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Abstract

Principal component analysis (PCA) is widely applied in various areas, one of the typical 

applications is in face. Many versions of PCA have been developed for face recognition. However, 

most of these approaches are sensitive to grossly corrupted entries in a 2D matrix representing a 

face image. In this paper, we try to reduce the influence of grosses like variations in lighting, facial 

expressions and occlusions to improve the robustness of PCA. In order to achieve this goal, we 

present a simple but effective unsupervised preprocessing method, two-dimensional whitening 

reconstruction (TWR), which includes two stages: 1) A whitening process on a 2D face image 

matrix rather than a concatenated 1D vector; 2) 2D face image matrix reconstruction. TWR 

reduces the pixel redundancy of the internal image, meanwhile maintains important intrinsic 

features. In this way, negative effects introduced by gross-like variations are greatly reduced. 

Furthermore, the face image with TWR preprocessing could be approximate to a Gaussian signal, 

on which PCA is more effective. Experiments on benchmark face databases demonstrate that the 

proposed method could significantly improve the robustness of PCA methods on classification and 

clustering, especially for the faces with severe illumination changes.
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Index Terms

Two-dimensional whitening reconstruction; preprocessing; PCA; robustness

I. Introduction

PRINCIPAL component analysis (PCA) is a popular feature extraction and data 

representation method that is widely applied in various areas, such as machining learning, 

pattern recognition and computer vision, because of its simplicity and efficiency. One of the 

typical application areas is face recognition, on which many characteristics of PCA have 

been explored and numerous variants of PCA have been proposed. Sirovich and Kirby [1], 

[2] first applied PCA to efficiently represent pictures of human face, and argued that any 

face image could be approximately reconstructed by a weighted sum of a small collection of 

images. Later, Turk and Pentland [3] presented the well-known Eigenfaces method for face 

recognition in 1991, after that PCA has been extensively explored and become one of the 

most successful approaches in face recognition [4], [5], [6]. PCA only considers second-

order statistic information, however, a lot of important information are often contained in 

high-order relationships among pixels. Thus, Bartlett et al. [7], [8] proposed two different 

independent component analysis (ICA) [9], [10] architectures, i.e. ICA Architecture I and II, 

and their experimental results suggested that ICA outperformed PCA. However, Yang et al. 

[11], [12] pointed out that both ICA Architecture I and II contained PCA and a whitening 

process that were main reasons for the superior performance of ICA to PCA, while the ICA 

projection had little effect on the performance of face recognition. More specifically, ICA 

Architecture I involves a vertically centered PCA process (PCA I) and ICA Architecture II 

contains a whitened horizontally centered PCA process (PCA II).

In above mentioned PCA-based approaches, they all transform the 2D face matrix into a 

concatenated 1D vector before feature extraction, which leads to a high-dimensional image 

vector space. Usually, it is difficult to evaluate the covariance matrix accurately due to the 

large size of the covariance matrix, and the relatively small number of training samples. In 

order to overcome this problem, two-dimensional PCA (2DPCA) [13] was proposed, which 

could evaluate covariance matrix accurately and determine the corresponding eigenvectors 

quickly.

One of the major disadvantages of PCA is that it is sensitive to grossly corrupted entries in 

the matrix [14], [15], [16]. Unfortunately, gross errors, like the variations in lighting, are 

ubiquitous in face images especially in real applications, often significantly decrease the 

recognition performance of PCA. In addition, many approaches such as PCA I, PCA II and 

2DPCA that can be regarded as the variants of PCA, are also sensitive to those gross errors. 

Therefore, it is a necessary and challenge task to solve this problem to enhance the 

robustness of PCA.

In order to reduce the influence of gross errors, many techniques have been proposed. One 

of the most widely used techniques is preprocessing. Many preprocessing methods have 

been developed, these can be roughly classified into two categories: (1) The subspace 

methods ([14], [17], [18], [19]), which are used to remove the corrupted entries in the matrix 
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based on an assumption that the data matrix approximately have low intrinsic dimensionality 

[20], [21]; (2) The local feature descriptors ([22], [23], [24]), such as Gabor [25], [26] or 

local binary patterns (LBP) [27], etc., to capture local structures to obtain discriminative 

capability while preserving the robustness to illumination, expression and occlusion. 

