
Dynamic load balancing for the distributed
mining of molecular structures
Article

Accepted Version

Di Fatta, G. and Berthold, M.R. (2006) Dynamic load balancing
for the distributed mining of molecular structures. IEEE
Transactions on Parallel and Distributed Systems, 17 (8). pp.
773-785. ISSN 1045-9219 doi:
https://doi.org/10.1109/TPDS.2006.101 Available at
https://centaur.reading.ac.uk/4490/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .
Published version at: http://dx.doi.org/10.1109/TPDS.2006.101
To link to this article DOI: http://dx.doi.org/DOI:10.1109/TPDS.2006.101

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Publisher statement: ©2006 IEEE. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this
work in other works must be obtained from the IEEE

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

CentAUR

Central Archive at the University of Reading
Reading’s research outputs online

Dynamic Load Balancing for the
Distributed Mining of Molecular Structures

Giuseppe Di Fatta, Member, IEEE, and Michael R. Berthold, Senior Member, IEEE

Abstract—In molecular biology, it is often desirable to find common properties in large numbers of drug candidates. One family of

methods stems from the data mining community, where algorithms to find frequent graphs have received increasing attention over the

past years. However, the computational complexity of the underlying problem and the large amount of data to be explored essentially

render sequential algorithms useless. In this paper, we present a distributed approach to the frequent subgraph mining problem to

discover interesting patterns in molecular compounds. This problem is characterized by a highly irregular search tree, whereby no

reliable workload prediction is available. We describe the three main aspects of the proposed distributed algorithm, namely, a dynamic

partitioning of the search space, a distribution process based on a peer-to-peer communication framework, and a novel receiver-

initiated load balancing algorithm. The effectiveness of the distributed method has been evaluated on the well-known National Cancer

Institute’s HIV-screening data set, where we were able to show close-to linear speedup in a network of workstations. The proposed

approach also allows for dynamic resource aggregation in a nondedicated computational environment. These features make it suitable

for large-scale, multidomain, heterogeneous environments, such as computational grids.

Index Terms—Distributed computing, peer-to-peer computing, dynamic load balancing, subgraph mining, frequent patterns,

biochemical databases, molecular compounds.

�

1 INTRODUCTION

COMPUTATIONAL biology attempts to simulate and under-
stand the behavior of organisms often using highly

complicated models. Some of these approaches target high-
level interactions between cells and proteins, often referred
to as “systems biology.” Other approaches attempt to
understand relations between gene expressions and various
diseases. On an even smaller scale, molecular data analysis
attempts to find common patterns that are responsible for
the success of a specific medication to fight a disease. A
crucial step in this drug discovery process is the so-called
High Throughput Screening and the subsequent analysis of
the generated data. During this process, hundreds of
thousands of potential drug candidates are automatically
tested for a desired activity, such as blocking a specific
binding site or attachment to a particular protein. This
activity is believed to be connected to, for example, the
inhibition of a specific disease. Once all these compounds
have been automatically screened, it is necessary to select a
small subset of promising candidates for further, more
careful and cost-intensive analysis. A promising approach
focuses on the analysis of the molecular structure and the
extraction of relevant molecular fragments that may be
correlated with activity. Such fragments can be used to
directly identify groups of promising molecules (clustering)
because of their representation that is immediately under-
standable to chemists and biologists. They can also be used

to predict activity in other compounds (classification) [1]
and to guide the synthesis of new ones.

Relevant molecular fragment discovery can be formu-
lated as a frequent subgraph mining (FSM) problem [2] in
analogy to the association rule mining (ARM) problem [3],
[4]. While in ARM the main structure of the data is a list of
items (itemset) and the basic operation is the subset test,
FSM relies on graph and subgraph isomorphism.

Sequential algorithms are limited by single processor
computing resources and are often unsuitable for extremely
large data sets and an unlimited size of the fragments that
can be discovered. Sequential algorithms cannot provide
scalability in terms of data size and dimensionality, nor
better quality of the results (wider range for user para-
meters), nor dramatically shorter running times. Quite
obviously, parallel approaches to this type of problem are a
promising alternative to the current sequential algorithms,
both with respect to storage and time limitations.

In this paper, we present a distributed application of the
frequent subgraph mining problem for molecular com-
pounds. We define the relevant molecular fragments in
terms of frequent subgraphs and discuss the efficiency of
the mining task. The main algorithm is based on a Depth-
First Search (DFS) strategy (backtracking) and the distrib-
uted approach is based on a search space partitioning
technique. Methods based on the DFS strategy have the
advantage of requiring less memory than the breadth-first
search counterparts. Most of the problems solved by search
strategies are computationally intensive and parallel ap-
proaches have been largely studied, e.g., parallel back-
tracking [5].

