy selection for that cluster by picking the devices with lower
delay and better resources. The convergence analysis is provided,
showing the relationship between the proposed scheduling ap-
proach and the convergence rate of the specialized models to
obtain convergence bounds under non-i.i.d. data distribution. We
carry out extensive simulations, and the results demonstrate that
the proposed algorithms reduce training time and improve the
convergence speed by up to 50% while equipping every user with
a customized model tailored to its data distribution.

Index Terms—Distributed Learning, CFL, participants
scheduling, resource allocation, non-i.i.d. and incongruent data
distribution.

I. INTRODUCTION

Internet-of-Things (IoT) devices on wireless edge networks
generate a vast amount of heterogeneous data that could be
utilized to interpret the current behavior of the system or
anticipate its future states.

Mobile Edge Computing (MEC) takes advantage of having
edge devices and access points equipped with unrivaled ca-
pabilities to conduct complicated tasks and support intelligent
services closest to these devices [2], [3]. On MEC, Artificial
Intelligence (AI), and Machine Learning (ML), in particular,
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have seen rapid advancements and have begun to deliver
intelligent services that have the potential to revolutionize our
lives. Several recent studies have looked towards the use of
ML techniques for IoT-edge applications, serving as an enabler
for this vision [4]. Traditional ML techniques, on the other
hand, require data to be outsourced and processed in a central
spot, which poses a serious privacy threat, boosts the data size
transferred by edge nodes, and exacerbates communication
delays caused by limited resources [5].

Federated Learning (FL) is a promising decentralized ML
solution that copes with these issues while preserving the data
in place. Only model parameters (i.e., weights and biases) are
shared with the server while the learning process takes place
on edge devices [6]–[10]. The server handles the process of
developing the global model by collecting and averaging all
updates performed by different edge devices. In each global
round, the server regularly publishes the most recent global
model for further updates. The server repeats these procedures
until convergence of the global model to the optimum solution
is attained. Our work focuses primarily on applying FL
to edge networks, so we refer to FL as Federated Edge
Learning (FEEL) [11]. The main difference is that in FL, the
cloud server can engage many different clients from different
locations, whereas in FEEL, the training is conducted near the
clients over wireless links.

When deploying FEEL, statistical and resource hetero-
geneity are considered the key challenges. For the statistical
heterogeneity, the data amongst edge devices is distributed
in a non-independent and identically distributed (non-i.i.d.)
and unbalanced fashion [5], [8], [12]. Regarding the resource
heterogeneity challenge, the devices are heterogeneous, with
different computation and communication capabilities. Also,
bandwidth is restricted, limiting the number of devices willing
to participate in a given FEEL round. This emphasizes the
importance of practical and effective selection and scheduling
algorithms that improve the convergence rate and produce an
unbiased model that can optimally fit all incongruent data
distributions, particularly in large-scale edge networks.

To tackle the statistical challenges, considerable research
efforts have been devoted to studying and tackling this issue
under different FEEL settings [13]–[19]. Among all these
solutions, Clustered Multi-tasks Federated Learning (CFL)
[16], [20] demonstrated exceptional performance by striking
a balance between learning and cost. The geometry of the
FEEL loss surface is utilized by CFL to cluster service users
into groups using data distributions that can be trained at
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the federal level. It is worth mentioning that conventional
FL implies that just a single global model is always being
trained for all clients regardless of the discrepancies in their
data distribution. On the other hand, Sattler et al. [16] proved
that these assumptions are commonly violated in realistic
applications. In particular, it is demonstrated that at each
stationary point of the FL main objective, the similarities
between the local models of different participants could be
measured using cosine similarity to deduce the groupings of
participants with contradictory distributions (i.e., incongruent
distributions).

The key advantage of CFL, in to multi-task FEEL [21]
which learns several models for several related tasks and
personalized FEEL [22] which provides each participant (i.e.,
participating client) with a customized model, is that CFL
does not necessitate any change to the underlying FEEL
communication protocol even though clustering occurs only
after the conventional FL model reaches to a stationary point.
CFL is interpreted as a post-processing scheme that can
strengthen the FEEL performance by properly clustering all
clients and effectively producing a customized model for each
cluster. Recently, the investigations in [23]–[25] followed up
on the CFL-based methodology and verified that CFL is more
reliable for attaining higher accuracy than the traditional FEEL
when the data is heterogeneous and non-i.i.d.

Several studies [26]–[30] have sought to solve the challenge
of participants’ scheduling and resource allocation (i.e., re-
source heterogeneity challenges) while taking non-i.i.d. data
distribution (i.e., statistical challenges). For example, the au-
thors in [26]–[30] proposed several techniques to select partic-
ipants during each round of federated averaging, prioritizing
those with lower training latency, better communication and
computation resources, or lower energy consumption, under
the assumption that each client holds the same amount of data
(i.e., balanced). Yet, neither of these works [26]–[30] consider
the scheduling problem for the CFL technique, which requires
capturing all data distributions from all clients to perform the
correct clustering based on their data distributions. This means
that the scheduling approaches in the literature for traditional
FL are not applicable to CFL. If devices with better channels
or lower latency are regularly selected to participate in the
training, the resulting models will be biased since other devices
not engaged in training may have different data distributions.
The challenge of scheduling in CFL is a crucial issue that
remains unresolved and requires further investigation.

In response to all these remarks, this work proposes a
new client scheduling framework for CFL over wireless edge
networks to minimize training time and expedite the rate of
convergence while equipping every group of devices with the
optimal model that closely fits their data distribution. We
account for the insufficient resources at the edge network (i.e.,
bandwidth) and the deadline constraints that the server sets to
prevent a longer waiting time for updates to start a new training
round. We can summarize our key contributions as follows:
• Propose a novel client scheduling algorithm for CFL

to cope with the problem of limited resources while
performing efficient clustering to tackle the non-i.i.d.
and unbalanced data distribution problems. The proposed

algorithm is based on the fairness between the clients
across the network in such a way that all clients have
equal chances of being selected to participate in the
training phase, despite their channel states and data sizes.
This will enable the edge system to imbue the clients with
more specialized models rather than biased models.

• Formulate a joint optimization problem for resource
allocation and scheduling aiming to reduce the train-
ing latency and improve the convergence speed, taking
into account unbalanced data distribution and non-i.i.d.,
device heterogeneity, and insufficient resources. Due to
the NP-hardness of the problem, we propose a heuristic-
based solution depending on device heterogeneity and
bandwidth reuse to fairly aggregate all updates from all
devices.

• Bound the impacts of the proposed approach on the con-
vergence of the group’s models concerning the number
of scheduled clients, and incongruent and congruent data
distribution.

• Perform experimental evaluation using two federated
datasets, FEMNIST and CIFAR-10, under non-i.i.d and
unbalanced data distribution. The results confirm that our
proposed solutions effectively minimize the training la-
tency and improve the convergence speed while attaining
a satisfying performance.