However, these methods are not specifically designed for PCA and its variants, because their 

outputs might not be approximate to Gaussian distribution, on which PCA is more effective.

In this paper, a novel and simple unsupervised preprocessing method, called two-

dimensional whitening reconstruction (TWR), is developed to significantly reduce the 

influence of gross errors on PCA via reducing the pixel redundancy of the internal image 

and maintaining important intrinsic features, and meanwhile making each face image to be 

close to a Gaussian signal. By comparison with PCA and its variants, we first do a whitening 

process on the original 2D face image matrix rather than on a concatenated 1D vector, then, 

we reconstruct a 2D matrix which is named as whitening reconstruction in this paper. After 

that, PCA or its variants is applied to the reconstructed image. Experimental results on 

several benchmark databases demonstrate that our method can significantly improve the 

classification and clustering performance of PCA and its variants, especially for face images 

with severe illumination changes.

The rest of paper is structured as follows. Section II mainly presents and analyzes the 

proposed method TWR, which reconstructs the image via whitening the 2D face image 

matrix. Section III reports and discusses experimental results on benchmark databases. 

Finally, Section IV gives the conclusion and points out future research work.

II. Two-dimensional Whitening Reconstruction Algorithm and Analysis

In the process of recording images, it is inevitable to encounter kinds of noises, like 

variations in lighting. Although the visual effect is different [28], in essence, the number of 

dimensions of the image is small and stable [29]. Thus, the noise can be effectively removed 

by preprocessing methods. Generally, a whitening process that reduces the influence of 

variance of the data matrix can improve the recognition performance of PCA [12]. 

Furthermore, 2DPCA, which projects an image matrix onto a projection matrix, outperforms 

PCA that projects an image vector onto a projection vector [13]. Motivated by these 

findings, we propose a preprocessing method which reconstructs the image matrix via 

whitening the 2D image matrix.

A. Two-dimensional Whitening Reconstruction

Given an image X = [x1, x2, ⋯, xn] ∈ ℜp×n, similar to PCA I [11], let Y = XT, Y = [y1, y2, 

⋯, yp], then calculate the mean vector of Y as follows:

(1)

Subtracting the mean vector u from Y, we can get Yh = [y1 − u, y2 − u, ⋯, yp − u], then let 

, the covariance matrix is:
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(2)

Let Pυ = [α1, α2, ⋯, αm] ∈ ℜp×m represent the orthonormal eigenvectors of Sυ 

corresponding to the m largest positive eigenvalues . Then letting Λ = 

diag (λ1, λ2, ⋯, λm), we can obtain the whitened matrix , so that:

(3)

Thus Xυ can be whitened as follows:

(4)

As for RI, we can get Theorem I as follows:

Theorem I—For any image matrix Xυ = UDVT, where UTU = Ip, VTV = In and D ∈ ℜp×n 

is a diagonal matrix with the diagonal elements in descending order, RI becomes:

(5)

Proof: According to singular value decomposition (SVD) [30], the image matrix Xυ can be 

written as:

(6)

where U ∈ Rp×p, UTU = Ip, D ∈ ℜp×n is a diagonal matrix and its nonzero diagonal 

elements are d = [d1, d2, ⋯, dt] (d1 ≥ d2 ≥ ⋯ ≥ dt), t = min(p, n), V ∈ ℜn×n and VTV = In. 

Thus Eq. (2) can be rewritten as:

(7)

Then we can get:

(8)

which corresponds to the diagonal matrix , hence,
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(9)

Substituting Eq. (6) and Eq. (9) into Eq. (4), we can get .

Therefore, Theorem I is proved.

Next we use Pυ to reconstruct the Xυ, we can obtain

(10)

Based on Eq. (10), we can get Theorem II.

Theorem II—Eq. (10) is equivalent to:

(11)

Proof: Substituting Eq. (5) and Eq. (8) into Eq. (10), we can get:

(12)

Therefore, Theorem II is proved.

For clear illustration, we present the detailed procedure of TWR in Algorithm 1. Also, we 

present a visual block diagram in Fig. 1. As shown in Fig. 1b and Fig. 1c, the original image 

is changed by Step 2 and 4 (listed in Algorithm 1). Step 2 (Fig. 1b) does not change the 

original image significantly. The final whitened image (Fig. 1c) is generated by Step 4. It is 

worth noting that Step 4 actually contains two stages: A whitening process and 2D face 

matrix reconstruction.

