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Abstract—Feature extractor plays a critical role in text recognition (TR), but customizing its architecture is relatively less explored due
to expensive manual tweaking. In this work, inspired by the success of neural architecture search (NAS), we propose to search for
suitable feature extractors. We design a domain-specific search space by exploring principles for having good feature extractors. The
space includes a 3D-structured space for the spatial model and a transformed-based space for the sequential model. As the space is
huge and complexly structured, no existing NAS algorithms can be applied. We propose a two-stage algorithm to effectively search in
the space. In the first stage, we cut the space into several blocks and progressively train each block with the help of an auxiliary head.

We introduce the latency constrain into the second stage and search sub-network from the trained supernet via natural gradient
descent. In experiments, a series of ablation studies are performed to better understand the designed space, search algorithm, and
searched architectures. We also compare the proposed method with various state-of-the-art ones on both hand-written and scene TR
tasks. Extensive results show that our approach can achieve better recognition performance with less latency.

Index Terms—Neural architecture search (NAS), Convolutional neural networks (CNN), Text recognition (TR), Transformer

1 INTRODUCTION

Ext recognition (TR) [1], [2], which targets at extracting
Ttext from document or natural images, has attracted
great interest from both the industry and academia. TR
is a challenging problem [3] as the text can have diverse
appearances and large variations in size, fonts, background,
writing style, and layout.

Figure 1 shows the typical TR pipeline. It can be divided
into three modules: (i) An optional pre-processing module
which transforms the input image to a more recogniz-
able form. Representative methods include rectification [3],
super-resolution [4] and denoising [5]. (ii) A feature ex-
tractor, which extracts features from the text images. Most
of them [3], [6], [7] use a combination of convolutional
neural networks (CNNs) and recurrent neural networks
(RNNSs). The CNN extracts spatial features from the image,
which are then enhanced by the RNN for the generation of
robust sequence features [8], [9]. (iii) A recognition head,
which outputs the character sequence. Popular choices are
based on connectionist temporal classification [8], segmen-
tation [10], sequence-to-sequence attention [3], and parallel
attention [6].

The feature extractor plays an important role in TR. For
example, in [3], [9], significant performance gains are ob-
served by simply replacing the feature extractor from VGG
[11] to ResNet [12]. Furthermore, the feature extractor often
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Fig. 1. The typical text recognition (TR) pipeline. In this paper, we focus
on the search of a good feature extractor.

requires a lot of compute and storage [14], [17]. However,
while a lot of improvements have been proposed for the
pre-processing module and TR head, design of the feature
extractor is less explored. Existing methods [3], [6], [7] often
directly use CNNs and RNNs that are originally designed
for other tasks (Table 1), without specially tuning them
for TR. Examples include the direct use of ResNet that is
originally used for image classification, and BiLSTM [18]
from language translation. Moreover, TR systems often have
inference latency constraints on deployment to real-world
devices [19], [20]. However, existing designs do not explic-
itly take this into account. Manually tweaking the TR system
to satisfy the latency constraint while maintaining a high
recognition accuracy can be hard [20].

Recently, it has been shown that neural architecture
search (NAS) [21] can produce good network architectures
in tasks such as computer vision (e.g., image classifica-
tion [22], [23], semantic segmentation [24] and object de-
tection [25]). Inspired by this, rather than relying on experts
to design architectures, we propose the use of one-shot NAS
[22], [23], [26] to search for a high-performance TR feature



TABLE 1
Some well-known hand-designed text recognition (TR) algorithms with NAS-based methods.
spatial model . search deployment-
method downsampling path conv layer sequential model algorithm aware
hand- CRNN [8] fixed vgg [11] BiLSTM — X
designed ASTER [3] fixed residual [12] BiLSTM — X
GECN [13] fixed gated-block [13] - — X
SCRN [14] fixed residual [12] BiLSTM — X
STR-NAS [15] fixed searched BiLSTM grad. X
NAS AutoSTR [16] two-dim searched BiLSTM grid+grad. X
TREFE (proposed) two-dim searched searched NG v

extractor. Specifically, we first design TR-specific search
spaces for the spatial and sequential feature extractors. For
the spatial component, the proposed search space allows
selection of both the convolution type and feature down-
sampling path. For the sequential component, we propose to
use transformer instead, which has better parallelism than
the BiLSTM commonly used in TR. However, we find the
vanilla transform is hard to beat BILSTM. Thus, we further
explore the recent advances of the Transformer, and search
for variants of the transformer [27].

As the resultant supernet is huge, we propose to use
the two-stage one-shot NAS approach [20], [28]. In the
first stage, inspired by the success of progressive layer-wise
training of deep networks [29], [30], we train the supernet in
a greedy block-wise manner. In the second stage, instead of
using evolutionary algorithms or random search as in [20],
[28], [31], we use natural gradient descent [32] to more
efficiently search for a compact architecture from the trained
supernet. Resource constraints on the deployment environ-
ment can also be easily added in this stage, leading to
models that are deployment-aware. Extensive experiments
on a number of standard benchmark datasets demonstrate
that the resultant TR model outperforms the state-of-the-arts
in terms of both accuracy and inference speed.

Concurrently, Hong et al. [15] also considered the use of
NAS in scene text recognition. However, they only search
for the convolution operator, while we search for both
the spatial feature and sequential feature extractors with
deployment constraints (see Table 1). As a result, our search
space is much larger and more complex, and a straightfor-
ward application of existing NAS algorithms is not efficient.

This paper is based on an earlier conference version [16],
with the following major extensions:

« The search space is expanded by including search on the
sequential model (Section 3.1.2) and allow more possi-
bility of downsampling path for the spatial model (Sec-
tion 3.1.1). Experiments in Section 4.5 demonstrates that
both parts contribute the performance improvement over
AutoSTR.

o The search algorithm is redesigned (Section 3.2). In [16],
the search is performed in a step-wise search space that
cannot explore all candidate architectures and assess the
real deployment performance. In this paper, we first con-
struct a supernet that contains all candidates in the search
space (Section 3.2.1), which also allows direct evaluation
of the deployment performance of each compact architec-
ture (Section 3.2.3). In order to train the supernet easily,
we propose a progressive training strategy (Section 3.2.2).
In the search stage for candidate structures, we propose

to use natural gradient descent [32] and introduce latency
constraint for deployment awareness (Section 3.2.3).

« Experiments are much more extensive. While the confer-
ence version [16] only evaluates on scene text datasets,
in Section 4.2 we also evaluate on handwritten text
datasets. Besides, more recent state-of-the-art baselines are
included. We also provide a detailed examination of the
searched architectures (Section 4.3) and search algorithm
(Section 4.4).

2 RELATED WORKS
2.1 Text Recognition (TR)

In the last decade, deep learning has been highly successful
and achieves remarkable performance on the recognition of
handwritten text [13], [33] and scene text [3], [34]. However,
the large variations in size, fonts, background, writing style,
and layout still make TR from images a challenging prob-
lem [35]. Existing TR methods usually has three modules:
(i) pre-processing module, (ii) feature extractor, and (iii) TR
head (Figure 1).

2.1.1 Pre-Processing Module

The pre-processing module makes the input text image
more easily recognizable. Shi et al. [3], [36] uses a learnable
Spatial Transformer Network (STN) to rectify the irregular
text to a canonical form before recognition. Subsequent
methods [14], [37] further improve the transformation to
achieve more accurate rectifications. Wang et al. [4] intro-
duces a super-resolution transformation to make blurry and
low-resolution images clearer. Luo et al. [5] first separates
text from the complex background to make TR easier.

2.1.2 Spatial and Sequential Feature Extractors

Given an H x W input image, the feature extractor [3], [6],
[8] first uses a spatial model (which is a deep convolutional
network) to extract a H' x W' x D feature map, where
H', W' are the downsampled height and width, and D is the
number of channels. As an example, consider the widely-
used ASTER [3]. Its pre-processing module arranges the
characters horizontally to a 32 x 100 text image. Spatial
features are extracted by the ResNet [12] (blocks 0-5 in
Figure 2). Specifically, 2 sets of convolution filters (with
stride (2, 2)) first downsample the image to 8 x 25, and then
3 sets of convolution filters (with stride (2, 1)) further down-
sample it to a 25-dimensional feature vector. It also follows
the common practice of doubling the number of convolution
filters when the feature map resolution is changed [8], [9],
[12], [14], [38] (see also Figure 3).



