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Abstract—This work proposes a stochastic characterization of
resilient 5G architectures, where attributes such as performance
and availability play a crucial role. As regards performance,
we focus on the delay associated with the Packet Data Unit
session establishment, a 5G procedure recognized as critical for
its impact on the Quality of Service and Experience of end-users.
To formally characterize this aspect, we employ the non-product-
form queueing networks framework where: 𝑖) main nodes of a 5G
architecture have been realistically modeled as 𝐺/𝐺/𝑚 queues
which do not admit analytical solutions; 𝑖𝑖) the decomposition
method useful to catch subtle quantities involved in the chain of
5G interconnected nodes has been conveniently customized. The
results of performance characterization constitute the input of
the availability modeling, where we design a hierarchical scheme
to characterize the probabilistic failure/repair behavior of 5G
nodes combining two formalisms: 𝑖) the Reliability Block Dia-
grams, useful to capture the high-level interconnections between
nodes; 𝑖𝑖) the Stochastic Reward Networks to model the internal
structure of each node. The final result is an optimal resilient 5G
setting that fulfills both a performance constraint (e.g., a temporal
threshold) and an availability constraint (e.g., the so-called five
nines) at the minimum cost, namely, with the smallest number of
redundant elements. The theoretical part is complemented by an
empirical assessment carried out through Open5GS, a 5G testbed
that we have deployed to realistically estimate main performance
and availability metrics.

Index Terms—5G networks, Performance and Availability
analyses of 5G networks, Resilience of 5G networks.

I. INTRODUCTION AND CONTRIBUTION

Before the advent of virtualization, designing resilient net-
work infrastructures was tantamount to replicate the entire
physical architecture to guarantee service continuity when
anomalous events (including network attacks, natural disas-
ters, etc.) occurred. In recent years, the decoupling between
hardware and software has made it more flexible to imple-
ment resilience strategies: a given functionality offered by
a node, in fact, can be easily embodied into a software
module (commonly known as a Virtual Network Function -
VNF) and replicated across the network to guarantee a certain
resilience. Accordingly, we propose a resilience assessment of
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a virtualized 5G infrastructure by taking into account two in-
terconnected aspects. The first one is performance, pertaining
to the ability of a system to provide a service by not exceeding
a predefined time threshold. Such an aspect becomes even
more critical when dealing with systems of interconnected
nodes realizing a so-called Service Function Chain (SFC) [1],
[2], due to the propagation of delays across the whole chain.
The second aspect is the availability, referring to the ability of
a system to be up and running when called for use. Typically,
a given availability target (e.g., the so-called five nines) is
achieved by increasing the redundancy degree of a network
node [3], [4]. Remarkably, different and flexible availability
strategies involving the hardware part, the virtualization part,
or the software part of a node can be implemented to fulfill
the desired availability target [5]. Obviously, having a high
number of nodes results in growing costs. Thus, implementing
an effective resilience strategy means designing an optimal 5G
virtualized architecture able to satisfy given performance and
availability requirements at the minimum cost [6].

This is the main focus of our proposal, where the following
contributions emerge:

• We devise a performance model relying on the non-
product-form queueing networks framework, able to well
capture the “chained” connection among the 5G nodes,
and where each node is realistically modeled as a 𝐺/𝐺/𝑚
queue. The objective is to analyze the latency impact of
the whole chain onto the Packet Data Unit (PDU) session
establishment, a crucial procedure in 5G networks in
charge of providing a data path between User Equipments
(UEs) and the 5G core network. Remarkably, such a
procedure is recognized to be critical in terms of the
QoS/QoE impact on the end users [7].

• We devise a hierarchical availability model able to:
𝑖) characterize high-level interconnections among 5G
nodes through Reliability Block Diagrams (RBDs); 𝑖𝑖)
characterize probabilistically the failure/repair behavior
of the 5G nodes by employing the Stochastic Reward
Network (SRN) methodology, where we differentiate
between proactive recovery (i.e., controlled reboots, the
so-called rejuvenation) and reactive recovery (reboots due
to failure events).

• Relying on a testbed based on Open5GS, we have de-
signed specific software routines aimed at: 𝑖) estimating
the service times distributions of the crucial Open5GS
nodes that we use as the input parameters for the perfor-
mance model; 𝑖𝑖) evaluating the repair times of Open5GS
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nodes through fault injection techniques, that we use as
the input parameters for the availability model.

In summary, the final purpose is to evaluate a set of (optimal)
resilient 5G settings able to satisfy at the same time: 𝑖) the
performance requirements, by providing mechanisms to model
and control the latency introduced by various nodes, and 𝑖𝑖) the
availability requirements, by introducing a controlled level of
redundancy to fulfill a given availability constraint, namely the
five nines, corresponding to a maximum tolerated downtime of
5.26 minutes per year.

We organize the remainder of the paper as follows: Sec-
tion II proposes a collection of affine works, where the main
novelties of our proposal are highlighted. In Sect. III we
describe the architecture of our testbed based on Open5GS,
useful to gather/estimate performance and availability data.
Section IV is focused on the queueing networks modeling that
we exploit to characterize performance features of Open5GS.
Similarly, in Sect. V we propose an availability modeling of
Open5GS nodes by employing the Stochastic Reward Net-
works. In Sect. VI we detail the experimental results carried
out on the open5GS infrastructure, and Sect. VII concludes
the paper by summing up the main findings.

II. RELATED WORK

Performance and availability are two crucial aspects to take
into account when designing resilient modern virtualized net-
work infrastructures. A resilient network, in fact, must satisfy
strict performance requirements to support low latency and
fast data transmission, but also specific high availability needs
to guarantee uninterrupted access to the provided services. As
concerns performance aspects, there are many works focused
on latency-related issues of 5G-based infrastructures, where
the queueing theory is widely adopted. It is the case of
[8], where the authors propose a heuristic solution called
TO-DG to optimize the throughput with latency guarantees
when instantiating VNFs in a virtualized network environment,
and where the adopted queueing model involves exponentially
distributed quantities. Authors in [9] focus on the resource
allocation in 5G networks and formulate an optimization
problem to minimize the maximum ratio between actual and
maximum end-to-end latency, where each VNF follows the
well-known 𝑀/𝑀/1 queueing model. A method to estimate
5G network service resilience performance is proposed in [10],
where exponentially distributed arrival and service times have
been considered. In particular, the authors identify the traffic
changes as primary threats to service resilience, and put in
the field an orchestration system along with network slices
as potential solutions. Authors in [11] propose a method for
enhancing the reliability of an SFC in 5G communication
services, where the involved VNFs have been modeled both as
𝑀/𝑀/1 and 𝑀/𝑀/𝑚 queueing systems. An 𝑀/𝑀/1 queue-
ing model has been adopted also in [12], where a method to
detect bottlenecks in SFCs based on network queue occupation
has been devised, and in [13] to model the SFC scheduling
process in data centers. An 𝑀/𝐺/1 queueing model has
been adopted to characterize the latency of ultra-reliable
low latency communications (URLLC) in 5G environments

in [14]. Once quantified such a latency, the authors devise a
resource allocation scheme achieving a good balance between
URLLC latency and enhanced mobile broadband (eMBB)
throughput. A resource allocation procedure for 5G new radio-
based vehicle-to-vehicle has been advanced in [15], where an
𝑀/𝐺/1 queueing scheme has been employed to model the
end-to-end latency. In [16], the authors address the problem
of deploying network services in 5G cloud systems based on
latency requirements. Both 𝑀/𝑀/1 and 𝑀/𝑀/𝑚 models have
been exploited to characterize the presence of one processing
unit and two or more processing units per VNF, respectively.