Since the image size of all images in one set is equal usually, we can discard  during 

reconstructing. Thus the reconstructed image of X is:

Algorithm 1

Two-dimensional Whitening Reconstruction (TWR)

Input: An image matrix X = [x1, x2, ⋯, xn] ∈ ℜp×n,
the rank m.

1. Calculate the mean vector u = 1
p ∑ j = 1

p y j,

where yj ∈ Y and Y = XT = [y1, y2, ⋯, yp];

2. Calculate the matrix Xυ = Yh
T

,
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where Yh = [y1 − u, y2 − u, ⋯, yp − u];

3. Calculate the SVD of Xυ = UDVT;

4. Calculate the matrix Xυ = nU(: , 1:m)V(: , 1:m)T .

Output: Reconstructed matrix X̃υ ∈ ℜp×n.

(13)

which is named as the whitened image. For brevity, the whitened face image is called 

whitened face in this paper.

B. Computational Complexity of TWR

Given an image matrix X ∈ ℜp×n and the rank m, the computation of the mean vector u in 

Step 1 and the matrix Xυ in Step 2 requires O(np) operations. The computational complexity 

of the SVD of Xυ in Step 3 is O(min(n2p, np2)), and the computation of the matrix X̃υ in 

Step 4 requires at most O(mnp) operations. Because of m ≤ min(n, p), the total 

computational complexity of TWR is O(min(n2p, np2)).

C. Relations to PCA and its variants

We introduce the relations among PCA and its variants in this section. Compared PCA I 

with PCA, the biggest difference between them is that they calculate their mean vectors in 

different ways so that they have different projection vectors, which can be seen from 

Proposition 1 in [12]. PCA II includes a whitening process in which projection vectors affect 

the variance distribution among different images, while the whitening process is neglected 

by PCA and PCA I. 2DPCA is derived from PCA, and it projects the 2D image matrix into a 

low-dimensional space directly, unlike PCA, PCA I and PCA II which need to convert the 

2D matrix to a 1D vector first.

Different from PCA, PCA I, PCA II and 2DPCA which are feature extraction methods for 

dimension reduction, the proposed method TWR is a preprocessing method to whiten the 2D 

image matrix. Besides, compared with PCA II, TWR does a whitening process on the 

original 2D face image matrix and focuses on reducing the pixel redundancy of the internal 

image and meanwhile maintaining important intrinsic features. Therefore, the preprocessed 

image after TWR can be used as the input for PCA and its variants.

D. Face Representation

In order to better display the influence of TWR on face representation, we present the faces 

calculated by PCA and PCA II in Fig. 2. Fig. 2a uses original faces as the input for PCA and 

PCA II; Fig. 2b uses whitened faces as the input for PCA and PCA II. The original faces 

with strong illumination changes are from Extended Yale-B face database [31] and all the 

original face images are cropped and resized to 32 × 32.
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Fig. 2 shows that whitened faces can get the rough profile of original faces with preserving 

their texture information. Because TWR works by reducing the pixel redundancy via a 

whitening process that will change the singular values of the original 2D face image matrix. 

In addition, Fig. 3 illustrates that TWR can transfer the original image data to be a signal 

close to Gaussian distribution, on which PCA is more effective [14], [32] [33]. Comparing 

TWR with PCA II, PCA II only focuses on reducing the overall pixel redundancy among all 

faces, while TWR reduces the pixel redundancy of the internal faces, and more important, it 

maintains important intrinsic features such as textures of the objects. Furthermore, the 

texture information in whitened faces can be enhanced by PCA and PCA II (Fig. 2b).

E. Projection for Separation

To illustrate the benefits of TWR for linear projection, we randomly select three human 

faces with lighting variability from Extended Yale-B database. TWR is first applied to obtain 

their whitened faces. The original and whitened faces will then be transferred to vectors and 

projected into 2D feature space via PCA and PCA II, respectively. Fig. 4 is a comparison of 

original and whitened faces using PCA and PCA II to project them into 2D plane (each point 

represents a face image). From this example, it is clear that both PCA and PCA II are 

sensitive to grossly corrupted entries in the original faces. By contrast, PCA and PCA II with 

whitened faces can make the classes linearly separable in the projected space. The possible 

main reasons are that TWR decrease the influence of gross errors via reducing the pixel 

redundancy of the internal face (Fig. 2) and make a face image be close to a Gaussian signal 

(Fig. 3), which is more suitable for PCA processing. For the faces under variations in 

lighting, expression or occlusion, their corresponding whitened faces are also close to 

Gaussian signals, and we can obtain similar projection results, for simplicity, we do not 

show them.