The spatial model output is enhanced by extracting con-
textual information using a sequential model. Specifically,
its H' x W' x D feature map is first reshaped toa D x T
matrix, where T' = H'TW’, and then processed as a sequence
of T feature vectors. In ASTER, BiLSTM [18] layers are built
on top of the convolutional layers (BiLSTM 1-2 in Figure 2).

Layers Out Size Configurations
Block 0 32 % 100 J3x3conv,slx1
- 1 x 1 conv, 32 o .
Block 1 16 x 50 { 3 % 3 conv. 32 } x3,82x2
1 x 1 conv, 64
2 ) D ae ¢
§ Block 2 8% 25 { 3% 3 cony. 64 } X4,82%x2
o
& 1x1 12
] - % 1 conv, 128 L
;.; Block 3 1% 25 { 3 % 3 conv. 128 } x6,82x1
£
o . . o 1 % 1 conv, 256 .
4 Block 4 2x25 [ 3 % 3 conv, 256 } X 6,52x1
Block 5 1 % 25 Lxlcony, 512 1 0 oo g
3 % 3 conv, 512
BiLSTM 1 25 256 hidden units
BiLSTM 2 25 256 hidden units

Fig. 2. Feature extractor in ASTER [3]. For a convolutional layer, “Out
Size” is the feature map size (height x width). For a sequential layer,
“Out Size” is the sequence length. The symbol “s” is the stride of the
first convolutional layer in a block.

Design of the feature extractor in TR is relatively less
explored. Often, they simply adopt existing architectures
[3], [6], [8], [38]. Manual adjustments can be very time-
consuming and expensive. Moreover, they do not consider
the latency constraints when the model is deployed on real
devices (see Table 1).

2.1.3 Text Recognition (TR) Head

The TR head is used to recognize the text sequence. In
recent years, many recognition heads have been proposed.
Connectionist temporal classification (CTC) [39] trains a
classifier to match the prediction with the target text se-
quence without need for prior alignment. The segmentation-
based TR head [7], [10] attempts to locate each character
and then applies a character classifier. Using the sequence-
to-sequence model [40], the TR head in [3], [6], [38] uses
the attention mechanism [41] to learn an implicit language
model, which can be parallelized by take the reading order
as query [7], [42]. CTC and parallelized attention are more
latency-friendly than the sequence-to-sequence model, es-
pecially when the output sequence is long.

2.2 One-Shot Neural Architecture Search (NAS)

Traditionally, neural network architectures are taken as
hyper-parameters, and optimized by algorithms such as re-
inforcement learning [43] and evolutionary algorithms [44].
This is expensive as each candidate architecture needs to
be fully trained separately. One-shot NAS [22], [23], [26]
significantly reduces the search time by sharing all net-
work weights during training. Specifically, a supernet [22],
[23], [45] subsumes all candidate architectures in the search
space, and is trained only once. Each candidate architecture
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is a sub-network in the supernet, and its weights are simply
inherited from the trained supernet without training.

There are two approaches in one-shot NAS. The first
one combines supernet training and search in a single stage.
Representative methods include DARTS [22], SNAS [46],
ENAS [23], ProxylessNAS [26], and PNAS [47]. A weight
is used to reflect the importance of each candidate operator.
These weights are then learned together with the parameters
of all candidate operators. Finally, operators with higher
weights are selected from the trained supernet to construct
the searched structure. However, operators that do not
perform well at the beginning of the training process may
not be fairly updated, leading to the selection of inferior
architectures [48], [49]. The second approach follows a
two-stage strategy, which decouples supernet training and
search. In the pioneering work [45], a large supernet is
trained and sub-networks are obtained by zeroing out some
operators. The best architecture is selected by measuring
the performance of each sub-network. Single-path one-shot
(SPOS) [20] uniformly samples and updates a sub-network
from the supernet in each iteration. After the supernet has
been sufficiently trained, the best sub-network is selected by
an evolutionary algorithm. Once-for-all (OFA) [28] is similar
to SPOS, but proposes a progressive shrinking scheme, which
trains sub-networks in the supernet from large to small.
More recently, DNA [49] adopts knowledge distillation to
improve fairness in supernet training, and BossNAS further
improve DNA by leveraging self-supervised learning [50].

On deploying deep networks to a specific device, is-
sues such as model size and inference time can become
important. Above one-shot NAS methods have also been
recently introduced to solve this problem. For example,
MNASNet [51] and MobileNetV3 [52] measure the actual
execution latency of a sampled architecture, and use it as
a reward to train a recurrent neural network controller.
ProxylessNAS [26] and FBNet [53] introduce a regularizer to
the search objective which measures the expected network
latency (or number of parameters), and stochastic gradient
descent is used to search the architectures. In SPOS [20],
an evolutionary algorithm is used to select architectures
meeting the deployment requirements.

2.3 Transformer

For sequence modeling in natural language processing
(NLP), the LSTM has gradually been replaced by the Trans-
former [27], which is more advantageous in allowing par-
allelism and extraction of long-range context features. The
transformer takes a length-T' sequence of D-dimensional
features Z € RP*T as input. Using three multilayer per-
ceptrons (MLPs), Z is transformed to the query Q, key K,
and value V, respectively (all with size D xT'). Self-attention
(SA) generates attention scores A from Q and K:

A=Q'K/VD, )

where VD is a scaling factor, and then use A to form
weighted sums of columns in V:

SA(Q,K,V) =V .softmax(A),



i = eAii /ST eAie. Multiple atten-
tion heads {(Q;, K;, V;)} can also be used, leading to multi-
head self-attention (MHSA) [27]:

MHSA (Q,K, V) = Concat (head;, . .. ,head;) W,

where head; = SA(Q;,K;,V;), W? is a learnable param-
eter, and Concat(...) concatenates multiple column vectors
to a single vector. Finally, the MHSA output is followed by
a two-layer feedforward network (FFN):

MLP (x) = ReLU (xW1) W5, @)

where x = MHSA(Q, K, V), W1, W are learnable param-
eters, and ReLU is the rectified linear activation function.

With the initial success of the transformer, a lot of efforts
have been made to improve its two core components: MHSA
and FFN. The RealFormer [54] adds a skip-connection in
MHSA to help propagation of the raw attention scores
and stabilize training. The addition of relative distance
awareness information can also improve self-attention [55].
Besides, there are efforts to improve the computational
efficiency of MHSA (as in Reformer [56] and Performer [57]).
As for FEN component, the Evolved Transformer [58] uses
NAS to find a better FFN structure.

where [softmax(A)],

3 PROPOSED METHODOLOGY

As discussed in Section 2.1.2, the feature extractor has two
components: (i) a spatial model for visual feature extraction,
and (ii) a sequential model for sequence feature extraction.
In TR, the feature extractor design is not well studied.
Existing TR algorithms often simply reuse spatial and se-
quential model architectures that are originally designed for
other tasks [3], [6], [8], [38]. However, it has been recently
observed that different tasks (such as semantic segmenta-
tion [24] and object detection [25]) may require different
feature extraction architectures. Thus, existing spatial and
sequential feature extractors may not be suitable for TR.
On the other hand, manual adjustments can be very time-
consuming and expensive. Moreover, when the model is
deployed on real devices, latency constraints cannot be
easily considered.

Inspired by NAS, we propose the TREFE algorithm,
which automatically searches for a high-performance Text
REcognition Feature Extractor.

3.1 Formulating TR as a NAS Problem

In this section, we first formulate TR as a NAS problem. The
search space is inspired by existing manually-designed TR
models and recent advances in the transformer architecture.

