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Abstract

In recent scene recognition research images or large image regions are often represented as disorganized “bags” of
features which can then be analyzed using models originally developed to capture co-variation of word counts in text.
However, image feature counts are likely to be constrained in different ways than word counts in text. For example, as a
camera pans upwards from a building entrance over its first few floors and then further up into the sky Fig. 1, some feature
counts in the image drop while others rise – only to drop again giving way to features found more often at higher elevations.
The space of all possible feature count combinations is constrained both by the properties of the larger scene and the size
and the location of the window into it. To capture such variation, in this paper we propose the use of the counting grid
model. This generative model is based on a grid of feature counts, considerably larger than any of the modeled images,
and considerably smaller than the real estate needed to tile the images next to each other tightly. Each modeled image
is assumed to have a representative window in the grid in which the feature counts mimic the feature distribution in the
image. We provide a learning procedure that jointly maps all images in the training set to the counting grid and estimates the
appropriate local counts in it. Experimentally, we demonstrate that the resulting representation captures the space of feature
count combinations more accurately than the traditional models, not only when the input images come from a panning
camera, but even when modeling images of different scenes from the same category.
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Capturing spatial interdependence in image features: the
counting grid, an epitomic representation for bags of

features

Window Sky Roof Flower Street Car Building Tree

Fig. 1. Feature counts change slightly as the field of view
moves. For example, the abundance of the “car” features is
reduced, but the counts of the features found on building fa-
cades are increased. The counting grid model accounts for such
changes naturally, and it can also account for images of different
scenes.

1 INTRODUCTION

A popular way to deal with diversity of imaging conditions
as well as geometric variation in objects or entire scenes is
to simply represent images or image regions as disordered
“bags” of image features [1]–[3]. These models are particularly,
attractive due to the computational efficiency and simplicity
achieved by ignoring spatial relationships of the image patches
or object parts.

The bag of features can arise in a variety of ways. For
example, after extracting local low-level features from images,
these are often clustered and a discrete “codeword” is assigned
to each feature descriptor. An image is then described by a
histogram over the codebook entries. Ideally, these features
should be highly discriminative so that most categories of
images of interest are uniquely identifiable by the presence of
a handful of features. In practice, however, individual features
are not sufficiently discriminative, and modeling joint variation
in feature counts becomes an interesting machine learning
problem.

It is tempting to use here the existing discrete models, such
as histograms [4], multinomial mixtures [5,6] or topic models
[7,8], already extensively validated on text data, where each
document is also simply represented as a count distribution
over the entire vocabulary. However, the bags of features
extracted from natural images have an imprint of the images’
spatial structure, which is evident when the bags from related
images are considered together. Thus ignoring these natural
constraints on the feature counts may have negative conse-

quences in classification tasks.
For an illustration, Fig. 2 provides a synthetic example start-

ing with several images of a train station, taken as windows
into the larger scene - ii). Just for illustrative purposes, we
hand-labeled the scene with feature labels as shown in - iii). In
a realistic application, where we may want to train a model
that assigns high likelihood to images of train stations, it
is likely that most available images would be taken with a
narrower field of view, as simulated here. Feature extractors
would presumably generalize much less effectively than our
ideal features, but still enough to permit comparisons of images
of different train stations, too. Then the question is if a learning
model that captures feature count co-variation uses the training
data efficiently. Assuming that a few images are taken at
random from the scene, we wonder if the feature counts in
these images are sufficient to predict the possible feature counts
in other images of the scene. In particular, we consider images
taken from the regions close to A, B, and C and ask the question
if the image D would fit the so defined train station class.

The literature uses two sets of approaches to this problem.
Kernel or nearest-neighbor techniques start with the compar-
isons of the feature counts in the test image and each of the
previously studied exemplars [9]–[13]. Although this compar-
ison can be done in many different ways, we note here that
these approaches would be complicated by the fact that none
of images A,B and C have the combination of all five features
that are present in D (see Fig. 2-i)). The other approach is to
consider all bags of features together and generalize [1,3,5,14]–
[17]. A simplest approach to this would be to simply merge
the bags. In this case, there is a danger of overgeneralization.
For this particular example, there is a need for interpolating
between the feature count vectors for A,B,C. However, this
interpolation is best performed by spatial reasoning. Across
various windows into the scene we find that from the top
of the window to the bottom we sometimes see roof, train,
tracks, in that order, but other times we see mountain, grass,
roof, train. We can infer that the grass, roof, train, tracks
combination is likelier than the existence of the mountain,
roof, train, tracks combination of features. Furthermore, the
proportions of different features in the images carry informa-
tion about the thickness of the layers of these features, which
should be useful for inferring which previously unseen feature
count combinations can be found elsewhere in the scene. We
show in this paper that, surprisingly, not much of the spatial
organization of the features in the training images needs to be
retained in order to perform the spatial reasoning about which
feature combinations are likely.

In Fig. 2-iv) we show the counting grid inferred by iterating
Eqs. 12 and 13 on the label counts from 50 windows into the
scene taken at random, but avoiding all windows that contain
all five of the features in D in any proportion. Each training
image was represented as a set of 2 × 2 feature bags (upper
left, lower left, upper right, lower right). Without using the
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Fig. 2. Counting grid illustration. i) Images and their Bag of feature representation. ii) Images of a train station, taken as windows
into the larger scene. iii) Hand labeled features. iv) Scene reconstructed (e.g., counting grid) starting from bags taken from 50
windows (see the Text for details).
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Fig. 3. Illustration of counting grids using different data at different levels of abstraction. At the top of each CG we show few
examples of the training images from which we extracted the bags. The bottom row of each panel, illustrates the features. i) A
counting grid learned using patches extracted from the train station toy example of Fig. 2. In this case all the bags come from
windows into the same image, which is reconstructed on the grid. ii) A counting grid estimated from images taken with a wearable
camera [18]. In this case we learned a dictionary of features (illustrated by the textons on the bottom) clustering image patches, as
in [19]. To illustrate the office scene (e.g., the computer screens - see images on the top), we overlap these textons by as much as
the patches were overlapping during feature extraction process, and then average to create a clearer visual representation. iii) A
counting grid estimated starting from LabelMe annotations (see the top row) [20].

original window location information, the counting grid was
computed so that for each training image, a window into the
counting grid can be found so that the appropriate sections
have matching histograms. The resolution of the reconstructed
feature layout of the large scene goes well beyond what would
be expected from a crude 2×2 tessellation of the input images
(the height of each section is roughly 20% of the large scene
and only the feature counts in each section were used, not
their spatial layout within the section). Although none of the
training examples was taken from the area close to D where
all five of D’s features can be seen in a single image, that part
of the scene is reconstructed as well, and D’s histogram can
be matched well.

In this simple example, the training images are different
views of a single scene. However, at the feature level, images of
other train stations are likely have a similar layout, and so they
could be used to learn a counting grid. In practice, we rarely
have access to highly discriminative and reliable features,
and so instead of the 8 fake features in our example, in our
experiments we had to use hundreds of simpler automatically
derived features, and infer the counting grids from related

images of different scenes. For example in Fig. 3-iii) we used as
features the human-supplied labels for LabelMe [20] dataset,
and in - ii) the outputs of hundreds of simple computational
feature detectors applied to images from various scenes in
the SenseCam dataset [18]. As opposed to the train station
example, input images are not subimages of a larger single
scene, but rather images of the same types of scenes. Each
window into a counting grid represents a possible feature
combination1 present in the dataset (3- ii)) and the model is
able to reconstruct the feature layout only exploiting the spatial
patterns very coarsely, but depending on feature count co-
variation for most of its reasoning power. For example, despite
only relying on a 2×2 tessellation of each input image, full
resolution panoramas of office and corridors are visible in the
CG in Fig. 3-ii).

