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Abstract

Quantization can be used to form new vectors/matrices with shared values close to the original. In
recent years, the popularity of scalar quantization for value-sharing application has been soaring as
it has been found huge utilities in reducing the complexity of neural networks. Existing clustering-
based quantization techniques, while being well-developed, have multiple drawbacks including the
dependency of the random seed, empty or out-of-the-range clusters, and high time complexity for
large number of clusters. To overcome these problems, in this paper, the problem of scalar quanti-
zation is examined from a new perspective, namely sparse least square optimization. Specifically,
inspired by the property of sparse least square regression, several quantization algorithms based
on l1 least square are proposed. In addition, similar schemes with l1 + l2 and l0 regularization are
proposed. Furthermore, to compute quantization results with given amount of values/clusters, this
paper designed an iterative method and a clustering-based method, and both of them are built on
sparse least square. The paper shows that the latter method is mathematically equivalent to an
improved version of k-means clustering-based quantization algorithm, although the two algorithms
originated from different intuitions. The algorithms proposed were tested with three types of data
and their computational performances, including information loss, time consumption, and the dis-
tribution of the values of the sparse vectors, were compared and analyzed. The paper offers a new
perspective to probe the area of quantization, and the algorithms proposed can outperform existing
methods especially under some bit-width reduction scenarios, when the required post-quantization
resolution (number of values) is not significantly lower than the original number.
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1. Introduction

Quantization can reduce the number of bits to represent vectors and matrices by producing their
replacements with shared values and acceptable differences. The technique has been found great
usefulness in some areas, e.g., image processing[1], speech recognition[2], and machine Learning
techniques[3]. And recently, with the growing research interests in deploying neural networks on
resource-scarce edge devices, quantization techniques have grasped considerable attention because
of its ability in reducing the size of network[4][5][6][7]. Recent works like [7] and [5] suggest that
by simply running scalar quantization, the size of the neural network can be considerably reduced,
while the reduction in precision is almost negligible. A recent study [8] (by the authors) discusses to
apply novel methods quantization in neural network compression, and it can serve as the inspiration
of this paper. However, the method proposed in this paper can be used in both neural network
compression and general-purpose quantization.

Popular scalar quantization methods often adopt a clustering-based scheme[6], and K-means
clustering quantization and its variations are the most prominent techniques used in the area.
While straightforward and convenient, these methods frequently suffer from the several problems:
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1. empty clusters or irrational values (say, out-of-range values) due to bad random initialization; 2.
reliance on randomness. Practical K-means clustering is usually solved by Lloyd’s-like algorithms,
which are heuristic methods and cannot guarantee the optimal solution; and 3. time consumption.
To produce reliable results, K-means algorithm is usually executed multiple times (usually 5 to 10
times) with different initializations. While such technique could improve the quality of the results,
the time complexity of this method is high, especially when the number of post-quantization values
is large (high-resolution).

In this paper, the quantization algorithms are examined from another perspective: sparse
least square optimization. The idea is straightforward to understand: if one regards each value
in the original vector to be a combination of some ’basis’, then by introducing sparsity to the
possible amount of combinations, the number of values to be ’generated’ will be constrained.
Specifically, we consider the sparse-inducing properties of l0 and l1 norm-regularization, and design
algorithms that could minimize the reconstruction difference and introduce sparsity to the ’basis’
simultaneously. Based on the above idea, the l1-constrained least square form of quantization
algorithm is first proposed in the paper. In addition, to optimize the performance based on its
computational properties, an alternative version with both l1 and l2 norm-regularization is explored
and implemented. Furthermore, to design a least square quantization method that could produce
results by indicating certain amounts of quantization amounts (instead of the value of penalization
coefficient λ), two additional algorithms are designed: the first one is introduced by following the
idea of the l1 least square optimizations with iteratively enhancing constraints, and the second one
is accomplished by combining k-means clustering with least square optimization. Interestingly, the
second approach could also be interpreted as an improvement of the conventional k-means clustering
quantization method. The proposed methods are compared with quantization techniques based on
k-means clustering, Mixture of Gaussian, and a novel data transformation-based clustering method
proposed in [9]. Experimental results illustrate that the performance of the proposed algorithms
are competitive. For the l1-based algorithms, they are especially favorable in terms of running-time
complexity, which makes them particularly useful when the required quantization amounts is not
in a trivial scale. Moreover, the results provided by the proposed l1 methods are more exact and
relatively more independent from random seed.

Notice that our methods are very similar to sparse compression in signal processing[10]. Never-
theless, they deals with different problems: in quantization problem, the constructed vector should
have shared values; while in sparse signal processing, it only demands the sparse vector to be able
to produce a vector close to the original signal.

The rest of the paper is arranged as follows: section 2 will be introducing related work in
the field; section 3 will be introducing our designed methods mathematically, and analyze their
optimization properties with proofs on convergence and complexity; the experimental results of
the methods are shown, compared and analyzed in section 4; and finally, a conclusion is drawn in
section 5 and future research topics related to this paper is discussed.