The analysis of the search space pointed out the highly
irregular computation load. Several dynamic load balancing
algorithms have been proposed in the last years to allow an
efficient distribution of the computation load for such

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 8, AUGUST 2006 773

. The authors are with the Department of Computer and Information
Science, University of Konstanz, Box M712, 78457 Konstanz, Germany.
G. Di Fatta is also with the High Performance Computing and Networking
Institute of the Italian National Research Council (ICAR-CNR), Palermo,
Italy. E-mail: {fatta, berthold}@inf.uni-konstanz.de.

Manuscript received 1 July 2005; revised 13 Feb. 2006; accepted 8 Mar. 2006;
published online 26 June 2006.
Recommended for acceptance by N. Amato, S. Aluru, and D. Bader.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDSSI-0311-0705.

1045-9219/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

irregular problems. Nevertheless, some of their assumptions
do not hold in this particular application. We adopt a new
load balancing technique based on a receiver-initiated policy
within a Peer-to-Peer (P2P) communication framework.

The distributed algorithm has been applied to the
analysis of real molecular compounds, the National Cancer
Institute’s HIV-screening data set.

The rest of the paper is structured as follows: In the next
section, we introduce the molecular fragment mining
problem and discuss related approaches. We discuss the
definition of discriminative molecular fragments that
influence the efficiency of the overall mining process. We
briefly describe the sequential algorithm on which our
distributed approach is based and discuss the irregular
computation that characterizes it. In Section 3, we present a
high performance distributed computing approach for
molecular fragment mining and the adopted dynamic load
balancing policy. Section 5 describes the experiments we
conducted to evaluate the performance of the distributed
approach. Finally, we provide conclusive remarks.

2 MINING MOLECULAR FRAGMENTS

The problem of discovering relevant molecular fragments in
a set of molecules can be formulated in terms of frequent
subgraph mining in a set of graphs. Molecules are
represented by attributed graphs, in which each vertex
represents an atom and each edge a bond between atoms.
Each vertex carries attributes that indicate the atom type
(i.e., the chemical element), a possible charge, and whether
it is part of an aromatic ring. Each edge carries an attribute
that indicates the bond type (single, double, triple, or
aromatic).

Frequent molecular fragments are subgraphs that have a
certain minimum support in a given set of graphs, i.e., are
part of at least a certain percentage of the molecules.
However, in order to restrict the search space, only
connected substructures, i.e., graphs having only one
connected component, are considered.

Discriminative molecular fragments are contrast sub-
structures that are frequent in a predefined subset of
molecules (focus) and infrequent in the complement of this
subset. In this case, two parameters are required: a
minimum support (minSupp) in the focus subset and a
maximum support (maxSupp) in the complement.

A number of approaches to find frequent molecular
fragments have recently been published [6], [7], [8], but they
are all limited by the complexity of the underlying problem.
Some of these algorithms can, therefore, operate on very
large molecular databases, but only find small fragments
[6], [7], whereas others can find larger fragments, but are
limited by the maximum number of molecules they can
analyze [8], [9].

Finding frequent subgraphs in a set of graphs involves
graph and subgraph isomorphism testing, which is compu-
tationally expensive. The subgraph isomorphism test is
known to be an NP-complete problem [10]. Furthermore,
there exists no known polynomial algorithm for isomorph-
ism testing of general graphs, although the problem has not
been shown to be NP-complete. However, it is known that it
can be solved in polynomial time for many restricted classes

of graphs, such as bounded-degree graphs [11]. Molecular
compounds fall in the latter case. Nevertheless, the
combinatorial nature of the problem poses a great chal-
lenge. Finding frequent fragments in a set of molecules can
be seen as analysing the space of all possible fragments that
can be found in the entire molecular database. Obviously,
this set of all existing fragments is enormous even for
relatively small data sets: A single molecule of average size
can already contain in the order of hundreds of thousands
of different fragments.

Existing methods to find frequent fragments attempt to
implicitly organize the space of all possible fragments in a
lattice that models subgraph relationships, i.e., edges connect
fragments that differ by exactly one atom and/or bond. An
example of a complete lattice induced by six molecules1 is
shown in Fig. 1. The search then reduces to traversing this
lattice and reporting all fragments that fulfill the desired
criteria. Based on existing data mining algorithms for market
basket analysis [3], [4], these methods conduct depth-first [7]
or breadth-first searches [6]. An example of a search tree is
depicted in Fig. 2, which also shows the region of discrimi-
native fragments.