3.1.1 Search Space for the Spatial Model

Recall that the spatial model is a CNN (Section 2.1.2). Each
convolutional layer C can be represented as C(X; ct, s, s%),
where X is the input image tensor, ct is the type of convolu-
tion (e.g., a 3x3 convolution or 5x5 depth-wise separable
convolution), and (s”,s") are the strides in the height
and width dimensions. The downsampling path, which
downsamples the image to the feature map along with the
convolution operations, can significantly affect the CNN’s
performance [8], [24], [25]. Instead of using manual designs,
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we explore the space of spatial model architectures and
automatically search for the (ct, s", s*) values in each layer.

The whole spatial model structure can be identified by
C = {ct;}M, and S = {(sh,s¥)}M,, where M is the
number of convolution layers, ct; € O, the set of candi-
date convolution operations, and (s!,s¥) € O, the set of
candidate stride values. Following [3], [38], [59], we assume
that the input to the spatial model is of size 32 x W. The

detailed choices of O, and O, are as follows.

« Following [3], [8], [14], [38], [60], we set O; =
{(2,2),(2,1),(1,1)}. We do not include (1, 2), as the hor-
izontal direction should not be downsampled more than
the vertical direction [8], [9], [14], [37], [60], as this can
make neighboring characters more difficult to separate.
Moreover, we double the number of filters when the reso-
lution in that layer is reduced (i.e., when (s, s¥) = (2,1)
or (2,2)).

¢ Asin NAS algorithms [15], [26], [52], [53], O, contains in-
verted bottleneck convolution (MBConv) layers [61] with
kernel size k € {3, 5} and expansion factor e € {1, 6}.

e As in [3], [8], [16], we use an output feature map of size
1xW/4. Since the input size of the spatial model is 32x W,
we have for each downsampling path,

h — Mg (I — M
S :32*Hi:13i’ and S :47Hi:15i )]
Figure 3(a) shows the search space of the spatial model
structure with M layers. Each blue node corresponds to a
hxwxc feature map ﬂ% hw,e) atlayer 1. Each green edge cor-
responds to a candidate convolution layer C transforming
ﬁé hw,c)» While each gray edge corresponds to a candidate
stride in Og. A connected path of blue nodes from the initial
size ([32, W]) to the size of the last feature map ([1, W/4])
represents a candidate spatial model.

3.1.2 Search Space for the Sequential Model

Recall that in TR systems, the sequential model component
is usually a recurrent network (Section 2.1.2), such as the
BiLSTM [18]. Here, we instead use the transformer [27]
which has higher parallelism. However, a straightforward
application of the vanilla Transformer may not be desirable,
as it can have performance inferior to the BiLSTM on tasks
such as named entity recognition [62] and natural language
inference [63]. In the following, we describe the proposed
chanages to the Transformer structure.

Let each transform layer be R(V,rt), where V is the
input tensor and 7t is the type of transform layer (e.g., a
transformer layer without attention scaling). The structure
of the sequential model is defined as R = {rt;}}¥., where
rt; € Oy, the set of candidate layers, and N is the number
of transformer layers. Consider the fth transform layer.
Inspired by recent advances on the transformer (Section 2.3),
one can vary its design in the following four aspects. The
first three are related to the MHSA, while the last one is on
the FFN (Figure 4).

(i) As in the RealFormer [54], one can add a residual path
from the previous layer to the current layer to facilitate

1. In general, the (h, w, c) values can vary with I.
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Fig. 3. Graph illustrate of the proposed method TREFE. The search space of TREFE contains both spatial model (see Section 3.1.1) and sequential
model (see Section 3.1.2) part, and the neck is used for supernet training (see Section 3.2.2).
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Fig. 4. Search space of a transformer layer. “Rel.” is short for relative
distance embedding. The purple boxes represent the original structures,
and boxes with white background indicates the alternative choices.

propagation of attention scores. In other words, instead
of using A* = QTK, we can have

AK _ QTK—FAZ_I,

for transform layer £ > 1 (excluding the input layer).

(ii) As in [55], [62], one can add a relative distance em-
bedding Rel to improve the distance and direction
awareness of the attention score A in (1) as:

A = A +Rel,

where Rel;; = qr' + uk;r + vr', u, v are learnable
parameters, q; is the tth query (tth column in Q), k; is
the jth key (jth column in K), r = [r;] is the relative
position between q; and k;, and is defined as

”_¢m«quummé» iis even
~ cos ((t —7)/(100007)) iisodd |

(iii) In computing the attention in (1), instead of including
the scaling factor 1/4/D, one can drop this as in [62],
leading to simply A = QK.

(iv) Inspired by [34], [64], one can replace the FFN’s MLP in
(2) with the gated linear unit (GLU) [64]:

GLU(X) = (XWl) X O'(XVVQ)7 (4)

where x is the MHSA output, ® is the element-wise
product, and o is the sigmoid function. This allows the
FEN to select relevant features for prediction.

For a sequential model with IV layers, we attach N copies
of Figure 4 to the sequential model output in Figure 3(a).
In Figure 3(b), each blue rectangle denotes a transformer
layer, and each black node denotes the design choices in
the transformer layer ((i), (ii), (iii), (iv) in Figure 4). The
(magenta) path (with color magenta) in Figure 3(b) along
the black nodes constructs a candidate sequential model.

3.1.3 Resource Constraints

As in Section 2.2, there can be resource constraints on
deployment. We introduce resource constraints of the form:

latency (N (w, S,C, R); €) < T'max, ®)

where N (w,S,C,R) is the TR model with network
weights w and feature extractor architecture determined
by (S,C, R), £ is the environment, and 7.y is the budget
on the resource. For simplicity, only one resource constraint
is considered. Extension to multiple resource constraints is
straightforward.

3.1.4 Search Problem

Consider a feature extractor with M layers in the spatial
model and N in the sequential model. Let Ly, be the
training loss of the network, and Ay, be the quality of the



network on the validation set. The following formulates the
search for an appropriate architecture NV.

Definition 1. The search problem can be formulated as:
arg maxs,c, g Ao (N (W*, S,C, R))
w* = arg miny L, (N (w, S, C, R)),
s.t. § latency(N(w, S, C, R); €) < Tmax, (6)
CeC, ReR, SeP,
where
C=0:%XX0¢ R=0, x---%x Oy,
M N
and P = {{(s!,s¢) € O}, | TLZ, s = 8™ ILE, st =

7%

S} encodes the constraints in (3).

The combination of (S, C, R) generates a large number
of candidate architectures. For example, in the experiments
(Section 4), we use a spatial model with 20 MBConv layers.
Every blue node in Figure 3 has 3 stride (s, s,,) candidates
and 4 operator (O,) candidates. There are a total of 155,040
candidate downsampling paths,? 155,040 x 429 ~ 1.7 x 107
candidate spatial model structures; whereas the sequen-
tial model has 4 transformer layers, and (24)* = 65,536
candidate structures. The whole search space thus has
1.7 x 10'7 x 65,536 ~ 1.1 x 10%? candidates, which is
prohibitively large. Besides, note that problem (6) is a bi-
level optimization problem. As in most NAS problems [21],
it is typically expensive to solve. In particular, training
each candidate architecture to get w* is expensive. Hence,
directly optimizing problem (6) is not practical.

3.2 Search Algorithm

Inspired by recent advances in NAS [21], we propose to
solve (6) using one-shot NAS [20], [22], [26], which greatly
simplifies the search by training only one supernet. How-
ever, the one-stage approach requires training the whole
supernet, which demands tremendous GPU memory as the
proposed search space is huge [26]. Hence, we will use
the two-stage approach. However, the two-stage methods
cannot be directly used. As the search space is huge, only a
small fraction of the candidate architectures can be trained,
and the untrained architectures will perform badly [49].

In Section 3.2.1, we first discuss design of the supernet.
Inspired by layer-wise pre-training [29], [30], we propose in
Section 3.2.2 a progressive strategy that trains the supernet
in a block-wise manner. In Section 3.2.3, we propose to use
natural gradient descent [32] to better search for a sub-
architecture during the second stage.

3.2.1 Designing the Supernet in One-Shot NAS

There are two basic requirements in the supernet design
[22], [23], [45]: (i) all candidates in the search space should
be included; and (ii) each candidate can be expressed as a
path in the supernet.