2. Related Work

Scalar quantization is a classical problem, and methods to carry out this task are relatively well-
developed. [6] provides a brief survey for basic methods concerning quantization, which includes
domain-based hand-coding methods and clustering-based techniques such as k-means quantization.
The idea of quantizing vectors with clustering methods provides us an open skeleton, in which we
can plug novel clustering techniques to produce new quantization algorithms [8]. For instance,
a classic study [11] adopts agglomerative clustering to perform image quantization, and achieved
competitive performance at that time. Similarly, authors of [12] designed an adaptive clustering
method specifically fitting their quantization technique. It is noticeable that the term ’k-means
quantization’ is sometimes referred as ’hard c-means quantization’ in related research [13], and a
similar concept ’fuzzy c-means quantization’ refers to a variation of the method that assign a ’fuzzy
partition/membership parameter’ to each data point [14]. A key difference between fuzzy c-means
and k-means quantization methods is that during the clustering procedure, each data point will
contribute to the update of every cluster in the former, while will only affect one specific cluster in
the latter. Moreover, after getting the clustering results, the membership of a data point will be
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obvious in k-means, while in fuzzy c-means the membership should be computed by taking argmax
operation.

Apart from clustering-based quantization, [15] offers an alternative technique to use Mixture
of Gaussian method to perform quantization specifically for neural networks, and a recent paper
[16] re-examined this idea and formally designed it to be used for neural network compression
and provided a mathematical justification for it. Other techniques to perform vector quantization
include [17], which utilized divergence instead of distance metric as the measurement and derived
an algorithms based on it; [18], which designed a neural network to perform quantization; and
[19], which considered pairwise dis-similarity as the optimization metric. Moreover, quantization
is of practical usage in areas of signal processing and image retrieval with specific constraints and
characteristics. Thus, there are scalar quantization algorithms specifically designed to optimize
evaluation metrics of the fields [20, 21]. Furthermore, for high-dimensional vector quantization,
there have been multiple codebook-based algorithms with various optimization strategies [22, 23].
However, despite these developments in the area, to the best of the authors’ knowledge, hitherto
there has not been publication discussing scalar quantization algorithms as sparse least square
optimization.

There are notable amount of academic publications discussing the applications of vector quan-
tization, and recently, research lying in this area has been connected to neural networks, as the
ability of quantization in compressing model size is being exploited in implementing neural networks
on edge devices. [7] conducted a notable study of implementing quantization to the compression
of neural network, and illustrated that simply applying k-mean scalar quantization can achieve
satisfying compression rate while maintaining an acceptable accuracy. Similarly, in a more recent
study, [24] provides a survey for the usage of quantization in neural networks, and listed the major
challenges in the area. [5] proposed a general pipeline to reduce model storage, and an important
part of it is quantization. And similar with [16] mentioned above, [25] specifically designed a
fixed-point quantization method to compress neural networks. More recent work also focused on
introducing weight quantization into the overall neural network field, instead of only quantizing
pre-trained networks: [26] proposed a novel network that could perform weight quantization during
the training process; [27] designed an algorithm to learn compressible representations with neural
networks based on quantization; and [28] proposed a method to use codebook-based quantization
to compress the neural network and learn the codebook and network parameters simultaneously.
As mentioned in the introductory section, the inspiration of this work comes from a neural network
weight-sharing problem mentioned in [8], and the quantization of a set of neural network weight
parameters is tested in the experimental section.

The algorithm proposed in this work has significant similarity with compressive sensing (sparse
signal processing) in terms of regularization idea and optimization target functions [10, 29, 30].
Typical approaches to induce sparsity in compressive sensing algorithms are to introduce l0 norm[31],
l1 norm [32, 33] and/or l2,1 norm [34] to the target optimization functions. And similarly, our al-
gorithms utilize these techniques to induce sparsity. Meanwhile, since l1 norm is not everywhere
differentiable and l0 norm is not even convex, there also exist plenty of algorithms devoted to
efficiently solve the optimization problems [35, 36, 37]. In this paper, we use coordinate descent
method for l1 optimization, and the newly-proposed Fast Best Subset Selection [38] (will be called
’l0 learn’ in this paper) to optimize l0 target functions.

3. Quantization Algorithms

3.1. Problem Setup
The quantization task can be described as follows: suppose we have a vector w that has m

distinct values. Now we intend to find a vector w∗ with p distinct values, where p ≤ m. In some
case, it can also be set as a more strict condition p ≤ l, where l is the upper bound of the post-
quantization amounts of values and l < m. Then by denoting the differences between the original
vector and the constructed one with l2 norm, our original target function could be formed as:

minimize
w∗

||w −w∗||22

subject to o(w∗) ≤ l
(1)
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Where o(·) means the number of distinct values of the vector. And notice that here we only
consider w in 1-dimension vector form (scalar quantization). If the data is coded in a matrix,
such as neural network parameters and images, we can simply ’flatten’ the matrix into a vector
to perform quantization, and then turn it back to the original shape. However, in this paper, the
methods cannot perform quantization operating directly on vectors. The design of such methods
will be an interesting research topic in the future.