A common characteristic of all the aforementioned works
is the usage of queueing models (𝑀/𝑀/1, 𝑀/𝑀/𝑚, 𝑀/𝐺/1)
that admit an exact solution through the employment of
closed formulas. A drawback is that, in many cases, such
models rely on assumptions (e.g., exponentially distributed
arrival/service times) that could not represent with sufficient
precision the behavior of real-time systems. Accordingly, we
try to fill this gap by adopting the most possible general
queueing scheme 𝐺/𝐺/𝑚 (𝐺 stands for general distribution)
to characterize the latency introduced by a node with 𝑚

containerized instances on top. Each 𝐺/𝐺/𝑚 node model is
then embedded into a queueing network model to estimate
the latency associated with the whole chain by exploiting the
so-called decomposition method, a framework useful to deal
with non-product-form queueing networks (namely, queueing
networks where the exponentially assumptions are violated).
The output of our performance model is the optimal number
of containerized instances (say 𝑚∗) to deploy onto each node
aimed at guaranteeing that the overall latency (that, in turn,
negatively affects the PDU session establishment procedure)
is kept under a given threshold.

As regards the availability aspects, the technical literature
proposes different solutions to characterize failure and repair
actions affecting a system, where redundancy strategies must
be set to face possible breakdowns due to disasters, attacks,
etc. Since failures and repairs can be modeled as particular
states of a system, one of the most natural choices is to employ
state-space formalisms such as the well-known Continuous-
Time Markov Chains (CTMCs). In line with this consideration,
the authors in [17] characterize, from an availability/reliability
perspective, a set of related VNFs that form the so-called
network service. For the modeling stage, a CTMC has been
adopted to encode failure and repair states. The final aim is
to compare the availability of different solutions (i.e., VNFs
placed in a single host node rather than in multiple host nodes).
In [18] the authors perform an availability evaluation of a
cloud system by combining hierarchically two formalisms:
Reliability Block Diagrams (RBDs) to catch high-level inter-
connections between nodes constituting a cloud infrastructure,
and CTMCs to model failure/repair events of components
inside the nodes. CTMC modeling has been adopted also
to evaluate the availability of some radio-based elements of
5G networks (see [19]), where the authors have modeled the
failure/repair behavior of the base stations. Yet, a dependabil-
ity assessment of the 5G-AKA authentication service in the
presence of failures by employing CTMCs has been proposed
in [20]. Finally, authors in [21]–[23] use CTMC as the basis
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to build a multi-state system model of virtualized nodes of
IP Multimedia Subsystem (IMS), a framework adopted to
manage multimedia content in 4G/5G infrastructures. Even
if the CTMC modeling has the advantage of allowing full
control of single failure/repair states of a system, it has the
drawback of suffering from the so-called state-space explosion.
It means that, when modeling the failure/repair behavior of
real-world systems, the corresponding CTMC easily exhibits
a huge number of states, which makes it difficult to deal
with. Accordingly, especially when evaluating the availability
of complex systems, it is preferable to employ more compact
formalisms such as the stochastic networks and their variants.
Across the technical literature, we find a number of works
where such a formalism has been adopted to characterize
failure and repairs of 5G-related network infrastructures. It
is the case of [24], where the authors examine the usage of
the Stochastic Petri Net (SPN) framework to automate the
evaluation of SFCs availability along with specific redundancy
strategies. SPNs have been also adopted in [25], where an
algorithm for resource sharing in a virtualized scenario has
been designed. In this work, the authors assume that the
process of resource virtualization is itself resource-consuming,
thus failures may occur. As a solution, some backup-sharing
strategies are implemented with the support of an SPN model
of virtualized blocks. Timed Stochastic Colored Petri Nets
have been employed in [26] to analyze the resiliency of a
5G infrastructure by dividing it into the main principal com-
ponents (the physical infrastructure, the virtual infrastructure
and the network services). Again, Generalized Stochastic Petri
Nets have been employed in [27] to face availability problems
in data centers in charge of managing SFCs.

Another variant of SPN named Stochastic Reward Net
(SRN) is adopted in [28], where a comparative availabil-
ity analysis among different containerized IMS deployments
(homogeneous, heterogeneous, co-located) allows pinpoint-
ing the optimal IMS redundant configuration in terms of
availability/cost trade-off. SRNs have been profitably adopted
also in [29], where the probabilistic behavior of some cloud
components has been modeled. Again, Stochastic Activity
Networks (SANs) have been adopted in [30] and [31] aimed
at a quantitative assessment of network factors affecting the
availability of services provided by NFV architectures.

We employ RBDs to model the high-level connections
among the “chained” 5G nodes, and the SRN formalism to
capture the probabilistic failure/repair behavior of each 5G
node that can be represented as a 3-layered structure. Remark-
ably, two enhancements can be highlighted. First, we create a
pipelined system where the optimal number of containerized
instances (𝑚∗) able to guarantee a constrained overall latency
is used as input to build the so-called reward function useful
to evaluate the SRN model. Then, through the employment of
coverage factors into the SRN model of a 5G node, we analyze
different availability behaviors due to: 𝑖) controlled reboots
(a.k.a. rejuvenation [32], [33]), meaning that a node can be
periodically rebooted at a convenient time (e.g., when there is
little or no load in the system) to mitigate the software aging
phenomenon; 𝑖𝑖) necessary reboots, due to unavoidable failures
(e.g., caused by bugs) that make the node to be recovered.
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Fig. 1: Kubernetes-based Open5GS testbed implementing a
complete 5G network infrastructure with the radio part (on
the left) implemented with UERANSIM (UE + RAN part),

and the core part (on the right) implemented with Open5GS.

III. TESTBED BASED ON THE OPEN5GS ARCHITECTURE

Open5GS is one of the most complete (open-source)
projects implementing the core part of a 5G network in-
frastructure compliant with the Release 17 of 3GPP [34],
and able to interact with emulated/simulated network radio
environments. Open5GS is divided into two segments: the
control plane and the user plane. The former is in charge of
managing sessions, handling mobility and paging procedures,
and configuring bearers. The latter manages data packets trans-
ferred between user equipment and external WANs. Figure 1
shows a simplified representation of our testbed where the
core part (on the right) is implemented with Open5GS, and the
radio part (on the left) is implemented with UERANSIM [35].
This latter is an open-source simulator of user equipment (UE)
and Radio Access Network (RAN). In particular, UERANSIM
provides a simulation of the gNodeB, a node that can be
physically deployed as a tower or virtualized through software-
defined radio, and in charge of supervising operations such as
access control, handovers, dynamic resource allocation, etc.

For the core part, it is possible to pinpoint three main nodes
(highlighted in red in Fig. 1):

• Access & mobility Management Function (AMF): it acts
as an interface between the radio part and the core part
by controlling which UEs can access the core network
and exchange data traffic. Among the others, main AMF
functionalities include registration management (permit-
ting/denying UEs to register/de-register with a 5G net-
work), connection management (establishing signaling
connections with UEs), and mobility management (track-
ing the UE’s location and governing handovers).
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Fig. 2: Simplified sequence diagram of a PDU session
establishment (PSE) procedure.

• Session Management Function (SMF): it acts as an in-
terface between control and user planes, and manages
the whole lifecycle of a PDU session, being a logical
connection between the UE and the data network (e.g.,
an internet connection). The most appropriate SMF node
to manage the PDU session is selected by the AMF.

• User Plane Function (UPF): it acts as an anchor point
for PDU sessions, and offers crucial functionalities such
as: packet routing and forwarding, traffic filtering, QoS
handling, rate limiting, traffic usage reporting, etc.

Other nodes present in the Open5GS architecture are: the Au-
thentication Server Function (AUSF) responsible for managing
UE authentication procedures, the Unified Data Management
(UDM) managing user’s subscription data contained in the
Unified Data Repository (UDR), and the Policy Control Func-
tion (PCF) in charge of providing policy rules to SMF and
AMF based on the data stored into the UDR.

