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Generalized Boundaries from Multiple Image
Interpretations

Marius Leordeanu, Rahul Sukthankar, and Cristian Sminchisescu

Abstract—Boundary detection is a fundamental computer vision problem that is essential for a variety of tasks, such as contour and
region segmentation, symmetry detection and object recognition and categorization. We propose a generalized formulation for
boundary detection, with closed-form solution, applicable to the localization of different types of boundaries, such as object edges in
natural images and occlusion boundaries from video. Our generalized boundary detection method (Gb) simultaneously combines
low-level and mid-level image representations in a single eigenvalue problem and solves for the optimal continuous boundary
orientation and strength. The closed-form solution to boundary detection enables our algorithm to achieve state-of-the-art results at a
significantly lower computational cost than current methods. We also propose two complementary novel components that can
seamlessly be combined with Gb: first, we introduce a soft-segmentation procedure that provides region input layers to our boundary
detection algorithm for a significant improvement in accuracy, at negligible computational cost; second, we present an efficient
method for contour grouping and reasoning, which when applied as a final post-processing stage, further increases the boundary
detection performance.

Index Terms—Edge, boundary and contour detection, occlusion boundaries, soft image segmentation, computer vision

1 INTRODUCTION

BOUNDARY detection is a fundamental computer vision
problem with broad applicability in areas such as

feature extraction, contour grouping, symmetry detection,
segmentation of image regions, object recognition and cat-
egorization. Primarily, the task of edge detection has concen-
trated on finding signal discontinuities in the image that
mark the transition from one region to another. Therefore,
the majority of research on edge detection has focused on
low-level cues, such as pixel intensity or color [3], [26], [36],
[40], [41]. Recent work has started exploring the problem
of boundary detection between meaningful scene objects or
regions, based on higher-level representations of images,
such as optical flow, surface and depth cues [13], [46],
[49], segmentation [1], as well as object category specific
information [12], [25].

In this paper we propose a general formulation for
boundary detection that can be applied, in principle, to
the identification of any type of boundaries, such as gen-
eral edges from low-level static cues (Fig. 11), and occlusion
boundaries from optical flow (Figs. 1, 14 and 15). We gen-
eralize the classical view of boundaries as sudden signal
changes on the original low-level image input [3], [6], [7],
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[15], [26], [36], [40], to a locally linear (planar or step-wise)
model on multiple layers of the input, computed over a
relatively large image neighborhood. The layers can be
viewed as interpretations of the image resulting from dif-
ferent visual process responses, which could be low-level
(e.g., color or grey level intensity), mid-level (e.g., seg-
mentation, optical flow), or high-level (e.g., object category
segmentation).

Despite the abundance of research on boundary detec-
tion, there is no general formulation of this problem that
encompasses all types of boundaries, from intensity edges,
to semantic regions, objects and occlusion discontinuities.
In this paper, we make the popular but implicit intuition
of boundaries explicit: boundary pixels mark the transition
from one relatively constant region to another, under appro-
priate low- or high-level interpretations of the image. We
summarize our assumptions as follows:

1) A boundary separates different image regions, which
in the absence of noise are almost constant, at some
level of image or visual processing. For example, at
the lowest level, a region could have constant inten-
sity. At a higher-level, it could be a region delimiting
an object category, in which case the output of a
category-specific classifier would be constant.

2) For a given image, boundaries in one layer often
coincide, in their position and orientation, with
boundaries in other layers. For example, when dis-
continuities in intensity are correlated with discon-
tinuities in optical flow, texture or other cues, the
evidence for a relevant boundary is higher, with
boundaries that align across multiple layers typi-
cally corresponding to the semantic boundaries that
interest humans.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.
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Fig. 1. Gb combines different image interpretation layers (first three
columns) to identify boundaries (right column) in a unified formulation.
In this example Gb uses color, soft-segmentation, and optical flow.

Based on these observations and motivated by the analysis
of real world images (see Fig. 2), we develop a compact,
integrated boundary model that ca simultaneously con-
sider evidence from different input layers of the image,
obtained from both lower and higher levels of visual
processing.

Our contributions can be summarized as follows: 1) We
present a novel boundary model, operational over multiple
image response layers, which can seamlessly incorporate
inputs from visual processes, both low-level and high-
level, static or dynamic. 2) Our formulation provides an
efficient closed-form solution that jointly computes the
boundary strength and its normal by combining evidence
from different input layers. This is in contrast with current
approaches [1], [46], [49] that process the low and mid-level
layers separately and combine them through multiple com-
plex, computationally demanding stages, in order to detect
different types of boundaries. 3) We recover exact boundary
normals through direct estimation rather than by evaluat-
ing a coarsely sampled set of orientation candidates[27];
4) We only have to learn a small set of parameters, which
makes possible to perform efficient training with limited
data. Our method bridges the gap between model fitting
methods such as [2], [28], and recent successful, but com-
putationally demanding learning-based boundary detec-
tors [1], [46], [49]. 5) We propose an efficient mid-level soft-
segmentation method which offers effective input layers for
our boundary detector and significantly improves accuracy
at small computational expense (Sec. 6). 6) We also present
an efficient method for contour grouping and reasoning,
which further improves the overall performance at minor
cost (Sec. 7).

2 RELATION TO PREVIOUS WORK

Our approach relates to both local boundary detectors and
mid-level methods based on inference, grouping or optical
flow. Here we briefly discuss how the existing literature
relates to our work.
Local boundary detection. Classical approaches to edge
detection are based on computing local first- or second-
order derivatives on gray level images. Most of the early
edge detection methods such as [36], [40], are based on
the estimation of local first-order derivatives. Second-order
spatial derivatives are employed in [26] in order to find
edges as the zero crossings of the Laplacian of Gaussian
operator. Other approaches use different local filters such
as Oriented Energy-based [11], [29], [34] and the scale
invariant approach [24]. A key limitation of derivatives
is that their sensitivity to noise, stemming from their
limited spatial support, can lead to high false positive
rates.