None of these algorithms in a single processor can be
used for extremely large data sets (millions of molecules)
and unlimited size of the fragments that can be discovered.
Quite obviously, parallel approaches to this type of problem
are a promising alternative to the current sequential
algorithms. A data-parallel strategy can be adopted to cope
with larger data sets. However, only a task-parallel strategy,
based on the partitioning of the search space can effectively
cope with low minimum support values and a large
maximum size of fragments. The latter is the approach
presented in this paper.

In recent years, several parallel and distributed algo-
rithms have been proposed for the association rule mining
problem (D-ARM) [12]. However, currently very few
parallel and distributed FSM algorithms have been pre-
sented in the literature [13], [14], [15], [16]. Although
parallel search algorithms have been studied for a long
time, distributed data mining applications, like FSM, are
still nontrivial. The complexity of the problem and the large
amount of data to be explored make parallel formulations of
these methods extremely challenging, especially when the
target High Performance Computing (HPC) architecture is a
distributed large-scale system.

We have developed a high performance distributed
approach for the frequent subgraph mining (FSM) problem
to discover interesting patterns in molecular compounds. The
parallel algorithm is based on a sequential algorithm [8],
which adopts a Depth First Search (DFS) strategy. The
distributed approach is based on three main components,
namely a dynamic partitioning of the search space [13], a
distribution process based on a peer-to-peer communication
framework [16], and a receiver-initiated, load balancing
algorithm, which is discussed and evaluated in the present
work.

The distributed FSM approach proposed in [13] pointed
out that the main difficulties of a distributed backtracking

774 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 8, AUGUST 2006

1. These molecules are made up for a descriptive purpose and do not
have any real meaning.

algorithm applied to a data mining task often arise from the

highly irregular nature of the search tree. In such a case,

only a Dynamic Load Balancing (DLB) policy can be

successfully adopted. The approach in [13] achieved a

relatively good performance in a small-scale computational

environment, but its scalability and efficiency are limited by

two main factors. First, the approach is based on a master-

slave communication model, which clearly cannot scale

well to a large number of computing nodes. Second, the

communication overhead due to the large number of

frequent fragments limits the efficiency of the overall

process. In this paper, we overcome these two limitations

by adopting a better definition of discriminative fragments

[17] and an appropriate dynamic load balancing policy. As

a consequence, the distributed approach can be effectively

adopted in a large-scale heterogeneous computing environ-

ment, such as computational grids.

In the next two sections, we introduce a compact
representation of the frequent subgraphs and an efficient
sequential approach to visit the entire search space.

2.1 Compact Frequent Subgraph Representations

Mining relevant molecular fragments is considered a
promising tool to help the molecular biologists to identify
drug candidates. In this context, we can assume that the
molecular compounds in the data set can be classified in
two groups. We refer to the two classes of molecules as the
focus set (active molecules) and its complement (nonactive
molecules). For example, during the high throughput
analysis, compounds are tested for a certain active behavior
and a score associated to their activity level is determined.
In this case, a threshold (thres) on the activity value allows
the classification of the molecules in the two groups.

The aim of the data mining process is to provide a list of
molecular fragments that are frequent in the focus data set
F and infrequent in the complement data set C. These
topological fragments carry important information and may
be representative of those components in the compounds
that are responsible for a positive behavior. Such discrimi-
native fragments can be used to predict activity in other
compounds and to guide the synthesis of new ones. For
example, they can be adopted as features in a multi-
dimensional space in molecular compounds classification
systems [1].

However, the high number of frequent fragments that
can be found in a large data set suggests the adoption of
subsets of the frequent subgraphs for a more efficient
computation. Closed Frequent Subgraphs (CFS) are known
to provide the same topological information on the search
space as the frequent ones. A closed frequent subgraph is a
frequent subgraph whose support is greater than the
support of all its proper supergraphs. Given the CFS set,

DI FATTA AND BERTHOLD: DYNAMIC LOAD BALANCING FOR THE DISTRIBUTED MINING OF MOLECULAR STRUCTURES 775

Fig. 1. Complete lattice of fragments for the six example molecules.

Fig. 2. Molecular fragment search tree.

it is possible to directly generate all frequent subgraphs
without any further access to the data set. Moreover, the
support of all frequent subgraphs is implicitly defined by
the closed subgraphs. For this reason we adopt the CFS in
more efficient definitions of discriminative molecular
fragments.

