
Kölling, Michael and Rosenberg, John (1998) Support for Object-Oriented
Testing. In: Proceedings of the Technology of Object-Oriented Languages
and Systems. IEEE, pp. 204-215. ISBN 0-7695-0053-6.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21645/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21645/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

- 1 -

Support for Object-Oriented Testing

Michael K�lling John Rosenberg
School of Computer Science & Faculty of

Software Engineering Information Technology
Monash University Monash University

Australia Australia

michael.kolling@csse.monash.edu.au johnr@fcit.monash.edu.au

Abstract

Object-orientation has rapidly become accepted as the preferred paradigm for large scale system
design. There is considerable literature describing approaches to object-oriented design and
implementation. However discussion of testing in an object-oriented environment has been
conspicuous by its absence. At first sight it appears that decomposition of a system into a
potentially large number of information-hiding classes greatly increases the cost of testing.
However, in this paper we show that by taking an object-oriented approach to testing, and the
inclusion of appropriate tools in the development environment, testing time can be greatly
reduced and special purpose test code can be virtually eliminated.

1 Introduction

Object-orientation has rapidly become accepted as the preferred paradigm for large scale
system design. The reasons for this are well known and understood. First, classes provide an
excellent structuring mechanism. They allow a system to be divided into well defined units which
may then be implemented separately. Second, classes support information-hiding. A class can
export a purely procedural interface and the internal structure of data may be hidden. This allows
the structure to be changed without affecting users of the class, thus simplifying maintenance.

Third, object-orientation encourages and supports software reuse. This may be achieved either
through the simple reuse of a class in a library, or via inheritance, whereby a new class may be
created as an extension of an existing one. In both cases the result is a reduction in the amount of
software which must be written and, as a result, an improvement in the reliability of the resultant
system since previously tested classes may be utilised.

If we are to capitalise on the potential advantages of object-orientation then it is important that
the object-oriented approach is adopted and supported throughout the software development
process. The design phase is now reasonably well understood (although notoriously difficult) and
there are various tools to assist with the process. Similarly there are tools to support the
implementation phase. Library browsers may be used to assist with locating existing classes
which may be reused in the project and tools provide support for editing, compilation, etc.

- 2 -

However, testing is often ignored by the designers of software tools and the programmer is left
to his/her own resources. Some may argue that testing should not be difficult (or even necessary
at all) if a proper design and implementation process has taken place. We all know this not to be
true and we must subject new software to rigorous testing before it can be used in a production
environment.

Unfortunately the very advantages of object-orientation cited above become potential
disadvantages when we consider testing. The structuring of the system as a set of independent
classes requires that each of these must be tested and there may be a large number of them. In
addition, information-hiding, which encourages designers of classes to have purely procedural
interfaces, makes it difficult to determine whether the class is working correctly, since the state of
internal data may not be accessible via the interface.

The result is that the programmer must effectively develop a test program for each class. Each
such test program must create an instance of the class being tested and include calls to each of the
methods supported by the class. The test program will need to prompt the user for the parameters
for these method calls so that various combinations can be exercised. The test program must also
display the results of each method call. The result is that the test program may well be more
complex and larger than the class being tested.

Once we have written such a test program, we still may not be able to ascertain whether the
internal data of the class being tested is correct because of the inability to access all of the internal
data via the procedural interface.

There are at least two solutions to this problem. First, ÒdebugÓ print statements could be added
into the class code to print out relevant internal data when methods are called. This has several
associated problems. The insertion of new test code could well introduce errors in itself and these
can detract from the original testing process. In addition if there are several classes, the volume of
output can become difficult to interpret.

The second solution is to use a symbolic debugger to insert breakpoints and examine the data.
This adds further complexity to the process. In addition, the symbolic debugger may not be able
to adequately display complex linked structures.

Clearly what is required is tools specifically designed to assist with testing object-oriented
applications. In particular we would like to reduce the amount of code which must be written in
order to test classes. Ideally no special testing code should have to be written. These tools should
be an integrated component of a complete object-oriented development environment.