Existing vector-valued techniques on multi-images [7],
[15], [19] can be simultaneously applied to several chan-
nels, but are also limited to using local derivatives of the
image. In the multi-channel case, derivatives have an addi-
tional limitation: even though true boundaries from one
layer could coincide with those from a different layer,
their location may not match perfectly — an assumption
implicitly made by their restriction of having to perform
computations over small local neighborhoods.

We argue that in order to confidently classify boundary
pixels and robustly combine multiple layers of informa-
tion, one must consider much larger neighborhoods, in line
with recent methods [1], [27], [37]. A key advantage of our
approach over current methods is the efficient estimation of
boundary strength and orientation in a single closed-form
computation. The idea behind Pb and its variants [1], [27]
is to classify each possible boundary pixel based on the his-
togram difference in color and texture information between
the two half disks on each side of a putative orientation,
for a fixed number of candidate angles. The separate com-
putation for each orientation increases Pb’s computational
cost and limits orientation estimates to a particular angular
quantization.
Mid-level boundary inference. True image boundaries
tend to display certain grouping properties, such as prox-
imity, continuity and smoothness, as observed by Gestalt
theorists [31]. There are two main types of approaches that
employ global mid-level grouping properties in order to
improve boundary detection. The first focuses on grouping
edges into contours with boundary detection performed
by accumulating global information from such contours.
The second, which is complementary, finds contours as
boundaries of image regions from mid-level image segmen-
tation.

A classical method that is based on contour group-
ing is Canny’s algorithm [3], which links local edges into
connected components thorough hysteresis thresholding.
Other early approaches to finding long and smooth con-
tours include [9], [32], [43], [52]. More recent methods
formulate boundary detection in a probabilistic framework.
JetStream [33] applies a multiple hypothesis probabilistic
tracking approach to contour detection. Ren et al. [37] find
contours with approximate MAP inference in conditional
random fields based on constrained Delaunay triangula-
tion, relying on edges detected locally using Pb. Edge
potentials are functions of Pb’s response and the pair-
wise terms enforce curvilinear continuity. Felzenszwalb and
McAllester [10], also use Pb and reformulate the MAP
optimization of their graphical model over contours as
a weighted min-cover problem, which they approximate
with an efficient greedy algorithm. Zhu et al. [54] give an
algebraic approach to contour detection using the com-
plex eigenvectors of a random walk matrix over edges in
a graph, with local responses again from Pb. Recent work
based on Pairwise Markov Networks includes [17], [51].

The most representative approach that identifies edges
as boundaries of image regions is global gPb [1]. That
model computes local cues at three scales, based on Pb,
and builds pairwise links between image pixels from
intervening contours. The Ncut eigenvectors associated
with the image graph represent soft segmentations whose
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Fig. 2. Our step/ramp boundary model can be seen in different layers of real-world images. Left: A step is often visible in the low-level color
channels. Middle: In some cases, no step is visible in the color channels yet the edge is clearly present in the output of a soft segmentation method.
Right: In video, moving boundaries are often seen in the optical flow layer. More generally, a strong perceptual boundary at a given location may
be visible in several layers, with consistent orientation across layers. Our multi-layer ramp model covers all these cases.

local edges implicitly encode mid-level global grouping
information. Combining these gPb cues with boosting and
multiple instance learning were shown to further improve
performance [16]. Another recent line of work with strong
results [38] combines the gPb framework with sparse coded
gradients learned on local patches.

Our work on mid-level inference exhibits conceptual
similiarties to these state-of-the-art approaches but the
methodology is substantially different. We employ a novel
and computationally efficient soft-segmentation method
(Sec. 6) as well as a fast contour reasoning method (Sec. 7).
A key advantage of our soft-segmentation over using
eigenvectors derived from normalized cuts is speed. We
observe significant improvements in accuracy by employ-
ing such soft segmentations (rather than raw pixels) as
input layers in the proposed Gb model. For contour group-
ing and reasoning (Sec. 7), like recent methods, we also
consider curvilinear continuity constraints between neigh-
boring edge pixels. However, instead of relying on expen-
sive probabilistic graphical models or algebraic frameworks
that may be difficult to optimize, we decompose the prob-
lem into several independent sub-problems that we can
solve sequentially. First, we solve the contour grouping
task by a connected component method that uses hys-
teresis thresholding in order to link only those edges that
have a similar gradient orientation and are sufficiently close
spatially. Local edge responses and orientation are rapidly
computed using Gb. Second, we compute global cues from
the contours that we have obtained and use them to re-
score and classify individual pixels. The contour reasoning
step is fast and significantly improves over Gb with color
and soft-segmentation layers.
Occlusion boundaries in video. Occlusion detection in
video is a relatively recent research area. By capturing the
moving scene or through camera movement, one can accu-
mulate evidence about depth discontinuities, in regions
where the foreground object occludes parts of the back-
ground. State-of-the-art techniques for occlusion boundary
detection in video [13], [42], [46], [49] use probabilistic
graphical models to model occlusions. They combine the
outputs of existing boundary detectors based on informa-
tion extracted in color images with optical flow, and refine
the estimates by means of a global processing step. Different
from previous work, ours offers a unified model that can
simultaneously consider evidence in all input layers (color,

segmentation and optical flow) within a single optimiza-
tion problem that enables exact computation of boundary
strength and its normal.

3 GENERALIZED BOUNDARY MODEL

Given a Nx × Ny image I, let the k-th layer Lk be some
real-valued array, of the same size, whose boundaries are
relevant to our task. For example, Lk could contain, at each
pixel, values from a color channel, different filter responses,
optical flow, or the output of a patch-based binary classi-
fier trained to detect a specific color distribution, a texture
pattern, or a certain object category.1 Thus, Lk could consist
of relatively constant regions separated by boundaries.

We expect boundaries in different layers to not always
align precisely. Given several such interpretation or mea-
surement layers of the image, we wish to identify the most
consistent boundaries across them. The output of Gb for
each point p on the Nx × Ny image grid is a real-valued
probability that p lies on a boundary, given the information
in all image interpretations Lk centered at p.