For two graphs g and g0, let g � g0 denote that g0 is
isomorphic to a proper subgraph of g. Given a set of graphs
D and a frequency threshold minSupp, the sets of frequent
and closed frequent subgraphs are defined, respectively, as

FSD ¼ fs j suppðs;DÞ � minSuppg and

CFSD ¼ fs j suppðs;DÞ � minSupp and 9= x 2 FSD;
x � s and suppðx;DÞ ¼ suppðs;DÞg;

where s is a graph, supp(s,D) is the number of graphs in D,
which are supersets of s, i.e., the support of s in D.

In our context, we have to extend the concept of the
closure to the duality of active and nonactive compounds.
The following different definitions can be adopted for
discriminative fragments (DF).

Definition 1 (Constrained FS). DFall is the set of frequent
subgraphs in the focus data set constrained to infrequency in
the complement data set, according to

DFall ¼ fs 2 FSF j suppðs;CÞ � maxSuppg:

Definition 2 (Constrained Focus-Closed FS). DFF is the set
of closed frequent subgraphs in the focus data set constrained
to infrequency in the complement data set, according to

DFF ¼ fs 2 CFSF j suppðs;CÞ � maxSuppg:

Definition 1 considers the subgraphs that are frequent in
the focus data set and are constrained to a maximum
support in the complement data set. In Definition 2, the
constrained frequent subgraphs are restricted by the closure
in the focus data set.

The concept of closed frequent substructures has been
successfully adopted in both ARM and FSM approaches, in
order to improve the mining process. They can be considered
a compact representation of the complete set of frequent
substructures. This may lead to a significant improvement of
the efficiency of the mining process. For example, only for
reporting purposes, if the search algorithm does not
guarantee the uniqueness of the discovered fragments, the
number of graph isomorphism tests, which need to be
performed to discard duplicates, is in the order of Oðn2Þ,
where n is the number of frequent subgraphs. Moreover, the
frequent fragments might also overwhelm the memory of a
single computation node. In a distributed computational
environment, closed frequent fragments also lead to another
advantage, a lower communication overhead.

Fig. 3 shows the number of discriminant fragments for
the NCI HIV data set (cf. Section 4) when the different
definitions are adopted. It is evident how fewer closed
fragments can carry information that is equivalent to all
frequent ones. For small values of the minimum support,
their ratio can achieve several orders of magnitude. More-
over, in extreme cases we may not be able to store all the

frequent fragments because of memory limitations. It
should be pointed out that the alternative definitions do
not reduce the number of nodes in the search tree, but only
the number of stored and reported molecular fragments.

From the application perspective, reporting a large
number of fragments also poses a visualization and
exploration problem. Thus, the reduced number of reported
molecular fragments is, indeed, an advantage, provided
that there is no loss of information. Among all frequent
fragments, the closed ones provide a significant reduction
of the cardinality, while they still maintain interesting
information about the support in the active molecules. A
nonclosed frequent fragment does not tell more about the
active molecules than its smallest closed supergraph.

2.2 Sequential Subgraph Mining

The distributed approach presented in this paper is based
on the sequential algorithm (MoFa) described in [8]. The
algorithm organizes the space of all possible fragments
(subgraphs) of the active compounds, i.e., the fragment
lattice, in an efficient search tree. Each possible subgraph is
evaluated in terms of the number of embeddings that are
present in the molecular structures of both active and
inactive compounds.

The algorithm is based on an exhaustive depth-first
search strategy. Each node of the search tree represents a
candidate frequent fragment. A search tree node evaluation
comprises the generation of all the embeddings of the
fragment in the molecules. The embedding list allows both
a fast computation of the fragment support in the active and
inactive molecules and a fast extension to bigger fragments.
When a fragment meets the minimum support criterion, it is
extended by one bond to generate new search tree nodes.
When the fragment meets both criteria of minimum support
in the active molecules and maximum support in the
inactive molecules, it can be considered a discriminative
fragment according to the adopted definition.

The algorithm finding the frequent and/or discrimina-
tive fragments employed in this paper is based on a search
tree traversal, very similar to itemset and association rule

776 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 8, AUGUST 2006

Fig. 3. Discriminative molecular fragments in 37,171 NCI compounds

(thres ¼ 0:5 and maxSupp = 1 percent).