III. Experimental Results and Analysis

Since PCA can be applied to both classification and clustering, we present and analyze the 

performance of the proposed method TWR on PCA and its variants via classification and 

clustering experiments. There are three typical face databases used in our experiments as 

follows:

Extended Yale-B face database [31], [34] contains 16,128 face images of 38 human 

subjects under 9 poses and 64 illumination conditions. We chose the frontal pose with 

different illumination images in this paper, there were 2,414 face images in total. All the face 

images were manually aligned and cropped, and were resized to 32 × 32 pixels. Several 

original faces and their whitened faces are shown in the first row of Fig. 2a and Fig. 2b, 

respectively.

CMU PIE database [35] contains 41,368 face images of 68 human subjects under 13 

different poses and 43 illumination conditions, and with 4 different expressions. Here, all 

images were also manually cropped and resized to 32 × 32 pixels. Eight original face image 

samples of one subject and their corresponding whitened faces are shown in Fig. 5a.
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AR database [36] contains over 4,000 color images of 126 human subjects (70 men and 56 

women), and includes frontal view faces with different facial expressions, illumination 

conditions and occlusions. In this paper, we chose 2,600 face images of 100 individuals (50 

men and 50 women) under different facial expressions, illumination conditions and 

occlusions. All the face images were manually cropped and resized to 33 × 30 pixels. Eight 

original face images of one human and their whitened faces are shown in Fig. 5b.

A. Classification Experiments

In classification experiments, we mainly present the superior performance of TWR on the 

faces under lighting variability, and apply TWR to PCA, PCA I, PCA II and 2DPCA to 

demonstrate that TWR is effective for PCA and its variants. Here, we adopt Extended Yale-

B and CMU PIE databases in classification experiments.

1) Recognition with Training Faces under Illumination Changes—For Extended 

Yale-B database, we randomly selected q=[2, 4, 6, 8] images as the training set, and the 

remaining images were used for testing, where q is the number of training images of each 

person; for CMU PIE database, we firstly selected the images from the frontal pose (C27) 

and each subject had 42 facial images under different illumination conditions [37], then we 

randomly chose q=[1, 2, 3, 4] images as the training set and used the remaining images for 

testing. We repeated this process 20 times and calculated the mean recognition accuracy. In 

addition, we first got the best classification results of PCA and its variants for original face 

images, then we selected corresponding feature dimensions of each method and extracted 

the same number of features for whitened faces. For the rank of whitened face, we 

empirically set m=28 for Extended Yale-B and CMU PIE databases in our experiments.

To clearly show the performance of TWR on PCA and its variants, we also present two 

popular face recognition methods fisherface [38] and collaborative representation based 

classification (CRC) [39] in our experiments, the latter can nearly get the same classification 

results as the popular face recognition approach, sparse representation based classification 

(SRC) [40], with much less computation time. Moreover, we also illustrate the results of 

three preprocessing methods called unsupervised low-rank representation (ULR) [18], 

illumination normalization (IN) [22] and discriminant face descriptor (DFD) [24], all of 

them can improve face recognition accuracy under lighting variability. Here, except CRC, 

the nearest centroid classifier [41] is used.

Table I and II show that all of ULR, IN, DFD and TWR can boost the classification results 

of PCA and its variants on Extended Yale-B and CMU PIE databases, but TWR 

preprocessing gets more improvement than ULR and IN, and obtains superior performance 

to DFD especially for small q. Besides, PCA II reducing the pixel redundancy among 

different faces can enhance the robustness of PCA. Compared with PCA II, TWR can 

further improve this robustness via reducing the pixel redundancy of the internal face. 

Therefore, TWR+PCA II is superior to other PCA methods. Moreover, TWR+PCA II 

obtains the best classification accuracy among all methods on two databases. Interestingly, 

PCA and PCA I are inferior to 2DPCA when the faces are non-preprocessed or preprocessed 

by IN, but these three methods obtain almost the same accuracy as the faces are 
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preprocessed by ULR, DFD or TWR. A possible main reason is that 2DPCA, ULR, DFD 

and TWR can reduce the pixel redundancy of the internal face.