The rest of the paper is structured as follows: we present the
related work in Section II. The system, learning, computation,
and communication models are introduced in Section III. Next,
we formulate the minimization problem in Section IV. The
proposed scheduling framework is introduced in Section V.
The convergence analysis is given in Section VI, where we
derive the relationships between the proposed algorithm and
the convergence rate. We evaluate the proposed scheduling
framework in Section VII where the experimental setup is
outlined, and the numerical results are discussed. Finally,
we summarize this paper and provide directions for future
extensions in Section VIII.

II. RELATED WORK

The study of FL deployment via edge networks from various
perspectives has gained a lot of interest in the literature.
A decentralized stochastic gradient descent approach was
studied in [31] considering the context of a bandwidth limit
in several channel conditions, where every client is chosen
opportunistically for transmission according to its channel
state. Earlier works considered perfect updates-upload tasks
to address the delay aspects’ challenges in FEEL. Yet, the im-
pacts of wireless channels are ignored, especially the ability to
leverage the characteristics of the channels (e.g., fading, multi-
access, and broadcasting) to reduce the latency. Therefore,
the broadband analogue aggregation technique is fine-tuned
for probabilistic channels due to restricted radio spectrum,
particularly channel capacity [31]. To be more precise, prior to
transmitting the models, the edge devices assess the sparsity
of the gradients and then transfer them to a lower-dimensional
realm constrained by the limited channel capacity. In addition,
the works in [32] investigated the convergence of the FL



3

Fig. 1: System overview where the CFL is performed at edge networks.

algorithm across wireless links, taking into account the effect
of unstable connections on the global model convergence.

Recently, the work in [33] introduced a solution to optimize
the accuracy and cost under unreliable wireless channels.
However, all analytical expressions are accounted for in the
convex ML setting (not addressing the non-convexity of the
deep learning algorithm).

Focusing on scheduling policies and participants’ selection,
to minimize the latency during the FL training process, several
client scheduling techniques were proposed in [1], [27], [28],
[34]–[37]. The aim is to improve the speed of the convergence
rate as well as address the limitations of communication and
communication resources. For example, Amiri et al., [38] eval-
uated four alternative update quantization-based scheduling
strategies. However, the authors first assumed a data symmetry
among all the clients; second, they utilized stochastic gradient
descent (SGD), which needs more rounds to converge on the
small data. Third, data heterogeneity was not considered, so
the clients with the best channels and significant L2-norm
differences control the global model, resulting in a biased
model. Moreover, the researchers in [39] developed a new
client strategy depending on the direction of the updated
gradient. This strategy, however, would almost certainly result
in a skewed model, particularly for a high degree of non-
i.i.d. The models with various gradient directions will not
be reflected in the global model version. Lately, the work in
[40], studied the client selection for hierarchical FL where
the connections keep changing while the works in [30], [41]
proposed approaches either to minimize the energy or to
apply semi-supervised learning. Huang et al. [42] investigated
the client selection problem, considering a volatile context
scenario in such a way that some selected clients may not
succeed in finishing their training and uploading tasks.

To conclude, although considerable works were devoted
to optimally selecting and scheduling the participants over a
wireless edge network, they only work for the traditional FL
where all clients aim to train only a single model. However,
CFL is entirely different from a theoretical point of view,
where all incongruent data distributions must be captured

in order to produce more reliable and efficient models that
optimally fit the distributions of the data amongst clients.
For that, a more reliable scheduling framework should be
considered to enable efficient CFL systems at the network
edge.

III. SYSTEM MODEL

As Fig. 1 depicts, this work considers a set of K =
{1, . . . ,K} heterogeneous edge devices, K = |K|, associated
with and coordinated by an edge server via a base station
(BS). Each individual k ∈ K device owns a local dataset Dk,
with Dk = |Dk| number of samples, and the total number of
samples amongst all devices is D =

∑K
k=1Dk. Each local

dataset, Dk, comprises a number of sample data with input-
output pairings as follows: {x(k)

i,d , y
(k)
i }

Dk
i=1, where x

(k)
i,d ∈ Rd

is an input with d features, and y(k)
i ∈ R is the accompanying

class-labeled output. Each device behaves differently based
on its activities, generating different sizes of local data; thus,
Dk is non-i.i.d. and unbalanced. As previously stated, the
connections between the devices and the server are made
via an unreliable wireless link. Also, the devices themselves
are resource-constrained, posing the challenge of scheduling
and selecting participants in order to improve the convergence
speed and minimize training time, particularly for CFL, where
the main objective is to train a set of models rather than
a single model as in conventional training. For the reader’s
convenience, the main symbols utilized in this work are listed
in Table I.

A. FEEL model
In FEEL, the aim is to develop a collaborative global model

to be used across the network. To do that, the server initiates
the global model W 0. Then, at every r-th round, the server
selects only a subset of devices Ωr every round due to the
limited resources (i.e., bandwidth sub-channels). Then, all
participants receive a copy of the global model Wr−1 in a
multicast scheme. Each k-th selected device employs its local
solver, such as SGD, to train the local model by minimizing the
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TABLE I: List of important symbols.

Abbrev. Description
K number of clients (i.e., available devices)
k client index k where k ∈ K
Dk k-th client’s local data
D Total Data samples amongst clients
{x(k)

i,d , y
(k)
i }The input and the accompanying class-labeled

output
Wr The parameters of the global model at r-th round
Fr(W ) The loss function of the global model at r-th round
fi The local loss function for each data sample i
Wk The model parameters of the k-th client
T Number of updates performed locally to update

the model
η Learning rate
E Number of epochs
b Batch size
T cmp
k Local computation time of k-th client
Tk Number of local updates
T tot The time budget for the whole training process
fk The used CPU speed at k-th client
Φk The required CPU cycles to process one local

sample
Tr The round deadline determined by the server
T trans
k The upload time (i.e., uploading latency)
rrk Transmit data rate achieved by the k-th client
B The bandwidth size
λk
rB The allocated bandwidth for client k at round r
N Number of OFDMA sub-channels
Ωr Participant’s selection set at r-th round
Sk
r The binary variable to specify whether the client

is selected 1 or not 0

hk
r The uplink channel gain between the k-th client

and the BS at r-th round
P r

k The k-th client transmit power
ξ Model size
Fk(Wr) Local loss function at k-th client
∇Fk(W ) Local gradient at k-th client
ε1, ε2 Hyper-parameters to control the clustering
I(k) The data distribution of client k

loss function over the number of local epochs denoted by E.
For example, let us assume that each device uses a mini-batch
SGD; thus, at every epoch, the data is divided into batches
in which the local solver performs an update on every single
batch. As a result, the number of local updates performed by
each participant during each global round is defined as follows:

Tk = E
Dk

b
, (1)

where b is the batch size to determine the number of samples
used for one local update. After finishing the local training,
each selected device, k ∈ Ωr, uploads its updated model to the
edge server, which in return collects and fuses all updates to
create a new global model. Regularly, the server coordinates
the learning process to seamlessly find the optimal model
parameters Wr ∈ Rd that are able to learn the linked output
patterns yi by repeatedly minimizing the corresponding loss
function as:

fi(Wr) = `(x
(k)
i,d , y

(k)
i ;Wr), (2)

in every r-th global round where the local loss function is
defined as:

Fk(Wr,Dk) :=
1

Dk

∑
i∈Dk

fi(Wr). (3)