This paper describes an environment which supports this ideal by allowing the interactive
creation of instances of classes and interactively invocation of their methods. This, coupled with
the ability to examine the internal state variables of objects, allows the programmer to
interactively test their classes without writing a single line of test code.

The tools described have been developed as a part of a larger project known as Blue [3]. Blue
is both an object-oriented programming language [4, 6] and a program development environment
[5] and has been specifically designed for teaching programming to first year students. The
system has been in use for nearly two years. The authors are currently working on a new version
of the environment designed for Java developers.

The tools described in this paper are only those used for testing. There is still a need for
specialised debugging tools which in the Blue system include breakpoints, single-stepping,
display of variable values, etc. It must be emphasized that we see a clear distinction between
testing, which is required for every program, and debugging, which is only required if testing
finds a failure.

In this paper we first discuss a general approach to testing object-oriented programs. We then
show how this technique has been included in an object-oriented program development
environment. This is followed by a brief description of the technology employed to implement
this environment.

- 3 -

2 Object-oriented testing

The key advantage of the object-oriented paradigm is that it provides a uniform structure for all
components in the form of a procedural interface. Although as indicated above, this appears to
complicate the testing process, it may be exploited to support an object-oriented approach to
testing.

In order to test a class the programmer must be able undertake the following activities:

(a) create an instance of the class, i.e. an object, passing the appropriate parameters to the
constructor

(b) call the methods of the object passing parameters and receiving results

(c) examine the internal data of the object

As discussed above, this can be achieved by writing a test program for each class and the
inclusion of debug statements. However, it could also be achieved by the inclusion of appropriate
mechanisms in the program development environment itself. This would eliminate the need for
both test programs and the modification of the class being tested.

The mechanisms would work in the following manner. First, the environment provides the user
with the ability to interactively create an object of any class. The class is selected and the system
prompts for the constructor parameters. Once the object has been constructed, any of its methods
may be interactively invoked; again the user is prompted for parameters. Results (return
parameters) are displayed in a dialogue box.

Second, the environment provides an inspection facility which allows the internal data of an
object to be examined. The data is displayed in a dialogue box along with the types of each field.

The mechanisms described so far are sufficient to test classes with scalars as parameters.
However, it is of course common to pass other objects as parameters. The system can support this
by allowing an arbitrary number of objects of arbitrary classes to be constructed. These may then
be composed, i.e. one such object can be passed as a parameter to another.

A further problem is that results of method calls may include objects, as may the internal data
of a class. How should such objects be displayed? Our approach is to initially display these as a
typed object reference. The user may then choose to display the contents of the object referred to
by such a reference. The contents may contain further object references and these may be
accessed in the same manner. This facility allows arbitrary data structures to be examined and
traversed.

We call this an object-oriented approach to testing because it exploits the uniform nature of
classes and objects to provide a generic testing facility. The major advantage of the approach is
that it virtually eliminates the need to write special purpose testing code.

Note that Smalltalk environments [2] traditionally come close to meeting some of these goals.
Especially an Òinstance centredÓ variation of Smalltalk, named ÒPortiaÓ supports similar
techniques [1]. Smalltalk, however, has disadvantages in other areas, many of which result from
the fact that it is a dynamically typed language. More recent environments for statically typed
languages seem to have neglected this area.

3 Testing in the Blue environment

The Blue environment is an integrated graphical environment which supports the techniques
described in the previous section. Its main window presents a graphical overview of the
application structure. Each class in the application is represented by an icon, and relationships
between class are displayed (figure 1).

- 4 -

Figure 1: The Blue main window

Double-clicking a class icon opens an editor displaying the classÕs source code. Each class or
the whole application can be compiled with a click on a ÒcompileÓ button. (For a more detailed
description of the Blue environment, see [5]).

The empty area at the bottom of the main window is the object bench. We discuss below how
it is used to interact with objects.

Once a class within a project has been compiled, objects of that class may be created.
Interactive creation of objects is achieved by selecting the class and clicking the ÒCreateÓ button.
(Clicking the right mouse button on a class provides a shortcut to the same function.)

This operation is similar to interactively sending a ÒnewÓ message to a class in a Smalltalk
environment. An instance is interactively created and available for operation. No equivalent of
this operation is available in common environments for more recently developed, statically typed
programming languages.