This paper presents and extends the counting grid model
[21,22]. The basic model is extended to include priors which
help with overfitting issues. We also formally introduce the
tessellated counting grid model and analyzed the the extreme

1. The CG model also learns a prior over the grid window usage
which may prevent some combinations.
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tessellations where each bag captured a single feature, col-
lapsing the representation into the discrete epitome [23]. The
paper also provides full comparisons of different algorithms
on various datasets, including the effect of grid and window
size variation can be found in the experimental section.

Specialization and extensions of the counting grid model
already appeared in top tier conferences [18,24]–[26]. Never-
theless, in this paper we want to limit our attention to the
basic variants of the counting grid model, their properties
and relationships with the standard techniques for modeling
bags of words in computer vision [1,3,16]. We found that our
representation captured the space of possible feature count
combinations for various image categories significantly better
than other generalization techniques, and that our simple
generative model, which can be used for unsupervised learning
and clustering, too, often rivals the state of the art based on
discriminative techniques that require supervision.

Related Work
Previous probabilistic approaches to scene recognition treat the
spatial arrangement of image features in different ways.

In bag of words (BOW) models [1], spatial relationships
among features are completely ignored in order to facilitate
computational efficiency and high level of generalization. Topic
models [3,7,8], for example, assign a topic to each codeword
based on their co-occurrence and describe images as admix-
tures of topics. Another bag of word model is described in
[17], where a scene model is a mixture of Gaussians model
trained on the gist descriptors [30]. As we will see in this
paper the basic counting grid model [22], also reduces to a
(large) mixture, but with highly tied parameters, reflecting the
inherent spatial structure of the data. Each bag is represented
as a point in a large grid of feature counts. This latent point
is a corner of a window of grid points which are uniformly
combined to match the (normalized) feature counts in the
image.

To capture some spatial information, it is possible to separate
the bags originating in different (pre-defined or learned [31]–
[33]) regions of the image. These models are sometimes re-
ferred to as spatial-BoW models [2,16]. The tessellated counting
grids that we introduce here also have that flavor, although
in our approach tessellation helps guide the quilting of the
bags of words reconstructing the layout with sub-region ac-
curacy. Thus tessellated counting grids capture layout-driven
constraints on counts within the regions, even though this
information is not directly provided during learning: The
layout within a region of one image is inferred based on
the feature distributions found in regions of many other im-
ages, assuming that misalignments of these images are often
smaller than the size of the tessellated regions. In contrast,
typical spatial-BOW models requires the modeled images to
be approximately aligned. Recent approaches that relax this
assumption are [16,18,34]. The former, the Reconfigurable BoW
model [16], represents a scene as a collection of parts arranged
in a reconfigurable pattern. Each image is divided into pre-
defined regions and a latent variable specifies which “region
model” (e.g., sky, grass...) is assigned to each image region.
On the other hand, [18,34] represents scenes using deformable
parts. In [34] a lower-resolution root filter is placed in the center
of the image and a set of higher-resolution part filters arranged
in a flexible spatial configuration.

It is also possible to keep the spatial arrangement of fea-
tures intact, sacrificing some generalization in the basic rep-

resentation of the input, and allowing the model to capture
the problems with this rigidity through various levels of
uncertainty modeling. For example, the epitome-like models
[23,27,28] quilts images or image patches, essentially building
giant panoramas consisting of probability distributions in each
location. As these are based on pixel-to-pixel comparisons they
cannot generalize well in case of large geometric deformations,
and so they are mostly used to model relatively small image
patches, typically for synthesis, or modeling large scenes or
textures that can tolerate the lack of transformation invariance
beyond translation [29,35,36]. Epitomes have been employed in
scene analysis, only on particular datasets where “panoramic
stitching” would work, e.g., sequences taken with wearable
cameras [23,28].

Various scene modeling techniques also take different ap-
proaches to representing componential structure of natural
scenes. Being ad-mixtures, rather than simple mixtures, topic
models [3,7,8] are a simple example of multi -part or -object
models. Other examples of componential models, are the flex-
ible sprites model [29], which allow each image to be mapped
to multiple sources and [16] in which each sector is mapped
independently. On the other hand, the counting grids, epitomes
[23,27,28], histogram-based approaches [1,17] are essentially
mixtures because they map the entire scene to a single point: a
position or a mixture component. (These models can, however,
be turned into ad-mixtures.)

The main topic this paper is modeling bags of features in
computer vision. In the experimental section we will mainly
consider generative approaches and compare counting grids
with latent Dirichlet allocation [3], mixture models [17], epito-
mes [23] and the reconfigurable bag of words model [16]. The
nature of each generative approach just discussed is summa-
rized in Tab. 1. It should be noted however that the models
presented here can be used as components in hierarchical
models, and that the basic idea of modeling intersections
and laying them out on an inferred grid can be used within
other machine learning techniques, including non-generative
approaches.

2 IMPRINT OF SPATIAL ORGANIZATION IN DISORDERED
BAGS OF WORDS

As discussed above, we would like to understand the hidden
constraints that govern the often-practiced simplification of
images into bags of features. This simplification has two stages.
First, image features zi,j are extracted on a grid inside the
image. These features are discrete, z ∈ [1..Z], and they point
to a codebook of features obtained by clustering the multidi-
mensional real-valued features calculated by local image pro-
cessing, e.g., SIFT [37]. Next, the feature counts are computed
cz =

∑
i[zi = z], where [·] is the indicator function. Only

the counts cz are then retained, and the spatial distribution
zi is typically forgotten, with the justification that establishing
correspondence for individual image locations across different
images of the same thing would be prohibitively expensive,
and that in practice only the presence or absence of features
is informative, not their spatial distribution. However, if we
consider a set of such bags of words from related images
we can see that the feature counts in these disordered bags
of features may still indirectly follow the rules of spatial
organization. For example, if the bags {ctz}, indexed by t are
extracted from several overlapping windows from a larger
image, then the spatial structure of that image is imprinted in
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TABLE 1
Generative approaches to scene analysis.

Method Componential hidden variables Spatial structure in input
Single integer Multiple integers Continuous BoW Tessellated Pixel

LDA [3,7] X X (X)
Multinomial Mixtures [1,17] X X
Spatial BoW [2] X X
Reconfigurable BoW [16] X X
Epitomes [23,27,28] X X
Flex. Sprites [29] X X
Counting grids X X
Tessellated Counting grids X X

the particular count combinations in these bags. Furthermore,
the spatial layout of the features in the large image may even
be recoverable from these disordered bags! If the bags {ctz} are
created from all the overlapping windows from a large image,
and if the source location for each bag is known, then we can
easily see that under minimal additional assumptions regard-
ing the boundaries in the image, we can reconstruct feature
indices z at each location in the large image by solving the
system of linear equations that arise from the count constraints.
Consider two horizontally neighboring windows: The count
differences are completely determined by the feature identities
of the only two columns that the two do not share. To separate
the effect of the two columns, we can consider another pair of
overlapping images whose count differences depend on only
one of those two columns. To further break each column apart,
we can consider vertically neighboring windows, etc. As long
as the image has a thick enough border with only a single
feature present, we can propagate these constraints until any
given location’s feature is uniquely determined.
In this way, we can reconstruct a large grid of features such
that any of the count combinations we see in the given bags
can be found in an appropriate window in this reconstruction.
But this implies that the bags of features from the images
of the same scene, when considered jointly, obey very strong
constraints and thus taking these constraints into account will
likely improve image analysis tasks that depend on the feature
count representations. This insight leads to several interesting
problems which we address in the next section.