Consequently, given datasets D1, ..,DK amongst a set of edge
devices, the global objective is to find the minimum reciprocal
value of the loss function for a set of local’s data D = ∪kDk

as follows:

min
W

F (W , D) =

K∑
k=1

Dk

D
Fk(Wr,Dk).︸ ︷︷ ︸

local loss

(4)

B. Local Computation and Communication Models

As previously indicated, the BS is unable to serve all
existing devices due to a limited number of bandwidth sub-
channels. Therefore, in every FEEL round, only a part of
these devices, Ωr, can upload their updates. In particular, the
selected set is defined as:

Ωr = {k | skr = 1, k = 1, 2, . . . ,K}, (5)

where skr = 1 indicates that client k is on the participating
set Ωr, otherwise skr = 0. The delay amongst the selected
set includes two parts, i.e., uploading delay and computing
delay. For the uploading latency, all clients are assumed to hold
a similar model architecture, Wr, determined by the system
administrator, which has a size of ξ. We employ the orthogonal
frequency division multiple access (OFDMA) technique for
the communication between the BS and the devices, where
each k-th participant (i.e., selected device) is given bandwidth
of size λkrB. To be more specific, assuming that the bandwidth
is split into N sub-channels depending on the model size, we
can define the number of sub-channels as follows:

N =
B

ξ
, (6)

where each 1-th sub-channel of size λkrB is allocated for each
participant. Hence, each k-th device can achieve a data rate
defined as:

rrk = λkrB ln

(
1 +

P kr |hkr |2

N0

)
, (7)

where hkr is the channel gain of the link between client k and
the server, P kr is the k-th client’s transmission power to upload
the local model, and N0 denotes background noise. Hence, the
uploading delay could be estimated as:

T ktrans =
ξ

rrk
· (8)

For the computing latency, each device takes a time defined
as:

T kcmp = E
φkDk

fk
, (9)

to train its local model, where fk (cycles/second) is the central
processing unit (CPU) frequency; and φk (cycles/data point)
denotes CPU cycles to process one data point. Therefore, the
total computing and uploading delay for each k-th participant
at the r-th round is defined as:

T ktot = T ktrans + T kcmp. (10)

In a real FEEL scenario, the system administrator or the
coordinating server determines a time constraint (i.e., a round
deadline constraint) in such a way that each participating
device has to finish its tasks within this time. Specifically,
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Fig. 2: CFL representation as a parameter tree where the root is the traditional FL [16].

this time could be set to the latency of the slowest participant
k ∈ Ωr, which is defined as:

Tr = max{skr (T ktrans + T kcmp)}. (11)

C. Clustered Federated Learning (CFL)

Unlike traditional FL, whereby all clients train a single
model collaboratively, the main goal of CFL is to cope
with incongruent data distribution and provide a group of
clients with a specialized model tailored to their local data
distribution. More precisely, CFL [16] intends to generalize the
traditional FEEL assumption to a set of participating devices
holding a similar data distribution so as to consolidate the
aforementioned challenges.

Assumption 1. (“CFL”) [16]: The client population can
be partitioned as M = {c1, . . . , cm},

⋃M
i=1 ci = {1, . . . ,K}

in which every subgroup c ∈ M meets the conventional FL
assumption.

Here, M is the clusters’ set, and M = |M| is the number
of clusters whereby the participating devices with similar
data distribution (i.e., congruent) are grouped into a single
cluster. The FEEL system can be regarded as a representative
parameter tree in CFL, as shown in Fig. 2 [16]. At the
root node remains the conventional FEEL model, approaching
the stationary point W ∗. In the subsequent layer, the client
population is divided into two groups based on their cosine
similarities, and every subgroup should reach a stationary point
W ∗

1 and W ∗
2 , respectively. The recursive branching continues

until no further partitions are possible. It is worth mentioning
that the cosine similarity, sim, between any two devices’
updates, device k and device k′, is calculated by:

simk,k′ := sim(∇Fk(W ),∇F ′k(W )) :=
〈∇Fk(W ),∇Fk′ (W )〉
‖∇Fk(W )‖‖∇Fk′ (W )‖

=

{
1 if I(k) = I(k′)

−1 if I(k) 6= I(k′),

(12)

where both I(k) and I(k′) denote the data distributions of k
and k′, respectively. Accordingly, the correct bi-partitioning is
obtained by:

m1 = {k|simk,0 = 1}, m2 = {k|simk,0 = −1}. (13)

As in [16], the separation is only executed if the following
two conditions are fulfilled:

0 ≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

k=1,...,K

Dk

D
∇WFk(W ∗)

∣∣∣∣∣∣
∣∣∣∣∣∣ < ε1. (14)

We can note that (14) retains that the achieved solution
is approaching the stationary point of the conventional FL
objective. In contrast, the participants are away from the
stationary point of their local loss if it is aligned with the
following condition:

max
k=1,...,K

‖∇WFk(W ∗)‖ > ε2 > 0, (15)

where ε1 and ε2 control hyperparameters to manage the
clustering task.

Remark 1. The split will not be performed if all clients have
the same data distribution. The reason for this is that both of
the aforementioned conditions cannot be fulfilled for the same
data distribution. As a result, we revert to the traditional FL
with a single model.

IV. PROBLEM FORMULATION

As in [23]–[25], all participants in CFL can be either
included when the training process starts, or just a random
subset is selected every round. Due to limited resources, the
former assumption is impracticable for deploying CFL at the
network edge (i.e., the number of sub-channels with respect
to the model size). On the other hand, the latter will not catch
all incongruent data distributions amongst participants, posing
the challenge of effectively developing a client selection and
scheduling strategy while maintaining edge wireless network
restrictions and attaining required performance (i.e., efficient
specialized models for all clusters). To be more specific, to
properly theorize the setting of conventional FL, it is essential
to partition clients of incongruent data distributions as early as
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possible to expedite the convergence rate and minimize asso-
ciated costs in light of bandwidth as well as data and device
heterogeneity. Hence, improving the convergence speed and
reducing the total training latency for all resulting specialized
models (i.e., the M group models and one conventional FL
model) depends on how we optimally select and schedule
the client to compute and upload their updates and how to
allocate the resources for the uploading task. Let R be the
number of global rounds completed throughout the training
time budget of Ttot. The goal is to find the optimal selecting
and scheduling strategy that obtains the optimal set of M
models, W ∗ = {Wm|m = 1, 2, . . . ,M} that minimizes the
global loss function for every group within Ttot. Mathemati-
cally speaking, the main objective is to find the optimal model
parameters for each group as follows:

Wm , arg min
Wm∈{WΩr

r :r=1,2,...,R}
F (Wm). (16)

Hence, the minimization problem for all clusters can be posed
as follows:

min
W ∗,R,Ωr,T[R]

M∑
m=1

F (Wm) (P1)

s.t. F (Wm)− F (W ∗
m) ≤ ε, ∀m ∈M, (P1.0)

R∑
r=1

Tr(Ωr) ≤ Ttot, ∀r ∈ [R], (P1.1)

skrT
k
tot ≤ Tr(Ωr), ∀r ∈ [R],∀k ∈ K,

(P1.2)