3.2. Quantization as Sparse Least Square and Algorithms with l1 Regularization
To begin with, we first pre-process w into ŵ = unique(w), which we directly operate on dis-

tinct values and recover the full vector by indexing later. And to fulfill the purpose of quantization,
we will be needing to construct a new vector with length m and p distinct values. We could assume
there exist a ’base’ vector v with shape [k× 1], where k is a given number, and the ŵ is generated
by v through linear transformation. Notice that there should be k ≥ m, as it will otherwise be
unreasonable to project vector in Rk to Rm with linear transformation. Then suppose the linear
transformation matrix is Ψ (with shape [m× k]), the relationship between ŵ, Ψ, and v will be:

ŵ = Ψv

And combining this expression with equation 1, we can get the new optimization target:

min
Ψ,v
||ŵ −Ψv||22 (2)

Solving 2 is a matrix decomposition problem without any form of sparsity/value-sharing. To intro-
duce sparsity, here we introduce another matrixA, with Ψ∗ = AΨ, and each entry of Ψ∗ should be:

Ψ∗
i,j =

i∑
c=0

αcΨc,j (3)

By designing the matrix with this addition form, we could be able to achieve ’same values’ when
there exist αc = 0. Equation 3 could be achieved by designing matrix A as a lower-triangular
matrix (with main diagonal on):

A =


α1 0 0 · · · 0

α1 α2 0 · · · 0

α1 α2 α3 · · · 0

· · · · · · · · · · · · · · ·
α1 α2 α3 · · · αn


And now we have two matrices, A and Ψ, to control the constructed vector. Intuitively, if we add
l1 and/or l0 norm regularization on the target function, it will be possible for us to produce vector
with shared values. Here we consider l1 in the first place because it is continuous and convex. Our
optimization target then become:

min
α,Ψ
||ŵ −w∗||22 + λ||α||1

= min
α,Ψ
||ŵ −AΨv||22 + λ||α||1

(4)

Where Ψ and v are the transformation matrix and base vector from equation 2, and α refers to
a vector with [α1, ..., αn] values. Now the property of sparsity would be able to introduced if 4
is optimized. However, the there are two target matrices in the target function, which makes the
optimization problem difficult. To determine the system in a convenient way, we will be needing
some approximations. Here, we will fix Ψ and only optimize α. Now suppose k = m, we could
pose the matrix as follows:

Ψ =


1 0 0 · · · 0 0

−1 1 0 · · · 0 0

0 −1 1 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · −1 1


4



And we will get a [m× 1] vector v∗, in the following format:

v∗ =


v1

v2 − v1
v3 − v2
· · ·

vk − vk−1


Since the the transformation matrix Ψ is within full rank, the linear space Rk is not changed.
This property implies that with proper configuration, we can find the correct solution of α. Notice
that the above transformation matrix is given under the assumption of k = m, and for the k > m

scenario, we can simply leave some of the rows of Ψ as 0 and keep the rank as m.
After the above transformations, the optimization target now becomes:

min
α
||ŵ −Av∗||22 + λ||α||1 (5)

And this is equivalent to form a vector of α and a lower-triangular matrix V :

V =


v1 0 0 · · · 0

v1 v2 − v1 0 · · · 0

v1 v2 − v1 v3 − v2 · · · 0

· · · · · · · · · · · · · · ·
v1 v2 − v1 v3 − v2 · · · vm − vm−1


And in practice, we simply use the value of original unique-value vector ŵ to fill the value of
v∗. The configuration of matrix V ensures global convergence and convenience in finding initial
values, as one can see a further discussion in section 3.2.1. The final optimization target with l1
regularization will be as follows:

min
α
||ŵ − V α||22 + λ||α||1 (6)

Equation 6 is very similar to the optimization target in compressive sensing. Nevertheless, there are
two significant differences: firstly, the root of the target function and the derivations are different
from those in compressive sensing; and secondly, the produced vector w∗ will be a quantized vector
instead of just a sparse vector close to the original as in compressive sensing.

By introducing sparsity, target function 6 loses its property of being everywhere differentiable.
Thus, the solution cannot usually be found analytically, and one has to use numerical (often
gradient/proximal-based) methods to find the solution. This will inevitably increase the time
complexity, and the exact time cost will be discussed in the later passages. However, although
an analytical solution becomes unable to obtain, the optimization of the target function is not
uncommon: it is a typical LASSO problem. In this paper, we employ Coordinate Descent
method to solve it, and an argument of linear and global convergence has been put in section 3.2.1.
In the experiments, the LASSO solvers we used is based on the program in Sk-learn [39].

It is noticeable that the ’raw result’ of equation 6 can still be improved. As the optimization
should satisfy both sparsity and l2 loss, the values in the solved α vector might not optimally
reduce the difference between ŵ and the constructed vector. Thus, we consider to solve the least
square with positions leading to α 6= 0 to further improve the result. Mathematically, this
idea can be denoted as to use matrix V ∗ to perform the least square optimization, where the V ∗

matrix should be:

V ∗
·,j = V ·,hj , ∀ hj such that αhj 6= 0 (7)

Which means, the V ∗ will pick the columns with corresponding non-zeros indexes in α. The op-
timization target will therefore be:

min
α̂
||ŵ − V ∗α̂||22 (8)

The target function 8 is in a everywhere-differentiable least-square form, thus it could be direct
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solved analytically:

α̂∗ = (V ∗TV ∗)−1V ∗T ŵ (9)

Where α̂∗ would be [h × 1] vector, where h is the number of distinct values. The values of could
be put back into the α vector to get the final result α∗:

α∗
i =

{
α̂∗
hi ,αi 6= 0

0, else
(10)

And finally, the quantized vector could be constructed by multiplying the α∗ vector with the ’based
transformation’ matrix V :

w∗ = V α∗ (11)

The overall quantization method with l1 regularization could be denoted as algorithm 1. In the
experiment section, the results of l1-based algorithms with and without least square to optimize
α̂∗ will be shown separately.