• Joint estimation of the feature layout and the matching
of the bags to windows into it: If the bags of features
(feature counts) from many – but not all – overlapping
windows from a large scene are provided, and if the
original locations of these windows are withheld, can
we still reconstruct at least some of the original spatial
arrangement of the features?

• Category modeling: If the bags of features are not coming
from the windows into a single scene, but instead
from different but related images (e.g. of a particular
image category or an object class), would these bags,
when considered jointly, imply some spatial layout of
the features, and would this layout help predict which
combinations of feature counts are more likely in bags
of features extracted from new images of the category in
question?

• Using more of the original structure: Given that in practice
we typically have access to the original images, can more
of their spatial structure be used in learning the spatial

layout of features that would in turn constrain the bag of
words representation in a useful way?

3 THE COUNTING GRID MODEL

The basic counting grid πi,z is a set of normalized counts
of features indexed by z on the grid i = (ix, iy) ∈ E =
[1 . . . Ex]× [1 . . . Ey], with

∑
z πi,z = 1 everywhere on the grid

[21,22]. A given bag of image features, represented by counts
{cz} is assumed to follow a distribution found somewhere in
the counting grid. In other words, the bag can be generated by
firstly averaging all counts in the window Wk of size Wx×Wy

placed at location k

Wk = [kx, . . . , kx +Wx − 1]× [ky, . . . , ky +Wy − 1]

to form the histogram

hk,z =
1

(Wx ·Wy)
·
∑
i∈Wk

πi,z (1)

and then generating the features in the bag. The sum in Eq.
1 is carried out in all the locations i in the window Wk. An
example of counting grid geometry is illustrated in Fig. 4-ii) In
other words, the position of the window in the grid is a latent
variable ` given which the probability of the bag of features
c = {cz}Zz=1 is

p(c|` = k) =

Z∏
z=1

(
hk,z

)cz = α ·
Z∏
z=1

( ∑
i∈Wk

πi,z

)cz (2)

where the constant α = ( 1
Wx·Wy

)
∑

z cz . In our notation the
letter ` indicates the latent variable, while i and k a generic
position in the grid.

The Bayesian network of the model is illustrated in Fig. 4-i).
For a given grid pi, it defines the following joint distribution
over all bags of features {ctz}, indexed by t and their corre-
sponding latent window positions `t in the counting grid

P
(
{ct}, {`t}

)
∝

T∏
t=1

∑
k∈E

P (`t = k) ·
Z∏
z=1

( ∑
i∈Wk

πi,z

)ctz
Where P (` = k) represents the overall prior probability of a
mapping location. The first sum in the RHS is performed over
all the location of the counting grid, while the second over all
the locations in the window placed at location Wk.

To summarize the notation we will use throughout the paper,
` is the hidden variable that represents the mapping location in
the grid; each bag (sample) is mapped to a (possibly) different
location and we will use the superscript t to refer to the
particular t-th bag therefore `t will represent the mapping
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Fig. 4. i) Counting grid Generative model, ii) Counting grid
Geometry, iii) Tessellated counting grid geometry.

position of the bag ct = {ctz}. Since we are introducing
a probabilistic model, it is interesting to estimate the prior
probability p(`t = k) of mapping the t-th sample to location
k. In this case `t is the t-th sample’s hidden variable (window
location), while k is a generic constant or index that represents
a possible location in the grid that samples share. This distri-
bution is a table over all values for k and shared across all
samples (independent of t). On the other hand, the posterior
distribution p(`t = k|ct), or its (exact) variational counterpart
q(`t = k), is a function of the counts seen in the t-th sample
and capture the quality of the fit to different windows in the
grid of the t-th sample in particular.

3.1 Inference and learning

To compute the log likelihood of the data, logP , we need to
sum over the latent variable ` before computing the logarithm,
which, as in mixture models, or as in epitomes [27], makes it
difficult to perform assignment of the latent variables while

also estimating the model parameters. Although the following
is the exact EM procedure, we use the variational [38,39] nota-
tion p(`t|ct) = q(`t), and bound (variationally) logP (omitting
the effect of additive constant that arises from α) to derive an
iterative EM algorithm:

logP ≥
T∑
t=1

∑
k∈E

(
q(`t = k) · log q(`t = k)

− q(`t = k) · logP (` = k)

− q(`t = k) ·
(∑

z

ctz · log hk,z

))
= B, (3)

Because of the use of fully parameterized q, optimizing the
bound is equivalent to optimizing the log likelihood of the
data, as long as the q(`t) distributions are also optimized. Keep-
ing the model parameters fixed, optimizing these q distribution
(exact E step) leads to

q(`t = k) ∝ P (` = k) · exp
( Z∑
z=1

ctz · log hk,z

)
, (4)

which simply establishes that the choice of ` should minimize
the KL divergence between the counts in the bag and the
counts hk,z in the appropriate window Wk in the counting
grid. For each t, the above expression is normalized over all
possible window choices k.

To optimize the bound B with respect to model parameters
(M step) we note that the first term in Eq. 3 involves these
parameters, and it requires another summation before applying
the logarithm. The summation is over the grid positions i
within the window Wk, which we can again bound using a
(full) variational distribution and the Jensen’s inequality:

log
∑
i∈Wk

πi,z = log
∑
i∈Wk

rti,k,z
πi,z

rti,k,z
≥
∑
i∈Wk

rti,k,z log
πi,z

rti,k,z
, (5)

where rti,k,z is a distribution over locations i, i.e. r is positive
and

∑
i∈Wk

rti,k,z = 1. It is indexed by k as the normalization
is done differently in each window, it is indexed by z as it
can be different for different features, and it is indexed by
t as the term is inside the summation over t, so a different
distribution r could be needed for different bags {ctz}. This
distribution could be thought of as information about what
proportion of the cz features of type z was contributed by
each of the different sources πi,z in the window Wk. However,
by performing constrained optimization (so that r adds up to
one), we find that assuming a fixed set of parameters π, the
distribution rti,k,z that maximizes the bound is the same for
each bag:

rti,k,z =
πi,z∑

i∈Wk
πi,z

=
πi,z

Wx ·Wy · hk,z
. (6)

If we do consider distributions r as a feature mapping to the
counting grid, then this result is again intuitive. If all we know
is that a bag containing cz features of type z is mapped to the
grid section Wk, and have no additional information about
what proportions of these cz features were contributed from
different incremental counts πi,z , then the best guess is that
these proportions follow the proportions among πi,z inside the
window.