Tr = max{skr (T ktrans + T kcmp)}, ∀r, ∀k,
(P1.3)

|Ωr| ≤ N, ∀r ∈ [R], (P1.4)

skr ∈ {0, 1}, (P1.5)

where Ωr = [Ω1,Ω2, . . . ,ΩR] denotes the selected scheduling
sets during the training rounds, and T[R] = [T1, T2, . . . , TR]
is the maximum latency of every round (i.e., the deadline).
Constraint (P1.0) is intended to guarantee that every subgroup
model converges to the optimal model . We can see that
this constraint ensures fairness across the groups where each
group has optimal model parameters. The constraint (P1.1)
indicates that the total training time during the FEEL process
does not exceed the assigned time budget. Furthermore, con-
straint (P1.2) is related to the deadline constraint as well as
the training and upload latency for each cooperating client.
Constraint (P1.3) specifies the deadline at every round. In
constraint (P1.4), the selected clients should not surpass the
system bandwidth sub-channels. Last, constraint (P1.5) is a
binary variable to determine whether the client is selected
skr = 1 or not skr = 0. We can notice that P1 is a Mixed-
Integer Nonlinear Programming (MINLP) and NP-hard the
problem as the impacts of R and Ω[R] on the weight vector
of each cluster model, i.e., F (Wm), should first be found.
It is worth mentioning that it is difficult to obtain an explicit
expression for F (Wm) when considering R and Ω[R]. Indeed,
finding the optimal Wm depends on the correctness of the
clustering and the corresponding congruent data distribution.
Thus, F (Wm) is solved iteratively, as we see later in Section

Fig. 3: Aggregation sets and bandwidth reuse every r-th
round.

V. Furthermore, because of the fluctuation in the computation
delay, T kcmp, and wireless channel conditions hkr throughout
the rounds R, obtaining the optimal client scheduling tech-
nique is complicated and might even be non-stationary. In
practice, the CFL mechanism is recursive, relying on the
scheduled clients to assist in capturing all incongruent data
distributions and provide all clients with the congruent data
distribution with the optimal model parameters. Hence, the
problem in P1 is solved iteratively later on as follows. First, to
address the difficulties encountered by requiring to schedule all
clients in each round to prevent biased models, we propose an
efficient scheduling algorithm that accounts for the challenges
mentioned above. Then, we extend the CFL algorithm, taking
into account computing and communication resources and the
deadline constraints. Last, we analytically find the relationship
between the selected participants, the round deadline, and
the convergence rate for the congruent and incongruent data
distributions.

V. PROPOSED SOLUTION

This section presents our proposed approach including both
scheduling mechanisms and the related resource allocation.
We take advantage of employing bandwidth reuse and devices’
heterogeneity to increase the number of participating clients to
capture all data distributions. In this algorithm, the scheduling
and selection procedure includes two phases. In the first phase,
the server copes equally with all available clients to perform
the correct clustering at the early stages of the training. Thus,
all existing clients are selected to carry out the global model
updates until a specific cluster reaches the stopping point (i.e.,
all cluster members have the same data distribution). In the
second phase, the server uses the greedy approach for each
cluster, reaching the stopping point where the clients with less
latency are only selected to carry out further model updates.
Let us assume that Ωr includes all clients for the clusters
not reaching the stopping point. The selected clients for other
clusters can be added as follows:

Ωgrdy = {i← arg min
i∈m

{T toti ∀i ∈ m

|∀m|max
k∈m
‖∇WFk(W ∗)‖ < ε2}}

(17)

Ωr = Ωr ∪ Ωgrdy. (18)
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We can see that in (17), the greedy selection is applied only
to the clusters that reach the stopping point of splitting, where
the stopping point is used to decide to use greedy selection
for any cluster and added it to the selection set as in (18).

Specifically, the server initially collects prior information
from all clients, such as the size of data, local processing
capacity, and channel condition; subsequently, the server as-
sesses the anticipated delays of all clients to arrange model
uploading depending on their completion time. The server
sorts the clients in ascending order according to their estimated
latencies to collect the updates effectively. At this point, the
number of aggregations performed by the server to gather all
updates per round could be expressed as follows:

ng =
|Ωr|
N

. (19)

As shown in Fig. 3, the server can exploit the heterogeneity of
the devices to enable a more efficient training process where
the devices with a small data size can increase their local
CPU speed and transmit power to finish their computing and
uploading tasks. At the same time, the other clients having
large data sizes can adjust their local CPU speed and the
transmit power based on the completion time of the previous
aggregation set. We can infer that as the first participant in
the aggregation set j completes its uploading task, the first
participant in the aggregation set j + 1 will reuse the same
bandwidth frequency, i.e., sub-channel, to upload its update.
This procedure is subsequently repeated for participants in all
aggregation sets. Formally, we can define the aggregation set
as follows:

G ={{1 + (N(j − 1)), . . . , N + (N(j − 1))}, j = 1, 2, . . . , ng}. (20)

To find the resources for both the computation and com-
munication tasks, each client needs to adjust its local CPU
speed and the transmit power, relying on the pre-determined
deadline. It is worth highlighting that the server is anticipated
to have considerably more computing capabilities than the
clients; therefore, the computation cost on the server side
is negligible. We can see that there is a trade-off in the
scheduling problem between the number of participants chosen
in a given round and the entire number of rounds, which
could be handled by Tr. Assuming we started with a short
Tr, the number of engaging participants in Ωr can decrease,
which is unsuitable for CFL leading to slowly partitioning
the clients into congruent groups. This brings out unwanted
communication costs due to increasing the number of training
rounds needed to converge. Hence, we propose to initiate a
long Tr at the beginning of the training; then, this time is
reduced as the correct clustering is performed where only the
best clients that require less latency will be selected from the
cluster reaching the stopping point as follows:

max
k∈m
‖∇WFk(W ∗)‖ < ε2. (21)

The server uses (21) to check if all clients within cluster m
have congruent data distribution. If so, the optimal solution
W ∗ is returned, and the CFL is stopped for that group.
Otherwise, the server partitions and clusters the clients using

Algorithm 1 : The detailed steps of our proposed approach
for efficient CFL.