We model a boundary region in layer Lk as a transi-
tion, either sudden or gradual, in the corresponding values
of Lk along the normal to the boundary. If several K such
layers are available, let L be a three-dimensional array of
size Nx ×Ny × K, such that L(x, y, k) = Lk(x, y), for each k.
Thus, L contains all the information considered in resolving
the current boundary detection problem, as multiple layers
of interpretations of the image. Fig. 14 illustrates how we
perform boundary detection by combining different layers,
such as color, soft-segmentation and flow.

Let p0 be the center of a window W(p0) of size
√

NW ×√
NW , where NW is the number of pixels in the window.

For each image location p0 we want to evaluate the prob-
ability of boundary using the information in L, restricted
to that particular window. For any p within the window,
we model the boundary with the following locally linear
approximation:

Lk(p) ≈ Ck(p0)+ bk(p0)(πε(p)− p0)
�n(p0). (1)

Here bk is nonnegative and corresponds to the boundary
“height” for layer k at location p0; πε(p) is the closest point

1. The output of a multi-label classifier can be encoded as multiple
input layers, where each layer represents a given label.



LEORDEANU ET AL.: GENERALIZED BOUNDARIES FROM MULTIPLE IMAGE INTERPRETATIONS 1315

Fig. 3. Top: 1D view of our boundary model. Middle: 2D view of the
model with different values of ε relative to the window radius R: 2a)
ε > R; 2b) ε = R/2; 2c) ε = R/1000. For small ε the boundary model is
a step along the normal passing through the window center. Bottom: the
model, for one layer, viewed from above: 3a) ε = R/2; 3b) ε = R/1000.
The values on the path [p, π(p), B, C] are the same. Inside the circle the
model is planar and outside is radially constant. For small ε the radial
line value ([p0, C]) varies linearly with the cosine between that line and
the boundary normal.

to p (projection of p) on the disk of radius ε centered at p0;
n(p0) is the normal to the boundary and Ck(p0) is a constant
over the window W(p0). Note that if we set Ck(p0) = Lk(p0)

and use a sufficiently large ε such that πε(p) = p, our
model reduces to the first-order Taylor expansion of Lk(p)

around the current p0; however, as seen in our experiments,
the regimes of small ε are the ones that lead to the best
boundary detection performance.

As shown in Fig. 3, ε controls the steepness of the bound-
ary, going from completely planar when ε is large to a sharp
step-wise discontinuity through the window center p0, as
ε approaches zero. When ε is very small we have a step
along the normal through the window center, and a sig-
moid, along the boundary normal, that flattens as we move
farther away from the center. As ε increases, the model flat-
tens to become a perfect plane for any ε greater than the
window radius. In 2D, our model is not an ideal ramp (see
Fig. 3), a property which enables it to handle corners as
well as edges. The idea of ramp edges has been explored
in the literature before, albeit very differently [35]. Fig. 2
illustrates how boundaries found by our proposed model
correspond to those visible in real-world images and video.

When the window is far from any boundary, the value of
bk should be near zero, since the only variation in the layer
values is due to noise. When we are close to a boundary, bk
becomes large. The term (πε(p) − p0)

�n(p0) approximates
the sign indicating the side of the boundary: it does not
matter on which side we are, as long as a sign change occurs

when the boundary is crossed. When a true boundary is
present across several layers at the same position (bk(p0)

is non-zero and possibly different, for several k) the nor-
mal to the boundary should be consistent. Thus, we model
the boundary normal n as common, and constrained by all
layers.

4 A CLOSED-FORM SOLUTION

We can now write the above equation in matrix form for all
layers, with the same window size and location as follows:
let X be a NW×K matrix with a row i for each location pi of
the window and a column for each layer k, such that Xi;k =
Lk(pi). Similarly, we define NW×2 position matrix P: on its
i-th row we store the x and y components of πε(pi) − p0
for the i-th point of the window. Let n = [nx, ny] be the
boundary normal and b = [b1, b2, . . . , bK] the step sizes for
layers 1, 2, . . . , K. Also, let us define the (rank-1) 2×K matrix
J = n�b. We also define matrix C of the same size as X, with
each column k constant and equal to Ck(p0). We rewrite
Eq. 1, with unknowns J and C (we drop p0 to simplify
notation):

X ≈ C+ PJ. (2)

Since C is a matrix with constant columns, and each column
of P sums to 0, we have P�C = 0. Thus, by multiply-
ing both sides of the above equation by P�, we eliminate
the unknown C. Moreover, it can be easily shown that
P�P = αI, i.e., the identity matrix scaled by a factor α,
which can be computed since P is known. Thus, we obtain
a simple expression for the unknown J (since both P and X
are known):

J ≈ 1
α

P�X. (3)

Since J = n�b, it follows that the matrix JJ� = ‖b‖2n�n
is symmetric and has rank 1. Then n can be estimated, in
the least-squares sense, in terms of the principal eigenvec-
tor of M = JJ� and ‖b‖, as the square root of its largest
eigenvalue. ‖b‖ is the norm of the boundary step vec-
tor b = [b1, b2, . . . , bK] and captures the overall strength
of boundaries from all layers simultaneously. If the layers
are properly scaled, then ‖b‖ can be used as a measure
of boundary strength. Once we identify ‖b‖, we pass it
through a 1D logistic model to obtain the probability of
boundary, similar to recent methods [1], [27]. The param-
eters of the logistic model are learned using standard
procedures, detailed in Sec. 5.3. The normal to the boundary
n is then used for non-maximal suppression. Note that ‖b‖
is different from the gradient of multi-images [7], [15] or the
single channel method of [30], which use second-moment
matrices computed from local derivatives. In contrast, we
compute the boundary by fitting a model, which, by con-
trolling the window size and ε, ranges from planar to
step-wise and accumulates information over a small or
large patch.
Boundary strength along a given orientation. In some
cases we might want to compute the boundary along a
given orientation n (e.g., when the true normal is known
a priori, or if needed for a specific task). One way to do
it is to start from the observation JJ� = ‖b‖2n�n and
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Fig. 4. Evaluation on the BSDS300 test set by varying the window size
(in pixels), σG of the Gaussian weighting (relative to window radius) and
ε. One parameter is varied, while the others are set to their optimum,
learned from training images. Left: Windows with large spatial support
give a significantly better accuracy. Middle: Points closer to the bound-
ary should contribute more to the model, as evidenced by the best σG ≈
half of the window radius. Right: Small ε leads to better performance,
validating our step-wise model.