If we assume now that r and q distributions are fixed, then
combining Eq. 3 and Eq. 5 and minimizing the resulting bound
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wrt parameters πi,z under the normalization constraint over
features z, we obtain the update rule

π̂i,z ∝
T∑
t=1

∑
k|i∈Wk

q(`t = k) · ctz · rti,k,z, (7)

which by Eq. 6 reduces to

π̂i,z ∝ πoldi,z ·
T∑
t=1

(
ctz ·

∑
k|i∈Wk

q(`t = k)

hk,z

)
, (8)

where πoldi,z is the counting grid at the previous iteration.
The reader will note that in the above, we simply optimized

the likelihood of the set of data for a single set of weights
πi, z, as Eq. 3 is the variational bound for the model with a
fixed π as it was expanded in the previous section. Thus the
iteration of the above equations would optimize for a set of
parameters π given the observed data and ignoring the prior
over π in the full network in Fig. 4-i). Of course, the Dirichlet
prior with parameters η is the appropriate conjugate prior (as
in LDA models) making the inclusion of its influence trivial:
The parameters ηz , one for each feature, act as pseudocounts
of each feature,

π̂i,z ∝ ηz + πoldi,z ·
T∑
t=1

(
ctz ·

∑
k|i∈Wk

q(`t = k)

hk,z

)
, (9)

The prior elegantly precludes zero counts of any feature any-
where in π, preventing overtraining and numerical problems.
The innermost sum of the equation above is carried out across
all the locations k whose window Wk contains the generic
location i indexed in the LHS. This simply reduces to summing
in “shifted” windows where now k represents the lower right
corner. Finally, by taking derivatives with respect to prior
probabilities of different locations, we can readily show that
the update for the prior over locations should be updated as
follows:

P (` = k) ∝
T∑
t=1

q(`t = k). (10)

This is not surprising, as mathematically, the model is a mixture
of distributions h and the above is essentially an update for
a mixture prior. However, if we consider the data efficiency
of this update, we see that it differs dramatically from how
efficiently the data is used to learn distributions h. Consider a
large CG model, e.g. on a 64×64 grid, that uses relatively large
windows, too, e.g. 16 × 16. Then even though there are over
4k individual distributions π to learn, these are in fact used
in aggregates of 256 at a time in each of the h distributions,
which makes the parameters of the mixture’s sources highly
tied. In fact, we can only tile 4 × 4 = 16 non-overlapping
windows over the grid, and the rest of the 4096 overlapping
windows are a special kind of interpolation of these 16. Thus
the equivalent capacity of such a model, when compared
with a simple mixture, is only 16, allowing such grids to be
trained without overtraining with just an order or two more
data than this capacity number. In other words, we should be
able to train a model with 4k fractional sources π with only
around 1k bags of words. But the equivalently efficient use
of data for estimating which parts of the grid are used more
than others would require a similar aggregation of fractional
probabilities of individual cells, just like π distributions are
aggregated into h distributions.The similar issue was resolved
in epitome models by literally aggregating the updates above

within overlapping windows, to avoid overfocusing the prior
probability over the 4k windows in our example on only those
1k positions where training data fell:

P (` = k) ∝
T∑
t=1

∑
i∈E

q(`t = i) ·mk−i. (11)

where m is a Ex×Ey mask, with ones in the upper left corner’s
Wx × Wy entries and zeros elsewhere. In our experiments
the same update proved to be a valid way to overcome
local minima when the prior over location is learned.2 In this
update, the prior P (`) must, of course, be normalized across
the locations.

The steps in Eqs. 4, 8 and 11 constitute the E and M
step which can be iterated till convergence (within a desired
precision τ ). The learning algorithm is summarized in Alg. 1.

Algorithm 1: EM-Algorithm to learn a counting grid.

Input: Bag of features, ctz for each patch, counting grid
size E, window size W

while Convergence do
% E-Step ;

foreach Sample t = 1 . . . T do
1. Update q(`t = k) ∝ exp

{ ∑
z c

t
z log hk,z

}
,;

% M-Step ;
2. Update πi,z ∝ πoldi,z ·

∑
t c
t
z

∑
k|i∈Wk

q(`t=k)
hk,z

;
3. Compute hk,z = 1

Wx·Wy

∑
i∈Wk

πi,z ;
4. Update P (`) using Eq. 10 or Eq. 11;
5. Compute the Log-Likelihood B with Eq. 3 ;
6. Check for convergence, e.g. |B −Bold| ≤ τ ;

6. Return πi,z , P (`) and
{
q(`t)

}
t

;

Starting with non-informative (but symmetry breaking) ini-
tialization, this iterative process will jointly estimate the count-
ing grid and align all bags to it. To avoid severe local minima,
it is important, however, to consider the counting grid as a
torus, and consider all windowing operations accordingly, as
was previously proposed for learning epitomes [23,27,28]. This
prevents the problems with grid boundaries which otherwise
not be crossed when more space is need to grow the layout of
the features.

4 FROM COUNTING GRIDS TO FEATURE EPITOMES

We can express many other models used in vision as special
cases of our framework by assuming an appropriate choice

2. It is also possible to change the model in way that would allow
for this update to arise naturally, in a manner equivalent to defining
h distributions as arising from π distributions

TABLE 2
Relationship between counting grids and other computer vision

methods

Name E-Step M-Step W S
Counting grid Eq.4 Eq.8 ≥ 2× 2 1× 1
Tessellated CG Eq.12 Eq.13 ≥ 2× 2 ≥ 2× 2
CG-Epitome [22] Eq.4 Eq.15 Nx ×Ny ≥ 1× 1
Discr. Epit. [23] Eq.14 Eq.15 Nx ×Ny Nx ×Ny
Mix.Unigram [6] Eq.4 Eq.8 1× 1 1× 1
Spatial BoW [2] Eq.4 Eq.8 1× 1 ≥ 2× 2
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Fig. 5. Tessellation step illustration. Once the features are
extracted and quantized one can decide tessellation S = Sx×Sy
of the image and compute the feature counts separately in each
different section as illustrated by the second and third column.
To the limit, when S = W = Nx × Ny, we obtain the discrete
feature epitome model.

of the tessellation S of the images and the window size W.
A tessellation S is simply a partition of the image space as
illustrated in Fig. 5.

Tessellated counting grids: Algorithm 1 works
remarkably well given that its task is essentially to infer
a image, not from many image patches as is the case
for epitome models, but only from the bag of features
representation of for such patches. The task is formidable
because no directionality is provided in the bag representation.
Unfortunately the iterative algorithm may start to lay out
the features topologically correctly, but following inconsistent
directions in different parts of the counting grid, leading to
local minima (This will be illustrated in the next section).
However, we can modify the model and its E and M rules
to deal with image representations that consist not of one,
but several bags of words, each corresponding to a section
of the image. In this case feature re-arrangement is tolerated
within each region, but the regions themselves cannot move
relatively to each other and the model becomes similar in
spirit to [2,16]

More specifically, we define a tessellation S = Sx × Sy
and for each feature map zti , we compute the feature counts
separately in each different section {ct,sz } being s = sx × sy
a bi-dimensional index that runs across the sectors of S. This
process is illustrated in Fig. 5-ii). When inferring the mapping
of the set of section bags, the window Wk is tessellated into
Sx × Sy sections of size WS indexed by W s

k int the same way
images are tessellated. The histogram comparisons are done
accordingly, in formulae:

q(`t = k) ∝ P (` = k) · exp
(∑

s∈S

Z∑
z=1

ct,sz log
∑
i∈W s

k

πi,z

)
, (12)

It is important to note that all the Sx ·Sy bags contribute to the
same mapping on the grid. Therefore the tessellated counting
grid model inherits the same componential nature of the
counting grid while making use of more spatial information,
as reported in Tab. 1.
The M step using section bags reduces to

πi,z ∝ πoldi,z ·
T∑
t=1

(∑
s∈S

ct,sz ·
∑

k|i∈WS
k

q(`t = k)

hs
k,z

)
(13)

The three plates in Fig. 3 show that even just considering an
representation consisting of four bags of features for the 4
image sections (upper left, upper right, lower left and lower
right) provides enough symmetry breaking that good counting
grids can be estimated.