The proposed supernet has two parts: the spatial model
and sequential model. It closely matches the search space in
Figure 3. The spatial component (Figure 3(a)) is a 3D-mesh,

2. A backtracking algorithm computes the number of candidate
downsampling paths. Please refer to Appendix A for details.
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in which each edge determines an operation that transforms
the feature representation. A connected path from [32, W]
to [1, W/4] represents a downsampling path. The choice of
operations and downsampling path together determine the
CNN. Figure 3(b) shows the sequential model component of
the supernet.

3.2.2 Training the Supernet

The main challenge is how to fully and fairly train all
candidate architectures in the supernet. A typical solution
is to sample architectures uniformly and then train [20],
[31]. However, uniform sampling in a huge search space
is not effective. To alleviate this problem, we propose to
divide the supernet (denoted @) into K smaller blocks
(@1, ®g,...,Px) and optimize them one by one. Since the
spatial model is much larger than the sequential model,
we take the whole sequential model as one block (®g),
and divide the spatial model into K — 1 equal-sized blocks
(®1,Dy,...,Px_1) (Figure 3(a)).

Algorithm 1 shows the training process. The weights for
blocks @1, ..., Pk are progressively stacked, and updated
together with the weights of the neck and recognition
head by SGD. When training block ®;, we fix the trained
weights for blocks ®1,...,®;_1, and skip the remaining
blocks ®y1,...,Px (step 4). In each iteration, a path oy
is uniformly sampled from ®; (step 6). Let Sy be the set
of paths in ®; U --- U ®;,_; whose output feature maps
match in size with the input feature map of ay. A new
path in ®; U --- U &, is formed by uniformly selecting a
path o € Sy, and connecting it with o, (step 7). As blocks
Dpt1,..., P are skipped, the output of oy, is connected to
the recognition head via an extra auxiliary neck® (step 9) so
that a,’s output channel number and resolution match with
those of the head’s input.

Algorithm 1 Training the supernet.

—_

: Split the supernet into K blocks;
: Insert an auxiliary neck between feature extractor and
recognition head;

: forblock k =1,...,K do

fix supernet weights for blocks @1, ..

for iterationt =1,...,7T do
sample a path o from ®y;
sample a path e, in S, and connect it with a;
sample a mini-batch B; from training data;

: update weights of ok, the neck and the recognition
head by SGD on By;

10: end for

11: end for

12: return trained weights W* of ®.

N

P

O 0N DGR

3.2.3 Search for a Sub-Network

Recall that a path o in the supernet corresponds to an ar-
chitecture {S, C, R} of the feature extractor. Let the trained
weight of the supernet returned from Algorithm 1 be W*.
Since the constraints C € C, R € R, and S € P have
been implicitly encoded by the supernet structure, and

3. In the experiments, the neck is a small network with six parallel
convolution layers and a adaptive pooling layer [12].



TABLE 2
Comparison between AutoSTR [16] and TREFE. Here, “SegAtt” denotes sequential attention, and “ParAtt” denotes parallel attention.
spatial model sequential recognition head search deployment
downsampling path | operators | model scene text | handwritten text | algorithm awareness
AutoSTR | limited choices | same | fixed BiLSTM | SeqAtt | — | decoupled search | not support
TREFE | all possible paths | | searched transformer | ParAtt | CTC |  jointsearch | support
the supernet weights are already trained, problem (6) then ~Algorithm 2 Search for a sub-network.
simplifies to 1 < 0, perf” + —inf;
. . 2: for iteration ¢t =1 to T" do
o = argmaxqa Ava (N (W*(a), o)) 3  j=0g=0F() «O0;
st latency(N(W*(a),a);E) <r 7) 4 whilej<Bdo
Y( ( ( )7 )a ) > 'max> ( ) 5. samplea~P9 ((I)),
where W*(a) is the weight for path «, which can be & obtain network weight w* « W*(a);
easily extracted from W* without re-training. SPOS [20] 7 r « latency (M (w", 5,C, R); €);
) . 8: perf + Aa(NV(w*, S, C, R));
uses an evolutionary algorithm (EA) to solve (7). However, 9 ifr <1 then
EA can suffer from the pre-maturity problem [65], in that the if_per;;); perf® then
population is dominated by good architectures generated in  11. (a*, perf’) « (e, perf);
the early stages. Diversity is rapidly reduced, and the EA 12 end if
converges to a locally optimal solution. 13: end if o
To avoid the above problem, we consider using stochas- 14 F(6) = (7F(0)+Ve l*n Po(a) [VoIn Po(a)] )/(]_‘H);
tic relaxation on « as in [46], and transform problem (7) to: 12 g: (?i"’lAval(N(W (), @))VoIn (Po ()))/(5+1);
: J J ;

maxg Eq~ py(a) [Aval(V (W (), @))]
s.t. latency(J\/(W* (a), a), 5) < Tmax, (8)

where E denotes the expectation, Py is an exponential distri-
bution (with parameter 6) on the search space ¢ (details are
in Appendix C). Sampling from Py helps to explore more
diverse architectures.

Algorithm 2 shows the search procedure. To optimize
0, we first sample a mini-batch B of architectures using
the exponential distribution Py (step 5). For each sampled
architecture, its latency and validation set performance are
measured (steps 7-8). Note that this takes negligible time
compared to supernet training. Architectures that do not
meet the latency requirements are dropped. The sampled ar-
chitectures and corresponding performance scores are used
to update Py by natural gradient descent [32] (steps 18).
Specifically, at the tth iteration, 8 is updated as:

0,41 =6, + pF ' (6,)g, )

where p is the step-size,

F(0) =Ep, [vg In Py (ar) [Ve In Pg(a)]T} . (10)

is the Fisher information matrix [32], and g is the gradient

g = Ep, [Aa(N(W*(a),0))VoIn (Pp () |. (1)
Note that F(0) and g in (10), (11) cannot be exactly evalu-
ated as they require expensive integrations over the whole
distribution. Thus, they are approximated by averages over
the sampled architectures (steps 14-15). Finally, step 20 re-
turns the architecture with the best validation performance
(that also satisfies the latency requirement). Finally, Algo-
rithm 3 shows the whole training procedure for TREFE.

3.3 Comparison with AutoSTR

There are several differences between AutoSTR [16] and the
proposed TREFE (Table 2):

17: end while

18: update 6 via (9) using (10) and (11);
19: end for

20: return searched architecture ™.

Algorithm 3 Text REcognition Feature Extractor (TREFE).

1: Build a supernet ® (see Section 3.2.1);

2: Train ® progressively on training data via Algorithm 1;
3: Search a* from ® on validation data via Algorithm 2;
4: Re-train the o™ from scratch;

1) Search algorithm: AutoSTR only searches the spatial
model, and the downsampling paths and operators
are searched separately (using grid search and Prox-
ylessNAS, respectively). On the other hand, TREFE
jointly searches both the spatial and sequential mod-
els (including the downsampling paths, operators and
transformer architecture).

2) To make AutoSTR efficient, only 10 types of downsam-
pling paths are allowed during the search (step 1 in
Section 3 of [16]). On the other hand, by using the pro-
gressive training strategy, TREFE can efficiently explore
all possible downsampling paths by sharing weights
in a supernet. Thus, combined with the joint search
process, TREFE can find better spatial and sequential
models than AutoSTR.

3) As in ASTER [3], AutoSTR uses a sequential attention-
based sequence-to-sequence decoder [66] as the recog-
nition head. As characters are output one-by-one, this
is not latency-friendly, especially when the output text
sequence is long (as in handwritten text). In contrast,
TREFE outputs the text sequence in parallel by using
parallel attention [6], [42] (resp. CTC head [8]) as the
recognition head for scene (resp. handwritten) text.

4) In TREFE, architectures not meeting the resource con-
straints are dropped during search (Algorithm 2). Thus,
TREFE is deployment-aware.

As will be shown empirically in Sections 4.3.2 and 4.5,



the above contribute to performance improvements over
AutoSTR.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of TREFE
on long text (i.e., line level) [38] and short text (i.e., word
level) [38] recognition by performing extensive experiments
on handwritten and scene text TR datasets.