estimate ‖b‖2 as the minimizer q∗ of the Frobenius norm
‖JJ� − qn�n‖F. It is relatively easy to show that the opti-
mal q∗ is vec(JJ�)�vec(n�n) 1

‖n�n‖F . Both JJ� and n�n are
symmetric positive semidefinite, so their Frobenius inner
product vec(JJ�)�vec(n�n) = Tr(JJ�n�n) is nonnegative.
This follows from the property that the product of posi-
tive semidefinite matrices is also positive semidefinite and
the trace of a matrix is equal to the sum of its eigen-
values. Thus, the optimal q∗ is nonnegative and we can
estimate ‖b‖ ≈ √

q∗. The solution for q∗ as a simple dot-
product between two 4-element vectors provides a very fast
procedure to estimate the boundary strength along any ori-
entation, once matrix M = JJ� is computed. This result, as
well as the proposed closed-form solution, are made possi-
ble by our novel boundary model. In practice, computing
the response of Gb over 8 quantized orientations is almost
as fast as obtaining Gb based on the closed-form solution
and has similar performance in terms of the F-measure. Our
contour reasoning (Section 7) is also robust and performs
equally well with quantized orientations.
Gaussian weighting. We propose to weigh each pixel in a
window by an isotropic 2D Gaussian located at the window
center p0. Such a spatially weighting places greater impor-
tance on fitting the model to points closer to the window
center.

The generalized boundary model is based on Eq. 2. The
Gaussian weighting is applied such that the equation still
holds, by multiplying each row of the matrices X, C, and
P by the Gaussian weight applied to the corresponding
location within the window. This is equivalent to multi-
plying each side of Eq. 2 with a diagonal matrix G, having
diagonal elements Gii = g(xi − x0, yi − y0), where g is the
Gaussian weight applied at location pi = (xi, yi) relative
to the window center p0 = (x0, y0). We can re-write the
equation as:

GX = GC+GPJ. (4)

The least squares solution for J in the above overdetermined
system of equations is given by (to simplify notation, we
denote A = GP):

J = (A�A)−1A�GX− (A�A)−1A�GC. (5)

We observe that (A�A)−1 = ((GP)�GP)−1 is the iden-
tity matrix multiplied by some scalar 1/α, and that

Algorithm 1 Gb: Generalized Boundary Detection
Initialize L, with each layer scaled appropriately.
Initialize w0 and w1.
Pre-compute matrix P
for all pixels p do

M← (P�Xp)(P�Xp)�
(v, λ)← principal eigenpair of M
bp ← 1

1+exp(w0+w1
√

λ)

θp ← atan2(vy, vx)

end for
return b, θ

(GP)�GC = (G2P)�C = 0, since G = G�, matrix C has con-
stant columns, and the columns of matrix G2P sum to 0. It
follows that

J ≈ 1
α

(GP)�GX. (6)

Setting X← GX and P← GP, we obtain the same expres-
sion for J as in Eq. 3, which can also be written as J ≈
1
α
(G2P)

�X. To simplify notation, for the rest of the paper,
we set X← GX and P← GP, and use X and P, instead of
GX and GP, respectively.

As seen in Fig. 4, the performance is influenced by the
choice of Gaussian standard deviation σG, which supports
our prior belief that points closer to the boundary should
have greater influence on the model parameters. In our
experiments we used a window radius equal to 2% of the
image diagonal, ε = 1 pixel, and Gaussian σG equal to half
of the window radius. These parameters produced the best
F-measure on the BSDS300 training set [27] and were also
near-optimal on the test set, as shown in Fig. 4. From these
experiments, we draw the following conclusions regard-
ing the proposed model: 1) A large window size leads
to significantly better performance as more evidence can
be integrated in reasoning about boundaries. Note that
when the window size is small our model is related to
methods based on local approximation of derivatives [3],
[7], [15], [19]. 2) The usage of a small ε produces bound-
aries with significantly better localization and strength. It
strongly suggests that perceptual boundary transitions in
natural images tend to be sudden, rather than gradual. 3)
The center-weighting is justified: the model is better fitted
if more weight is placed on points closer to the putative
boundary.

5 ALGORITHM

Before applying the main algorithm we scale each layer
in L according to its importance, which may be problem
dependent. We learn the scaling of layers from training
data using a direct search method [20] to optimize the
F-measure (Sec. 5.3). Algorithm 1 (Gb) summarizes the
proposed approach.

The pseudo-code presented in Algorithm 1 gives a
description of Gb that directly relates to our boundary
model. Upon closer inspection we observe that elements
of M can also be computed exactly by convolution, as
explained next. X contains values from the input layers,
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Fig. 5. (a) Gb filters. (b) Gaussian Derivative (GD) filters. (c) Output
(zoomed-in view) of Gb and GD (after non-maximal suppression) for
a dark line (5 pixels thin), having identical parameters (except for ε)
and window size = 19 pixels. GD has poorer localization and corner
handling. Note: Asymmetry in GD output is due to numerical issues in
the non-maximal suppression.

restricted to a particular window, and matrix J is com-
puted for each window location. Using Eq. 6 and observing
that matrix G2P does not depend on the window center
p0= (x0, y0), the elements of J can be computed, for all
window locations in the image, by convolving each layer
Lk twice, using two filters: Hx(x− x0, y− y0) ∝ g(x− x0, y−
y0)

2(xε−x0) and Hy(x−x0, y−y0) ∝ g(x−x0, y−y0)
2(yε−y0),

where (x, y) is p and (xε, yε) is πε(p). Specifically, Jp0(k, 1) =
(Lk ∗ Hx)(x0, y0) and Jp0(k, 2) = (Lk ∗ Hy)(x0, y0). Then
M = JJ� can be immediately obtained, for any given p0.
These observations result in an easy-to-code, filtering-based
implementation of Gb.2

5.1 Relation to Filtering-based Edge Detection
There is an interesting connection between the filters used
in Gb (e.g., Hx ∝ g(x − x0, y − y0)

2(xε − x0)) and Gaussian
Derivative (GD) filters (i.e., Gx(x − x0, y − y0) ∝ g(x −
x0, y− y0)(x− x0)), which could be used for computing the
gradient of multi-images [7]. Since the squared Gaussian
g(x−x0, y−y0)

2 from H is also Gaussian, the main analytic
difference between the two filters lies in our introduction
of the projection function πε(p). For an ε that is at least
as large as the window radius, the two filters are the same,
which means that edge detection with Gaussian Derivatives
is equivalent to fitting a linear (planar in 2D) edge model
(Fig. 3) with Gaussian weighted least-squares. From this
point of view Gb filters could be seen as a generalization
of Gaussian Derivatives.