In our testbed, all the nodes of Open5GS have been de-
ployed onto Kubernetes, one of the most popular container
orchestration systems [36]. Accordingly, the functionalities
of 5G nodes have been virtualized through the container
technology as schematically depicted in Fig. 1, where three
layers can be recognized:

• Infrastructure layer, which embodies all the physical
equipment (CPU, RAM, etc.) and the operating system
(i.e., Linux);

• Kubernetes layer, which includes the container runtime,
i.e., the software responsible for running containers (e.g.,
containerd), and the kubelet. This latter is an agent
responsible for managing the state of containers including
allotted resources, healthy conditions, etc.

• Container layer, which includes the containerized 5G
nodes. Remarkably, each containerized node can be made
of one or more containerized instances (AMF instances,
SMF instances, etc.) working in parallel to reduce the
time of processing, implying a performance improvement.

Our experimental setup encompasses three dedicated server

machines, each of which equipped with: Intel Xeon™ (16-
Core, 1.80 GHz), 64 GB of RAM, 2 SATA HDD each of
500 GB, 1 NetApp Network Storage Array (32 TB of storage
and 4GB of SSD cache). These machines host a complete
Kubernetes cluster with 1 control plane node (first machine)
and 2 worker nodes (second and third machines). The control
plane node includes the fundamental services for Kubernetes
orchestration (e.g., kube-controller-manager, kube-scheduler,
apiserver, network manager, etc. [46]). The two worker nodes
host UERANSIM (radio part) and Open5GS (core part). Each
server machine runs Ubuntu v22.04.3 LTS, and Linux kernel
v5.15. Moreover, we use Kubernetes v1.28.2 and containerd
v1.6.24 (as container runtime).

Aimed at providing more details about the interoperability
of the three main 5G nodes (i.e., AMF, SMF, and UPF), we
depict in Fig. 2 the simplified sequence diagram of a PDU
session establishment (PSE), representing the most common
operation performed by a UE when requesting a 5G service.
By assuming that a UE has correctly accessed the radio access
network through the gNB, the first message is sent by UE to
the AMF as a request to initiate a PDU session. Then, the AMF
selects the most appropriate SMF to initiate the session, which,
in turn, contacts the UPF for the session establishment. At this
point, the PDU session message is back-propagated to the UE
for the resource setup and the session can effectively start. As
mentioned before, the performance of the PSE procedure has
a direct impact on the QoS of the network and the QoE of
end users [7], being connected to the overall delay introduced
by the traversed nodes. In particular, the delay introduced by
each node can affect negatively such a crucial procedure which
must be repeated in case a time threshold is exceeded. Such
a threshold is known as the 𝑇3580 timer [37].

Accordingly, we provide a method to estimate the overall
delay associated with the PSE procedure that we elect as our
performance metric, as it will be clear in the next section.

IV. PERFORMANCE OF OPEN5GS: A QUEUEING
NETWORKS PERSPECTIVE

Common operations in telecommunication systems (e.g.,
session establishment, session management, routing calls, etc.)
are executed sequentially by a series of nodes often virtualized.
The result is a logic chain (today realized through Service
Function Chaining) where a request processed by a given node
represents the input of the next node for further processing.
This implies that a problem on a given node (i.e., an anomalous
delay in processing a request) unavoidably affects the perfor-
mance of the whole chain of nodes. At this aim, we employ
the queueing networks theory due to its ability to model the
performance of complex systems involving a flow of entities.

More precisely, we will cope with the non-product-form
queueing networks, which are particularly suited to model real-
world systems. For this class of queueing networks, the classic
assumptions (e.g., exponentially distributed service times) are
typically violated, since each node is better modeled as a
𝐺/𝐺/𝑚 queue, where we recall that the first 𝐺 denotes a
generic distribution for inter-arrival times, the second 𝐺 de-
notes a generic distribution for service times, and 𝑚 represents
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Fig. 3: Schematic representation of 5G core network nodes,
where each node is analyzed via decomposition method

(non-product-form queueing networks).

the number of containerized instances working in parallel
on a given node. Among the available numerical solutions
to solve non-product-form queueing networks, we adopt the
decomposition method [38]–[40] which offers a flexible way
for the approximate performance analysis, where the queueing
network is broken up into subsystems which are then analyzed.
It comprises two phases: in the first one, an iterative procedure
is employed to calculate the squared coefficients of variation
(𝜎(·)/𝐸 (·)) of inter-arrival times at each node; in the second
phase, we employ an approximation formula (the Allen-
Cunneen formula) to derive the mean sojourn time, a well-
known performance indicator useful to estimate the mean total
time that a request spends at a node.

A. Decomposition Method Applied to a 5G Queueing Network

Figure 3 shows a schematic representation of the 5G core
network where the 3 crucial nodes (AMF, SMF, and UPF)
are interconnected to form a chain that will be modeled with
the queueing network formalism. The routing probabilities 𝑝𝑖 𝑗
to route a flow from node 𝑖 to node 𝑗 are indicated by 𝑝𝐴𝑆

(routing probability from AMF to SMF) and by 𝑝𝑆𝑈 (routing
probability from SMF to UPF). The 𝑖-th node is modeled as a
queueing system with the following set of parameters: 𝜆𝑖 is the
rate of the arrival process at the node 𝑖, 𝜈𝐴,𝑖 and 𝜈𝐷,𝑖 are the
squared coefficients of variation of the inter-arrival and of the
inter-departure processes at node 𝑖, respectively, 𝜆𝑖 𝑗 and 𝜈𝑖 𝑗
are the arrival rate and the squared coefficient of variation of
the subflow process between node 𝑖 and node 𝑗 . The external
arrival rate at the AMF (which represents the first contact
point between the radio and the core part of 5G networks) is
denoted by 𝜆𝑒𝑥𝑡 . Moreover, the coefficient of variation of the
inter-arrival times at the AMF depends on the ingress traffic
distribution and, in case of Poisson, is set to 𝜈𝐴,1 = 1.

The calculation of squared coefficients of variation of inter-
arrival times at remaining nodes (first phase of the decom-
position method) is performed iteratively (see Algorithm 1)
through the following steps:

1) Merge several arrival processes to a given node into a
single arrival process and evaluate the pertinent inter-
mediate squared coefficient of variation of inter-arrival
times, viz.

𝜈𝐴, 𝑗 =
1
𝜆 𝑗

𝑁∑︁
𝑖=1

𝜈𝑖 𝑗𝜆𝑖 𝑝𝑖 𝑗 ( 𝑗 = 2, 3), (1)

Algorithm 1: Open5GS network queue decomposition
Input: 𝜆𝑖 , 𝜇𝑖 , 𝑚𝑖 , 𝑝 𝑗𝑖 ,𝜈𝐴,1, 𝜈𝑆,𝑖 , 𝜖 > 0

1 𝜈𝑖 𝑗=1 % initialization
2 for i=1 . . . N do
3 evaluate 𝜈𝐴, 𝑗 from (1)
4 evaluate 𝜈𝐷,𝑖 from (2)
5 evaluate 𝜈𝑖 𝑗 from (3)
6 update 𝜈𝐴,𝑖
7 if 𝜈𝐴,𝑖 (𝑛𝑒𝑤) − 𝜈𝐴,𝑖 (𝑜𝑙𝑑) < 𝜖 then
8 exit loop;
9 end

10 end
11 % Output: 𝜈∗

𝐴,𝑖

where 𝑁 is the number of nodes (in our case 𝑁 = 3
due to the presence of 3 nodes: AMF, SMF, and UPF).
Moreover, as the literature suggests [42], we set 𝜈𝑖 𝑗 = 1.