41 Setup

Handwritten TR Datasets. The following datasets are used:

1) IAM [67]: This dataset contains English handwritten text
passages. The training set contains 6482 lines from 747
documents. The validation set contains 976 lines from
116 documents, and the test set contains 2915 lines from
336 documents. The number of characters is 80.

2) RIMES [68]: This contains French handwritten mail text
from 1300 different writers. The training set contains
10532 lines from 1400 pages. The validation set contains
801 lines from 100 pages, and the test set contains 778
lines from 100 pages. The number of characters is 100.

The input image is of size 64x1200. Moreover, image aug-
mentation is used as in [38].

Scene TR Datasets. Following [3], [6], the task is to rec-
ognize all 36 case-insensitive alphanumeric characters from
the scene text. Both synthetic datasets and real scene image
datasets are used. The input image is resized to 64x256. The
two synthetic datasets are:

1) SynthText (ST) [69]: This contains 9 million text images
generated from a lexicon of 90k common English words.
Words are rendered to images using various background
and image transformations.

2) MJSynth (MJ) [70]: This contains 6 million text images
cropped from 800,000 synthetic natural images with
ground-truth word bounding boxes.

The real scene image datasets include:

1) HOIT 5K-Words (IIIT5K) [71]: This contains 5,000 cropped
word images collected from the web. 2,000 images are
used for training and the remaining 3,000 for testing.

2) Street View Text (SVT) [72]: This is harvested from
Google Street View. The training set contains 257 word
images, and the test set contains 647 word images. It
exhibits high variability and the images often have low
resolution.

3) ICDAR 2003 (IC03) [73]: This contains 251 full-scene text
images. It contains 1,156 training images. Following [72],
we discard test images with non-alphanumeric charac-
ters or have fewer than three characters. As in [9], two
versions are used for testing: one with 867 images, and
the other has 860.

4) ICDAR 2013 (IC13) [74]: This contains 848 training im-
ages. Two versions are used for testing: one has 857
images, and the other has 1,015.

5) ICDAR 2015 (IC15): This is from the 4th Challenge in
the ICDAR 2015 Robust Reading Competition [75]. The
data are collected via Google glasses without careful
positioning and focusing. As a result, there are a lot of
blurred images in multiple orientations. The training set

8

has 4468 images. Two versions of testing datasets are
used: one has 1,811 images and the other has 2,077.

6) SVT-Perspective (SVTP): This is used in [76] for the
evaluation of perspective text recognition performance.
Samples are selected from side-view images in Google
Street View, and so many of them are heavily deformed
by perspective distortion. It contains 645 test images.

As in [9], we train the model using the two synthetic
datasets. The validation data is formed by combining the
training sets of IC13, IC15, IIIT5K, and SVT. The model
is then evaluated on the test sets of the real scene image
datasets without fine-tuning.

Performance Evaluation. As in [33], [38], the following
measures are used for performance evaluation on the hand-
written text datasets:

1) Character Error Rate (CER) = Zil edit(y;, 9:) /
Zle length(y;), where G is the dataset size, y; is the
ground-truth text, §; is the predicted text, and edit is the
Levenshtein distance [77];

2) Word Error Rate (WER): defined in the same manner as
CER, but at word level instead of character level.

For the scene text datasets, following [3], [14], [37], [38], we
use word accuracy for performance evaluation. Moreover,
we also report the speed by measuring network latency
on a NVIDIA 3090 GPU device with the TensorRT library*.
Specifically, following [19], we use artificial images as input
and perform inference on the TR network 1000 times. The
average time is recorded as network latency.
Implementation Details. For scene TR, a Spatial Trans-
former Network for rectification [3] is used for pre-
processing. No extra pre-processing network is used for
handwritten TR. The TR head is based on CTC [8] for hand-
written TR, and parallel attention [6] for scene TR. The pro-
posed method is developed under the PyTorch framework.
We deploy models via TensorRT for high-performance infer-
ence and measure the network latency with the FP32 (32-bit
floating point computation) mode as in [19].

We use 20 MBConv layers for the spatial model and
4 transformer layers for the sequential model. To reduce
computational complexity, the supernet starts with a fixed
“stem” layer that reduces the spatial resolution with stride
2x2. In Algorithm 1, we set K = 5 and train each block
for 300 epochs on the IAM training set. For the larger scene
text datasets, we train each block for 1 epoch. Following [3],
[42], we use ADADELTA [79] with cosine learning rate as
optimizer. The initial learning rate is 0.8, and a weight decay
of 1072. The batch size is 64 for handwritten TR, and 256 for
scene TR. The entire architecture search optimization takes
about 3 days for handwritten TR, and 5 days for scene TR.

Before evaluating the obtained architecture on a tar-
get dataset, we first retrain the whole TR system from
scratch. Using the feature extractor architecture obtained
from the search procedure, the TR system is optimized by
the ADADELTA optimizer with weight decay of 1075. A
cosine schedule is used to anneal the learning rate from 0.8
to 0. We train the network for 1000 (resp. 6) epochs with a
batch size of 64 (resp. 560) for handwritten (resp. scene) TR.

4. https:/ /developer.nvidia.com/tensorrt



TABLE 3
Comparison with the state-of-the-arts on the scene text datasets. The number under the dataset name is the corresponding number of test
samples. Word accuracies for the baselines are copied from the respective papers (- means that the corresponding result is not unavailable). The

best result is in bold and the second-best is underlined.

word accuracy
IIT5K | SVT 1C03 IC13 1C15 SVTP latency (ms)

3000 647 | 860 867 | 857 1015 | 1811 2077 645 y

AON [78] 87.0 82.8 - 91.5 - - - 68.2 73.0 -

EP [60] 88.3 87.5 - 94.6 - 94.4 - 73.9 - -
SAR [17] 91.5 84.5 - - - 91.0 | 69.2 - 76.4 4.58

ESIR [37] 93.3 90.2 - - 91.3 - - 76.9 79.6 -
ASTER [3] 93.4 89.5 | 945 - - 91.8 - 76.1 78.5 3.18

SCRN [14] 94.4 88.9 | 95.0 - 93.9 - 80.8 78.7 -
DAN [38] 93.3 884 | 95.2 - 94.2 - - 71.8 76.8 292
SRN [42] 948 | 915 | - - 955 - 82.7 - 85.1 3.11

TextScanner [7] 93.9 90.1 - - - 929 - 79.4 83.7 -
RobustScanner [6] 95.3 88.1 - - - 94.8 - 77.1 79.5 417
PREN [34] 92.1 92.0 | 949 - 94.7 - - 79.2 83.9 3.75
AutoSTR [16] 94.7 90.9 | 93.3 - 94.2 - 81.7 - 81.8 3.86
TREFE ‘ 94.8 ‘ 91.3 ‘ 937 934 ‘ 954 93.0 ‘ 84.0 80.2 ‘ 84.5 ‘ ‘ 2.62

4.2 Comparison with the State-of-the-Arts

In this section, we compare TREFE with the state-of-the-art
methods on handwritten text and scene TR. For simplicity,
we do not use any lexicon or language model.

4.2.1 Scene Text Recognition

In this experiment, we compare with the following state-
of-the-arts: (i) AON [78], which extracts directional features
to boost recognition; (ii) EP [60], which uses edit-distance-
based sequence modeling; (iii) SAR [17], which introduces
2D attention; (iv) ASTER [3], which uses a rectification
network for irregular-sized images; (v) SCRN [14], which
improves rectification with text shape description and ex-
plicit symmetric constraints; (vi) ESIR [37], which iterates
image rectification; (vii) AutoSTR [16], which is the method
proposed in the conference version of this paper; (viii)
DAN [38], which decouples alignment attention with his-
torical decoding; (ix) SRN [42], which uses a faster parallel
decoding and semantic reasoning block; (x) TextScanner
[7], which is based on segmentation and uses a mutual-
supervision branch to more accurately locate the characters;
(xi) RobustScanner [6], which dynamically fuses a hybrid
branch and a position enhancement branch; (xii) PREN [34],
which learns a primitive representation using pooling and
weighted aggregator. Both SCRN and TextScanner also use
character box annotations.