Fig. 5 presents the Gb and GD filters from two different
view-points. Gaussian derivatives have the computational
advantage of being separable. On the other hand, Gb filters
with small ε are better suited for real world, perceptual

2. Code available at: http://www.imar.ro/clvp/code/Gb,
as well as sites.google.com/site/gbdetector/, and
http://www.maths.lth.se/matematiklth/personal/
sminchis/code/index.html.

Fig. 6. Left: Edge detection run times on a 3.2 GHz desktop for our
MATLAB-only implementation of Gb vs. the publicly available code of
Pb [27]. Right: Ratio of run time of Pb to run time of Gb, experimentally
confirming that Pb and Gb have the same time complexity, but Gb has
a significantly lower fixed cost per iteration. Each algorithm runs over a
single scale and uses the same window size, which is a constant fraction
of the image size. Here, Gb is 40× faster.

boundaries (see Fig. 2): they are steep perpendicular to
the boundary, with a pointed shape along the boundary.
This allows a better handling of corners, as seen in the
example given in Fig. 5, bottom row. In practice, small ε

gives significantly better results over large ε, both qualita-
tively and quantitatively: on BSDS300 the F-measure drops
by about 1.5% when ε = window radius is used, with all
other parameters being optimized (Fig. 4).

Our approach differs from traditional filtering based
edge detectors [18] in the following ways: 1) Gb filters
not only the image but also other layers of the image,
resulting from different visual processes, low-level or high-
level, static or dynamic, such as soft-segmentation or optical
flow; 2)Gb boundaries are not computed directly from filter
responses, but only after building matrix M = JJ� and com-
puting its principal eigenpair (Algorithm 1). Gb provides a
potentially revealing connection between model fitting and
filtering-based edge detection.

5.2 Computational Complexity
The overall complexity of Gb is straightforward to derive.
For each pixel p, the most expensive step is computing the
matrix M, which has O((NW + 2)K) complexity, where NW
denotes the number of pixels in the window and K is the
number of layers. M is a 2 × 2 matrix, so computing its
eigenpair (v, λ) is a closed-form operation, with small fixed
cost. Thus, for a fixed NW and a total of N pixels per image
the overall complexity is O(KNWN). If NW is a fraction f of
N, then complexity becomes O(fKN2).

The running time of Gb compares favorably to that of
Pb [1], [27]. Pb in its exact form has complexity O(fKNoN2),
where No is a discrete number of candidate orientations.
Both Gb and Pb are quadratic in the number of image pix-
els. However, Pb has a significantly larger fixed cost per
pixel as it requires the computation of histograms for each
individual image channel and for each orientation. In Fig. 6,
we show the run times for Gb and Pb (based on publicly
available code) on a 3.2 GHz desktop. These are MATLAB
implementations, run on the same images, using the same
window size and a single scale. While Gb produces bound-
aries of similar quality (see Table 2), it is consistently 1–2
orders of magnitude faster than Pb (about 40×), indepen-
dent of the image size (Fig. 6, right). For example, on
0.15 MP images the times are: 19.4 sec. for Pb vs. 0.48 sec.
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TABLE 1
Run Times: Gb in MATLAB (without Using mex Files) on a

3.2 GHz Desktop vs. Catanzaro et al.’s Parallel Computation
of Local Cues on Nvidia GTX 280 [5]

for Gb; to process 2.5 MP images, Pb takes 38 min while
Gb only 57 sec.

A parallellized implementation of gPb is proposed
in [5], where method is implemented directly on a high-
performance Nvidia GTX 280 graphics card with 240 CUDA
cores. Local Pb is computed at three different scales. The
authors offer two implementations for local cues: one for
the exact computation and the other for a faster approxi-
mate computation that uses integral images and is linear
in the number of image pixels. The approximation has
O(fKNoNbN) time complexity, where Nb is the number of
histogram bins for different image channels and No is the
number of candidate orientations. Note that NoNb is large in
practice and affects the overall running time considerably.
It requires computing (and possibly storing) a large number
of integral images, one for each combination of (histogram
bin, image channel, orientation). The actual number is not
explicitly stated in [5], but we estimate that it is in the order
of 1000 per input image (4 channels × 8 orientations × 32
histogram bins = 1024). The approximation also requires
special processing of the rotated integral images of texton
labels, to minimize interpolation artifacts. The authors pro-
pose a solution based on Bresenham lines, which may also,
to some degree impact the discretization of the rotation
angle. In Table 1 we present run time comparisons with Pb’s
local cues computation from [5]. Our exact implementation
of Gb (using 3 color layers) in MATLAB is 8 times faster
than the exact parallel computation of Pb over 3 scales on
GTX 280.

5.3 Learning
Our model uses a small number of parameters. Only two
parameters (w0, w1) are needed for the logistic function that
models the probability of boundary (Algorithm 1). The role
of these parameters is to strengthen or weaken the out-
put, but they do not affect the quantitative performance
since the logistic function is monotonically increasing in
the eigenvalue of M, λ. Instead, the parameters only affect
the F-measure for a fixed, desired threshold. For layer scal-
ing the maximum number of parameters needed is equal
to the number of layers. We reduce this number by tying
the scaling for layers of the same type: 1) for color (in
CIELAB space) we fix the scale of L to 1 and learn a single
scaling for both channels a and b; 2) for soft-segmentation
(Sec. 6) we learn a single scaling for all 8 segmentation
layers; 3) for optical flow (Sec. 8.2) we learn one param-
eter for the 2 flow channels, another for the 2 channels
of the unit normalized flow, and a third for the flow
magnitude.