2) Calculate 𝜈𝐷,𝑖 that depends on 𝜈𝐴,𝑖 and on 𝜈𝑆,𝑖 , being
this latter the squared coefficient of variation for the
service time at the node 𝑖. For this step, several authors
propose different approximation formulas. We adopt the
formula of Pujolle [43]:

𝜈𝐷,𝑖 = 𝜌2
𝑖 (1 + 𝜈𝑆,𝑖) + (1 − 𝜌𝑖)𝜈𝐴,𝑖 + 𝜌𝑖 (1 − 2𝜌𝑖), (2)

being 𝜌𝑖 = 𝜆𝑖/(𝑚𝜇𝑖) the utilization factor at the node 𝑖,
with 𝜇𝑖 the mean service rate.

3) Evaluate 𝜈𝑖 𝑗 at the “decomposition point” Δ (see Fig. 3)
according to the following formula:

𝜈𝑖 𝑗 = 1 + 𝑝𝑖 𝑗 (𝜈𝐷,𝑖 − 1). (3)

The 𝜈𝑖 𝑗 values are used as input to evaluate new values
of 𝜈𝐴,𝑖 iteratively. Iterations will stop when no appreciable
variation of coefficients 𝜈𝐴,𝑖 are observed, and the value 𝜈∗

𝐴,𝑖

is the output. Being each single Open5GS node modeled
as a 𝐺/𝐺/𝑚 queue, we have now to calculate the elected
performance measure, namely the mean time that a request
(in our case a PDU session request) spends at the node 𝑖, viz.

𝑇𝑖 = 𝑊𝑖 +
1
𝜇𝑖
, (4)

being 𝑊𝑖 the mean time that a request spends in the queue,
and 1/𝜇𝑖 the mean time that a request spends to be served, at
the node 𝑖. It is useful to remark that, for 𝐺/𝐺/𝑚 queues, no
analytical solution exists, thus we have to employ an approxi-
mated formula. We exploit the Allen-Cunneen formula [41] for
𝐺/𝐺/𝑚 queues which allows deriving a good approximation
for 𝑊𝑖:

𝑊𝑖 ≈
𝑃𝑚,𝑖

(𝑚𝑖𝜇𝑖 − 𝜆𝑖)
(𝜈∗

𝐴,𝑖
+ 𝜈𝑆,𝑖)
2

, (5)

where 𝑃𝑚,𝑖 is the steady-state probability of a node 𝑖 modeled
as a classic 𝑀/𝑀/𝑚 queueing system. If we put (5) in (4), we
completely characterize the total mean time spent at the node
𝑖. Now, the mean time spent across the whole chain of nodes
can be reasonably approximated with the mean time required
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to complete a PSE procedure. Such a quantity can be derived
by applying the Little’s theorem as follows [42]:

𝑇𝑃𝑆𝐸 =
1

𝜆𝑒𝑥𝑡

𝑁∑︁
𝑖=1

𝜆𝑖𝑇𝑖 , (6)

that, in view of (4) and (5) can be rewritten as:

𝑇𝑃𝑆𝐸 ≈ 1
𝜆𝑒𝑥𝑡

𝑁∑︁
𝑖=1

(
𝜆𝑖𝑃𝑚,𝑖

(𝑚𝑖𝜇𝑖 − 𝜆𝑖)
(𝜈∗

𝐴,𝑖
+ 𝜈𝑆,𝑖)
2

+ 𝜆𝑖

𝜇𝑖

)
. (7)

B. A Performance-related Optimization Problem

We can note that (7) is basically influenced by the mean
time 𝑊𝑖 . In particular, in view of (5), a decrease in time
𝑊𝑖 is associated to a performance improvement that can
be achieved by: reducing the arrival rates 𝜆𝑖 (difficult to
control since they depend on the users needs), increasing the
services rate 𝜇𝑖 (e.g., by assigning additional computational
resources), or increasing the number of containerized instances
𝑚𝑖 which is typically implemented in scalable container-based
architectures where more instances can be added according
to specific needs. Thus, an optimization problem to find the
optimal number of containerized instances to be deployed onto
the whole 5𝐺 chain aimed at keeping 𝑇𝑃𝑆𝐸 under a given
threshold can be set as follows:

minimize
𝑁∑︁
𝑖=1

𝑚𝑖 subject to


𝑚𝑖 ≥ 𝑚0,

𝑇𝑃𝑆𝐸 ≤ 𝑇∗,
(8)

where the first constraint is introduced to impose the queueing
stability (𝜌𝑖 < 1), being 𝑚0 = ⌊𝜆𝑖/𝜇𝑖⌋ +1 ( ⌊·⌋ is the integer
round-down operator). The second constraint is the threshold
𝑇∗ that cannot be exceeded by the overall end-to-end mean
time. To solve (8) we employ an exhaustive procedure inspired
by server allocation problems in manufacturing networks [44].
Intuitively, we start with the smallest possible allocation of
containerized instances per node. Then, at each iteration, we
add one instance per node and we evaluate 𝑇𝑃𝑆𝐸 . Pragmati-
cally, the output of the optimization problem (8) will be the
minimum number of instances per node (namely, 𝑚∗

𝑖
) which

guarantees that 𝑇𝑃𝑆𝐸 ≤ 𝑇∗. Such a value will be used as input
for the SRN reward function of the availability model, as it
will be clear in the next section.

V. AVAILABILITY OF OPEN5GS: A STOCHASTIC REWARD
NETWORKS APPROACH

Stochastic Reward Networks (SRNs) provide a powerful
formalism to model, from a probabilistic viewpoint, the failure
and repair events of a system. In practice, SRNs allow to com-
pact the classic CTMC representation by avoiding the problem
of the state space explosion affecting CTMCs especially when
modeling real-world systems characterized by a huge number
of states.

A. SRN Basic Notation

It is now useful to briefly introduce the symbology adopted
by the SRN. Formally speaking, an SRN is a bipartite directed
graph with the following entities: a place (represented by a
circle) which denotes a specific condition such as a working or
failed node. A place can host one or more tokens representing a
holding condition. On the other hand, a transition (represented
by a rectangle) denotes a specific action. In the SRN formal-
ism, two types of transitions are admitted. The first type is the
timed transition (represented by a thick and blank rectangle
and indicated by “T”) and encodes a temporal action ruled
by an exponential random variable (a common assumption in
the availability assessment [45]). Within an SRN, two timed
transitions are introduced: one denoting a failure action (with
failure rate 𝛼), and another one denoting a repair action (with
repair rate 𝛽). The second type of transition is the immediate
transition (represented by a thin and black rectangle and
indicated by “t”) and encodes an instantaneous action. For
example, if the Infrastructure layer fails (see Fig. 1), the two
upper layers (Kubernetes and Container layers) immediately
fail as a consequence. In the SRN terminology, a transition
(both timed or immediate) is fired when it causes the tokens
to be moved from one place (e.g., a place denoting a working
condition) to another one (e.g., a place denoting a failure
condition). Another symbol encountered in the SRN formalism
is the inhibitory arc (represented by a circle-headed curve
from a place to a transition) whose presence indicates that the
corresponding transition can fire if and only if the connecting
place does not contain tokens. Once the SRN model of a
system is designed, evaluating the corresponding instantaneous
availability is straightforward. We have to preliminarily define
the so-called reward function 𝑅(𝑡) which amounts to 1 when
the system is in a working state, and to 0 when the system
is in a failed state. Thus, it is possible to show [45] that the
instantaneous availability is

𝐴(𝑡) = 𝑃𝑟{𝑅(𝑡) = 1} = 𝐸 [𝑌 (𝑡)] =
∑︁
𝑠∈𝒮

𝑟𝑠 · 𝜋𝑠 (𝑡), (9)

where 𝒮 is the set of feasible tokens distributions (a.k.a.
markings), 𝑟𝑠 (the reward rate) is the value of 𝑅(𝑡) in marking
𝑠, and 𝜋𝑠 (𝑡) is the corresponding probability. The set of
markings can be split into a subset of working states (𝑟𝑠 = 1)
and a subset of not working states (𝑟𝑠 = 0). Obviously, to
evaluate the availability, we are interested in the subset of
working states.