2) Recognition with Training Faces under Normal Lighting Condition—In order 

to better show the strength of TWR on lighting variability, in this section, we show the 

performance of TWR with training faces under normal lighting condition while test faces 

under lighting variations from slight to severe. In this experiment, similar to [42], we 

adopted Extended Yale- B database and divided the database into five subsets, we chose 

Subset 1 as the training set, and used Subsets 2–5, with illumination changes from slight to 

severe, for testing. Besides, each image was cropped and resized to 96 × 84 pixels, some 

sample images of each subset are shown in Fig. 6. Here, we present the performance of 

some popular methods for comparison: LRC [42], SRC [40], CRC [39], RSC [43], NMR 

[44], HQ_A and HQ_M [45]. In addition, we also apply TWR to these methods for better 

showing the performance of TWR. Among PCA methods, we just present the performance 

of TWR+PCA II in this experiment, because Table I and Table II have demonstrated that 

TWR+PCA II is the best choice. As for the rank in TWR, we empirically set m=80. Table III 

shows that TWR can largely improve the classification performance of above mentioned 

methods, especially on Subset 5, which suggests that TWR is more suitable for handling the 

faces under severe illumination changes.

3) Rank Selection—TWR has an essential parameter: the rank m, which is empirically set 

to 28 and 80 in above experiments. In this section, we examine the impact of this parameter 

on the performance of TWR.

Since the impact of this parameter on different methods is similar, for brevity, we just show 

the results of PCA. For comparison, we randomly selected q=2 and q=1 images of each 

person as the training set from Extended Yale-B and CMU PIE databases, respectively, then 

we repeated this process 20 times and calculated the mean accuracy. In addition, each image 

in Extended Yale-B and CMU PIE databases was resized to 32 × 32 pixels. Fig. 7 shows that 

the images from different databases have different optimal values for m, but neither of them 

can get the best results with full rank. Thus we usually discard several vectors corresponding 

to the smallest eigenvalues to get optimal or sub-optimal results when constructing whitened 

faces. The main reason is that small eigenvalues might be corresponding to the noise. 

Because of the same reason, we chose m=80 for Extended Yale-B database when each 

image was resized to 96 × 84 pixels.

We also show the impact of the rank m on the pixel value distribution of the whitened face. 

The distribution of one whitened face with different dimensions is shown in Fig. 8, which 

suggests that the larger rank m, the closer to Gaussian distribution.

B. Clustering Experiments

In clustering experiments, we present the performance of TWR on faces under variations in 

lighting, expression and occlusion. Here, we adopt Extended Yale-B, CMU PIE and AR 

databases. As for CMU PIE database, we select the images from the frontal pose (C27) and 

each subject has around 49 images with varying illuminations and facial expressions [46].
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1) Experimental setting—In the following experiments, we adopt the popular cluster 

method K-Means for clustering. The methods K-Means, PCA+ K-Means, PCA I +K-Means 

and PCA II +K-Means are briefly named as KM, PCA, PCA I and PCA II, respectively. 

Since 2DPCA cannot be directly applied to K-means, we discard it in clustering 

experiments.

We randomly selected k=[2, 4, 6, 8, 10] individuals from three databases for clustering, and 

ran the K-Means method 10 times for the same samples. We repeated this process 20 times 

and then calculated the average cluster accuracy. The cluster accuracy is measured by

(14)

Here, we set the rank m = [30, 30, 28] to reconstruct whitened faces on Extended Yale-B, 

CMU PIE and AR databases, respectively.

2) Experimental Results and Analysis—Tables IV–VI show that TWR can 

significantly improve the clustering performance of PCA and its variants. The possible 

reasons are: (1) TWR decreases the influence of gross errors via reducing the pixel 

redundancy of the internal face image and meanwhile maintaining the important intrinsic 

features; (2) TWR makes each face image be close to a Gaussian signal, which might 

promote different images to be approximate to a Gaussian distribution that is more suitable 

for K-means processing [47]. In addition, PCA II has much better performance than KM, 

PCA and PCA I as the faces are not preprocessed, while the gap of the clustering accuracy 

of KM, PCA, PCA I and PCA II becomes small as the faces are preprocessed by TWR, 

probably because decreasing the pixel redundancy of each internal image can reduce the 

pixel redundancy of overall images.