Learning layer scaling is based on the observation that
M is as a linear combination of matrices Mi computed

separately for each layer scaling si:

M =
∑

i

s2
i Mi, (7)

where Mi ← (P�Xi)(P�Xi)
� and Xi is the submatrix of X,

with the same number of rows as X and with columns cor-
responding only to those layers that are scaled by si. It
follows that the largest eigenvalue of M, λ = 1

2 (Tr(M) +√
Tr(M)2 − det(M)/4), can be computed from si’s and the

elements of Mi’s. Thus, the F-measure, which depends on
(w0, w1) and λ, can also be computed over the training
data as a function of the parameters (w0, w1) and si, which
have to be learned. To optimize the F-measure, we use the
direct search method of Lagarias et al. [20], since it does not
require an analytic form of the cost and can be easily imple-
mented in MATLAB by using the fminsearch function. In
our experiments, the positive and negative training edges
were sampled at equally spaced locations on the output of
Gb using only color, with all channels equally scaled (after
non-maximal suppression applied directly on the raw

√
λ).

Positive samples are the ones sufficiently close (< 3 pixels)
to the human-labeled ground truth boundaries.

6 EFFICIENT SOFT-SEGMENTATION

In this section we present a novel method to rapidly gen-
erate soft image segmentations. Its continuous output is
similar to the Ncuts eigenvectors [44], but its computational
cost is significantly lower: about 2.5 sec. (3.2 GHz CPU)
vs. over 150 sec. required for Ncuts (2.66 GHz CPU [5])
per 0.15 MP image in MATLAB (no mex files). We briefly
describe it here because it serves as a fast mid-level rep-
resentation of the image that significantly improves the
boundary detection accuracy over raw color alone.

We assume that the color of any image pixel has a cer-
tain probability of occurrence, given the semantic region
(e.g., object) to which it belongs -the image is formed by a
composition of semantic regions with distinct color distri-
butions, which are location independent given the region.
Thus, colors of any image patch are generated from a
certain, patch-dependent, linear combination (mixture) of
these finite number of distributions: if the patch is from a
single region then it will have a single generating distri-
bution; if the patch is in between regions then it will be
generated from a mixture of distributions depending on
the patch location relative to those regions. Let c be an
indicator vector of some image patch, such that cj = 1 if
color j is present in the patch and 0 otherwise. Then c is a
multi-dimensional Bernoulli random variable drawn from
its mixture: c ∼∑

i πi(c)hi.
Based on this model, the space of all c’s from a given

image will contain redundant information, reflecting the
regularity of real-world scenes through the underlying
generative distributions. We discover the linear subspace
of these distributions, that is its eigendistributions vi’s, by
applying PCA to a sufficiently large set of indicator vectors
c sampled uniformly from the image. Then, for any given
patch, the generating foreground distribution of its associ-
ated indicator vector c could be approximated by means of
PCA reconstruction: hF(c) ≈ h0+

∑
i((c−h0)

�vi)vi. Here h0
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Fig. 7. Soft-segmentation results from our method. The first 3 dimensions of the soft-segmentations are shown on the RGB channels. Computation
time for soft-segmentation is ≈2.5 seconds per 0.15 MP image in MATLAB.

is the sample mean, the overall empirical color distribution
of the whole image.

We consider the background distribution to be one that is
as far as possible (in the subspace) from the foreground,
by using the same coefficients but with opposite sign:
hB(c) ≈ h0 −

∑
i((c − h0)

�vi)vi. Then hF(c) and hB(c) are
used to obtain the foreground (F) posterior probability for
each image pixel i, based on its color xi, by applying Bayes’
rule with equal priors:

P(c)(F|xi) =
h(c)

F (xi)

h(c)
F (xi)+ h(c)

B (xi)
≈ h(c)

F (xi)

2h0
. (8)

Given an image patch, we quickly obtain a posterior
probability of foreground (F) for each image pixel, result-
ing in a soft figure/ground segmentation (Fig. 9). These
figure/ground segmentations are similar in spirit to the seg-
mentation hints based on alpha matting [23], used by Stein
et al. [47] for full object segmentation. The figure/ground
segmentations are often redundant when different patches
are centered at different locations on the same object–a
direct result of the first stage, when a reduced subspace for
color distributions is learned. Thus, many of such soft fig-
ure/ground probability maps can be compressed to obtain
a few representative soft figure/ground segmentations of
the same image, as detailed next.

We perform the same classification procedure for ns
(≈ 70) patches uniformly sampled on a regular image grid
and obtain ns figure/ground segmentations. We compress
this set of soft-segmentations by performing (a different,
second level) PCA on vectors collected from all pixels in
the image; each vector is of dimension ns and corresponds
to a certain image pixel, such that its i-th element is equal
to the value at that pixel in the i-th soft figure/ground map.
Finally, we use, for each image pixel, the coefficients of
its first 8 principal dimensions to obtain a set of 8 soft-
segmentations. These soft-segmentations are used as input
layers to our boundary detection method. Figs. 7 and 8
show examples of the first three such soft-segmentations on
the RGB color channels. Our method is much faster (one
to two orders of magnitude) than computing the Ncuts
eigenvectors previously used for boundary detection [1]
and provides a useful mid-level representation of the image

that can significantly improve boundary detection. It has
also been incorporated into efficient segmentation-aware
descriptors [50].

7 CONTOUR GROUPING AND REASONING

Pixels that belong to true boundaries tend to form long
smooth contours that obey Gestalt grouping principles
such as continuity and proximity. By linking edges into
contours and considering different properties of these con-
tours we can re-evaluate the probability of boundary at
each pixel and further improve the boundary detection
accuracy. The idea is intuitive: individual pixels from
strong contours (long, smooth and with high boundary
strength) are more likely to belong to true boundaries
than noisy edges that cannot be grouped along such
contours.

Our approach to using contours for boundary detection
is the following (Fig. 10): first, find contours by linking
edges, for which we use our earlier approach from [21]

Fig. 8. Soft-segmentation results obtained using our method. First
column: Input image. Columns 2–4: The first 3 dimensions of our soft-
segmentations, shown separately. Last column: All 3 dimensions shown
together on the RGB channels.