mining. In sharp contrast to those applications, it is not
possible to apply a global ordering and use a prefix-tree
structure to avoid duplicate combinations of items. In the
case of molecules our items are atoms (or bonds and atoms)
and, since any one atom type can occur multiple times at
arbitrary positions in a fragment—we cannot simply first
build up all carbon atoms, followed by all sulfurs and so on.
The MoFa algorithm uses a sophisticated, local ordering
instead. When expanding a fragment using new atoms it
only considers very specific extensions at specific points. In
particular, it will never consider extending an atom that has
been inserted before the atom that was last extended and it
will also only consider extensions that follow (using a local
order on atoms and bonds) previous extensions at this
atom. These two rules form the basis for the so-called
“structural pruning,” which, very efficiently, eliminates
generation of almost all duplicate fragments. More sophis-
ticated structural pruning methods are available as well,
based on canonical forms, but we did not consider them
here. These local orders have an impact on our distribution
problem. Since we need to recreate those local ordering
schemas on other nodes when transmitting a subtask, we
also need to submit information about previously added
atoms and last extensions in addition to the structure of the
fragment itself. Two other pruning methods can be taken
from the association rule mining algorithms more directly:
support and size-based pruning. The former eliminates all
fragments that do not occur often enough in our database
(this criterion being monotone allows us to ignore all
subsequent branches) and the latter eliminates fragments
having more than a specific number of atoms. For more
details on the algorithm, please refer to [8]. For the
discussion here, it is sufficient to note that we can transmit
the state of a node in our search tree by transferring the
current fragment, the order in which the atoms were
inserted and the last extension that was applied. From this
information, we can regenerate the entire status information
needed to continue the search.

An analysis of the sequential algorithm points out the
irregular nature of the search tree. An irregular problem is
characterized by a highly dynamic or unpredictable

domain. In this application, the complexity and the
exploration time of the search tree, and even of a single
search tree node cannot be estimated. The data mining
nature of the problem makes the time required to visit a
node unpredictable. In our tests, a single node exploration
can take from a few milliseconds to several minutes. It is
known that the pruning techniques, which these types of
search algorithms heavily rely on, make the estimation of
the tree exploration time very difficult. Depth and fan of the
search tree are also unpredictable. Moreover, no assump-
tion can be made on the lower bound of subtask workloads.
We cannot assume that subtask transmission time is less
than the computation cost associated. This makes most
dynamic load balancing policies unsuitable for this applica-
tion and we have to adopt a policy that is able to reduce the
generation of trivial tasks.

In order to provide evidence of the above considerations,
we collected statistics of the running time required by the
sequential algorithm for the expansion of each search tree
node (Fig. 4a) and for the complete visit of the associated
subtree (Fig. 4b). Both are characterized by a power-law
distribution. This may not come as a surprise with regard to
the subtree visiting time, since it is well known that this kind
of distribution is typical for aggregations of multiscale
hierarchies such as trees. However, it is interesting that the
node expansion time shows the same type of distribution.
This can be tentatively explained by the structure of the input
data and the node expansion step in the sequential algorithm.
Each search tree node represents a molecular fragment,
which is extended in all possible successors by adding a bond
and, eventually, an atom. Intuitively, this produces a high
number of fast fragment extensions due to the local order and
the extension rules, and a small number of computationally
long extensions. However, this would require further
analysis, which is out of the scope of this work.

Sequential algorithms cannot provide scalability in terms
of data size and dimensionality, nor better quality of the
results (wider range for user parameters), nor dramatically
shorter running times. Quite obviously, parallel and
distributed approaches are a promising alternative to the
current sequential algorithms.

DI FATTA AND BERTHOLD: DYNAMIC LOAD BALANCING FOR THE DISTRIBUTED MINING OF MOLECULAR STRUCTURES 777

Fig. 4. Distribution of search-node expansion time and subtree visiting time (minSupp ¼ 10 percent and maxSupp ¼ 1 percent). (a) Search-node

expansion time and (b) search subtree visiting time.

3 DISTRIBUTED SUBGRAPH MINING

Our ultimate target architecture is a large-scale multi-
domain computational environment, like a grid infrastruc-

ture. So, our general approach is to partition the problem
into independent subtasks, in order to minimize commu-

nication and synchronization among processors. Indepen-
dence among tasks would also allow the introduction of

fault tolerance mechanisms more easily than in distributed
applications with a complex communication pattern. In

order to adopt a distributed approach in a large-scale
computing environment, communication latency and node

failures have to be tolerated. For this reason, we have
adopted a partitioning strategy and discarded solutions

based on a collaborative approach among processes, such as
distribution techniques similar to the ones proposed in [18],

[19], which are more suited for dedicated HPC systems.
The distributed approach we propose is based on three

main aspects:

. a search space partitioning strategy,

. distributed task queues with dynamic load balan-
cing, and

. a peer-to-peer communication framework.

A static load balancing policy cannot be adopted as the
work load is not known in advance and cannot be

estimated. We adopted a receiver-initiated DLB approach
based on two components, a ranked-random polling for the

donor selection and a heuristic work splitting technique for
the subtask generation. Both components contribute to the

overall DLB efficiency and to its suitability to heteroge-
neous computing resources.