Algorithm 1 Quantization with l1 Least Square
Input: Original vector w
Output: Quantized vector w∗

1: ŵ ← unique(w)
2: Optimize target function 6 with Coordinate Descent, get α
3: Retrieve V ∗ with equation 7
4: Compute α̂∗ with equation 9
5: Compute α∗ vector with equation 10
6: Compute the desired w∗ vector with equation 11

3.2.1. Convergence of the Optimization Target
Algorithm 1 achieves sparsity and quantization through the l1-regularized least square form in

equation 6. In general, the convergence of such type of target function is not guaranteed. However,
as we will discuss in this section, with the Coordinate Descent method applied in this paper, the
optimization target in equation 6 will linearly converge to a global minimum. In addition, by
showing the convergence of algorithm 1, the convergence of other l1-based algorithm mentioned in
this paper can be analyzed in a similar manner. The convergence of target function 6 is based on
the following result:

Proposition 1. The target function 6 is strongly (and strictly) convex.

Proof. The proposition can be verified by showing both the least square and the regularization parts
are strictly convex. Showing the l1-regularization part is strongly convex is trivial; For the least
square part, consider computing the Hessian with respect to α, which will result in Hα = V TV .
Let V (i) := V i,i and v0 = 0, the Hessian matrix will be:

Hα = min{n− i+ 1, n− j + 1}(V (i)V (j))

= min{n− i+ 1, n− j + 1}(vi − vi−1)(vj − vj−1)
(12)

Now notice that V is of full column rank (since V (i) 6= 0, ∀i), by definition there will be zTHαz =

zTV TV z > 0 for all non-zero vectors z ∈ Rm. Thus, the Hessian matrix is positive definite, and
the least square part is strongly convex. And finally, the summation of two strongly convex
functions will result in a strongly convex function.

The proposition has two important implications regarding the optimization of the target func-
tion 6: 1. Since the function is strongly convex, there exists one (and only one) global
optimum; and 2. Coordinate Descent algorithm converges linearly to it ([40, 41]). These
two properties bring up favorable optimization characteristics for algorithm 1, especially when one
compares to the unstable optimization dynamic of k-means.
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Moreover, from a qualitative analysis perspective, the configuration of matrix V further pro-
vides a straightforward way to set initial value for optimization. By simply setting α0 = 1m, the
least square part will be of 0 loss. Starting from this point, it is straightforward to show that
setting a single value αi = 0 and optimizing αi−1 can limit the square loss to (vivi−1 −

(v2i+v
2
i−1)

2 ).
Furthermore, when using Coordinate Descent to optimize one dimension of the V matrix, other
dimensions will get optimized towards the converging direction at the same time. Consequently,
the convergence characteristics of the target function 6 under the setup of this paper should be
preferable.

3.3. l1 + l2 Regularization Algorithm and l0 Regularization Algorithm
One possible improvement of algorithm 1 will be to add a negative l2 penalization term to

the original. The optimization target can be denoted with the following formula:

min
α
||ŵ − V α||22 + λ1||α||1 − λ2||α||22 (13)

Equation 13 is similar with Elastic Net [42], but with a negative l2 coefficient. The intuition behind
this scheme is that l1 optimization often leads to α values with small quantities before it could
reach 0. Thus, adding the ’negative l2 norm’ can be regarded as a relaxation for the original l1 least
square to find sparse index while keep the non-zero values on their original level. More formally,
if we inspect the mathematical expressions under coordinate descent with shrinkage model, the
LASSO optimization could be expressed as:

αt+1
k = S λ1

V T·,kV ·,k

(
V T

·,kŵ − V
T
·,kV ·,/kα

t
/k

V T
·,kV ·,k

) (14)

Where k denotes the coordinate to be optimized and Sa(x) means the shrinkage operator defined by:

Sλ(x) =


x− λ, x ≥ λ
x+ λ, x ≤ −λ
0,−λ < x < λ

for positive-valued λ. In comparison, the Coordinate Descent for negative l2 penalization will be:

αt+1
k = S λ1

V T·,kV ·,k−2λ2

(
V T

·,kŵ − V
T
·,kV ·,/kα

t
/k

V T
·,kV ·,k − 2λ2

) (15)

Which means, for the l1 + l2 combined optimization, the proximal been projected will be larger as
the denominator of will be subtracting a positive value. Also, the absolute value of the threshold
to be shrinkaged as 0 is higher, making the vector easier to achieve sparsity. There are rare, if any,
integrated Lasso optimization packages that permits the parameter setting like equation 13. Thus,
this algorithm is optimized by the coordinate descent method implemented by the authors.