1320 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 7, JULY 2014

Fig. 9. Examples of soft figure/ground segmentations based on the cur-
rent patch, shown in red. Note that the figure/ground soft-segmentations
are similar for patches centered on different locations of the same
object; this justifies our final PCA compression.

(Sec. 7.1); second, for each edge pixel from a given con-
tour, re-evaluate its probability of boundary by considering
its own local boundary strength (given by the Gb algo-
rithm) together with different geometric and appearance
properties of its corresponding contour, such as: length,
smoothness, average and maximum boundary strength
(Sec. 7.2).

7.1 Contour Grouping
We group the edges into contours by using a method very
similar to [21]. First, we form connected components by
linking pairs of boundary pixels (i, j) that are both suffi-
ciently close (i.e., adjacent within 1.5 pixels) and satisfy
collinearity and proximity constraints, ensuring that the
components only contain smooth contours. For each con-
nected component c we form its weighted adjacency matrix
A such that Aij is positive if edge pixels (i, j) are connected
and 0 otherwise:

Aij =
⎧
⎨

⎩
1− θ2

ij

σ 2
θ

if (i, j) are neighbors and θij < σθ

0 otherwise,

where θij ≥ 0 is the smallest (positive) angle between the
boundary normals at pixels i and j and σθ is a predefined
threshold. The value of Aij increases with the similar-
ity between the boundary normals at neighboring pixels.
Therefore, smooth contours have larger average values in
their adjacency matrix A.

Let p be the current pixel and c(p) the label of its contour.
The following two geometric cues are computed for each
contour (used by the contour-based boundary classification
method, explained in Section 7.2): 1). the contour length,
computed as the number of pixels of component c(p) nor-
malized by the length of the image diagonal; 2). the average
contour smoothness estimated as the sum of elements in
Ac(p) divided by the length of c(p).

7.2 Contour Reasoning
Our classification scheme has two stages, with a structure
similar to a two-layer neural network, having logistic lin-
ear classifiers at all nodes, both hidden and final output

Fig. 10. Overview of the contour reasoning framework. First, an edge
map is obtained from the input image using a Gb model with color and
soft segmentation layers. Then edges are linked to form contours. Next,
using two logistic classifiers we label the edge pixels based on different
properties of their contours: appearance (boundary strength) or geom-
etry (length and smoothness). The outputs of these two classifiers are
then combined to obtain the final boundary map.

(Figure 10). The main difference is in the training and its
design: each node and connection is chosen manually and
training is performed sequentially, bottom-up, from the first
level to the last.

At the first level in the hierarchy, we first train a
geometry-only logistc boundary classifier Cgeom (using stan-
dard linear logistic regression) applied to each contour pixel
using two features: the length and average smoothness of
the contour fragment (computed as explained in Sec. 7.1).
Second, also at the first level, we train an appearance-only
logistic edge classifier Capp (again applied to each contour
pixel, trained by linear logistic regression) using the fol-
lowing three cues: local boundary strength at the current
pixel, average and maximum boundary strength over the
contour. The soft outputs of these two classifiers become
inputs to the final linear logistic boundary classifier, at the
second level in the hierarchy, which is also trained using
logistic regression. The separate training of each classifier
is performed due to its efficiency, but more sophisticated
learning methods could also be employed for fine-tuning
parameters. The framework (Fig. 10) is related to late fusion
schemes from semantic video analysis and indexing [45],
[53], in which separate independent classifiers are trained
and their outputs are then combined using a second-level
classifier. The steps of our contour grouping and reasoning
algorithm are:

1) Run the Gb method described in Algorithm 1 with
non local maximal suppression to obtain thin edges.
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Fig. 11. Top row: Input images from BSDS300 dataset. Second row:
Output of a Gb model that uses only color layers. Third row: output of a
Gb model that uses both color and soft-segmentation. Bottom row: out-
put of a more complex Gb model that leverages color, soft segmentation,
and contour reasoning.

2) Remove the edge pixels with low boundary
strength.

3) Group the surviving edges into contours using the
method from Sec. 7.1.

4) For each contour pixel compute the probability of
boundary using the geometry-only logistic classifier
Cgeom.

5) For each contour pixel compute the probability of
boundary using the appearance-only logistic classifier
Capp.

6) For each contour pixel compute the final probability
of boundary with a logistic classifier that combines
the outputs of Cgeom and Capp.

8 EXPERIMENTS

To evaluate the generality of our proposed method, we con-
duct experiments on detecting boundaries in both images
and video. First, we show results on static images. Second,
we perform experiments on occlusion boundary detection
in short video clips.

8.1 Boundaries in Static Color Images
We evaluate Gb on the well-known BSDS300 dataset [27]
(Fig. 11). We compare the accuracy and computational
time of Gb with other published methods (see Table 2).
For Gb we present results using color (C), color and
soft-segmentation (C+S), and color, soft-segmentation and
contour grouping (C+S+G). We also include results on
gray-scale images. The total times reported for Gb include
all processing needed (MATLAB-only, without compiled
mex files): for example, for Gb(C+S+G) the reported times
include computing soft-segmentations, boundary detection
(Algorithm 1) and contour reasoning. Gb achieves a com-
petitive F-measure of 0.69 very fast, compared to current
state of the art techniques. For example, the method of [37]
obtains an F-measure of 0.68 on this dataset by combining
the output of Pb at three scales. Note that the same multi-
scale method could use Gb instead, which can potentially
improve the overall performance of our approach. Global

Fig. 12. Qualitative boundary detection results for images from
BSDS300 (first row), obtained with a Gb model that uses only color
layers (second row), Pb (third row), GD (fourth row), and Canny (last
row).

Pb [1], [5] achieves an F-measure of 0.70 by using the sig-
nificantly more expensive Ncuts soft-segmentations. Note
that our formulation is general and could incorporate other
segmentations (such as Ncuts, CPMC [4], or compositional
methods[14]).