Table 3 shows the results. As can be seen, TREFE has
comparable recognition performance and the lowest latency.
This demonstrates the effectiveness and efficiency of TREFE.

4.2.2 Handwritten Text Recognition

In this experiment, we compare TREFE with the following
state-of-the-arts: (i) Bluche et al. [80], which uses a deep
architecture with multidimensional LSTM to extract features
for text recognition; (ii) Sueiras et al. [81], which extracts im-
age patches and then decodes characters via a sequence-to-
sequence architecture with the addition of a convolutional
network; (iii) Chowdhury et al. [82], which proposes an
attention-based sequence-to-sequence network; (iv) Bhunia
et al. [83], which uses an adversarial feature deformation
module that learns to elastically warp the extracted features;
(v) Zhang et al. [84], which uses a sequence-to-sequence

domain adaptation network to handle various handwriting
styles; (vi) Fogel et al. [85], which generates handwritten
text images using a generative adversarial network (GAN);
(vii) Wang et al. [38], which alleviates the alignment prob-
lem in the attention mechanism of sequence-to-sequence
text recognition models; (viii) Coquenet et al. [13], which
replaces the sequential model with lightweight, parallel con-
volutional networks; and (ix) Yousef et al. [33], which does
not use a sequential model but instead applies convolutional
blocks with a gating mechanism; (x) Shi et al. [8], which uses
VGG as the spatial model and BiLSTM as the sequential
model, and (xi) AutoSTR [37]. We do not compare with STR-
NAS [15] (which is concurrent with an earlier conference
version [16] of TREFE) as its reported performance is signif-
icantly worse.

TABLE 4
Comparison with the state-of-the-arts on the IAM dataset. The best
result is in bold and the second-best is underlined.

| WER (%) | CER (%) | latency(ms)

Bluche et al. [80] 24.60 7.90 -

Sueiras et al. [81] 23.80 8.80 -
Chowdhury et al. [82] 16.70 8.10 8.71

Bhunia et al. [83] 17.19 8.41 -
Zhang et al. [84] 22.20 8.50 10.52
Fogel et al. [85] 23.61 - 12.16
Wang et al. [38] 20.60 7.00 7.64
Coquenet et al. [13] 28.61 7.99 2.08
Yousef et al. [33] - 4.76 21.48
Shi et al. [8] 21.67 6.28 4.71
AutoSTR [16] 45.23 26.24 11.42
TREFE | 1641 | 445 | 285

Tables 4 and 5 show results on the IAM and RIMES
datasets, respectively. For the baselines, their WER’s and
CER’s are copied from the respective papers®, while their
latencies are obtained by measurements on our reimplemen-
tations.® Note that these two datasets have different number

5. Note that Yousef et al. [33] does not report the WER.

6. We do not report latency results for Bluche et al. [80], Sueiras
et al. [81] and Bhunia et al. [83], as some implementation details are
missing.



of characters, 7 thus the latency for IAM and RIMES are
different. As can be seen, AutoSTR cannot obtain good ar-
chitecture and its latency is large. The architecture obtained
by TREFE has the best WER and CER performance. While
the method in Coquenet et al. [13] has the lowest latency,
the TREFE model has much lower error rates.

TABLE 5
Comparison with the state-of-the-arts on the RIMES dataset. The best
result is in bold and the second-best is underlined.

| WER(%) | CER(%) | latency(ms)

Bluche et al. [80] 12.60 2.90 -
Sueiras et al. [81] 15.90 4.80 -
Chowdhury et al. [82] 9.60 3.50 9.11
Bhunia et al. [83] 10.47 6.44 -

Fogel et al. [85] 11.32 - 12.38
Coquenet et al. [13] 18.01 4.35 2.09
Shi et al. [8] 11.15 3.40 4.73
AutoSTR [16] 20.40 11.31 12.31
TREFE ‘ 9.16 ‘ 2.75 ‘ 2.86

4.3 Understanding Architectures Obtained by TREFE

In this section, we provide a closer look at the architectures
obtained by the proposed TREFE.

4.3.1 Feature Extractors

Table 6 (left) shows the spatial and sequential model archi-
tectures (N, and N, respectively) obtained by TREFE on
the IAM dataset. For the first half of N, (layers 1 to 10), the
resolution is relatively high and is only slowly reduced by a
total factor of 4. For the second half of j\/;r‘,a (layers 10 to 20),
the resolution is reduced more rapidly by a total factor of 32.
A similar observation can also be made on the architecture
obtained on the scene text dataset (Table 6 (right)). We
speculate that a larger resolution can help the network to
preserve more spatial information. This is also consistent
with some manually-designed network architectures. For
example, in SCRN [14], a ResNet50 with FPN [86] is first
used to extract features from text images. This is followed by
a few convolutional layers which downsample the feature
map resolution rapidly by a factor of 32. This observation
may inspire better designs of the text image feature extractor
in the future.

4.3.2 Varying the Resource Constraints

In this section, we demonstrate the deployment-aware abil-
ity of TREFE by performing experiments with different
latency constraints on the IAM dataset. These include: (i) no
latency constraint, (ii) reduce the runtime to 5/6 of that of
the architecture obtained under no latency constraint, and,
(iii) reduce the runtime to 2/3 of that of the architecture
obtained under no latency constraint. We compare TREFE
with random search, which is often a strong baseline in
NAS [31]. Specifically, we randomly pick 6 architectures
from the search space that satisfy the required latency
constraint, and then train them from scratch using the same
setting as in Section 4.1.

7. Methods in Zhang et al. [84] and Yousef et al. [33] do not have
results on RIMES, while Wang et al. [38] only report results on an
ensemble.
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Table 7 shows the performance of models obtained by
TREFE and random search. As can be seen, TREFE obtains
architectures with better WER and CER. Though the TREFE
models have higher latencies, the gap with random search
closes rapidly as the target latency is reduced.

4.3.3 Varying the Spatial Model Design

Here, we compare the spatial model ./\/S’I‘)a obtained by
TREFE with the popular hand-designed architectures of
VGG [11] (used in CRNN [8]) and ResNet [12] (used in
ASTER [3]). We also compare with the spatial model ob-
tained by DARTS [22], a representative NAS method. To
ensure that the constraint in (6) is satisfied by the DARTS
model, we replace the basic block in ASTER with a CNN
cell from DARTS, which is searched on the image classi-
fication task using the ImageNet dataset. All architectures
are trained and evaluated under the same settings as in
Section 4.1. The experiment is performed on the IAM,
RIMES and IIIT5K datasets. Note that random search is not
compared, since it has been shown to be less effective than
TREFE in Section 4.3.2.

Table 8 shows the results. As can be seen, TREFE (i.e.,
./\/'S’E,a + ./\/';;q) outperforms the other baselines on all datasets.
The performance of DARTS is even worse than the hand-
designed architectures. This demonstrates that ignoring the
domain knowledge and directly reusing structures obtained
by a state-of-the-art NAS method may not be good.

4.3.4 Varying the Sequential Model Design

In this experiment, we compare the sequential model N
obtained by TREFE with the (i) hand-designed BiLSTM
in [18], which is a strong baseline for sequential context
modeling in current text recognition systems [3], [7], [38],
and (ii) vanilla Transformer [27]. We also compare with the
sequential models obtained by two NAS methods: (i) the
recurrent cell obtained by DARTS [22] on the Penn Treebank;
and (ii) the evolved Transformer [58], which is obtrained on
the WMT’14 En-De translation task [87]. In these baselines,
we keep the spatial model N, in TREFE, but replace its
sequential model N;;q with the models in these baselines.
The resultant architectures are trained (from scratch) and
evaluated under the same settings as in Section 4.1. The
experiment is again performed on the IAM, RIMES and
IIITSK datasets.

Table 9 shows the results. As can be seen, TREFE (i.e.,
Nepa + Ngig) consistently outperforms all the baselines,
including the transformer (VT). Thus, architecture search of
the sequential model is necessary.