B. SRN Availability Model of an Open5GS Node

Figure 4 shows the SRN model of the 𝑖-th three-layered
Open5GS node. Let us start to analyze the evolution of such
a model by considering that the node is fully working. It is
now useful to focus on the Container layer (the left part of the
model in Fig. 4). Place Pcnt (namely, the place representing a
working condition of the Container layer) contains a number
of tokens representing the minimum number of containers
(𝑚∗

𝑖
, derived from performance analysis in the previous sec-

tion) needed to guarantee a given performance target. As
one container fails, transition T0 is fired and one token is
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Fig. 4: SRN of a generic Open5GS node made of three layers: 𝑖) Container layer (providing the service logic), 𝑖𝑖)
Kubernetes layer (providing a software interface), 𝑖𝑖𝑖) Infrastructure layer (providing hardware modeling).

moved from Pcnt to the place P0. We note in passing that, T0
is marking-dependent (indicated with the symbol # nearby)
meaning that its rate is multiplied by the number of tokens
present in Pcnt. We also note that P0 is a transient place,
that, once reached, forces the token to follow two possible
paths: 𝑖) with probability (or coverage) 𝑐, the token reaches
the place P1 once the immediate transition t1 is fired, or 𝑖𝑖)
with probability (1 − 𝑐), the token reaches the place P2 once
the immediate transition t2 is fired. The former path indicates
that a container is ready to be rejuvenated (via transition T1),
namely, even if not strictly necessary, the container is rebooted
to mitigate the software aging effects. The latter path indicates
that the container continues to work for an extra time1 ruled
by transition T2. In other words, in this second case, the node
continues to work until a real failure occurs with a consequent
moving of the token into the place P′

2. Once here, the transition
T′

2 is fired to perform the Container layer reboot.
Let us now focus on the middle part of the SRN in fig. 4

representing the Kubernetes layer. After a quick inspection, it
is possible to notice many commonalities with the Container
layer. For instance, when the Kubernetes layer fails, the token
in Pkub (namely, the place representing a working condition
of the Kubernetes layer) is moved into P3 once T3 is fired.
Similarly to the Container layer case, the token can arrive to
P4 through the immediate transition t4 with coverage 𝑐′ (and,
then, ready to be rejuvenated via T4), or to P5 through the
immediate transition t5 with coverage (1−𝑐′). In the latter case,
the Kubernetes layer is still working until the token reaches
P′

5. Once in this phase, Kubernetes is ready to be rebooted
(due to occurred failures) once the transition T′

5 is fired.
Some additional considerations are needed. First, as one

token is moved from Pkub (namely, the Kubernetes layer
fails), the inhibitory arc inh𝑎 activates the immediate transition

1We reasonably set to 200 hours the extra times ruled by both transitions
𝑇2 and 𝑇5.

t3 with the consequence that the Container layer is forced
to fail (namely, token(s) in Pcnt are immediately passed to
P′

2). Moreover, when Kubernetes layer is down (namely, the
corresponding token is either in P4 or in P′

5), the Container
layer cannot work until the Kubernetes layer is restored. Such
a condition is specified through 4 inhibitory arcs (inh𝑏, inh𝑐,
inh𝑑 , and inh𝑒) aimed at blocking transitions T′

2 and T1.
Similar reasoning occurs when analyzing the rightmost part of
SRN in fig. 4 which depicts the Infrastructure layer. In case
of a physical failure, in fact, the token in Pinf is transferred
into P6 via transition T6 and can come back into working
place after a hardware repair ruled by transition T7. Likewise,
when the Infrastructure layer is down, Kubernetes layer is
forced to fail (since inh 𝑓 activates t6) and cannot be repaired
(being T′

5 blocked by inh𝑔) until the infrastructure repair. Now,
we have to evaluate the availability of a single 5G node by
specializing (9). In particular, we have to build the reward
rate per node 𝑖, by pinpointing the markings corresponding
to a working state of the node. By inspecting Fig. 4, we can
notice two facts. First, a node works when the Container layer
(which provides the service logic of the node) works; if the
Container layer fails but Kubernetes and Infrastructure layers
continue to work, the node remains not able to provide its
service. Second, if we focus on the Container layer, we can
safely say that such a layer is working when we have tokens
or in Pcnt or in P2. It means that Pcnt must contain at least
𝑚∗

𝑖
tokens (being 𝑚∗

𝑖
the minimum number of containerized

instances guaranteeing the performance requirement), and P2
must have at least one token. We note in passing that, including
P0 into the reward function is irrelevant, being P0 a transient
place acting as a selector ruled by t1 and t2. Now, taking the
limit for 𝑡 → ∞ to obtain the steady-state availability (namely,
the availability under regime condition) we can rewrite (9) for
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node 𝑖 as follows:

𝐴𝑖 =
∑︁
𝑠∈𝒮

𝑟𝑠,𝑖 · 𝜋𝑠,𝑖 , (10)

with

𝑟𝑠,𝑖 =


1 if

(∑𝑁
𝑖=1 ⊙𝑃𝑐𝑛𝑡 ≥ 𝑚∗

𝑖

)
𝑂𝑅 (⊙𝑃2 ≥ 1) ,

0 otherwise.
(11)

Expression (11) represents the reward rate associated to the 𝑖-
th node with the pertinent steady-state probability 𝜋𝑠,𝑖 , while
⊙𝑃𝑘 indicates the number of tokens in place 𝑘 .

C. RBD Formalism for Series/Parallel Structures

In the previous subsection, we have shown how to employ
the SRN methodology to evaluate the availability of a single
Open5GS node through (10). At this stage, we need to model:
𝑖) the high-level interconnections with other nodes as in
the scheme depicted in Fig. 3 where a series structure can
be recognized, and 𝑖𝑖) the presence of parallel (redundant)
replicas of nodes aimed at guaranteeing a certain resilience
degree. To perform this task, we employ the RBD formalism
that allows us to evaluate the availability of a series/parallel
structure through straightforward combination rules, viz.

𝐴(𝜎) =
𝑁∏
𝑖=1

𝐴𝑖 , 𝐴
(𝜋 )
𝑖

= 1 −
𝑅∏
𝑟=1

(1 − 𝐴𝑟 ), (12)

where 𝐴(𝜎) is the availability of a series of 𝑁 interconnected
nodes, whereas 𝐴

(𝜋 )
𝑖

is the availability of a single node
replicated 𝑅 times.

VI. EXPERIMENTAL RESULTS

This section contains two parts. In the first part, we provide
details about the estimation of metrics related to performance
(e.g., service times) and availability (e.g., rejuvenation and
reboot times). Most of the metrics have been directly derived
from experiments executed on our testbed, whereas other
metrics have been derived from technical literature. In the
second part, we assess the optimal set of 5G resilient settings
through: 𝑖) a performance evaluation useful to derive the
optimal vector of containerized instances per node (𝑚∗), 𝑖𝑖)
a steady-state availability evaluation useful to derive a set of
5G resilient settings which fulfill a given availability constraint
(five nines) with the minimum number of redundant elements.

A. Estimation of Performance and Availability Metrics

We recall that, as the principal performance metric, we have
elected the PSE interval time which, in turn, is directly related
to the 𝑇3580 timer, the threshold that the PSE procedure
should not exceed to guarantee a satisfactory service.