Our proposed Gb is competitive even when using only
color layers alone at a processing speed of 0.5 sec. per image
in pure Matlab. In Fig. 12 we present a few comparative
results of four different local, single scale boundary detec-
tors: Gb using only color, Pb [27], Gaussian derivatives (GD)

TABLE 2
Comparison of F-Measure and Total Runtime in MATLAB

For gb (C+S+G) it includes the computation of soft-segmentations (S) and contour
reasoning (G).
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Fig. 13. Boundary detection examples, obtained using a Gb model that
uses only the first 3 dimensions of our soft-segmentations as input
layers. Note: Color layers were not used here.

for the gradient of multi-images [19], and Canny [3] edge
detectors (Table 2). Canny uses brightness information, Gb
and GD use brightness and color and Pb uses brightness,
color and texture. Gb, Pb and GD use the same window
size.
The benefit from soft-segmentation: In Fig. 13 we present
the output of Gb using only the first 3 dimensions of
our soft-segmentations as input layers (no color informa-
tion was used). We came to the following conclusions: 1)
while soft-segmentations do not separate the image into
disjoint regions (as hard-segmentation does), their bound-
aries are correlated especially with occlusions and whole
object boundaries (as also confirmed by our results on
CMU Motion Dataset [46]); 2) soft-segmentations cannot
capture the fine details of objects or texture, but, in combi-
nation with raw color layers, they can significantly improve
Gb’s performance on detecting general boundaries in static
natural images.
The benefit from contour reasoning: Besides the solid
improvement of 2% in F-measure over Gb(C+S) and Gb
(graylevel), the contour reasoning module (denoted by G
in Table 2), which runs in less than 0.5 sec. in MATLAB
per 0.15 MP image, brings the following qualitative advan-
tage (see also Fig. 14): during this last stage, edge pixels
belonging to the same contour tend to end up with very
similar probabilities of boundaries. This outcome is intu-
itive, since pixels belonging to one contour should either
be accepted or rejected together. Thus, for any given deci-
sion threshold, the surviving edge map will look clean, with
very few isolated edge pixels. The qualitative improvement
after contour reasoning is visually striking after cutting by
the optimal threshold (see Fig. 14).

To test our model’s robustness to overfitting we per-
formed 30 different learning experiments for Gb (C+S)
using 30 images randomly sampled from the BSDS300
training set. As a result, we obtained the same F-measure

Fig. 14. Output of a Gb model using color and soft segmentation lay-
ers, without contours (second column) and with contours (third column)
after thresholding at the optimal F-measure. The use of global contour
reasoning produces a cleaner output.

on the 100 images test set (measured σ < 0.1%), con-
firming that the representation and the parameter learning
procedure are robust.

In Fig. 12 we present some additional examples of
boundary detection. We show boundaries detected with
Gb(C), Pb [27], GD and the Canny edge detector [3]. Both
Gb and GD use only color layers, identically scaled, with
the same window size and Gaussian weighting. GD is
based on the gradient of multi-images [19], which we com-
puted using Derivative of Gaussian filters. While in classical
work on edge detection from multi-images [7], [19] the
channel gradients are computed over small image neigh-
borhoods, in our paper we use Derivative of Gaussian
filters of the same size as the window applied to Gb, for
a fair comparison. Note that Pb uses color and texture,
while Canny is based only on brightness with deriva-
tives computed at a fine scale. For Canny we used the
MATLAB function edge with thresholds [0.1, 0.25]. Run-
times in MATLAB-only per image, for each method, are:
Gb - 0.5 sec., Pb - 19.4 sec., GD - 0.3 sec., and Canny -
0.1 sec.

These examples confirm, once again, that: 1) Gb mod-
els that use only color layers produce boundaries that
are of similar quality as Pb’s; 2) methods based on local
derivatives, such as Canny, cannot produce high qual-
ity boundaries on difficult, highly-textured, color images;
and 3) using Gaussian Derivatives with a large standard
deviation could remove noisy edges (reduce false posi-
tives) and improve boundary strength, but at the cost of
poorer localization and detection (increases the false neg-
ative rate). Note that Gaussian smoothing suppresses the
high-frequencies, which are important for boundary detec-
tion. In contrast, our generalized boundary model, with a

TABLE 3
Occlusion Boundary Detection, Using a Gb Model with Optical

Flow Layer, on the CMU Motion Dataset



LEORDEANU ET AL.: GENERALIZED BOUNDARIES FROM MULTIPLE IMAGE INTERPRETATIONS 1323

Fig. 15. Gb results on the CMU Motion Dataset.

regime of small ε, is more sensitive in localization and cor-
rectly captures the general notion of boundaries as sudden
transitions among different image regions.

8.2 Occlusion Boundaries in Video
Multiple video frames, closely spaced in time, provide
significantly more information about dynamic scenes and
make occlusion boundary detection possible, as shown in
recent work [13], [42], [46], [49]. State of the art tech-
niques for occlusion boundary detection in video are based
on combining, in various ways, the outputs of existing
boundary detectors for static color images with optical flow,
followed by a global processing phase [13], [42], [46], [49].
Table 3 compares Gb against reported results on the CMU
Motion Dataset [46] We use, as one of our layers, the flow
computed using Sun et al.’s public code [48]. Additionally,
Gb uses color and soft segmentation (Sec. 6), as described
in the previous sections. In contrast to other methods [13],
[42], [46], [49], which require significant time for processing
and optimization, we require less than 1.6 sec. on average
to process 230×320 images from the CMU dataset (exclud-
ing Sun et al.’s flow computation). Fig. 15 shows qualitative
results.

9 CONCLUSION

We have presented Gb, a novel model and algorithm for
generalized boundary detection. Gb effectively combines
multiple low- and mid-level interpretation layers of an
image in a principled manner, and resolves their constraints
jointly, in closed-form, in order to compute the exact bound-
ary strength and orientation. Consequently, Gb achieves
state of the art results on published datasets at a signif-
icantly lower computational cost than current methods.
For mid-level inference, we present two efficient methods
for soft-segmentation, and contour grouping and reason-
ing, which significantly improve the boundary detection
performance at negligible computational cost. Gb’s broad
real-world applicability is demonstrated through quantita-
tive and qualitative results on the detection of boundaries
in natural images and the identification of occlusion bound-
aries in video.
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