Discrete Epitomes: To the limit, when both tessellation
and window size are equal to the images size, e.g., S = W =
Nx×Ny , we obtain the discrete feature epitome model. In this
case, each bag is composed by a single feature ct,sz = zts and
the sector index s indexes a pixel i. In the M-step, there is
no re-arrangement of the features in the window and they are
simply “copied” according to the mappings q(`t).
The E-Step thus becomes:

q(`t = k) ∝ P (` = k) · exp
(∑

i∈E

Z∑
z=1

[zti = z] · log πk−i,z

)
(14)

where [·] is the indicator function, equal to 1 when the equality
holds, zero otherwise. Eq. 14 can be efficiently computed using
FFTs [40].
The M-Step reduces to

πi,z ∝
T∑
t=1

∑
k∈E

q(`t = k) · [zti−k = z], (15)

Likewise the epitome [27] and the counting grid, discrete
eptiomes are single-component models. However differently
from the former, they are characterized by a multinomial
observation model and differently from the latter, they consider
the original feature layout making the model less efficient and
harder to generalize.

Finally, in [23] local histograms are used as pixel descriptor.
This helped to overcome the rigidity of epitome models
and reach great performances on location recognition. This
technique loosely correspond to W = Nx ×Ny > S.

Hybrid counting grid - epitome: Another alternative is to
use the layout of features zti of each image when updating the
counting grid (Eq.15) while its bag of words representation to
compute the mapping (Eq.4). The result is an hybrid between
counting grids and epitomes and it is what has been used in
the experimental section of the conference version of this paper
[22]. For some dataset this strategy proved to be successful.

Relationships with other models: When W = 1 × 1,
the model collapses into a mixture of unigrams [1] and each
point in the grid πk,z = hk,z is now a mixture component. If a
tessellation is also enforced, the model becomes similar to the
spatial BOW models introduced in [2,16].
Finally, despite the counting grid shares its focus on modeling
image feature counts with LDA (and in general topic models),
neither model is a generalization of another. However, by
using large windows to collate many grid distributions from
a large grid, the counting grid model can be thought as a
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Fig. 6. Few implementation details useful for computational efficiency. Panles i) and ii) shows how h can be efficiently computed
using cumulative sums of π. Panel iii) show the shifted versions of h.

very large mixture of sources without overtraining, as these
sources are highly correlated: Small shifts in the grid change
the window distribution only slightly. LDA model does not
have this benefit, and thus has to deal with a smaller number
of topics to avoid overtraining. Topic mixing cannot quite
appropriately represent feature correlations due to traslational
camera motion.

The relationships between counting grids variations intro-
duced in this section in terms of W, S and variational updates
are summarized in Tab. 4.

5 COMPUTATIONAL COMPLEXITY AND IMPLEMENTA-
TION

Careful examination of the steps reveals that by the efficient
use of cumulative sums, all versions of the E and M steps has
O(N) complexity in the size of the counting grid, except for
the epitome version. This last version of the counting grid
update utilizes the feature layout of the original images zti ,
which requires the a convolution operation, still manageable
in a O(N logN) complexity.

More generally most of the updates of the E and M steps of
the algorithm require computing windowed sums∑

(ix,iy)∈W(kx,ky)

π(ix,iy),z (16)

where in the previous formula we explicated the two co-
ordinates of the generic position indeces k = (kx, ky) and
i = (ix, iy). In Fig.6-i) we show a “slice” of π and we want
to compute the sum in the yellow window. These sums can
be done efficiently by first computing, in linear time, the
cumulative sum

cumulative sum(π(kx,ky)) =
∑

(ix,iy)≤(kx,ky)

π(ix,iy) (17)

as illustrated in the second panel of Fig.6-i), and then setting∑
(ix,iy)∈W(kx,ky)

f(ix,iy) = F(kx+Wx+1,ky+Wy+1)

− F(kx,ky+Wy+1)

− F(kx+Wx+1,ky)

+ F(kx,ky) (18)

which is illustrated by Fig. 6-ii). This procedure is used to
compute all window histograms h in the counting grid, as

well as in either of the M step versions Eqs. 8 and 13, which
only use the counts ctz , and not the original feature layout zti,j .

Efficiency of the computation over multiple section bags
in Eqs. 12, 13 can be increased if the sections break the
window uniformly along both directions. In this case, one can
pre-compute the sum

∑
i∈W s

k
πi,z in each section and keep

hskx+τs,ky+τs,z’s which are shifted versions of each other as
Fig. 6-iii) (remember that each sector contribute to the same
mapping!).

6 LAYOUT RECONSTRUCTION

3 In scene/object classification tasks, the image features are
typically clustered around hundreds of centers and image
locations i are associated with pointers z to these discretized
features. For example, in our classification experiments below,
we clustered SIFT [37] features in Z=200 visual words. The
illustrations in Fig. 2 and Fig. 3 do not provide enough
insight into how well the counting grids can be inferred when
such large sets of features are considered. Visualizing the
feature identities on a grid is difficult, and so, in order to
simply study the properties of the counting grid estimation
procedures discussed above, we have run the first set of tests
on fifty 16× 16 color patches taken at random from a drawing
(available in Matlab: load trees) sub-sampled to the resolution
of 33× 40. The drawing is illustrated in Fig. 7-i).
The patches are first transformed into feature maps zti pointing
to one of Z=64 colors obtained by approximating the color
map. Then, 1×1, 2×2 and 4×4 histograms were computed in
the appropriate sections of these images to obtain the section
bags of words for the algorithm defined by the appropriate
equations (see Tab. 4). The algorithm is then run on each
section bag representation separately, to obtain the counting
grids in ii), iii), and iv). Finally, the plate v) shows the result
of the combination of the counting grid E step, i.e. mapping
of the windows based only on the single bag of words, Eq.
4, and the epitome M step, Eq. 15, which uses the known
layout of features zi in counting grid re-estimate under the
assumption that this layout could help arrange features in the
counting grid even more than a coarse tessellation.

3. In the additional material we added videos that better describe this section
and the learning procedure.
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i) Original Image
   (Features = discrete colors)

ii)  iii) iv) v)

Fig. 7. The source of 50 image patches taken from random locations i), and counting grids estimated by various versions of the
algorithm. Most remarkably ii) is the reconstruction obtained using only 50 histograms of image features, and for reconstruction
in iii) we used only 50 sets of 4 histograms (from 2 × 2 sections of the input images). iv) Result using 16 histograms, (from 4 × 4
sections of the input images) v) Result using cg-epitomes. In all the cases, colors were treated as unrelated 64 discrete features.
SEE THE VIDEOS IN THE ADDITIONAL MATERIAL!