IV. Conclusion

In this paper, we present a simple and efficient preprocessing method, two-dimensional 

whitening reconstruction (TWR), that enhances the robustness of PCA and its variants via a 

whitening process and 2D image reconstruction. TWR works by reducing the pixel 

redundancy of the internal face and maintaining the significant intrinsic features, so the 

rough profile and texture information of the face are preserved while some noises are 

removed. Beyond that, TWR can transfer each face image to be close to a Gaussian signal, 

which is more suitable for PCA processing. Classification experiments on both Extended 

Yale-B and CMU PIE databases demonstrate that TWR could greatly improve the robustness 

of PCA and its variants on faces under lighting variety. Clustering experiments on three 

databases suggest that TWR could also significantly improve the clustering performance of 

PCA methods. Although TWR+PCA II could get very encouraging classification and 

clustering results on the faces with lighting variations, we find that the classification 

performance of TWR+PCA II on the faces under variations in expression and occlusion is 

not as well as under lighting variations. Therefore, in our future work, we will explore the 
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possible reason and further improve the classification performance of TWR+PCA II on 

expression and occlusion problems.
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Fig. 1. 
Visual block dragram of TWR in different steps (m=30). (a) Original face, (b) the face after 

subtracting the mean vector u, (c) whitened face.
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Fig. 2. 
Face representation with different methods. (a) Using original face images as the input 

(From top to bottom: original faces, the faces represented by PCA, the faces represented by 

PCA II); (b) using the whitened face images as the input (From top to bottom: whitened 

faces, the faces represented by PCA, the faces represented by PCA II).
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Fig. 3. 
A sample of pixel value distribution of the original face and its whitened face, the width of 

each bar is 0.05. (a) Original face (from Extended Yale-B database), (b) pixel value 

distribution of the original face, (c) whitened face, (d) pixel value distribution of the 

whitened face.
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Fig. 4. 
A comparison of original faces and whitened faces using PCA and PCA II for a three-class 

problem, the labels of the three human are 7, 23 and 33 in Extended Yale-B database, 

respectively. (a) PCA with original faces, (b) PCA II with original faces, (c) PCA with 

whitened faces, (d) PCA II with whitened faces.
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Fig. 5. 
The sample faces and corresponding whitened faces from different databases. (a) Original 

faces from CMU PIE database and corresponding whitened faces, (b) original faces from 

AR database and corresponding whitened faces.
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Fig. 6. 
From top to bottom, each row shows the sample images of subsets 1, 2, 3, 4 and 5, 

respectively.
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Fig. 7. 
Accuracy with different m on two face databases when each image is resized to 32×32 

pixels. (a) Extended Yale-B (q=2), (b) CMU PIE (q=1).
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Fig. 8. 
The pixel value distribution of one whitened face with different m, the width of each bar is 

0.05. (a) Original face, (b) m=10, (c) m=20, (d) m=30.
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TABLE I

Classification results (mean accuracy ± standard derivation (%)) on Extended Yale-B database under lighting 