In: K , w0, ε1, ε2 > 0, E, b
Out: M specialized models, one conventional FL model
Init: Start with M = {{1, . . . ,K}} as initial clustering, set wk ← w0

∀k, and r = 1
1: while all M does not reach the stopping point do

// Server Side - Before local updates start
2: if M > 1 then
3: Server chooses
4: {m ∈M|maxk∈m ‖∇W Fk(W ∗)‖ < ε2 ≥ 0}
5: else
6: schedule all participants willing to take part in the training process
7: end if
8: Server measures the approximate delay of K and sort them in ascend-

ing
9: Server organizes the aggregation set using (19) and (20)

10: Server sends wr−1 in multi-cast manner
// Participants Simultaneously perform

11: for k = 1 to |Ωr| do
12: get wr−1

13: Carry out local training wk = wr−1 − ηr
∑T

t=1∇Fk(wk(t))
14: end for
15: Server collects models as in (20)

// Server Performs the Post-processing Steps
16: Mtmp ←M
17: Server finds F (wr) =

∑K
k=1

Dk
D
Fk(wr) and wr =

∑K
k=1

Dk
D
wr

18: for c ∈ M do
19: • Server obtains ∆Wm ← 1

|c|
∑

k∈c ∆wk

20: if ‖∆wc‖ < ε1 and maxk∈c ‖∆wk‖ > ε2 then
21: • simk,k′ ←

〈∆wk,∆wk′ 〉
‖∆wk‖‖∆wk′‖

22: • c1, c2 ← arg minc1∪c2=c(maxk∈c1,k′∈c2
simk,k′ )

23: • simmax
cross ← maxk∈c1,k′∈c2

simk,k′

24: • γk :=
‖∇FI(k)(W ∗)−∇Fk(W ∗)‖

‖∇FI(k)(W ∗)‖

25: if max(γk) <
√

1−simmax
cross

2
then

26: • Mtmp ← (Mtmp \ c) ∪ c1 ∪ c2
27: end if
28: end if
29: end for
30: • M←Mtmp

31: r = r + 1
32: end while
33: Server Return M specialized models, and one conventional FL model.

(12), (14), and (15) at every round. In this context, the
similarities between cooperating participants k and k′ within
a group could be bounded as follows:

simmin
within = min

k,k′

I(k)=I(k′)

sim(∇wrk(W ∗),∇wrk′(W ∗)), (22)

At the same time, we can bound the similarities between
participants k and k′ belonging to two different clusters as
follows:

simmax
cross = max

k∈c∗1 ,k′∈c∗2
sim(∇W rk(W ∗),∇W rk′(W

∗)).

(23)

It is worth highlighting that (22) and (23) are employed to
measure the separation gap which can be expressed as follow:

g(sim) := simmin
intra − simmax

cross. (24)

All steps of our proposed framework, including the client
scheduling algorithm and the CFL training algorithm, are listed
in Algorithm 1 where the algorithm has input parameters
K, ε1, ε2 > 0, E, and b. Algorithm 1 starts with an ini-
tialization step by clustering all clients in one group. Then,
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the server aggregates prior information such as the data size,
channel state, and computational capabilities from all existing
clients (line 2). In lines 3-4, the algorithm checks whether
the clustering was performed before or not. If achieved, the
server checks the stopping condition (21), and selects the
best clients having less latency to take part in the training
from that group, while all clients are selected for others.
Otherwise, the server determines all clients to participate in
the FEEL round. In Algorithm. 1, we observe that whenever
a given cluster approaches the stationary point of its model
(lines 2–7), the server shifts to employing a greedy selection
algorithm in which the clients with less training time and better
resources are selected to conduct subsequent updates. This
is due to the fact that clients with similar data distribution
(i.e., congruent data distribution) behave likewise. For each
cluster not reaching a stationary point, the server estimates
all clients’ latency (line 8) to schedule uploading the local
models’ updates and find the aggregation set (line 9) due to
the limited bandwidth. In line 10, the server broadcasts the
latest updated models to the selected clients. In lines (11–14),
all chosen clients perform conventional FEEL updates and
return them to the coordinating, which collects (line 15) all
updates based on the aggregation sets. In lines 16-29, the
server runs the clustering algorithm to cluster the participants
according to their local data distribution if the model of the
last cluster reaches the stationary points. Otherwise, the server
will keep using the traditional FEEL algorithm. All these steps
are repeated until all models reach the stationary points and all
incongruent data distributions are captured as in Algorithm. 1.
It is worth mentioning that since the server depends on the
uploaded models, clustering the participants isn’t affected by
the mobility of the devices as long as they are within the
server’s coverage area.

VI. ANALYSIS OF THE CONVERGENCE UNDER THE
PROPOSED ALGORITHM

This section analyzes the relationship between our proposed
approach and the convergence rate of the specialized models
that optimally fit M incongruent data distributions. To begin
with, let us define W ∗

m = arg minW F (W ∗
m) as an optimal

parameters of the specialized model for cluster m that is re-
lated to the minimum loss F (W ∗

m) across all group’s devices.
We also define W ∗

k = arg minWk
F (W ∗

k ) as an optimal
local model parameters at client k. Accordingly, the optimal
gap between the global of a cluster m and local loss can be
expressed as:

g(Fm) , F (W ∗
m)− 1

|Ωmr |

|Ωm
r |∑

k∈[m]

F ∗k , (25)

where g(Fm) ≥ 0 indicates that the cluster’s model Wm does
not reach the optimal solution yet. For a given cluster when
reaching the optimal solution, g(Fm) approaches zero.

To begin with, we apply the commonly used assumptions
in FEEL [38], [43], [44] listed as follow:

Assumption 2. Local loss functions F1, . . . , FK amongst
clients are all β-smooth; that is, ∀W ′,W ∈ Rd,

Fk(W ′)− Fk(W ) ≤ 〈W ′ −W ,∇Fk(W )〉+
β

2
‖W ′ −W ‖22 ,

∀k ∈ K.
(26)

Assumption 3. Local loss functions F1, . . . , FK amongst
clients are all α-strongly convex; that is, ∀W ′,W ∈ Rd,

Fk(W ′)− Fk(W ) ≥ 〈W ′ −W ,∇Fk(W )〉+
α

2
‖W ′ −W ‖22 ,

∀k ∈ K.
(27)

Assumption 4. The expected squared l2-norm of the local
gradients is bounded as [38]:

ED

[
‖∇Fk (W k(r),Dk(r))‖22

]
≤ %2, ∀k ∈ K, ∀r. (28)

where Dk(r) is a mini-batch sample at each local iteration. It is
worth mentioning that all those assumptions, when combined,
allow for the analysis of the learning algorithm’s convergence
rate, which is an important measure of its efficiency as seen
next in Section VI-A. They also aid in determining the
conditions under which the proposed algorithm is guaranteed
to reach a solution.

A. Convergence Details

As seen in Section V, our proposed approach has two
scheduling phases. First, all active and available clients have
equal chances to take part in the global model training task.
Second, for a particular cluster that reaches the stopping point,
only one unique participant providing the lowest latency is
selected to perform further updates for the FEEL model.
Hence, for the first phase, the probability of selecting any
client in every r-th round is |Ω

m
r |
K = 1. Now, we find the

relationship between the participating clients, the number of
epochs and data samples, and the convergence rate. We follow
the steps similar to [38]. However, in our work, we consider
the CFL as model training and the mini-batch SGD as a
local solver where the number of updates performed locally
is proportional to the number of data samples. It is worth
noting that we consider unbalanced data distribution where the
number of examples (i.e., data points) is randomly distributed
following the power law. Consequently, the number of local
iterations can be calculated as in (1).

Theorem 1. Given a learning rate ηr = 1
αT , ∀r, we have:

E
[
‖W (r)−W ∗‖22

]
≤

(
r−1∏
t=0

ζ1(t)

)
‖W 0 −W ∗‖22

+

r−1∑
t′=0

ζ2(t′)

r−1∏
t=t′+1

ζ1(t),

(29a)

where

ζ1(t) ,1− αηt (T − ηt(T − 1)) , (29b)

ζ2(t) , (1 + α(1− ηζ1(t))) η2(t)
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%2 T (T − 1)(2T − 1)

6
+ η2(t)(T 2 + T − 1)%2

+ 2ηζ1(t)(T − 1)F. (29c)

Proof. See Appendix A.