Invoking the creation operation on a class results in a normal object creation, including the
execution of the creation routine (the ÒconstructorÓ in C++/Java terminology). As an example, we
will use a class ÒPersonÓ which stores some information about a person and provides interface
routines to change and access that information. This class is not meant to be complete or really
useful in any sense Ð it is used here only as an example to demonstrate the Blue object interaction
facilities. The interface of the class is shown in figure 2.1

1 This example uses the Blue language. The language itself is not important here, and a similar environment can be
constructed for other languages.

- 5 -

class interface Person is
===
== Author: M. K�lling
== Version: 1.0
== Date: 8 June 1998
== Short: Person class for university management project
==
== The class Person implements object representing a person
== in a university management project. It contains
== information common to all persons in the university...
==
===

creation (firstName : String, lastName : String, age : Integer)
== Create a new person with given name and age.
pre

lastName <> nil and age <> nil

 routines
changeNames (firstName : String, lastName : String)

== Change the names for this person
pre

lastName <> nil

changeAge (newAge : Integer)
== Set a new age for this person
pre

newAge <> nil

getNames -> (firstName : String, lastName : String)
== Return both names of this person

getAge -> (age : Integer)
== Return age of this person

end class

Figure 2: Interface of class “Person”

When the create operation is invoked a dialogue is displayed to let the user enter routine
parameters (figure 3). At the top of this dialogue, the interface of the creation routine is displayed.
The interface includes the routine header and the routine comment. Further down is a text field
for entering parameter values. Under the parameters is another field to provide a name for the
object to be created. A default name is provided and is often adequate. The name will be
displayed on the object after it has been created. The large area in the middle of the dialogue is a
(currently empty) list of previously used parameter lists. It is provided for convenience during
testing of a class: previously made calls can be easily repeated by selecting a parameter
combination from the list.

- 6 -

Figure 3: Object creation dialogue

Figure 4: An object on the object bench

Once the dialogue is filled in and the OK button is clicked, the object is created and displayed
on the object bench (figure 4). The object is then available to the user for direct interaction. Many
different objects of the same or different classes may be created and stored on the object bench at
the same time.

Clicking on the object with the right mouse button displays a menu that includes all interface
routines of that object (figure 5). Also included in the menu are two special operations available
for all objects: inspect and remove. The remove operation removes the object from the bench
when it is no longer needed. The inspect operation is discussed below.

- 7 -

Figure 5: Calling a routine on an object

Figure 6: Routine call dialogue for “changeNames”

Symbols in the routine menu indicate whether a routine has parameters or return values. When
a routine is selected from the menu, a call to that routine is executed. If the routine has
parameters, a parameter dialogue similar to the one seen at the creation of the object is displayed
(figure 6). On the click of the OK button the routine is executed and, if the routine returns results,
the result values are displayed in another dialogue. Figure 7 shows a function result dialogue for a
call to the routine ÒgetNamesÓ.2 Again, at the top of the dialogue window the interface of the
called routine is displayed. Below, the actual call is shown in standard Blue syntax (the name of

2 In Blue, a function can return more than one value. Return values are named, similar to parameters in a parameter list.

- 8 -

the called object, the routine name and Ð if present Ð actual parameters). This is followed by a list
of the result values of the function. For each result its name, type and value are displayed.

The result of the facilities described so far (interactive creation of objects, interactive routine
calls and result display) is that a project can be incrementally developed. There is no need to
complete all classes in a project before the first tests can be performed. Instead, each class can be
tested as soon as some of its routines have been completed without the need to write special
purpose test code. This possibility dramatically changes the style of work available to the
developer.

Figure 7: Result dialogue for function “getNames”

4 Composition

During the interactive testing of the system, objects accessible on the object bench may be
composed, i.e. one object may be passed as a parameter to the routine of another object. If, for
instance, a project includes a database class and a person class with the intention of creating a
database of persons, then objects of these classes may be combined. Several person objects could
be created. Then a database object is created and its ÒaddPersonÓ routine is invoked. When the
routine call dialogue is visible on the screen, a click on one of the person objects on the object
bench will enter its name into the parameter field of the routine call dialogue. The object will be
passed as a parameter. This can be done repeatedly to add all the persons from the object bench to
the database.