4.4 Understanding the Search Process
4.4.1 Supernet Training

In this section, we compare the proposed supernet training

strategy (in Section 3.2.2) with the following strategies:

1) SPOS [20]: a widely-used one-shot NAS method which
uniformly samples and updates o from the supernet;

2) Random path: The proposed progressive supernet train-
ing pipeline (Algorithm 1), which randomly selects o
and ay;

3) Best path: This is based on the proposed procedure, but
instead of random sampling a path «j from the trained



TABLE 6
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Architectures obtained on the IAM dataset (left) and scene text dataset (right). v (resp. x) means to follow alternative (resp. original) choices in

Section 3.1.2.
| layer | operator | resolution | #channels | layer | operator | resolution | #channels
stem | Conv(k:3)-BN-ReLU [32, 600] 16 stem | Conv(k:3)-BN-ReLU [32, 128] 32
1 MBConv(k:5,e:6) [32, 600] 16 1 MBConv(k:5,e:6) [32, 128] 32
2 | MBConv(k:5,e:6) [32, 600] 16 2 | MBConv(k:3,e:6) [16,128] 32
3 MBConv(k:5,e:6) [16, 600] 16 3 MBConv(k:5,e:6) [16, 128] 32
4 | MBConv(k:5,e:6) [16, 600] 16 4 | MBConv(k:5,e:6) [16,128] 32
5 MBConv(k:5,e:6) [16, 600] 16 5 MBConv(k:3,e:6) [16, 128] 32
6 MBConv(k:5,e:6) [16, 600] 16 6 MBConv(k:3,e:1) [16, 128] 32
7 MBConv(k:5,e:6) [16, 600] 16 7 MBConv(k:5,e:6) [16, 128] 32
8 MBConv(k:3,e:1) [16, 600] 16 8 MBConv(k:5,e:1) [16, 128] 32
Nga| 9 MBConv(k:5,e:6) [8, 600] 32 Nga| 9 MBConv(k:5,e:1) [16, 128] 32
10 MBConv(k:5,e:6) [8, 600] 32 10 MBConv(k:5,e:6) [16, 128] 32
11 MBConv(k:5,e:6) [8, 600] 32 11 MBConv(k:3,e:6) [8, 64] 64
12 | MBConv(k:5,e:6) [8, 600] 32 12 | MBConv(k:3,e:6) 8, 64] 64
13 MBConv(k:5,e:1) [4, 600] 64 13 MBConv(k:3,e:6) [4, 64] 128
14 MBConv(k:5,e:1) [2, 300] 128 14 MBConv(k:5,e:6) [4, 64] 128
15 MBConv(k:5,e:1) [2, 300] 128 15 MBConv(k:5,e:6) [4, 64] 128
16 MBConv(k:5,e:6) [2, 300] 128 16 MBConv(k:3,e:6) [4, 64] 128
17 MBConv(k:5,e:1) [2, 300] 128 17 MBConv(k:3,e:6) [4, 64] 128
18 MBConv(k:5,e:1) [2, 300] 128 18 MBConv(k:5,e:6) [2, 64] 256
19 MBConv(k:5,e:6) [1,150] 256 19 MBConv(k:5,e:6) [1,32] 512
20 MBConv(k:5,e:6) [1,150] 256 20 MBConv(k:5,e:6) [1,32] 512
| layer | (i):residual | (ii):Rel | (iii):scaling | (iv):FFN | #hidden | layer | (i):residual | (ii):Rel | (iii):scaling | (iv):FFN | #hidden
A= |2 X X v GLU 256 N |2 X v v MLP 512
sed | 22 v X v MLP 256 sed | 22 X v v MLP 512
23 X v X GLU 256 23 v X v MLP 512
24 v v v GLU 256 24 v v v GLU 512
TABLE 7

Comparison of TREFE and random search under different latency constraints on the IAM dataset.

Latency constraint

TREFE random search

‘ WER (%) | CER (%) | latency (ms) | WER (%) | CER (%) | latency (ms)

(i) no constraint 16.41 445 2.85 17.04 4.68 2.20

(ii) reduce latency to 5/6 of unconstrained model 16.67 4.56 2.37 17.04 4.68 2.20

(iii) reduce latency to 2/3 of unconstrained model 19.18 5.19 1.86 19.39 5.40 1.84
TABLE 8

Performance comparison of different spatial model architectures. “VT” is short for Vanilla Transformer, “DARTS” means reusing CNN architecture
searched by DARTS [22].

architecture IAM RIMES IIITS5K
spatial ~ sequential || WER (%) | CER(%) | latency(ms) || WER(%) | CER(%) | latency(ms) || Acc(%) | latency(ms)

hand- | ResNet VI || 2210 | 619 | 200 || 129 | 378 | 201 | 98 | 201
designed VGG A 20.80 597 1.21 11.47 3.38 1.21 92.8 1.27
ResNet seq 18.67 524 2.19 10.24 3.10 221 93.4 2.16
NAS DARTS e 23.24 7.02 3.81 12.03 3.81 3.92 91.9 3.19
/\fs*;m seq 16.41 4.45 2.85 9.16 2.75 2.86 94.8 2.62

®q,...,P,_1, it picks the o) with the best validation Table 10 shows the training cost of the supernet. As can

performance (details are in Appendix B);

4) Co-update: This is also based on the proposed procedure,
but instead of fixing the weights of a;, it updates them
together with W (o).

For SPOS, we train the whole supernet for 1500 epochs. To
have a fair comparison, for TREFE and its variations ((2), (3)
and (4)), we first divide the supernet into 5 blocks and then
train each block for 300 epochs. The total number of training
epochs for all methods are thus the same.

Training. Figure 5 shows the training losses for the various
supernet training strategies on the IAM dataset. As can be
seen, SPOS is difficult to converge, while TREFE and its
variants show good training convergence.

be seen, “random path” and “best path” have lower training
time than “SPOS” and “co-update”, as only parts of the
selected path o, need to be updated.

TABLE 10
Training costs (in GPU days) of the supernet.

SPOS | Random path | Best path | Co-update
40 | 14 | 12 | 30

Ranking Correlation. As in [20], [49], we examine the rank-
ing correlation between the performance of a model trained
from scratch (denoted “stand-alone model”) and that with
weights inherited from the supernet (“one-shot model”).
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TABLE 9

Performance comparison of different sequential model architectures.

“VT” is short for Vanilla Transformer, “DARTS” means reusing RNN

architecture searched by DARTS [22], and “ET” is the Evolving transformer [58].

architecture IAM RIMES IIIT5K
spatial ~ sequential || WER(%) | CER(%) | latency(ms) || WER(%) | CER(%) | latency(ms) || Acc(%) | latency(ms)
hand- | ResNet VT || 2210 | 619 | 200 | 1290 | 378 | 201 | 938 | 201
designed A BiLSTM 18.65 5.01 4.03 10.47 3.20 4.04 94.4 3.26
spa VT 19.84 5.29 2.64 11.79 3.41 2.65 94.3 2.45
DARTS 19.42 5.28 28.35 10.97 3.23 28.86 92.8 8.57
NAS ./\/’STja ET 20.27 5.56 3.27 11.77 3.33 3.27 93.1 3.18
./\/’S’feq 16.41 4.45 2.85 9.16 2.75 2.86 94.8 2.62
o] L |
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Fig. 5. Comparison of the supernet training loss curves for SPOS [20], TREFE (with random path) and its variations (best path and co-update).

Specifically, for the stand-alone models, we random sample
70 architectures from the proposed search space and train
them from scratch for 250 epochs. The weights of the cor-
responding one-shot models are obtained from the trained
supernet and then finetuned on the training set for 5 epochs
(with learning rate 0.01). As in [88], the ranking correlation
between the stand-alone model’s validation set CER and
that of the one-shot model is measured by the following
three commonly used metrics: (i) Kendall’s, (ii) Spearman’s
p, and (iii) Pearson’s r. They all have with values in [—1, 1].