To estimate the mean service time per node 1/𝜇𝑖 (𝑖 =

1, 2, 3), we have performed 100 trials with UEs simulating 30
concurrent PSE procedures per trial. Then, we have analyzed:
𝑖) the log files provided by the AMF (the most crucial node
involved in the PDU session establishment procedure) and, 𝑖𝑖)

the corresponding Wireshark captures of the Next-Generation
Application Protocol (NGAP) able to track the messages
exchanged between radio and core part of a 5G network.
By averaging such information, we have reasonably estimated
1/𝜇𝑖 around 90 ms with a standard deviation of around 50 ms.

On the other hand, availability metrics include: failure rates
𝛼𝑐𝑛𝑡 , 𝛼𝑘𝑢𝑏, and 𝛼𝑖𝑛 𝑓 for the Container, Kubernetes, and
Infrastructure layers, respectively. Such failure rates have been
derived from the technical literature [47]. As regards repair
rates, we have to distinguish repairs due to rejuvenation (rej)
and repairs due to necessary reboots (reb) as a consequence
of a failure. Accordingly, we have two repair rates for the
Container layer (𝛽 (𝑟𝑒 𝑗 )

𝑐𝑛𝑡 and 𝛽
(𝑟𝑒𝑏)
𝑐𝑛𝑡 ), two repair rates for the

Kubernetes layer (𝛽 (𝑟𝑒 𝑗 )
𝑘𝑢𝑏

and 𝛽
(𝑟𝑒𝑏)
𝑘𝑢𝑏

), and one repair rate for
the Infrastructure layer (𝛽𝑖𝑛 𝑓 ).

Notably, repair rates have been estimated through the em-
ployment of the so-called fault injection techniques consisting
in artificially provoking a fault of a layer, and then, measuring
the corresponding repair time. We simulate software aging
conditions caused by memory leaks (i.e., software bugs where
unused memory is not deallocated, thus accumulating over
time) and memory hogs (i.e., processes that cause over-
consumption of memory due to incorrect capacity planning
or configuration). Previous work showed that memory issues
are the predominant cause of software aging [48]. Thus, to
simulate software aging, we inject an additional workload
that stresses the memory subsystem [49], by allocating large
amounts of memory and performing a large volume of memory
accesses. Large memory allocations put stress on the memory
subsystem, since memory becomes fragmented (which slows
down subsequent memory allocations), and forces the OS to
move memory pages from and to the swap area on the disk.
Moreover, memory accesses saturate the memory bandwidth,
as in the case of memory hogs that force resource competition
on the memory.

From our fault injection experiments, we found that rejuve-
nating a container can be significantly quicker than recovering
a container from a software aging failure. Typically, we can
perform rejuvenation at a convenient time (e.g., nightly, when
the user workload is null or very low), when the container is
not yet in a software aging state (i.e., a proactive approach).
Thus, in this case, the container restarts quickly. However, if
we neglect rejuvenation and perform the restart only when an
effective failure occurs (i.e., a reactive approach), the restart
of a container takes significantly longer time, since the system
is overloaded both by software aging (i.e., memory leaks and
hogs), and by the user workload (since the failure can occur
at arbitrary time).

To the time for recovering a container from a software aging
failure, we added an amount of time that is needed to detect
the software aging failure. Differently from a “crash” failure
(which is notified by the OS within a short amount of time),
a software aging failure cannot be detected immediately: in
a software aging failure, the system enters into a degraded
state, in which the system still appears as available (e.g.,
the process is still running), but its performance (e.g., its
response time) is significantly worse due to software aging
(e.g., memory leaks and hogs). It takes a non-negligible
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TABLE I: Performance and availability metric values

Metric Description Value
1/𝜇𝑖 mean service time for node 𝑖 90 ms
𝜈𝑆,𝑖 coeff. of variation of service time of node 𝑖 0.309
𝑇∗ threshold timer 0.5 s

1/𝛼𝑐𝑛𝑡 mean time for container failure 1258 hours
1/𝛼𝑘𝑢𝑏 mean time for Kubernetes failure 2516 hours
1/𝛼𝑖𝑛 𝑓 mean time for infrastructure failure 60000 hours

1/𝛽 (𝑟𝑒 𝑗)
𝑐𝑛𝑡 mean time for container rejuvenation 1 s

1/𝛽 (𝑟𝑒𝑏)
𝑐𝑛𝑡 mean time for container reboot 30 s

1/𝛽 (𝑟𝑒 𝑗)
𝑘𝑢𝑏

mean time for Kubernetes rejuvenation 2 s
1/𝛽 (𝑟𝑒𝑏)

𝑘𝑢𝑏
mean time for Kubernetes reboot 60 s

1/𝛽𝑖𝑛 𝑓 mean time for infrastructure repair 5 min
𝑐, 𝑐′ coverage values 0.1 - 0.9

amount of time to detect such a degraded state, since the
system administrator (either manually through a dashboard, or
automated monitoring systems) needs to observe the system
over a long period to confidently raise an alarm that a failure
occurred. In [50], authors gathered evidence from industry
practitioners indicating that automated detection takes a few
tens of seconds. Consequently, we incorporate this additional
time into the reboot time of a container (set at 30 seconds as in-
dicated in Table I). Similarly, proactively restarting Kubernetes
for rejuvenation takes less time than reactively restarting it for
recovery, as both the containers and the Kubernetes processes
take longer to restart due to the stress. Values of estimated
performance and availability metrics are reported in Table I.

At this point it is also useful to highlight some limitations
pertaining to the parameters estimation. As regards perfor-
mance metrics (mean service times per nodes), it is useful
to remark that we operate into a simulated environment (no
real network operators typically provide performance data) that
unavoidably introduces simplifications (e.g., limited number of
trials, simplified nodes implementation). A simulated environ-
ment has also an impact onto the estimation of availability met-
rics (in particular, onto repair rates), since reboot operations
may be affected by exogenous factors (e.g., nodes overload,
temporary congestions) which characterize real environments
and that we cannot easily deal with. This notwithstanding, the
validity of our framework remains unaltered and independent
from the particular estimation of numerical parameters.

B. Performance Evaluation

In this part of the experiment, we demonstrate how to
determine the optimal composition of resilient 5G architec-
tures fulfilling performance and availability requirements at
the same time. Since performance and availability assessments
are designed to be applied in pipeline (the output of the
performance assessment represents the input of the availability
assessment), we find it useful to start from the performance
analysis which involves service times.

The estimated mean service times per node 1/𝜇𝑖 are used
to calculate 𝑊𝑖 from (5) in the following way. We start by
evaluating the queueing stability per node (the first constraint
in (8)) with the smallest allocation of containerized instances
per node (𝑚𝑖 = 1). In the hypothesis that such a constraint
is not violated (𝑚𝑖 ≥ 𝑚0), we launch the Algorithm 1 with

TABLE II: Performance results

𝑚 = (𝑚1, 𝑚2, 𝑚3) 𝑚𝑖 ≥ 𝑚0 (see (8)) 𝜈∗
𝐴

=
(
𝜈∗
𝐴,1, 𝜈

∗
𝐴,2, 𝜈

∗
𝐴,3

)
𝑇𝑃𝑆𝐸 ≤ 𝑇∗ (see (8))

(1, 1, 1) NO – –
(2, 1, 1) NO – –
(2, 2, 1) NO – –

. . . NO – –
(3, 3, 3) OK (1, 0.2672, 0.1939) NO
(4, 3, 3) OK (1, 0.5878, 0.2259) OK

𝑚𝑖 = 1 as input. After a few iterations, the algorithm returns
stabilized inter-arrival time values 𝜈∗

𝐴,𝑖
that, along with 𝑚𝑖 and

1/𝜇𝑖 , allow evaluating 𝑇𝑖 from (4), and then 𝑇𝑃𝑆𝐸 from (6).
In case the second constraint of (8) is not violated (𝑇𝑃𝑆𝐸 ≤
𝑇∗) we obtain the desired 𝑇𝑃𝑆𝐸 value. Otherwise, we start to
increase 𝑚𝑖 node by node (𝑚𝑖 → 𝑚𝑖 + 1) and we re-launch
the Algorithm 1.