Corollary 1. From the β-smoothness of the loss function F (·),
after R global rounds, for each cluster’s model, we have:

E [F (W (R))]− F ∗ ≤β
2
E
[
‖W (R)−W ∗‖22

]
≤β

2

R−1∏
t=0

ζ1(t) ‖W 0 −W ∗‖22

+
β

2

R−1∑
t′=0

ζ2(t′)

R−1∏
t=t′+1

ζ1(t). (30)

We can notice that the last inequality results from The-
orem 1 [38]. If the learning rate is continuously de-
creasing, lim

r→∞
ηr = 0, and we can simply infer that

lim
R→∞

E [F (W (R))]− F ∗ = 0.

Remark 2. For the client scheduling in our proposed ap-
proach, the client scheduling is not random, which brings
out the advantage of capturing the data distribution amongst
clients and avoiding unbiased models.

Remark 3. For the dominant cluster that has more similari-
ties, the average loss within its group depends on many other
parameters such as β, α, K, |Ωmr |, ε1 and ε2.

VII. NUMERICAL EXPERIMENTS

In this section, we perform extensive simulations to evaluate
the proposed algorithms. The system models described in Sec-
tion III are properly considered with the following experiment
details.

A. Experimental Setup

In all experiments, we use a bandwidth of B = 10 MHz,
with each sub-channel having a bandwidth of 1 MHz. The
channel gain of each device, hkr , is randomly modeled with
a path loss (α = g0(d0

d )4) , where g0 = −35 dB and the
baseline distance d0 = 2 m. We assume that the distances
between the devices and the coordinating server are uniformly
distributed between 20 and 100 m. In addition, the power of
AWGN is defined as N0 = 10−6watts. The transmission power
P kr is distributed at random between pmin = −10 dBm and
pmax = 20 dBm. The device’s CPU frequency fk is generated
randomly between 1 GHz and 9 GHz, and the required CPU
cycles per data point, φ, is set to 20 and it is assumed to be
homogeneous for all devices. We use two federated datasets,
FEMNIST and CIFAR-10 [45], for handwriting classification
and object recognition, respectively. Specifically, FEMNIST is
utilized for handwriting classifications of both letters and digits
(A-Z, a-z, and 0-9), and it has 305,654, 28 x 28, images while
CIFAR-10 consists of 60,000 32x32 colored images. We split
both datasets for each device into 80% for training and 2% for
testing. Further, we utilize both datasets in a non-i.i.d. manner,
whereas we split each dataset into I fragments, and then we

assign each device only two random classes. For the model
architecture, the convolutional neural network (CNN) classifier
is adopted for FEMNIST, and Alexnet—a deep neural network
(DNN) is adopted for CIFAR-10. In our models, we employed
2 hidden layers in the FEMNIST model and 13 hidden layers
in the CIFAR-10 model. For both learning tasks, we utilized
the ReLU activation function for the hidden layers and the
Softmax activation function for the output layer. To simplify
the presentation, we list all simulation parameters in Table II.

TABLE II: Simulation parameters

Sym. Parameter Value(s)
K # of participating devices (20, 50, 100, 200)
R # of training rounds 200 for FEMNIST and

500 for CIFAR-10
E # of local training epochs 10
b Batch size 32
η Learning rate 0.01, 0.009
B Bandwidth 10 MHz

Pmin Minimum transmission power -10 dBm
Pmax Maximum transmission power 20 dBm
N0 Background noise -10 dBm
Pmin
k Minimum CPU frequency 1 GHz

Pmax
k Maximum CPU frequency 9 GHz

B. Benchmarks

In this paper, we evaluate our proposed algorithms against
the following state-of-the-art algorithms:
• Random approach [16], [46]: In this approach, the

clients are scheduled randomly in each round regardless
of the number of local samples, the computation and
communication latencies, or the quality of the update.

• Best channel scheduling [38]: This approach aims to
select the clients with the best channel states without
taking into account the impacts of the local updates on
the global model.

• Best local updates [38]: This approach seeks to deter-
mine the participating devices with the maximum L2-
norm where the participants first calculate their gradi-
ents, then find the Euclidean distance between the local
parameters and the parameters of the last received model
from the server. After that, they notify the server with
their status, which in turn keeps the connection with the
participants’ having maximum L2-norm.

• Maximum number of data points: In this algorithm, the
coordinating server chooses the participants having the
largest data sizes and keeps connecting with them until
the end of the training. We also extend this approach to
select the maximum number of data examples amongst
clients every round, assuming that the channel of each
participant is not stable and diverse participants may be
involved in different rounds.

C. Numerical Results

To evaluate the feasibility and performance of our proposed
approach, we present and compare the findings against the
benchmark algorithms. To ensure a fair comparison, we utilize
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similar experimental setups and the hyper-parameters for all
scheduling approaches regarding the number of local epochs,
model structure, learning rate, and data distribution (i.e., we
employed non-i.i.d. and unbalanced data distribution for both).
For all experiments, we adjust R, the global training rounds,
to 200 and 500 for FEMNIST and CIFAR-10, respectively. We
also set E = 10, and the batch-size b = 32. First, we carried
out the experiments and reported the results during each global
round. Then, we test theresulting models after finishing the
training process to showcase the effectiveness of the proposed
approach to equipping each device with the best-fitting model.
It is important to emphasize that all findings are averaged over
five trials.

1) Performance Gain on Clustering Speed and Convergence
Rate: To evaluate the proposed algorithms on the splitting and
correct clustering, we start conducting the experiments using
FEMNIST. We use the random selection as a baseline in this
stage as it shows the best performance among benchmarks.
Fig. 4 exhibits the performance of the proposed algorithm
and the random selection algorithm in terms of convergence
rate and clustering speed. We use the bordered accuracy with
the confidence threshold at each round (Figs. 4a and 4b, left)
and the gradients’ norm among all participants to showcase
the acceleration of the convergence rate (Figs. 4a and 4b,
right). From both figures, it is clear to note that our proposed
approach (fairness followed by greedy approach) gains a much
faster convergence rate regarding the speed of clustering since
the partitioning starts at the training round of index 37,
whereas the partitioning using the random scheduling algo-
rithm starts at the training round of index 83. This confirms
that the acceleration rate of the proposed algorithm is 2x faster
than the benchmarks. It is noted that in our approach, the
partitioning actually takes place again for all participants with
incongruent distributions at global training rounds of index 45
and 63, respectively until no further clustering is possible. All
trained models achieve the stopping criteria as in (21) at round
190, proving that clustering is correctly performed, according
to Fig. 4a right. On the other hand, the baseline algorithm,
Fig. 4b right, shows that the CFL still requires many more
rounds to reach the stopping point at round 200. This is owing
to the random client scheduling behavior, which may choose
clients who have previously been grouped, bringing out the
need for many more rounds to capture the data amongst clients
to perform the correct clustering. For example, the clustering
becomes slow if clients with different data distributions are
randomly selected at the latter rounds.