variability

Method q = 2 q = 4 q = 6 q = 8

fisherface 38.5±1.3 63.8±2.2 74.7±1.4 80.0±1.5

CRC 52.7±2.6 76.4±2.2 86.1±1.0 90.1±0.8

PCA 11.2±1.0 11.9±1.1 11.6±1.0 11.7±1.1

PCA I 14.9±1.2 17.0±1.3 17.9±1.1 19.2±1.2

PCA II 48.1±2.0 67.3±1.2 75.4±1.6 80.6±1.7

2DPCA 19.4±1.5 24.3±1.9 26.8±1.8 29.3±2.0

ULR+PCA 48.0±2.3 62.9±1.1 70.0±1.7 74.0±1.9

ULR+PCA I 48.0±2.3 68.8±1.1 70.0±1.7 74.0±1.9

ULR+PCA II 52.2±2.1 70.0±1.0 78.3±1.7 84.0±1.4

ULR+2DPCA 49.4±2.2 64.7±1.3 71.8±2.0 75.9±2.2

IN+PCA 46.1±2.5 59.9±2.9 66.2±3.0 71.7±2.7

IN+PCA I 46.1±2.5 60.0±2.9 66.3±3.0 71.8±2.8

IN+PCA II 68.4±2.0 76.3±2.4 90.1±1.1 94.2±1.4

IN+2DPCA 56.6±2.3 71.8±2.7 78.1±2.8 83.3±2.1

DFD+PCA 48.7±2.9 80.4±2.7 85.5±1.7 88.6±1.5

DFD+PCA I 48.6±2.9 80.3±2.7 85.5±1.7 88.6±1.5

DFD+PCA II 46.7±2.2 80.3±2.2 83.5±1.5 85.6±1.8

DFD+2DPCA 46.0±2.8 80.1±2.8 85.5±1.7 88.8±1.4

TWR+PCA 62.6±2.5 77.9±2.0 84.1±1.8 88.6±2.1

TWR+PCA I 62.4±2.5 77.9±2.1 84.0±1.8 88.6±2.1

TWR+PCA II 72.6±2.2 88.8±1.3 93.3±0.7 96.0±0.9

TWR+2DPCA 63.3±2.7 78.5±2.0 85.0±1.8 89.6±2.0
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TABLE II

Classification results (mean accuracy ± standard derivation (%)) on CMU PIE database under variations with 

lighting

Method q = 1 q = 2 q = 3 q = 4

fisherface 28.4±1.8 87.9±1.4 95.2±1.1 95.2±1.1

CRC 88.1±1.0 99.3±0.3 99.9±0.1 100

PCA 24.1±1.2 28.8±1.4 31.3±1.3 32.7±1.9

PCA I 37.0±1.2 43.9±1.1 46.7±1.5 48.6±1.5

PCA II 78.8±1.3 93.9±1.8 96.9±0.6 97.7±0.6

2DPCA 45.1±1.3 58.3±1.6 63.7±2.0 67.6±2.1

ULR+PCA 88.2±1.8 95.3±0.7 97.3±0.5 98.4±0.4

ULR+PCA I 88.3±1.8 95.3±0.6 97.3±0.5 98.4±0.4

ULR+PCA II 90.6±1.3 99.0±0.3 99.6±0.2 99.7±0.2

ULR+2DPCA 88.7±1.7 95.5± 0.7 97.6±0.5 98.5±0.4

IN+PCA 63.6±3.0 72.1±2.2 78.0±2.2 80.4±1.9

IN+PCA I 63.6±3.0 72.1±2.2 78.0±2.1 80.5±1.9

IN+PCA II 76.4±2.4 95.3±0.6 97.0±0.4 97.6±0.5

IN+2DPCA 68.5±2.8 79.2±1.6 84.3±1.7 86.5±1.3

DFD+PCA 45.1±4.0 95.6±0.7 97.0±0.7 97.8±0.6

DFD+PCA I 44.9±4.0 95.6±0.7 97.0±0.7 97.8±0.6

DFD+PCA II 54.7±3.2 97.9±0.4 98.8±0.3 99.2±0.3

DFD+2DPCA 44.5±3.7 96.0±0.6 97.2±0.7 97.8±0.5

TWR+PCA 93.3±1.1 97.0±0.7 98.4±0.4 99.2±0.3

TWR+PCA I 93.1±1.0 97.0±0.7 98.4±0.4 99.2±0.3

TWR+PCA II 96.4±0.5 99.7±0.2 99.9±0.1 100

TWR+2DPCA 93.4±1.0 96.9±0.7 98.4±0.4 99.2±0.4
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TABLE III

Classification results (%) on faces under illumination changes from slight to severe

Method Subset 2 Subset 3 Subset 4 Subset 5

LRC 100 100 87.6 42.2

CRC 100 100 88.0 35.7

SRC 98.5 93.4 78.4 28.8

RSRC 100 100 80.3 36.7

HQ_A 99.8 96.3 67.9 31.3

HQ_M 99.8 96.3 75.8 36.8

NMR 100 100 90.2 47.9

TWR+PCA II 100 100 92.2 76.4

TWR+LRC 100 100 98.5 88.4

TWR+CRC 100 100 95.1 76.8

TWR+SRC 100 100 97.9 86.8

TWR+RSRC 100 100 97.2 85.2

TWR+HQ_A 100 99.6 90.7 60.2

TWR+HQ_M 100 99.6 90.5 58.0

TWR+NMR 100 100 98.5 88.2
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