5 Inspection of objects

As mentioned above, a mechanism is needed to examine instance data of objects for cases
where an object does not provide accessor functions for that data. This functionality is provided
by the inspect operation. Using the inspect operation (by selecting it from the object menu or, as a
shortcut, double-clicking the object) opens the object and reveals its internals. Figure 8 shows the
dialogue displayed as a result of inspecting a person object.

- 9 -

Figure 8: Object inspection dialogue

For this example, we have modified the above definition of the class ÒPersonÓ to include
address and employer variables, so that we can show how more complex objects can be
inspected. The address variable holds a reference to another user-defined object of class
ÒAddressÓ; the employer variable refers to another person.

The names, types and values of all instance variables of this object are shown. For manifest
objects, which have a simple textual representation, values are shown as literals. For variables
holding more complex objects only the state of the variable is displayed (whether it is undefined,
contains nil or an object reference). Those variables may then in turn be inspected by double-
clicking on the variable or selecting the variable and then clicking the ÒInspectÓ button. Another
window will be opened displaying the internals of that object. An example is shown in figure 9
for the inspection of the address object.

Note that we are able to examine any object reachable from an object available on the object
bench. Sometimes it can become clumsy to repeatedly navigate through object references to reach
an object we wish to examine. The ÒGetÓ button on the inspection dialogue (figure 8) allows a
reference to any existing object to be placed on the object bench so that it can be re-examined at a
later time. This also allows the user to interactively call interface routines of objects that were
created internally.

Overall, inspection of objects assists users in thoroughly testing objects of any class by
allowing users to observe the effect of routine executions on internal data.

Finally, there is a record facility in Blue which will textually record all interactive object
creations, method invocations, return values, text input and text output. This may be used to
document the testing that was carried out.

- 10 -

Figure 9: Inspection of “Address” object

6 Pedagogical benefits

The Blue environment was initially developed as a teaching environment for first year
students. While the testing facilities described here are generally applicable to all forms of object-
oriented software development (educational as well as professional) and thus a teaching
environment is only one example of possible applications of these techniques, it is worthwhile
summarising the educational benefits which Blue gained from these tools.

• Incremental development. Projects can be incrementally developed and tested. There is
no need to even syntactically complete a whole application. As soon as one class (or
even one routine) is completed it can be compiled and objects can be created, executed
and tested. This leads to greater motivation (results are visible more quickly) and a
better ability to cope with errors (since early errors can be found and removed before
more errors are made, avoiding the harder to find cases of multiple interacting errors).
This is clearly also an advantage professional software development situations.

• Class/object distinction. Students often have difficulties understanding the relationship
between classes and objects. Allowing the direct creation of and interaction with
objects greatly facilitates the understanding of these fundamental issues. The pure act
of creating a number of objects from a class demonstrates in a powerful way the
respective roles of the concepts. If a student has, for example, a class ÒPersonÓ and
creates three different people with different names, the role of the class and the role of
each object becomes much more directly understandable.

• Programming without I/O. Since input/output operations are often difficult to
understand initially (because they often do not conform to language rules or force the

- 11 -

use of advanced concepts), it might lead to a clearer understanding of the abstraction
concepts if routine calls are taught before language exceptions (like I/O operations) are
shown [7].

• Interface/implementation distinction. The distinction between the interface and the
implementation of an object Ð itself an important concept Ð is clarified. Since only the
interface operations are visible to a human user when directly interacting with an
object the concept that this is the only part of an object visible to other objects seems a
logical conclusion.

• Testing support. As was our initial goal, good testing, essential to all serious software
development, is supported much better than in conventional systems.

Overall, the interaction and inspection facility provided by the object bench not only meets our
initial goal, but offers additional benefits beyond the area of testing.