2) Performance Gain in Terms of Testing Accuracy and
Performance Gap: Now, we present the results of the testing
accuracy, focusing on the fairness between clients. We note
that the training procedure for both all the algorithms, the
proposed and benchmarks, has produced multiple models
based on clustering, including a conventional FEEL model
and a more tailored model for every group, as depicted
in Table III. We test all models amongst 15 clients after
finishing all the training rounds to show the effectiveness of
each model depending on the resulting accuracy. One can
see that our proposed approach yields three better-tailored
models. As shown in Table IIIa, it is clear that all participating

devices attain well-fitting accuracy (outlined in green color),
and inconsistency in performance (maximum accuracy and
minimum accuracy in the last row of Table IIIa) across all
is approximately 10% only when our approach is used. In
comparison, as depicted in Table IIIb, almost more than 1

3 of
the tested participants(i.e., P 1, P 2, P 3, P 4, and P 5) achieve
undesired accuracy (outlined in red color). The inconsistency
in performance can reach up to 31.4%, demonstrating that
some resulted models are still biased to the repeatedly selected
devices which dominate the clustering.

Furthermore, to validate the proposed algorithms, we per-
form other simulation experiments using the CIFAR-10 dataset
as a complex learning task under non-i.i.d. federated settings.
This assists in generalizing the performance of the proposed
algorithms for different application domains. Figs. 5a–5d
show the minimum, maximum, and average testing accuracy
amongst clients where the minimum accuracy represents the
lowest accuracy can be achieved by the client and vise versa.
It is worth mentioning that the proposed approach balances the
accuracy between all clients despite the number of participat-
ing clients where the gap between the maximum and minimum
accuracy amongst clients reaches up to 10%, meaning that the
resulting models optimally fit all local data distribution. At
the same time, we notice that the best channel, the best l2-
norm, and the max-samples approaches increase the accuracy
gap between the clients, reaching up to 70%, especially if the
number of clients increases. This stems from the fact that the
server stays connected with the same clients during all global
rounds in those approaches, particularly when the channel is
not changing rapidly, leading to biased models that can only
fit the participants’ clients. In addition, random scheduling
provides less accuracy gaps due to the randomness of partici-
pant selection. Nevertheless, the proposed scheduling approach
substantially outperforms all benchmarks and provides much
more stable accuracy regardless of the distribution of the data
and the number of clients in the network.

D. Lessons Learned
The key takeaways from the experiments outlined in this

paper can be listed as follows.
• The proposed scheduling algorithms can accelerate the

convergence rate compared to the baseline scheduling
algorithms due to the fairness between clients at the
beginning of the training.

• The proposed approach is effectively suited to deal with
CFL when compared with the scheduling algorithms
of traditional FL, seeking to avoid biased models to
frequently selected clients.

• Selecting all clients at the beginning of the training leads
to performing the correct clustering and capturing all
data distributions amongst clients while increasing the
clustering speed and accelerating the convergence rate.

• The proposed algorithms also reduce the resource con-
sumption as only a single client can take part in the model
training once a specific cluster converges to the stopping
point.

• Overall, the proposed approach surpasses the benchmarks
in terms of agglomeration quality with more tailored
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(a) Proposed.

(b) Baseline 1.

Fig. 4: Average testing accuracy of the clusters’ models during the global training rounds for both our proposed approach, (a:
left), and the benchmarks (b: left). In (a: right and b: right) the gradient norm of global and local loss functions during the

global training rounds for both the proposed algorithms and benchmarks, respectively.

TABLE III: Models’ testing accuracy after finishing all global training rounds: a conventional FL model and the tailored
models of all groups (the proposed and benchmark algorithms), P*=Participant, M*=Model. (FEMNIST)

(a) Proposed Approach.

P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 P 9 P 10 P 11 P 12 P 13 P 14 P 15
Conventional FL M 45.8 38 46 45 36.9 76 81 82.9 78.7 78.9 76.95 77 78 77 76
M 1 0 0 0 0 0 77.1 83.3 86 81.6 82 81.8 81.5 82.5 79.6 80.9
M 2 0 0 81.6 76 77.6 0 83.8 85.5 0 82.7 80.1 0 84.5 82 81.8
M 3 83.3 0 77 67 77.9 76.8 0 0 0 82.7 0 0 0 0 0
M 4 0 74.5 0 0 0 0 82.5 83 75.2 0 0 0 0 0 0
M 5 83.3 78.6 0 0 0 76.8 0 0 75.2 0 0 76.8 0 0 0
M 6 83.3 74.5 76.9 67.2 77.9 0 0 0 0 0 0 0 0 0 0
Max Acc 83.3 78.6 81.6 76 77.9 77.1 83.8 86 81.6 82.7 81.8 81.5 84.5 82 81.8

(b) Benchmark 1 (Random Scheduling Approach).

P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 P 9 P 10 P 11 P 12 P 13 P 14 P 15
Conventional FL M 50.7 41.6 49.2 46.4 41.5 73.1 80.1 82.1 76.5 77.8 77 77.3 76.7 76.1 77.7
M 1 0 0 0 0 0 78.5 84.5 86.5 82.1 81.4 81.5 79.9 81 79.9 81.1
M 2 0 0 0 52.4 56.5 0 78.3 75.8 77.9 72.7 0 0 78.7 78.2 67.4
M 3 59.7 61.1 62.5 0 0 82 0 0 0 0 82.8 67.9 0 0 0
M 4 59.7 61.1 62.5 52.4 56.5 0 0 0 0 0 0 0 0 0 0
Max Acc 59.7 61.1 62.5 52.4 56.5 82 84.5 86.5 82.1 81.4 82.8 79.9 81 79.9 81.1

models, expediting convergence and minimizing training
costs.

VIII. CONCLUSION

In this paper, we have proposed novel client scheduling and
selection algorithms for clustered federated multitask learning
to reduce the training latency and speed up the convergence
rate, which improves the resulting model for each cluster.
The proposed algorithms are based on the fairness between
the clients across the network, where all available clients
have equal chances of being selected to take part in the
training process regardless of the channel state or the size

of their local data. This enables the edge system to imbue the
clients with more specialized models rather than having biased
models. Given non-i.i.d. and unbalanced data distribution,
clients’ heterogeneity, and restricted bandwidth, we have first
formulated an optimization problem to obtain the best client
scheduling that minimizes the training cost and improves the
convergence speed. We have analyzed the relationship between
the proposed scheduling approach and the convergence rate of
the specialized models. We have conducted extensive simula-
tion experiments using realistic federated datasets, FEMNIST
and CIFAR-10. The findings demonstrate that the proposed
approach efficiently reduces the training latency and acceler-



12

(a) K = 20 (b) K = 50 (c) K = 100

(d) K = 200

Fig. 5: Minimum, average, and maximum accuracy overall testing clients (CIFAR-10) when the data is distributed over 20,
50, 100, and 200 clients.

ates convergence while attaining a satisfying performance. For
future research, it will be interesting to adapt the age of the
updates for the missing clients’ updates and find the optimal
thresholds for the splitting conditions.
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APPENDIX A
PROOF OF THEOREM 1

We recall the updated global model as follows:

W (r + 1) = W (r) +
1

K

∑
k∈Ωm

r

L̂k(r), (31)

Let us define the following aux variable as in [38]:

W ′(r + 1) = W (r) +
1

K

∑K

k=1
L̂k(r). (32)

We can have:

‖W (r + 1)−W ∗‖22 = ‖W (r + 1)−W ′(r + 1) + W ′(r + 1)−W ∗‖22
= ‖W (r + 1)−W ′(r + 1)‖22 + ‖W ′(r + 1)−W ∗‖22 + 2〈W (r + 1)−W ′(r + 1),W ′(r + 1)−W ∗〉. (33)

Now, we bound the average of the right hand side of (33).