A P2P communication framework naturally fits with the

receiver-initiated DLB approach and provides good scal-
ability properties. Each peer has to register at a centralized

bootstrap node to join the system and to contribute to the
overall computation task. Peers can directly exchange

system information and computation subtasks, since each
process implements both client and server functionality.

The bootstrap node provides initial configuration informa-
tion and a dynamic peer directory service.

Although the P2P system allows a dynamic aggregation

of resources, in our tests, we introduced a synchronization
barrier just for performance evaluation. When a given

minimum number of peers have joined the system, the
bootstrap node assigns the first job, i.e., the root node of the

search tree, in order to start the distributed application.
It is worth mentioning that all the algorithms, which

have been proposed for D-ARM in the past years, assume a

static, homogeneous and dedicated computation environ-
ment and do not provide dynamic load balancing [12].

In the next sections, we discuss some details of the

distributed application related to the search space partition-
ing and the load balancing policy.

3.1 Search Space Partitioning

Partitioning a depth-first search tree has been widely and

successfully adopted in many parallel applications. In
general, it is quite straightforward to partition the search

tree to generate new independent jobs, which can be

assigned to idle processors. In this case, no synchronization
is required among remote jobs.

A job assignment contains the description of a search
node of the donor worker, which becomes the initial
fragment (core) from which to start a new search at the
receiving worker. The job assignment must contain all the
information needed to continue the search from exactly the
same point in the search space. In our case, this is essential
in order to exploit the efficient search strategy provided by
the sequential algorithm and based on advanced pruning
techniques. Thus, a job description includes the search node
state to rebuild the same local order necessary to prune the
search tree as in the sequential algorithm (cf. structural
pruning in [8]). This requires an explicit representation of
the state of the donated search node. For this aim, we
adopted the Simplified Molecular Input Line Entry Speci-
fication (SMILES) [20], a notation for organic structure
description, which we enhanced with numerical tags for
atoms. These tags are used to represent the subscripts of the
atoms in a fragment according to the local order, i.e. the
order in which atoms have been added to the fragment.

The enhanced-SMILES representation of the fragment
plus the last extension performed (last extended atom
subscript, last extended bond type and last added atom
type) are sufficient to reestablish the same local order at a
remote process. The receiving worker has to recompute all
the embeddings of the core fragment into all molecular
compounds in order to restart the search. This extra
computation is necessary and is by far preferred over the
expensive communication cost of an explicit representation
of the embeddings. The number of embeddings of a
fragment in the molecules can be very large, especially in
the lower part of the search tree.

Furthermore, the donor worker can also perform a
selection and a projection of the data set based on the
pruned fragment. In the selection operation, the supporting
subset of molecules is included in the job description. In the
projection operation, each supporting molecule is shrunk to
the essential subgraph, which is relevant for the subtask.
The atoms and bonds in the molecule that cannot be used
for further extension of the pruned fragment are not
considered. The projected molecule can also be represented
by means of the enhanced-SMILES representation. Data set
selection and projection are adopted only when they
represent a computational advantage in comparison to the
disadvantage of the extra communication. This typically
occurs in a later stage of the search, where larger fragments
are supported by fewer molecules.

Each worker maintains only a local and partial list of
substructures found during the execution of subtasks.
Therefore, at the end of the search process, we perform a
reduction operation. Workers are organized in a commu-
nication tree and the number of communication steps
required is in the order of O logNð Þ, where N is the number
of processes. This is more efficient than the star topology
adopted in the master-slave approach of [13], which
requires O Nð Þ sequential communication steps. During
the reduction of the frequent fragments, partial local lists
are merged and duplicate and nonclosed fragments are
discarded.

778 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 8, AUGUST 2006

However, the determination and selection of the closed
fragments include expensive graph and subgraph iso-
morphism tests and may represent a nontrivial computa-
tional cost for a single processor. Furthermore, as shown in
Section 2.1, the number of all frequent fragments may
become very large and the communication cost would be
too expensive. Therefore, the selection of the nonclosed
fragments has to be distributed as well. This can be
performed during the reduction operation in parallel by
several concurrent processes and not only by a single
master node.

The reduction operation based on a logical communica-
tion tree has the advantage of reducing the number of
communication steps. Moreover, it also has the advantage
of distributing the computational load associated to the
costly graph and subgraph isomorphism tests for the
reduction of the final list of closed frequent fragments.

In our distributed application, we adopted a search-tree
partitioning with a self-adaptive job-granularity based on a
decentralized dynamic load balancing, which is discussed
in the next section.