To visualize the different counting grids, each counting grid
location k was assigned the color equal to the average of the
Z=64 colors in color map, weighted by the normalized local
feature counts πk,z . The image in ii) is therefore an attempt at
reconstructing the image in i) from fifty color histograms for
which we did not provide any additional information about
their source: Image i) was not provided to the algorithm,
nor were the locations of the images from which the fifty
histograms were extracted. Note also that the algorithm is not
aware of any similarities among the 64 colors, as these are
treated as discrete features.
Remarkably, a lot of the spatial structure in feature distri-
butions was reconstructed from these 50 histograms. The al-
gorithm discovers that the dark, red and brown tones go
together and that they are bordered by green. Elongated dark
structures against the blue background are discovered, as is
the coast/island boundary. In this sense, the counting grid
provides a good model for interpolating among the original
50 histograms, as the histograms from the original image are
also likely under the inferred counting grid. Using 2×2 bags as
a representation of images is already sufficient to break some
symmetry problems and reconstruct almost the entire scene.
This improvement is also remarkable, as in this case, ostensibly
very little information about the 50 image patches is used: The
source image i), or locations of the 50 patches in it are again not
available to the algorithm, and the algorithm only uses fifty sets
of 4 histograms (upper left, upper right, lower left, lower right)
over Z=64 colors found in appropriate sections to reconstruct
the island and the trees. The most accurate reconstruction is
obtained in v) by iterating Eqs. 4, 15), which is interesting
from the epitome modeling point of view. If the counting grid
is considered a feature epitome (as used at low resolutions
in [23]), from which detailed feature maps zti are generated,
rather than simply bags of features, then the inference step
that only considers the patch histograms efficiently replaces the
convolutional E step of the epitome model (if it were extended
to have feature distribution in each image location, rather than
real-valued Gaussian models). Furthermore, in this case we
also found that this combination is less prone to local minima
than the epitome models or the pure counting grid inference
and learning of Eqs. 12, 13. Finally we note here that in the
extreme case of tessellating the patches down to individual
pixels, the counting grid becomes the feature epitome model.

These results are possible, of course due to very high re-
dundancy in images which makes, for example, the extracted
50× 64 count numbers that represent the image patches used
for reconstruction of ii) sufficient for this partial recovery of the
33× 40× log 64 parameters necessary to represent i). We next

show that these procedures can be used to analyze images that
are related by the fact that they belong to the same category,
rather than a large image, and that the resulting generalization
over the space of possible bag of feature count distributions
far surpasses the standard count models including other latent
models, such as latent Dirichlet allocation [7].

7 EXPERIMENTAL SECTION

In all the experiments as visual words we used SIFT features
[37] clustered into Z = 200 discretized features. The SIFT
processing was based on 16× 16 pixel patches spaced 8 pixels
apart. In this way, each image was transformed into a feature
map zi and then its bag of features cz was created.
For a fair comparison, we used our implementations of the
reconfigurable part-model [16] and latent Dirichlet allocation
[3] on the very same features.
In each task, unless specified, we employed the dataset
author’s training/testing/validation protocol. To classify a
test image we learned a model per class and we assigned the
test samples to the class that gives the lowest free energy.

We considered counting grids of various complexities
with grid size E = [2 (e.g., 2 × 2),3 (e.g., 3 ×
3), . . . ,10,15,20, . . . ,40]4 and window size W = [2,4,6, . . . ],
limiting the tests only to the combinations with overall capacity
κ =

Ex·Ey

Wx·Wy
between 1.5 and T/2, where T is the number of

training samples. We considered S = [1×1, 2×2, 4×4, Nx×Ny]
and we updated P (`) with Eq. 11.
The capacity κ is roughly equivalent to the number of LDA
topics as it represents the number of independent windows
that they can be fit in the grid; we compared the results using
this parallelism [18,22].

7.1 Scene Classification
Scene classification task is useful to shows that counting
grids can generalize well even when the most basic spatial
interpolation assumption is not perfectly met. In particular we
will empirically demonstrate that each individual image can
be thought a “window” in a larger visual word represented
by the counting grid. This has been previously illustrated
in Fig. 2 where sampling windows gave rise to the features
combinations present in the dataset5.

4. We only considered squared counting grids; where E = N stands
for E = N ×N . The same holds for the window.

5. With the prior P (`) possibly preventing to pick some combination
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Fig. 8. 15-Scenes classification results. Using pink circles, we
also reported the results of [22] which are computed using the
hybrid CG-Epitome (see Tab.4). Due to the presence of many
training images, the method generalizes very well

TABLE 3
15-Scenes dataset resultsMethod Citation Tessellation Accuracy

Mixture Model 1× 1 59,88%
LDA [3] 1× 1 65,12%
Rec. Part Model [16] 4× 4 74,98%
Spatial BoW 4× 4 73,26%
Counting Grid 1× 1 72,21%
Tess. Counting Grid 4× 4 74,48%
Hybrid CG-Epitome Nx ×Ny 82,79%
Spatial Pyramid Kernel [10] 4× 4 79,93%

As datasets we considered the 15-Scenes [10] and the 67-
Indoor Scenes [41]. Classification accuracy on the former are
reported in Fig. 8. On the x-axis we reported the different
model complexities, in term of capacity κ, whereas on the y-
axis we reported the accuracy. As the same κ can be obtained
with different choices of E and W, we specified the counting
grid size E by using gray levels, the lighter the marker color
the bigger the grid.
As Fig. 8 shows, counting grids performed better than latent
Dirichlet allocation. The accuracy regularly increased with κ,
independently from the Grid size E. It also worth noticing
that P (`) helped to prevent overtraining for big capacities κ.
In the same figure, we also reported the results of hybrid CG-
Epitome approach which comprises the basic CG’s E-step and
the epitome M-step. For efficiency reasons, we only considered
κ = 1.5, 2.5, 4, 6, 8. In this version W = Nx ×Ny and the grid
size is unequivocally determined by κ, therefore we used pink
markers to show the results. The hybrid CG generalized very
well, probably because of the abundance of training data.
In Tab. 3 we reported a numerical comparison with other
models and some discriminative baseline. For counting grids
as well as [3] and [16], we used 3-Fold crossvalidation on the
training set to pick a model complexity.

As second dataset, we considered the 67-indoor scene [41]
(we did not use the annotations). Results are reported in Tab. 4,
where the tessellated counting grid outperformed all the other
generative approaches.

TABLE 4
MIT 67 Indoor Scenes dataset resultsMethod Citation Tessellation Accuracy

Mixture Model 1× 1 14,31%
LDA [3] 1× 1 24,53%
Rec. Part Model [16] 4× 4 25.32%
Spatial BoW 4× 4 20,94%
Counting Grid 1× 1 25,42%
Tess. Counting Grid 4× 4 28,32%
Hybrid CG-Epitome Nx ×Ny 16,21%
Spatial Pyramid Kernel [10] 4× 4 32,12%

TABLE 5
SenseCam dataset resultsMethod Citation Tessellation Accuracy

Mixture Model 1× 1 41,19%
LDA [3] 1× 1 57,05%
Rec. Part Model [16] 4× 4 58,17%
Spatial BoW 4× 4 49,10%
Counting Grid 1× 1 55,32%
Tess. Counting Grid 4× 4 59,83%
Hybrid CG-Epitome Nx ×Ny 39,40%
Spatial Pyramid Kernel [10] 4× 4 52,76%

7.2 Place Classification

Recently in [18] a 32-classes dataset have been introduced.
This dataset is a subset of the whole visual input of a subject
who wore a wearable camera for few weeks. Images in the
dataset exhibit dramatic viewing angle, scale, illumination
variations and a lot of foreground objects, and clutter. Each
category presents images taken in a particular place such as
house rooms or office environments, or outdoors locations.
Some images for each class are shown in Fig. 9.
The task here is place classification. As validation protocol,
we used 10-folds cross evaluation. Results are summarized
in Fig. 10. In the bag-of-word scenario, e.g., S = 1 × 1, latent
Dirichlet allocation [3] performed better than regular counting
grids and mixture models. This can be explained with local
minima issues as some classes have a very limited number
of training samples and the counting grid simply cannot well
recover the panoramic structure (although this is not perfectly
evident or recoverable) of half of the classes. Once we provide
some directionality information (coarse tessellations S = 2×2)
counting grids can better exploit the panorama and they
outperformed significantly LDA [3] and its naive tessellated
extension which learns a model in each sector, summing the S
likelihoods. Finally in the last panel (Fig. 10-iii)) we compared
S = 4× 4 tessellated counting grid, again the tessellated latent
Dirichlet allocation and the Reconfigurable part model [16]
which uses the same spatial information. Finer tessellations
didn’t help recognition but neither hurt up to S = 6 × 6.
To the limit, when S = Nx×Ny , accuracy does not exceed 30%.