Figure 6 shows the correlation plots for the four strate-
gies, and Table 11 shows the ranking correlations. As can
be seen, the correlations are the smallest for SPOS, and
highest for “random path”, demonstrating the advantage
of the proposed strategy for sampling and updating o

TABLE 11
Ranking correlations for different strategies.

| Kendall’s 7 | Spearman’s p | Pearson’s r

SPOS 0.143 0.231 0.185
Random path 0.501 0.686 0.871
Best path 0.447 0.598 0.708
Co-update 0.371 0.515 0.806

Effect of the Number of Blocks K. In this experiment,
we perform ablation study on K. We train the supernet
using Algorithm 1 with K = 3,5, 7. The ranking correlation
between the validation set CER of the stand-alone and one-
shot models is shown in Table 13. As can be seen, TREFE
is robust to the value of K. Besides, the supernet training
cost decreases with K (they are 2.0, 1.4, and 1.3 GPU days,
for K = 3,5,7, respectively). When K increases, each block
becomes smaller, and the training time reduction in training
smaller blocks is more significant than the larger number of
blocks that have to be trained.

4.4.2 Search on Supernet

TREFE uses natural gradient descent (denoted NGD) to
optimize the parameters 6 in (7). In this experiment, we
compare the efficiency of NGD with random search and
evolutionary architecture search in [20] on the IAM dataset.
In each search iteration, 16 new architectures are sampled.
Figure 7 shows the number of search iterations versus the
validation CERs of the best 16 models obtained up to that
iteration. As can be seen, NGD and evolutionary search
clearly outperform random search, and NGD performs
the best. In general, evolutionary algorithm can be easily
trapped in local minima due to inbreeding, and so the
performance of evolutionary search cannot improve after
10 search iterations.

As sampling is involved in the search, i.e., (10) and (11),
we study the variance of the proposed TREFE by running
it five times with different random seeds. Table 12 shows
the mean and standard deviation of the performance on
the IAM, RIMES and IIIT5K datasets. As can be seen, the
variance is small in all cases.

4.5 Comparison with AutoSTR

Following the comparison between AutoSTR and TREFE in

Section 3.3, in this section we perform an ablation study

on AutoSTR, TREFE and different variants. Table 14 shows

the comparison on handwritten text recognition using the

IAM and RIMES datasets, and Table 15 shows the per-

formance comparison on scene text recognition using the

IIITSK dataset.

¢ On comparing AutoSTR with variant-1 in Table 14 (resp.
Table 15), using sequential attention (SeqAtt) as the recog-
nition head leads to much higher latency and also higher
error than the use of CTC (resp. parallel attention) in
handwritten (resp. scene) text recognition.

o The improvement of variant-2 over variant-1 shows effec-
tiveness of the searched transformer.
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TABLE 12
Mean and standard deviation of the performance of TREFE with five repetitions.
IAM RIMES IIIT5K
WER (%) | CER (%) | latency (ms) WER (%) | CER (%) | latency (ms) Acc (%) | latency (ms)
16414021 | 4454034 | 2854012 || 9.16£0.12 | 2754019 | 2.86+£027 || 94.8+0.1 | 26240.23

TABLE 13

Effect of K on the ranking correlation.

the TR pipeline and achieve state-of-the-art results on both
handwritten and scene TR benchmarks.

K | Kendall's 7 | Spearman’s p | Pearson’s r
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APPENDIX A

OBTAINING THE NUMBER OF DOWNSAMPLING
PATHS

Below Algorithm 4, which is used in Section 3.1.4, shows
how to compute the number of downsampling paths in the

search space for the spatial model, i.e., 3D-mesh in Figure 3,
through a recursive process (step 2-18).

Algorithm 4 Backtracking algorithm to obtain the number
of downsampling paths.

Require: input size (Hin, Win), output size (Hout, Wout), stride
O, number of layers L
1:n<+0
2: procedure BACKTRACKING((h, w), )
3: if | = L then

4: if h = Hout and w = Woy then
5: n+<n-+1
6: end if
7 return
8: end if
9: for all (sp, sw) € Os do
10: B < h/sp,w < w/sy
11: if B < Hout or w' < Woyut then
12: continue
13: end if
14: U'+1+1
15: BACKTRACKING((h', w"),1")
16: end for
17: return

18: end procedure
19: BACKTRACKING((Hin, Win), 0)
20: return n

APPENDIX B
TRAINING THE SUPERNET WITH THE BEST PATHS

In the designed Algorithm 1 at Section 3.2.2 for progressive
training the big supernet, o, (resp. ;) is uniformly sam-
pled from ®;, (resp. S;). However, one can also sample the
path which has best validation performance in Sy as o,
as shown in step 5 of Algorithm 5. To speed up the search
for o}, we construct a lookup table Q, for each supernet
block ®j, which records a pair of optimal structure and
the corresponding performance, i.e., (a*, perf*), at different
output resolutions c. The procedure for searching o~ from
Q is delineated in Algorithm 6, which greedy searchs o at
block j from k—1 to 1 (step 4-17). As the search space for &y,
is small, we can easily obtain Qj, using the trained supernet
®}, (step 10-26). The full procedure is in Algorithm 5 and
compared as “Best path” in Section 4.4.1.
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Algorithm 5 Train the supernet with best path.

Require: ¢, K, number of iterations 7, Table Q, maximum
number of samples E

1: forblock £ =1 to K do

2 initialize output resolution lookup table Q. < @

3 for iteration t =1 to T do

4: sample a path a from &,

5: aj < BESTPATH(Q, ax)

6 sample a mini-batch B; from training data;

7: update weights of o, the neck and the recognition
head

8: end for

9: e+ 0
10: for a in & do
11: aj; < BESTPATH(Q, aux)
12: perf < Ava(W, (e, o))
13: ¢ < output resolution of o
14: if ¢ not in Qy, then
15: Qx[c] < (aw, perf)
16: else
17: (af,perf”) < Q[
18: if perf > perf” then
19: Qx| < (o, perf)
20: end if
21: end if
22: e<—e+1
23: if e > F then
24: break
25: end if
26: end for
27: end for

28: return W~

Algorithm 6 Finding a best path from Sj,.

Require: o, Table Q
1: if k = 1 then
2: return ()
3: end if
4: forblock j = K —1to1do
5 r 4 input resolution of ;1
6: aj < 0, perf” « —inf;
7 for all stride s in O, do
8 resolution c goes from r and inversed s

9: if ¢ is invalid then
10: continue
11: end if
12: (aj, perf) <= Q;[c]
13: if perf > perf” then
14: aj [j] = a;
15: end if
16: end for
17: end for

18: return i},




APPENDIX C
SAMPLING DISTRIBUTION Py

Consider a categorical variable Y which takes values in
{1,2,...,n.}. Consider the following probability distribu-
tion

. 0 1<j<n.
p(Y:J;G):{ llzj:llei j:ip (12)

where 6 = [01,02,...,0,_ _1]. Let 1{condition} € {0,1} be
the indicator function which returns 1 when the condition
holds, and 0 otherwise. Then (12) can be rewritten as then

p(Y = y;0) = 6, v= g =2 gliv=nc)
9§T<y>>1 9§T<y>>z . .Q:L:Z?:Cfl(T(y))i

= exp(((T(y))1) log () + ((T(y))2) log(02)+
o (1= (T ()i) log(6n,)
= exp(n' T(y) — o(n)), (13)

where T'(y) is the one-hot representation of y without the
last element, 7 = [10g(01/0r, ), 108(0r—1/0n)], $(n) =
- log(enc )

We model each choice of the search space (Section 3.1.1
and Section 3.1.2) with the above probability distribution.

o For the selection from convolution operations (i.e., O,)
and the selection from alternative choices in trans-
former layers (e.g., “adding a residual path”), it is
naturally set n. as 4 and 2 respectively.

o For the selection from candidate stride (i.e., O;), we
simplify it. Specifically, to meet the downsampling path
constrain in (3), stride (2,2) and (2,1) for downsam-
pling must appears 2 and 3 times respectively. There-
fore, we just need to determine the position [ € [1, M]
of those 5 strides. We set n. to be M = 20 in the
experiments, and discard some bad cases that any two
of the 5 strides have the same position.
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