Lemma 1. We have the following optimally gap for the fairness scheduling algorithm:

E
[
‖W (r + 1)−W ′(r + 1)‖22

]
≤ ε. (34)

Proof. See Appendix B.

Lemma 2. Let EK(r) denote expectation over the client scheduling fairness at round r. We have

EK(r) [W (r + 1)] = W ′(r + 1), (35)

In light of this, it follows

EK(r) [〈W (r + 1)−W ′(r + 1),W ′(r + 1)−W ∗〉] = 0. (36)

Proof. Since the client scheduling policy in our proposed algorithm is definite, it follows that

EK(r)

[
1

K

∑
k∈K(r)

L̂k(r)

]
(a)
= 1

∑K

k=1
L̂k(r) =

1

K

∑K

k=1
L̂k(r). (37)

The proof of Lemma 2 is concluded from (37).

Depending on the results of Lemmas 1 and 2, we have

E
[
‖W (r + 1)−W ∗‖22

]
≤ (1− αηr (T − ηr(T − 1)))E

[
‖W (r)−W ∗‖22

]
+ η2(r)

(
T 2 + T − 1

)
%2

+ (1 + α(1− ηr)) η2(r)%2 T (T − 1)(2T − 1)

6
+ 2ηr(T − 1)F

+ 2ηr
1

K

∑K

k=1

∑T

t=2

(
F ∗k − E

[
Fk(W t

k(r))
])

+ 2ηr (F ∗ − E [F (W (r))])

(a)

≤ (1− αηr (T − ηr(T − 1)))E
[
‖W (r)−W ∗‖22

]
+ η2(r)

(
T 2 + T − 1

)
%2

+ (1 + α(1− ηr)) η2(r)%2 T (T − 1)(2T − 1)

6
+ 2ηr(T − 1)F. (38)

In this case, (a) follows because F ∗ − F (W (r)) ≤ 0, ∀r, and F ∗k − Fk(W r
k ) ≤ 0, ∀k, r. According to (38), we conclude

Theorem 1.

APPENDIX B
PROOF OF LEMMA 1

To prove Lemma 1, we take similar steps as [38, Appendix B.4]. We have

E
[
‖W (r + 1)−W ′(r + 1)‖22

]
= E

[ ∥∥∥∥ 1

K

∑
k∈K(r)

L̂k(r)− L̂(r)

∥∥∥∥2

2

]
, (39)

where

L̂(r) ,
1

K

∑K

k=1
L̂k(r). (40)
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We notice that the indicator 1(k ∈ K(r)) = 1 and 1(k′ ∈ K(r)) = 1 due to the fairness amongst clients. As such, we eliminate
its effects in the following proofs. We have

E
[
‖W (r + 1)−W ′(r + 1)‖22

]
= E

[ ∥∥∥∥ 1

K

∑K

k=1

(
L̂k(r)− L̂(r)

)∥∥∥∥2

2

]
=

1

K2
E
[∑K

k=1

∥∥∥L̂k(r)− L̂(r)
∥∥∥2

2

+
∑K

k=1

∑K

k′=1,k′ 6=k
〈L̂k(r)− L̂(r), L̂k′(r)− L̂(r)〉

]
. (41)

Based on the symmetry, we can conclude that

EK(r)

[ K∑
k=1

∥∥∥L̂k(r)− L̂(r)
∥∥∥2

2

]
(a)
=

(
K−1
|Ωm

r |−1

)(
K
|Ωm

r |
) K∑

k=1

∥∥∥L̂k(r)− L̂(r)
∥∥∥2

2

=
K

|Ωmr |

K∑
k=1

∥∥∥L̂k(r)− L̂(r)
∥∥∥2

2
, (42)

where (a) follows the fact that in the proposed scheduling approach every client index k, for k ∈ K, appears r times before
splitting, and

EK(r)

[ K∑
k=1

K∑
k′=1,k′ 6=k

〈L̂k(r)− L̂(r), L̂k′(r)− L̂(r)〉
]

(b)
=

(
K−2
|Ωm

r |−2

)(
K
|Ωm

r |
) K∑

k=1

K∑
k′=1,k′ 6=k

〈L̂k(r)− L̂(r), L̂k′(r)− L̂(r)〉

=
|Ωmr |(|Ωmr | − 1)

K(K − 1)

K∑
k=1

K∑
k′=1,k′ 6=k

〈L̂k(r)− L̂(r), L̂k′(r)− L̂(r)〉. (43)

Due to the fairness scheduling:

|Ωmr |(|Ωmr | − 1)

K(K − 1)
= 1 (44)

As a result, we substitute (42) and (43) into (41) which yields

E
[
‖W (r + 1)−W ′(r + 1)‖22

]
=

1

K2

∑K

k=1
E
[∥∥∥L̂k(r)− L̂(r)

∥∥∥2

2

]
+

1

K2

∑K

k=1

∑K

k′=1,k′ 6=k
E
[
〈L̂k(r)− L̂(r), L̂k′(r)− L̂(r)〉

]
(c)
=

1

K2

∑K

k=1
E
[∥∥∥L̂k(r)− L̂(r)

∥∥∥2

2

]
=

1

K2

(∑K

k=1
E
[∥∥∥L̂k(r)

∥∥∥2

2

]
− E

[∥∥∥L̂(r)
∥∥∥2

2

])
≤ 1

K2

∑K

k=1
E
[∥∥∥L̂k(r)

∥∥∥2

2

]
(d)
=

1

K2

∑K

k=1
E
[
‖Lk(r)‖22

]
=

1η2(r)

K2

∑K

k=1
E

[∥∥∥∥∑T

t=1
∇Fk

(
W t

k(r),Dt
k(r)

)∥∥∥∥2

2

]
(e)

≤ η2(r)T
K2

∑K

k=1

∑T

t=1
E
[∥∥∇Fk (W t

k(r),Dt
k(r)

)∥∥2

2

]
(f)

≤ η2(r)T 2%2

K(K − 1)
, (45)

where ∥∥∥∥∑K

k=1

(
L̂k(r)− L̂(r)

)∥∥∥∥2

2

= ε, ε ≈ 0 (46)
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This is due to the convexity of the loss function, which proves that the proposed scheduling algorithm ensures the convergence
to the optimal without any gap.
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