As final experiment on this dataset, we repeated the exper-
iment only using 13 training images per class as previously
done in [18]. Here we want to test the robustness of the models
in overtrain regimes. We reported the final accuracy in Tab.5.

Summarizing counting grids map images onto a bigger real
estate, where they lay out the features into a 2D window and
stitch overlapping windows trying to recover the panoramic
nature of the scene. This fits the qualities of the data acquired
by a wearable camera and indeed our model largely outper-
form [3,16].
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Fig. 9. Images from the SenseCam dataset.
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Fig. 10. Results for SenseCam dataset. i) S = 1 × 1. ii) Tessellated version S = 2 × 2. iii) Tessellated version S = 4 × 4 and
comparison with the reconfigurable bag of words model [16] and with latent Dirichlet allocation using the same tessellation.

7.3 Wearable Camera Sequences
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Fig. 11. Results on Torralba Dataset. We reported the results of
[17] (Torralba’s approach) and [23] (Epitome) from the original
papers. We followed the evaluation procedure of [17] and the
error bars indicate variability in accuracy across different image
sequences.

We considered the sequences of [17]. This data represents
the perfect fit for our model as the true panoramic structure

of each scene or place, can actually be recovered. The dataset
is composed by 7 video sequences acquired with a wearable
camera.

The original paper [17] is based on learning a Gaussian
mixture model for each class, using Gist [30] as image
descriptor. In addition to [17], we also compared with
Epitomes [23] which was, among applications of epitome, one
of the most successful. The method of [23] uses a low resolution
epitome with each low res image location represented by a
histogram of features. This method combines several cues:
RGB (local) histograms, disparity features and Gist. For what
concern counting grids, we only used quantized SIFT and
we set the complexity of the model using cross-validation
considering only models with capacity 2 ≤ κ ≥ 10.

After training a model for each scene l = 1 . . . C our
goal is to compute the place posterior probabilities for every
frame t of the test sequence, given all the previous images
P (lt = k|c1:t). This can be easily achieved using the forward-
backwards procedure [42]

P (lt = k|c1:t) ∝ p(ct|lt = k) ·
∑
j P (lt = k|lt−1 = j)

·P (lt−1|c1:t−1) (19)

We fixed the observation log likelihood to the negative free
energy given by our model (Eq. 3) while we used EM estimate
the transition matrix and the place posteriors. When using
HMM, the observation likelihood may be dominated by the
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TABLE 6
Where was I?Method Citation Tessellation Accuracy

LDA [3] 1× 1 76.80%
Rec. Part Model [16] 4× 4 74.63%
Mixture Model 1× 1 70.37%
Counting Grid 1× 1 76.21%
Tess. Counting Grid 4× 4 81.45%

transition prior. To balance the contribution we re-scaled
the likelihood terms using a constant γ, chosen via cross-
evaluation [43].
Results are presented in Fig. 11; the improvement wrt [17,23]
is significant. The tessellation marginally helped because i)
training data is abundant and ii) the metaphor upon which
CGs are based, the “moving camera”, perfectly fits here.
Indeed the spatial layout can be at least piece-wise recovered
also from a single bag.
Tessellation finer than S = 2× 2 did not hurt. Latent Dirichlet
allocation [7] and Rec-Bow [16] performances were slightly
inferior of [23] and we did not report it in the graph for the
sake of clarity.

We have also investigated what happens if we equally scale
E and W. We considered counting grids of size E = σ ·
[8,10,12,15,18,24], W = σ ·6 and three scales σ = 1, 2, 3 and
we run the same experiment on Torralba’s sequences. Results
are shown in Fig. 12, where each row represents a different
scale.

Results are easily interpretable, counting grids are not very
sensitive to the choice of E and W and what really matters
is their ratio κ. This can also be evinced by Fig. 8 and Fig.
10 where complexities characterized by similar κ performed
equally well. Higher variances for large κ, indicate local
minima issues.
In general, once the window is “sufficiently big” for spatial
interpolation, scaled models learn “scaled” versions of the
scene, which are quantitatively (and quantitatively) very
similar. The real estate is too big and the model learn multiple
copies of the same scene.

We have finally considered a day worth of images from (1800
images ca.) from the SenseCam collection [44] and repeated
the same test, combining counting grids an hidden Markov
models. During this day, the camera bearer visited 20 of the
32 labeled locations of the full dataset [18], nevertheless we
trained models with all the 32 classes as a-priori we cannot
know the locations visited during a day. As for Torralba
sequences, our goal is to compute the place posterior prob-
abilities at the instant t, given all the previous images, Eq. 19
We used at most 30 images per class to learn the models.
Results are reported in Tab. 6. We run [17] using a mixture
of dirichlet model over quantized sift histograms (our very
same features). For sake of completeness we also implemented
the method of [17] extracting the original descriptors from
whole images and within the four sectors. In both cases, the
performance was below 50%.

7.4 Image clustering on SenseCam
As final test, we analyzed the same subset of SenseCam,
divided in 10 categories used in [28]. The images of this
subset are suitable for epitomes as they can actually be stitched
together using pixels, therefore a comparison with [23,27,28] is

TABLE 7
Unsupervised place clusteringMethod Citation Tessellation Accuracy

Epitome [27] Nx ×Ny 69,42%
Stel Epitome [28] Nx ×Ny 73,06%
LDA [3] 1× 1 74,32 %
Counting Grid 1× 1 82.34%
Tess. Counting Grid 4× 4 83.94%
Hybrid CG-Epitome Nx ×Ny 86,6%
Feature Epitome Nx ×Ny 69,93%

fair.
As the spirit of the data collection is to provide summary of the
subject’s life, we have trained the counting grids in an unsu-
pervised way (combining images of all categories together) and
then investigated if the images are separated in the counting
grid in accordance to the human labeling. We compared with
other “visual summarization” approaches that lay out the
visual input on a larger grid, the epitomic approaches [23,27,28]
which clusters pixel measurements within an epitome. While in
the standard epitomes images are mapped into the epitome by
means of pixel wise comparisons, here we are placing bags in
a 2 dimensional space, i.e. an image is mapped in a particular
spot if its bag-of-word representation agrees with the images
mapped in the neighborhood. To make the comparison fair, we
fixed the complexity of the counting grids to the one used for
epitomes in [28] (e.g., κ = 14). Upon learning, each test image
is labeled by the label of the closest mapped training image.
The results are reported in Table 7.