3.2 Dynamic Load Balancing

A static partition of the search space can only be adopted
when job running times can be estimated. In our applica-
tion, we cannot estimate the complexity of subtasks. For
such irregular problems, it is essential to provide a dynamic
load balancing policy.

The dynamic load balancing requirement of this applica-
tion is related to the same requirement of several other
irregular problems based on a search tree, e.g., problems
solved using the divide and conquer strategy. Many DLB
algorithms for irregular problems have been proposed in
the literature and their properties have been studied.
However, most of them rely on assumptions on the
problem, which do not hold in our case. Some DLB
techniques for irregular problems are based either on the
assumption of uniform or bounded task times, or on the
availability of workload estimates. In [21], uniform time
tasks are assumed. In [22], it is assumed that the smallest
task time is comparable to or greater than the network
communication time for a task. In [23], the computation,
first, is evenly partitioned among processors and, succes-
sively, task migration is adopted to maintain load balance in
the system. In [24], several DLB algorithms are analyzed
and their scalability properties are provided in terms of the
isoefficiency analysis. This study particularly addresses
irregular problems where it is not possible to estimate the
size of work at processors. Nevertheless, the assumptions in
[24] include some characteristics of the parallel applications
that in the case of subgraph mining for molecular
compounds do not hold. In particular, in our application
we cannot guarantee that the computation cost of a job is
greater than the relative transmitting time. In general, we
cannot provide a work-splitting mechanism of a good
quality, as briefly discussed.

A work at a processor can be partitioned by simply
removing one or more search nodes from the local stack.
Each search node state has to be converted into an external
and compact representation. In particular, a search node
state defines a molecular fragment and the complete list of

its embeddings into the supporting molecules. Such a list
can be very long and cannot be conveniently converted into
an external representation. Thus, the embedding list is not
included in the external representation and has to be
reconstructed at the receiving worker, resulting in extra
computational effort (parallel overhead). The conversion
from external representation to the internal one for
fragments with high support values can be relatively
expensive. Also, for this reason, it is important that the
number of donated search nodes is kept small. For example,
we cannot simply split the stack in half to generate
nontrivial subtasks. Thus, we have to adopt subtasks based
on single search nodes. As a consequence, according to the
power-law distribution of the subtree visiting time shown
in Section 2.2, it is evident that the quality of our splitting
mechanism is not uniform and can be very poor. In general,
we cannot even provide minimum and maximum bounds
for the running time of subtasks, as we cannot provide them
for the overall mining task.

It is quite challenging to efficiently parallelize irregular
problems with such an unpredictable workload. Moreover,
when the target computational infrastructure is a large-
scale, multidomain, nondedicated environment, we cannot
assume small and bounded task transmission times. In such
a case, we also have to deal with the heterogeneous and
dynamic load of processors and networks.

As we discussed above, in this application some
assumptions adopted in common DLB approaches do not
hold and these techniques are not expected to perform well.
In general, the DLB policy has to provide a mechanism to
fairly distribute the load among the processors using a
small number of generated subtasks to reduce the commu-
nication cost and the computational overhead. In particular,
in this specific application the DLB policy has to carefully
select suitable subtask donors among all the workers and
nontrivial subtasks among the search nodes in the local
stack of a donor. The quality of both the selection of donors
and the generation of new subtasks is fundamental for an
effective and efficient computational load distribution.
These two tasks are carried out, respectively, by the DLB
algorithm and the work splitting-mechanism discussed in
the next two sections.

3.2.1 Ranked-Random Polling (RRP)

When a worker completes its task, it has to select a donor
among the other workers to get a new subtask. In general,
not all workers are equally suitable as donors. Workers that
are running a mining task for a longer time, have to be
preferred. This choice can be motivated by two reasons. The
longest running jobs are likely to be among the most
complex ones. And, this probability increases over time.
Second, a long job-execution time may also depend on the
heterogeneity of the processing nodes and their loads. With
such a choice, we provide support to the nodes that are
likely overloaded either by their current mining task
assignment or by other unrelated processes.

The DLB approach we adopted is a receiver-initiated
algorithm based on a decentralized random polling with a
nonuniform probability. Each worker keeps an ordered list
of potential donors and performs a random polling over

DI FATTA AND BERTHOLD: DYNAMIC LOAD BALANCING FOR THE DISTRIBUTED MINING OF MOLECULAR STRUCTURES 779

them to get a new task. The probability of selecting a donor
from the local list is not uniform. In particular, we adopt a
probability that is linearly decreasing in the rank of the
donor, where the list is ordered according to the starting
time of the latest job assignment (rank). This way, long
running jobs have a high probability of being further
partitioned, while most recently assigned tasks do not.