Another variation of the algorithm based on 6 could be to replace the l1 norm with l0 norm.
In the l0 algorithm, instead of directly add a penalization term, we explicitly set limitations of the
number of distinct values:

min
α

||ŵ − δV ∗α||22

subject to ||α||0 ≤ l
(16)

Where l is a number that we manually set, which indicate the upper bound of the amount of distinct
values. Finding the exact solution with l0 norm is NP-hard [43], thus we could only be solve by
heuristic-based algorithms up to now. In this paper we utilize the recent-proposed ’L0Learn’ as
mentioned above [38], which utilizes combinational optimization scheme with coordinate descent
and support the value of l(amount of quantization) up to 100. However, one should notice that
the l0 optimization method is not universal, which means, it could not reach arbitrary required
number of values under our settings. Also, this is the reason why one can only specify an ’upper
bound’ (l) of the quantization amounts in this method
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3.4. Iterative Quantization with l1 Regularization
One major drawback of algorithm 1 and the improved l1 + l2-based algorithm is that they

could not explicitly indicate the number of demanded distinct values (quantization amounts). To
obtain an algorithm capable to explicitly specify amount of distinct values, an iterative method
is designed. The paradigm of the algorithm is straightforward: it starts with a small λ1 value
and gradually increase the quantities of it, until the amount of non-zero values of the optimized
α could be reduced to equal to or less than the required amounts. Specifically, at each iteration,
the algorithm will firstly follow the procedure of algorithm 1 with current λ1. After obtaining the
optimized α∗

t of the t-th iteration, it will be put back to the target function and the α∗
t+1 will be

obtained with the algorithm 1 at the (t+ 1)-th iteration.
The iterative quantization method could be described as algorithm 2.

Algorithm 2 Quantization with Iterative l1 Optimization
Input: Original vector w, Desired number of distinct value l
Output: Quantized vector w∗

1: ŵ ← unique(w)
2: λ01 with a small number
3: ∆λ← λ01
4: while ||α||0 > l do
5: λt1 = λ01 + (t− 1)∆λ
6: Optimize target function 6 with Coordinate Descent, with λ1 ← λt1, α0

t ← α∗
t−1

7: Retrieve V ∗
t with equation 7

8: Compute α̂∗
t with equation 9

9: Compute α∗
t vector with equation 10

10: Compute the desired w∗ vector with equation 11 and final α∗
T

3.5. Clustering-based Least Square Sparse Optimization
Algorithm 2 could provide quantization results with given amount of distinct values l. However,

since the algorithm could be sensitive to the change of λ1, in practice it might fail to optimize to
exact l values but provide l̂ < l values instead. Similarly, for the algorithm with equation 16, we
could only set the upper bound of the amount of distinct values and there are no guarantees for
how many distinct values will finally be produced. To further improve the capacity of quantization
algorithm, here we discuss a general target that could produce definite amount of values with least
square form, and design a basic method based on the combination of k-means clustering and least
square optimization.

Suppose we want to construct a vector with l distinct values now, and here we directly set
the parameter vector α to a vector with l entries ([l × 1] shape). And now we need to use a
transformation matrix to transform the l-value vector into a [m× 1] vector while maintaining the
values constructed. One possible scheme could be to use a m × p transformation matrix E with
one-hot encoded at each row. Under this scheme, the optimization target will be as following:

min
E,α

||ŵ −EV ∗α||22

subject to ||Ei||0 = 1,∀i = 1, 2, ...,m

||Ei||1 = 1,∀i = 1, 2, ...,m

(17)

The constraint of E in equation 17 means that for each row in the matrix, it will be 1 if we want the
corresponding value to be belonging to this cluster; otherwise, it will 0. An alternative expression
of the matrix will be:

Eij =

{
1, I(ŵ∗) = j

0, else
(18)

here I(Ŵi) means the group(cluster) which the ith value belongs to. The optimization will be
difficult to perform with two optimization variables and a discrete geometry. Here, we propose a
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simple approximation to deal with this problem: one can first perform clustering (e.g. k-means)
to obtain I(ŵ) = K(ŵ) to approximate matrix E. Then the target function can be further trans-
ferred into the following expression:

min
α
||ŵ −EV ∗α||22

= min
α
||ŵ − V̂ ∗α||22

(19)

And notice that since the ’index of non-zeros’ of the algorithm is obtained through clustering, the
rank of the V̂ ∗ is no longer a problem of concern. Hence, one could simply compute the value
v = mean(ŵ) to fill all of the non-zero entries. Based on the above settings and equation 18 and
19, the matrix V̂ ∗ would be the follows:

V̂ ∗ =



v 0 0 · · · 0

v 0 0 · · · 0

· · · · · · · · · · · · · · ·
v 0 0 · · · 0

v v 0 · · · 0

· · · · · · · · · · · · · · ·
v v v · · · v


The optimization of equation 19 is a typical linear regression problem and could be solved in closed
form with polynomial O(l2m + l3) time complexity or even faster with approximations [44]. By
taking derivatives and set it to 0, we could obtain the solution:

α = (V̂ ∗T V̂ ∗)−1V̂ ∗T ŵ∗ (20)

The algorithm of the clustering-based least square method could be given as algorithm 3. One
interesting point is, from the perspective of clustering methods, algorithm 3 could be viewed as
an improvement of k-means clustering quantization. In conventional clustering-based quantization
algorithm, the representation of a certain cluster of values is simply given as the mean of the
cluster. In contrast, for the proposed algorithm, it alternatively computes the value of the cluster
that produce the smallest least square distance from the original.