7 Implementation

To execute an interactive call, the Blue environment uses linguistic reflection. A class is
constructed internally that includes the interactive call as its only statement in its creation routine.
This class is then passed to the compiler to be translated. An object of the resulting class is
instantiated which, as part of the creation, executes its creation routine and with it the interactive
call. Result values are stored in this internal object and can then be extracted for display in the
result dialogue. To illustrate this technique let us consider an interactive call to the following
routine:

extract (line: String, o: Object) -> (word: String, valid: Boolean)

In Blue, return values are written in a list after a ÒÐ>Ó symbol. Thus, the routine shown has two
parameters and two return values. The actual call we want to execute is

parser.extract ("input line", obj1)

We assume that parser and obj1 are the names of objects on the object bench. To execute
this call, the Blue system internally creates the source for another class, usually referred to as the
shell class. The source code created for our example call would look like this:

class __SHELL__ is
== shell class for interactive call
uses Parser, Object
internal var word: String
 valid: Boolean
interface

creation (parser: Parser, obj1: Object) is
== execute interactive call

do
word, valid :=
 parser.extract ("input line", obj1)

end creation
end class

The interactive call is then executed by creating an object of the shell class. Creation of the
shell object automatically includes the execution of the interactive call as part of its creation
routine execution.

The shell class is constructed to have one instance variable for every return value of the
interactive call. The return values are stored in those variables and can, after the call, be retrieved

- 12 -

from the created object to be displayed to the user. The display of the return values is, in fact,
nothing else than an inspection of the shell object.

Several advantages are associated with this technique. Firstly, the parameter list does not need
to be parsed and evaluated by the project management part of the system. The compiler is used
for this purpose, thus avoiding duplication of equivalent code. The project manager sets up only
the parameter list for the shell creation routine, which contains only object references. Secondly,
error messages for mistakes found in the parameter list are produced by the compiler and are thus
guaranteed to be the same messages that would be produced for the same error in a non-
interactive call. This increases consistency in the environment. Thirdly, the only call ever to be
initiated by the object bench (the call to the shell creation routine) has a simple and known
interface. Most importantly, it has only object parameters, no literals. This greatly simplifies the
implementation. The interactive call, having an arbitrary parameter list, is turned into an internal
call completely handled by the runtime system.

8 Conclusion

The object-oriented paradigm has brought obvious advantages to the software development
process. However, these advantages have not been exploited in the testing phase. In this paper we
have shown how testing itself can be achieved in an object-oriented manner. We have described
generic tools which support this process and virtually eliminate the need to write special purpose
test code. This approach fully supports incremental software development, allows testing to take
place earlier in the project and results in a considerable reduction in overall testing time.

The system described has been implemented for a teaching language known as Blue. The
authors are currently constructing a similar environment for Java. A limited version of the
environment is currently being tested and should be available for general use by the end of 1998.

References

[1] E. Gold and M. B. Rosson, Portia: An Instance-Centered Environment for Smalltalk, in OOPSLA 91 Conference
Proceedings, ACM, 62-74, 1991.

[2] A. Goldberg, Smalltalk-80: The Interactive Programming Environment, Addison-Wesley, 1984.

[3] M. K�lling, B. Koch and J. Rosenberg, Requirements for a First Year Object-Oriented Teaching Language, in
ACM SIGCSE Bulletin, ACM, Nashville, 173-177, March 1995.

[4] M. K�lling and J. Rosenberg, Blue - A Language for Teaching Object-Oriented Programming, in Proceedings of
27th SIGCSE Technical Symposium on Computer Science Education, ACM, Philadelphia, Pennsylvania, 190-
194, March 1996.

[5] M. K�lling and J. Rosenberg, An Object-Oriented Program Development Environment for the First Programming
Course, in Proceedings of 27th SIGCSE Technical Symposium on Computer Science Education, ACM,
Philadelphia, Pennsylvania, 83-87, March 1996.

[6] M. K�lling and J. Rosenberg, Blue - Language Specification, Version 1.0, School of Computer Science and
Software Engineering, Monash University, Technical Report TR97-13, November 1997.

[7] J. Rosenberg and M. K�lling, I/O Considered Harmful (At least for the first few weeks), in Proceedings of the
Second Australasian Conference on Computer Science Education, ACM, Melbourne, 216-223, July 1997.