We note that the estimated value for 𝑇𝑃𝑆𝐸 (in the order of
hundreds of milliseconds) does not take into account propaga-
tion delays, traffic congestion, and other possible phenomena
occurring in real 5G networks. As regards the threshold 𝑇∗

(defined in Sect. IV-B), we recall that such a value should
play the role of the timer 𝑇3580 whose value, from 3GPP
technical specifications [51], is in the order of ten seconds.
This notwithstanding, in line with the aforementioned consid-
erations on the absence of propagation delays and congestion
in our testbed, we reasonably set 𝑇∗ to 0.5 s.

The first set of results related to the performance assessment
is reported in Table II, where we have considered 𝜆𝑒𝑥𝑡 = 30
req/s and a unitary squared coefficient of variation of the
traffic inter-arrival times at the ingress of the chain. The
first column of the table contains the vector of allocated
instances per node where 𝑚1, 𝑚2, and 𝑚3 denote the allocated
instances for the AMF, the SMF, and the UPF, respectively.
For example, the vector (2, 1, 1) means that the AMF has 2
containerized instances working in parallel, whereas both SMF
and UPF have only 1 containerized instance working. The
second column contains the binary value (NO / OK) pertaining
to the satisfaction of the first constraint in (8) related to the
qeueuing stability. In case queueing stability is not achieved,
we increase the number of allocated instances per node until
such a requirement is satisfied and, then, we launch Algorithm
1. The third column contains the vector of coefficients of
variation of the inter-arrival times per node in output from the
Algorithm 1. The fourth column contains the binary value (NO
/ OK) pertaining to the satisfaction of the second constraint
in (8) related to the time threshold, thus, the resulting 𝑇𝑃𝑆𝐸
value represents the estimated time to perform the whole PSE
procedure. Notably, the penultimate row in Table II displays
the configuration 𝑚 = (3, 3, 3) which satisfies the queueing
stability constraint but not the second constraint of (8), since
the obtained value 𝑇𝑃𝑆𝐸 exceeds 𝑇∗.

Conversely, the optimal configuration (see the last row
of Table II) of allocated instances satisfying both first and
second constraints of (8) is represented by 𝑚∗ = (4, 3, 3). The
corresponding vector containing the coefficients of variation of
inter-arrival times 𝜈∗

𝐴
= (1, 0.5878, 0.2259) is obtained after

3 iterations of the Algorithm 1 (at the fourth iteration we
obtain the same value, thus we stopped at the third). With
this configuration, we obtain 𝑇𝑃𝑆𝐸 = 0.462 s. We note that
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Fig. 5: Effect of the coefficient of variation of inter-arrival
ingress traffic (at the AMF node) onto 𝑇𝑃𝑆𝐸 .

such a value has been calculated by considering a Poisson
distributed traffic at the ingress of the AMF node, where the
coefficient of variation 𝜈𝐴,1 is unitary by definition. Since
the adopted approximations for qeueuing models allow us to
deal with generic inter-arrivals, we find it useful to analyze
the behavior of 𝑇𝑃𝑆𝐸 as 𝜈𝐴,1 varies. Obviously, the analysis
requires running again the Algorithm 1 with different values
of 𝜈𝐴,1 associated to non-Poisson distributed arrival traffic.
Figure 5 shows the results of such analysis, where the case
𝜈𝐴,1 = 1 has been elected as a benchmark (the point with the
red circle). We note that for 𝜈𝐴,1 > 1 performance degrades,
and 𝑇𝑃𝑆𝐸 moves close to the critical threshold 𝑇∗ (for 𝜈𝐴,1 = 2
we have 𝑇𝑃𝑆𝐸 > 𝑇∗, thus the second constraint of (8) is
violated). This behavior is due to the greater level of dispersion
around the mean value, since the coefficient of variation is
expressed as the ratio between the standard deviation and
the mean value. Obviously, the problem does not arise for
those inter-arrival distributions with 𝜈𝐴,1 < 1, including, for
example, the subset of Gamma or Weibull distributions with
the scale parameter equal to 1 and the shape parameter greater
than 1.

C. Optimal Resilient 5G Settings

We are now ready to calculate the steady-state availability
associated with each single node by evaluating the SRN of
Fig. 4 where: the number of tokens in the Pcnt amounts to 4
for the SRN model of the AMF node, and amounts to 3 for
the SRN models of both SMF and UPF nodes, in accordance
to the optimal vector of allocated instances derived in the
performance assessment above (𝑚∗ = (4, 3, 3) and 𝜈𝐴,1 = 1).
As a tool for the SRN evaluation, we use the well-tested
Sharpe software [52]. Before proceeding with the numerical
evaluation of the steady-state availabilities, we recall that both
Container and Kubernetes layers in the SRN model of Fig. 4
can be “repaired” according to two different ways: they can be
rejuvenated to prevent/mitigate the software aging, or rebooted
as a consequence of faults. Pragmatically, the possibility of
rejuvenating a layer is left to the system manager where the

following trade-off should be taken into account: rejuvenating
too often is favorable to mitigate software aging, but it is
unfavorable in terms of the service interruptions increase. We
recall that coverage factors 𝑐 and 𝑐′ regulate the rejuvena-
tion/necessary reboots for the container and Kubernetes layers,
respectively. For example, for the SRN model of Fig. 4, 𝑐 = 0.9
means that the Container layer will be rejuvenated in 90% of
cases and, for the remaining 10% of cases, it continues to
work until a failure will occur.

Accordingly, we find it meaningful to analyze 4 cases:

• Case I: this case corresponds to a strong rejuvenation
with 𝑐 = 𝑐′ = 0.9, implying that both Container and
Kubernetes layers are rejuvenated very often;

• Case II: this is an intermediate case with 𝑐 = 0.1
(infrequent container rejuvenation) and 𝑐′ = 0.9 (frequent
Kubernetes rejuvenation);

• Case III: this is the opposite intermediate case with
𝑐 = 0.9 (frequent container rejuvenation) and 𝑐′ = 0.1
(infrequent Kubernetes rejuvenation);

• Case IV: this case corresponds to a weak rejuvenation
with 𝑐 = 𝑐′ = 0.1, implying that both Container and
Kubernetes layers are rarely rejuvenated.

Due to the impossibility of analyzing all possible combinations
with intermediate values of 𝑐 and 𝑐′ (from 0.1 to 0.9), we have
chosen such extreme 4 cases to highlight some interesting facts
as it will be clear in the following. We note in passing that,
the SRN model for each node must be evaluated 4 times with
𝑐 and 𝑐′ chosen in accordance with the 4 cases above.