Notice that there should exist multiple schemes to solve the optimization problem proposed by
equation 17, and the method proposed here is only a basic solution. The exploration of solving
this task could be one of our future research focuses.

Algorithm 3 Quantization with K-means-based Least Square
Input: Original vector w, Desired number of distinct value l
Output: Quantized vector w∗

1: ŵ ← unique(w)
2: Perform k-means with l clusters, get model K∗(·)
3: Apply K∗(ŵ) to get the prediction of each data
4: Fill the corresponding columns with 1 for matrix E according to equation 18
5: Optimize α according to equation 19. The base value of v could be v = mean(ŵ)
6: Compute the desired w∗ vector with equation w∗ = V̂ ∗α∗

3.6. Time Complexity Analysis
As it has been mentioned above, the proposed algorithm cannot outperform k-means-based

quantization method consistently in every case. In fact, as we will see in this section, if the number
of iterations to compute k-means and sparse least square are asymptotically the same, the proposed
quantization method will run with a worse time complexity. However, in practice, k-means often
takes significantly more iterations to converge, and to avoid out-of-the-range values and empty
sets, multiple trails are usually required. In this sense, the proposed least square-based algorithm
will have a more favorable time complexity.

With (block) Coordinate Descent, the time complexity of convex l1 Lasso regression is O(tlmn),
where m and n are the magnitude and number of dimensions of data, respectively, and tl is the
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number of iterations. Under the setting of algorithm 1, since the matrix to be optimized is m×m
(where m is the length of ŵ), the complexity will be O(tlm

2). As we have seen in section 3.2.1, the
target function will converge globally and linearly under Coordinate Descent optimization, and the
number of iterations to expect is usually less than those of k-means. In our experiments, as one
can observe from section 4, the optimum can usually be found in acceptable number of iterations.

With the popular Lloyd’s method, the time complexity of k-mean algorithm is O(tkkTm),
where tk is the number of iterations; k is the number of cluster centroids (and the desired number
of distinct values in scalar quantization); m is the length of ŵ; and T is the times of trials to
guarantee convergence. By comparing the two complexities, one can observe that if there is tkkT ∈
Ω(tlm), the k-means-based method will be asymptotically running in a higher complexity, and the
complexity of the proposed method will become more preferable. This case will unlikely to happen
when k is small, but will become common when we have k ∈ θ(m). That is to say, if moderate to
large number of post-quantization values(high-resolution results) is desired in the quantization task,
the proposed algorithm will converge faster than k-means. This type of quantization requirements
are not unusual in engineering applications: for instance, sometimes it would be desirable to reduce
the number of distinct values to the nearest 2k to reduce memory cost yet preserve most of the
information. Consequently, in such cases, the proposed algorithm will be much more favorable
than existed k-means clustering-based one.

4. Experimental Results

To verify the rationality and effectiveness of the proposed methods, three types of data, namely
neural network fully-connected layer weight matrix, MNIST image, and artificially generated data
sampled from different distributions, are employed to obtain experimental results for illustrations
and analysis. The performances are evaluated mostly based on quantization information loss and
time-consumption. The information loss is denoted by l2 loss between the original vector and
the quantized vector for MNIST image and artificially-generated data, and by post-quantization
recognition accuracy for the neural network compression. Notice that in some certain scenarios, a
high l2 loss may not necessarily mean a deficient performance. For example, in image quantization,
the l2 loss could be dominated by few values far away from the original, and the image with higher
l2 loss might actually possess an overall more favorable quality. Thus, for the quantization of
MNIST images, the post-quantization results are plotted as images in figure 5 to assistant one to
evaluate the performances from a human intuition.

Another point to notice is that in the experiments of MNIST and artificially-generated data,
the post-quantization outputs are processed by a ’hard-Sigmoid’ function before they are utilized
to compute the l2 information loss. The ’hard-Sigmoid’ function is denoted as follows:

H(x, a, b) =


a, x ≤ a
x, a < x < b

b, x ≥ b
(21)

Where a and b are the ’floor’ and ’ceiling’ of the range of values. The reason for this function to
be implemented is that in many situations, the quantization results must lie in a certain range.
For example, MNIST quantization values must be in [0, 1], otherwise it will not be recognized in
practical image storage/displaying systems. Applying the function could avoid out-of-range values
that might reduce the l2 loss in a prohibited way.

Major experiments in this section involve the comparison between selected existing methods,
including k-means clustering, Mixture of Gaussian quantization, and quantization based on a
recently proposed data transformation clustering[9], and the proposed algorithms, including the l1
quantization method (equation 6), l1 with least square method (algorithm 1), and clustering-based
least square method (algorithm 3). For the experiments of neural network weights and artificially-
generated data with specific distributions, all the algorithms listed except the l0 optimization-
based one are tested (since it could not consistently procude stable results). In contrast, in the
experiment of MNIST images, we focused on comparing the proposed methods, including the
l0-based algorithm, with k-means clustering. In addition, the performance comparison between
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sole l1-based and (l1 + l2)-based quantization is examined with a separate optimization program
implemented by the authors. Furthermore, the performances of l0-based optimization method
(equation 16) is implemented and tested with the previously-mentioned l0 optimization software[38]
based on R. The l1 optimization and k-means-based methods are accomplished via Lasso and k-
means in Sk-learn[39], respectively, and the codes are both optimized to the possible extent as far
as the authors concern. One might concern that the multiple times of running optimization(10
times by default) in the k-means of Sk-learn could lead to an unfair comparison for the time
consumption. However, running multiple times is the standard practice for K-means to produce
reliable results. Furthermore, for fuzzy c-means clustering, [13] illustrates that it will take longer
time than k-means (hard c-means), yet the performance are not significantly better. Thus, fuzzy
c-means quantization is not included in the experiments.