The counting grid model is so far the best performing model
on this task.

8 CONCLUSIONS

We introduce the counting grid model of images which cap-
tures natural constraints on image feature histograms by as-
suming that these can be represented by averaging of feature
distributions from a window into the grid. In this way, the
flexibility of the bag of words representation is indirectly
enriched by the spatial constraints of epitome-like models.
By observing the actual observation model, we see that the
counting grid model is not attempting to capture the spatial
constraints explicitly as has been often done in the past. In fact,
we can view the counting grid as producing a large mixture
of histograms whose parameters are constrained in a way that
is a natural consequence of the fact that images from which
the features are collected live in an ordered 2D space. Despite
their simplicity, both conceptual and algorithmic (the matlab
code for counting grid estimation fits half a page), and that the
ultimate parametrization used for likelihood computation is
simply a set of histograms, this generative model significantly
outperforms other histogram-based representations in a variety
of tasks and is often approaching the discriminative state
of the art (and the features extracted from the generative
model can often be used within discriminative models to
further improve them [45]). Computationally, the algorithm is
efficient and the computational steps also lend themselves to
further improvement of the model to add more scale/rotation
reasoning. Experiments show that, despite the apparent need of
setting E and W, the algorithm is only sensitive to their ratio.
For what concern performances, counting grids, especially in
their tessellated version, outperformed standard bag of words
approaches in computer vision [3,16,17,23] across most of
the datasets considered. Finally we observe that a variety of
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Fig. 12. Scaled counting grids (1× 1-case).

methods are based on latent dirichlet allocation and we would
like the community considered our method as “basis” to solve
complex problems or perform complex analysis.

REFERENCES

[1] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray,
“Visual categorization with bags of keypoints,” in In Workshop
on Statistical Learning in Computer Vision, ECCV, 2004, pp. 1–22.

[2] J. Yang, Y. G. Jiang, A. G. Hauptmann, and C. W. Ngo, “Evaluating
bag-of-visual-words representations in scene classification,” in
MIR ’07: Proceedings of the international workshop on Workshop
on multimedia information retrieval. New York, NY, USA: ACM,
2007, pp. 197–206. [Online]. Available: http://dx.doi.org/10.
1145/1290082.1290111

[3] L. Fei-Fei and P. Perona, “A bayesian hierarchical model for
learning natural scene categories.” in Proceedings of IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition
(CVPR), 2005, pp. 524–531.

[4] P. Langley, W. Iba, and K. Thompson, “An analysis of bayesian
classifiers,” in Annual Conference on Artificial Intelligence. MIT
Press, 1992, pp. 223–228.

[5] N. Bouguila, “Count data modeling and classification using finite
mixtures of distributions,” Neural Networks, IEEE Transactions on,
vol. 22, no. 2, pp. 186 –198, 2011.

[6] K. Nigam, J. Lafferty, and A. Mccallum, “Using maximum entropy
for text classification,” in IJCAI - Workshop on Machine Learning for
Information Filtering, 1999.

[7] D. Blei, A. Ng, and M. Jordan, “Latent dirichlet allocation,” Journal
of machine Learning Research, vol. 3, pp. 993–1022, 2003.

[8] T. Hofmann, “Probabilistic latent semantic indexing,” in Proceed-
ings of the annual international ACM conference on Research and
development in information retrieval (SIGIR), 1999, pp. 50–57.

[9] A. Bosch, A. Zisserman, and X. Munoz, “Image classification
using random forests and ferns,” in Proceedings of International
Conference on Computer Vision (ICCV), 2007, pp. 1–8.

[10] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of fea-
tures: Spatial pyramid matching for recognizing natural scene
categories,” in Proceedings of IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), 2006, pp. 2169–
2178.

[11] O. Boiman, E. Shechtman, and M. Irani, “In defense of nearest-
neighbor based image classification,” in Proceedings of IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition
(CVPR), 2008, pp. 1–8.

[12] J. Vogel and B. Schiele, “Semantic modeling of natural scenes for
content-based image retrieval,” International Journal of Computer
Vision, vol. 72, pp. 133–157, 2007.

[13] A. Oliva and A. Torralba, “Modeling the shape of the scene: A
holistic representation of the spatial envelope,” Int. J. Comput.
Vision, vol. 42, no. 3, pp. 145–175, 2001.

[14] A. Bosch, A. Zisserman, and X. Munoz, “Scene classification via
plsa,” in Proceedings of European Conference on Computer Vision
(ECCV), 2006, pp. 517–530.

[15] M. Boutell, J. Luo, and C. Brown, “Scene parsing using region-
based generative models,” Multimedia, IEEE Transactions on, vol. 9,
no. 1, pp. 136–146, 2007.

[16] S. Parizi, J. Oberlin, and P. Felzenszwalb, “Reconfigurable models
for scene recognition,” in Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on, 2012, pp. 2775–2782.

[17] A. Torralba, K. P. Murphy, W. T. Freeman, and M. A. Rubin,
“Context-based vision system for place and object recognition,”
in ICCV, 2003, pp. 273–280.

[18] A. Perina and N. Jojic, “Spring lattice counting grids: Scene
recognition using deformable positional constraints.” in ECCV
(6), ser. Lecture Notes in Computer Science, A. W. Fitzgibbon,
S. Lazebnik, P. Perona, Y. Sato, and C. Schmid, Eds., vol. 7577.
Springer, 2012, pp. 837–851.

[19] A. Coates, A. Y. Ng, and H. Lee, “An analysis of single-layer
networks in unsupervised feature learning,” in Proceedings of
the Fourteenth International Conference on Artificial Intelligence and
Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011,
2011, pp. 215–223. [Online]. Available: http://www.jmlr.org/
proceedings/papers/v15/coates11a/coates11a.pdf

[20] B. C. Russell, A. B. Torralba, K. P. Murphy, and W. T. Freeman,
“Labelme: A database and web-based tool for image annotation,”
International Journal of Computer Vision, vol. 77, no. 1-3, pp. 157–
173, 2008.

[21] N. Jojic and A. Perina, “Multidimensional counting grids: In-
ferring word order from disordered bags of words,” in UAI
2011, Proceedings of the Twenty-Seventh Conference on Uncertainty
in Artificial Intelligence, Barcelona, Spain, July 14-17, 2011, 2011, pp.
547–556.

[22] A. Perina and N. Jojic, “Image analysis by counting on a grid,” in
Proceedings of IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), 2011, pp. 1985–1992.

[23] K. Ni, A. Kannan, A. Criminisi, and J. Winn, “Epitomic location
recognition,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 31, no. 12, pp. 2158–2167, 2009.

[24] A. Perina and N. Jojic, “Capturing layers in image collections

http://dx.doi.org/10.1145/1290082.1290111
http://dx.doi.org/10.1145/1290082.1290111
http://www.jmlr.org/proceedings/papers/v15/coates11a/coates11a.pdf
http://www.jmlr.org/proceedings/papers/v15/coates11a/coates11a.pdf


14

with componential models: from the layered epitome to the com-
ponential counting grid,” in Proceedings of IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), 2013.

[25] M. R. Amer and S. Todorovic, “Sum-product networks for model-
ing activities with stochastic structure,” in CVPR, 2012, pp. 1314–
1321.

[26] P. Lovato, A. Perina, N. Sebe, O. Zandonà, A. Montagnini,
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