We start to investigate the behavior of the instantaneous
availability associated with a single node, by recalling that
the steady-state availability (namely, the regime value of the
availability) is obtained by evaluating the instantaneous avail-
ability at 𝑡 → ∞. For instance, Fig. 6 shows the instantaneous
availability of the AMF node in accordance to (9), where each
colored curve corresponds to a given case (black, red, blue, and
violet curves for Cases 𝐼, 𝐼 𝐼, 𝐼 𝐼 𝐼, and 𝐼𝑉 , respectively). We
see that all curves start at the maximum value of availability
(𝐴𝐴𝑀𝐹 (𝑡 = 0) = 1) since, initially, the node is completely
working (namely, all the tokens lie into the place 𝑃cnt). As time
elapses, the steady-state value of the availability associated
with the AMF (in accordance to (10)) is achieved after about
16 mins and amounts to: 0.9921 (Case 𝐼), 0.9917 (Case 𝐼 𝐼),
0.9378 (Case 𝐼 𝐼 𝐼), 0.9334 (Case 𝐼𝑉). Similar analyses are
carried out for the two remaining nodes (SMF and UPF). Two
interesting facts emerge: first, we note a “jump” between the
first couple of cases and the second couple of cases. This
is basically due to the stronger impact of the rejuvenation
onto the Kubernetes layer with respect to the Container layer.
Second, we note that the steady-state availability value of a
single node is far from respecting the five nines availability
threshold (0.99999). Remarkably, the steady-state availability
value associated to the chain of nodes will be even lower in
view of the application of the RBD series rule 𝐴

(𝜎)
𝑖

(see (12))
which involves some products of quantities less than 1.

Consequently, to achieve the desired availability target, we
need to add a controlled redundancy per node and evaluate a
new availability value for the whole chain by exploiting the
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Fig. 6: Instantaneous availability associated
to the AMF node (see (9)).

RBD parallel rule 𝐴
(𝜋 )
𝑖

(see (12)). Also, the redundancy con-
trol mechanism per node is implemented through a heuristic
procedure by adding a new replica (namely, a replica of the
whole SRN model in Fig. 4) per node, and evaluating the
corresponding steady-state availability denoted by 𝐴5𝐺 . The
result is a set of possible 5G settings with each node having
a given degree of redundancy.

Aimed at a valuable comparison, from this set, we ex-
tract four exemplary settings. The first setting is made of 3
replicas per node (AMF(3), SMF(3), UPF(3)). In the second
setting, AMF is replicated 4 times and both SMF and UPF
are replicated 3 times (AMF(4), SMF(3), UPF(3)). In the
third setting, all the nodes are replicated 4 times (AMF(4),
SMF(4), UPF(4)), and in the fourth setting, all the nodes are
replicated 5 times (AMF(5), SMF(5), UPF(5)). The steady-
state availability values of such settings are shown in the graph
bar of Fig. 7 where on the x-axis we denote the four cases
discussed above, and on the y-axis, for visualization comfort,
we report the unavailability values associated with the four
settings (green, orange, blue, and violet for settings 1, 2, 3,
and 4, respectively). We also see two horizontal dashed lines
at 10−5 and 10−6, representing the five nines and six nines
thresholds, respectively.

With this representation, it is very easy to pinpoint settings
respecting a given threshold: bars (namely, settings) below
the 5 nines line respect the five nines threshold and, even
the six nine threshold in case bars are below the 6 nines
line, as well. Some meaningful observations can be derived
from such results. We start by analyzing Case 𝐼. We recall
that this case implements an aggressive rejuvenation policy of
both Container and Kubernetes layers, to extremely reduce
the phenomenon of software aging, and to ensure correct
functioning for the longest possible period. This directly
translates into have a strong resiliency for all settings: setting 1
fulfills the five nines requirement (𝐴5𝐺 = 0.9999985), setting 2
barely fulfills the six nines requirement (𝐴5𝐺 = 0.99999901),
and settings 3 and 4 exhibit very extremely high availability
values amounting to 𝐴5𝐺 = 0.99999998 (7 nines) and to
𝐴5𝐺 = 0.999999999908 (10 nines), respectively. In practice,

10
-6

10
-4

10
-2

Fig. 7: Steady-state unavailability for the whole 5G chain for
different cases and different redundancy settings.

Case 𝐼 guarantees very robust settings but is also high the risk
of frequent service interruptions (aggressive rejuvenation strat-
egy). A milder situation is encountered with Case 𝐼 𝐼, where we
can see that a weak rejuvenation policy for the Container layer
does not have dramatic effects on the availability of settings.
Interestingly, we observe an overturning for Cases 𝐼 𝐼 𝐼 and
𝐼𝑉 , namely, the cases where the weak rejuvenation policy
is applied for the Kubernetes layer. Such behavior reflects
what we have already seen in Fig. 6, and confirms that the
rejuvenation of the Kubernetes layer has a great impact on the
whole structure. This occurs because a fault of Kubernetes
directly implies a fault of all containers running on top. It
means that for Cases 𝐼 𝐼 𝐼 and 𝐼𝑉 we need settings with at
least a 5-degree of redundancy per node to fulfill the five nines
threshold. This could be unacceptable due to the high costs
resulting from replicating all the layers many times. Remark-
ably, the impact of redundancy and rejuvenation cases can
also be easily interpreted by considering the classic formula
of steady-state availability: 𝐴 = 𝑀𝑇𝑇𝐹/(𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅).
Here, the numerical values of MTTF (mean-time-to-failure)
and MTTR (mean-time-to-repair) for various parameters are
derived from Table I. In practice, on one extreme (Case
𝐼), there is a high probability of rejuvenation, namely a
great probability of having low MTTRs values for containers
and Kubernetes, thereby pushing the steady-state availability
towards 1. Consequently, even when redundancy is not so
extensive (as in Setting 2, Case 𝐼), we are able to meet the
challenging constraint of six nines. On the other extreme (Case
𝐼𝑉), there is a high probability of no-rejuvenation, namely a
high probability of having high MTTRs values for containers
and Kubernetes. This results in the steady-state availability
moving away from 1. In this latter case, to achieve the desired
availability constraint (e.g., the five nines) we need to further
increase the redundancy levels and associated costs.

From a system manager perspective, we can safely state
that the best trade-off between rejuvenation and resiliency
is offered by setting 1 in the Case 𝐼 𝐼 where we have: the
minimum redundancy degree (3 replicas per node), a medium-
aggressive rejuvenation policy, and the satisfaction of the five
nines availability requirement.
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VII. CONCLUSIONS AND FUTURE PROSPECTS

We have presented a solution that combines performance
and availability methodologies to characterize and evaluate a
set of resilient virtualized 5G settings. In particular, perfor-
mance aspects (related to delay issues) have been addressed
through non-product-form queueing networks which allow for
an approximate performance assessment to solve 𝐺/𝐺/𝑚
queue models adopted to characterize the 5G nodes (AMF,
SMF, and UPF). Then, availability aspects (related to optimal
redundancy issues) have been addressed through a hierarchical
approach involving: 𝑖) Reliability Block Diagrams to model
the high-level interconnections among 5G nodes, and 𝑖𝑖)
Stochastic Reward Networks to characterize probabilistically
the failure/repair behavior of a single node, where we take
into account rejuvenation procedures (to mitigate software
aging) and necessary reboots (due to unpredictable failures).
Most of the parameter values used in our performance and
availability assessments have been directly estimated through
a testbed based on the Open5GS framework. The resulting 5G
settings can help to answer some interesting designing-related
questions, such as: Which parameters must be tuned to improve
the performance (e.g., to reduce delay)? Which is the impact
of the redundancy onto the availability constraint? Which is
the consequence of an aggressive rejuvenation strategy?

As future prospects, we may consider several directions to
expand the results presented in this work. A first improvement
pertains to a complete characterization of the radio part
(eventually not emulated) to take into account even more
realistic values of delays introduced by physical components
(e.g., antennas). Then, for the three-layered structure of virtu-
alized nodes, one can investigate different charge values to be
assigned per layer to numerically quantify the cost associated
with a replicated node. Finally, a more detailed characteriza-
tion of the 5G core network could include additional nodes
(e.g., Authentication Server Function, Policy and Charging
Function, etc.) that have been not considered in this study.
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