Experimental results illustrate that in general, 1. The l1-based quantization method will lead
to a higher l2 information loss comparing to K-means clustering, but the running time can be
considerably reduced for medium-size data. Meanwhile, applying quantization with Mixture of
Gaussian has slightly worse performance for neural network weights comparing with K-means but
approximately same results for the artificially-generated data, while employing the novel data
transformation-based clustering will produce a similar performance with K-means for the neural-
network weights but worse performance for the artificially-generated ones; 2. After applying least
square to l1-based sparse quantization method, the performance can be much more competitive
and the information loss will be in the same level of k-means, while the running time is still
significantly quicker than K-means; 3. The clustering-based least square method can perform
slightly better than K-means, and it does not take significant longer running time; 4. the combined
l1+l2 optimization can induce fewer distinct values (quantization amounts) with the same λ1 of sole
l1 method, but the algorithm is sensitive with the value of λ2; and finally, 5. l0-based quantization
method (under the optimization algorithm provided in [38]) can provide good performance within
acceptable running time, but it could not universally produce quantization results (some amounts
of quantization amounts are irretrievable) and the optimization could fail under some circumstances
(especially when the demanded quantization amount is large).

4.1. Neural Network Weight Matrix
To test the effectiveness of our methods on neural network quantization (which is also the

original problem inspired this paper), a 5-layer 784− 256− 128− 64− 10 fully-connected network
for MNIST image recognition is introduced. The network is trained with stochastic gradient descent
and the original accuracy on training and testing data are 98.86% and 97.53%, respectively. In
the experiments, the last layer (64− 10) matrix is processed by the quantization method and the
weights are replaced by the post-quantization matrix. Figure 1 illustrates the change of accuracy on
training and testing data with respect to different number of quantization values (cluster numbers)
for l1, l1 least square, k-means and cluster-based least square methods. In addition, the running
time of each method is demonstrated in the figure. And since the accuracy of MNIST recognition
is fairly robust against quantization, figure 2 further provides a figure zooming in the area that the
accuracy starts to drop with a higher precision of quantization amounts.

From the figures it can be found out that the proposed sparse regression-based methods can
provide competitive performances for the last-layer quantization of the neural network. The pure
l1 sparse regression provides a slightly more deficient performance than other proposed methods,
but in most cases the deficiency is negligible and it can still outperform Mixture of Gaussian-based
quantization. Comparing to the time-consuming k-means based methods, the proposed methods
can provide an alternative solution with much quicker running time. In addition, if the least square
method is applied to optimize the α of l1 as algorithm 1 does, the algorithm will be able to provide
no less competitive results than k-means method does in terms of accuracy, while the running
time will remain at a low level. The clustering-based least square exact method can provide the
overall optimal performance, especially in the area approaching to accuracy decrements. And the
additional time consumed by solving least square on the top of k-means is negligible.

Figure 3 shows the α values of the neural network last-layer quantization with different level
of sparsity (quantization amounts). The full-column plot on the left is the weights solved by least
square without sparsity. It could be found that even for the least square solution without any
additional regularization term, some of the values of α still hit the values around or equal to 0.
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Figure 1: Post-quantization accuracy on training and testing data with respect to quantization amounts,
and their running time. The x-axis for the plots stands for quantization amounts(number of quantization),
and the y-axis stands for accuracy for the first two plots and time in seconds for the third plot.

Figure 2: Post-quantization accuracy on training and testing data with respect to quantization amounts,
focusing on the area where accuracy drops significantly. The x-axis stands for number of clusters, the
y-axis stands for accuracy.
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Figure 3: The distribution of α weights for neural network last-layer quantization

The plots of the rest three columns represent the α values of l1 without least square, l1 with least
square and k-means based exact value methods, respectively. The trick behind the third plot is
that the values of the dense vector are assigned to the starting index of each ’batch’ of same-values,
which can form a equivalent illustration to a sparse α parameter.

From the plots of l1-based quantization, it could be observed that almost all the αi are positive.
This result is consistent with the characteristics of Coordinate Descent, which utilize a shrinkage
operator and decreases small positive values to 0. The major difference between sparse least
square methods and clustering-based method is that the latter tends to produce positive and
negative values in roughly equivalent amounts. However, despite the differences between values
of vectors, the two types of methods share a ’central zero area’ for index around 300-400. This
implies that the proposed least square-based methods can capture the geometric information of
the vector similar to clustering-based methods, while the time complexity is significantly lower.
Furthermore, a most-positive α vector is more consistent with the configuration of the V matrix.

Moreover, to illustrate the effects of replacing l1 with l1+(negative) l2 optimization, the perfor-
mance of l1 and l1 + l2 optimization on the last-layer neural network data is illustrated in figure 4
with a coordinate descent optimization method implemented separately. Neither of the α weights
in the illustrated plots is optimized with least square. From the figure it could be observed that
the l1 + l2 method could in general lead to fewer quantization amounts for the same λ1 value,
while produce a smaller l2 loss comparing to the original. The experimental result also verifies
the argument in section 3.3. However, despite the favorable performance, the algorithm could be
sensitive to the value of λ2, and it could be numerically very unstable if the value of λ2 is too large
or too small. To improve the tolerance of λ2 in this algorithm could be a point of exploration in
the future.

And finally, as for the l0 quantization method, it could not find any non-trivial solution under
the optimization method of [38], which indicated the drawbacks of numerical unreliability of l0-
based method.

4.2. MNIST Image Quantization
Quantization could be used in image processing to reduce the number of values and space

complexity. In this paper, a MNIST-digit image is chosen as an example to show the performance of
image quantization of the proposed methods. The performances of two types of l1-based algorithms
and two kinds of clustering-based methods are illustrated and compared in Fig.5. From the figure
we could find out that K-means and the clustering-based least square optimization can provide
the best performances in general, and there is no significant differences in terms of execution time.
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Figure 4: The accuracy with respect to λ1 values for sole l1 and l1 + l2 optimization, respectively. The
value of λ2 is set to |λ2| = 4 ∗ 10−3 ∗ λ1.

l1 with least square optimization of α values can provide less norm difference loss than using l1
solely. Meanwhile, in terms of running time, the l1-based optimization approaches can provide
significant advantages over K-means-based methods. Another remark of the MNIST quantization
is that the K-means methods sometime provide out-of-range values (not in the interval [0, 1]) when
the number of clusters are large, and the reason can be attributed to bad initialization. However,
for the least-square optimization methods, this problem does not happen at least in the MNIST
circumstance.

The quantization result of l0 method is shown separately in figure 6. It could be observed from
the figure that the qualities of images are in general high and the l2 loss is competitive. However,
the problem of ’not universal’ is also very significant from the figures: in many cases, the algorithm
could only find the largest possible quantization amounts smaller than the given value. In addition,
the algorithm often fail to find solution when the required quantization amount is large.

4.3. Artificially-Generated Data with Specific Distributions
To test the performance of the proposed algorithms on data of different distributions, three

types of distributions, namely Mixture of Gaussian, Uniform and Single Gaussian, are employed
to generate 500 samples from each of them. The samples are constrained in the range of [0, 100],
and the distributions of the data we used could be shown as figure 7. In practice, these three types
of distributions could describe most cases of 1-d data characteristics.
The experimental results for different quantization methods based on the above 3 types of data

is shown in figure 8. From the figure, it could be observed that the information loss deficiency
of l1 without least square is more significant comparing to those for neural network and MNIST
image. However, considering the running time reduced by the algorithm, the overall performance
could still be regarded as merited. Also, if least square is employed to optimize the values of the
vector, the information loss of l1 approach will be only slightly higher than k-means based methods
optimization, while the run-time will be still of great advantage comparing to the k-means branch
of methods.
And finally, for the l0 quantization method, again in the experiments it could not provide mean-
ingful results for the quantization of the artificially-generated data. This problem further demon-
strates the issue of using l0 optimization despite its favourable information loss: getting the exact
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Figure 5: MNIST quantization comparison for l1 method, l2 and least square method, k-means method,
k-means-based least square method

Figure 6: MNIST quantization results on the l0-based method

solution of l0 is NP-hard, and with approximation optimization, there is a risk of failure in getting
the results.

5. Conclusion

This paper proposed several sparse least square-based algorithms to better accomplish the task
of scalar quantization. The characteristics and computational properties of the proposed algorithms
are examined, and the advantages, drawbacks, and the advantageous scenarios of each of them are
analyzed. The algorithms are implemented and tested under the scenarios of neural network weight,
MNIST image and artificially-generated data respectively, and the results are demonstrated and
analyzed. Experimental results shows that the proposed algorithms have competitive performances
in terms of information loss/preservation, and the favorable properties in running time could make
the l1-based algorithms especially useful when processing large batch of medium-size data and the
number of post-quantization values are not far from the original.

The paper made the following major contributions: Firstly, it proposed several novel quanti-
zation methods with competitive information preservation ability and much more favorable time

15



Figure 7: The distribution of the 3 types of artificially-generated data

Figure 8: Quantization results of artificially-generated data. For each subplot, the left is the norm loss
figure, and the right one is the running time. The x-axis stands for clusters, and the y-axis stands for l2
loss for the left figures, and for time in seconds for the right ones.

16



complexity; Secondly, the paper innovated the pioneering work of using least square optimization
to solve the quantization problem, which could bring huge research potentials in the area; And
thirdly, the algorithms proposed in the paper provide broader options for engineering practice,
especially when the purpose of performing quantization is to restrict the number of distinct values
to a high-resolution level, and when the number of post-quantization values is still large.

In the future, the authors intend to continue to explore quantization algorithms based on the
idea initiated in the paper. One major problem of interests will be to extend the quantization
method into high-dimensional vector scenarios by adopting novel target function and optimization
method.
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