In order to maintain statistics of job executions, we
adopted a centralized approach. At the starting and at the
completion of a job execution, workers notify the bootstrap
node, which collects global job statistics. Workers keep the
local donor list updated by an explicit query to the
bootstrap node.

Approaches based on global statistics are known to
provide optimal load balancing performance, while rando-
mized techniques provide better scalability. The RRP policy
try to combine these two advantages. The centralized server
at the bootstrap node allows the determination of suitable
job donors from the complete knowledge of the job statistics
in the system. However, this process is decoupled from the
actual polling activity, which is completely decentralized.
For large number of peers, the centralized server may
become a bottleneck and the local information at peers out
of date. Nevertheless, the query-response process for job
distribution would not be delayed; only the heuristic choice
of a suitable donor may get less effective. Ultimately, for
very large systems, the RRP policy would be equivalent to a
plain random polling.

In order to reduce latency, each worker also keeps a local
pool of unprocessed jobs. This way at the completion of a
job, the request and reception of a new one can be
overlapped to the execution of a job from the local pool.
Overlapping computation with communication of job
request/assignment helps to avoid, or at least to reduce,
most of the communication overheads. Only the latency of
the first job assignment and the last job-completed message
cannot be avoided at all. (In our tests, we adopted a single
job buffer at each worker.)

Furthermore, each worker keeps a list of donated and not
completed jobs in order to support mechanisms for
termination detection and to deal with abrupt peer
disconnection.

It should be noticed that the server for job statistics
plays the same role as the centralized directory of the
first-generation P2P systems. The current implementation
of our P2P computing framework allows the dynamic
joining of peers.

In order to evaluate our DLB algorithm, we implemented
a Random Polling (RP) policy with distributed job queues
and a centralized job-pool approach, i.e., a Master-Slave
(MS) architecture. The latter approach has been adopted in
[13], where the master process always selects the worker
with the longest running job as donor, in order to feed idle
workers. In the proposed approach, we adopted a P2P
communication framework to avoid the centralized job pool
and a random-like policy with a nonuniform probability to
improve the scalability of the DLB algorithm.

In some aspects, our approach is similar to the one
described in [24] as a “modified” scheduler-based load
balancing. In the latter, donors directly assign subtasks to

idle workers, as in our case. However, in the approach
described in [24], the poll is always generated by the
centralized server, which adopts a round robin donor
selection among the workers. In our case, the generation of
job requests (polls) has also been decentralized. Moreover,
in our DLB approach, the use of a heuristic technique
(donor rank) is fundamental for the selection of the most
suitable donors to avoid the generation of a high number of
trivial tasks. In contrast to random polling, polls are not
uniformly distributed among all workers. Nevertheless,
they are still spread over several donors according to a
stochastic process.

3.2.2 Work Splitting

In problems with uniform or bounded subtask times, the
generation of either too small or too big jobs is not an issue.
In our case, wrong job granularity may decrease the
efficiency and limit the maximum speedup tremendously.
While a coarse job granularity may induce load imbalance
and bounds on the maximum speedup, a fine granularity
may decrease the distributed system efficiency and more
processing nodes will be required to reach the maximum
speedup. Thus, it is important to provide an adaptive
mechanism to find a good trade-off between load balancing
and job granularity.

In order to accomplish this aim, we introduce a
mechanism at the donor to reduce the probability of
generating trivial tasks and of inducing idle periods at the
donor processor itself. A general principle is that the donor
must still have some work to do after pruning its search
tree. Job donation must not cause donor starvation. This can
be easily accomplished by setting a minimum stack size,
which enables job donation.

A second principle is that the generation of trivial tasks
reduces the efficiency and should be avoided. Donated
search nodes have to be selected from the lower part of the
backtracking stack, where it is more likely to find branches
of the search tree with greater complexity. Fragments with a
low support in the active molecules are likely to generate
small subtrees and should not be donated. However, even
fragments with high support can generate very small
subtrees because of the restriction in the local order (cf.
Section 2.2). The last condition can be heuristically
estimated as described below.

In short, a worker follows three rules to donate a search
node from its local stack. A search tree node n can only be
donated if

1. stackSizeðÞ � minStackSize,
2. supportðnÞ � ð1þ �Þ �minSupp, and
3. lxaðnÞ � � � atomCountðnÞ,

where � and � are tolerance factors, lxaðÞ is the subscript of
the last extended atom in the fragment (see below),
atomCountðÞ provides the number of atoms in a fragment
and minStackSize specifies a minimum number of search
nodes in the stack to avoid starvation of the donor. The
values of these parameters are not critical and in our
experiments we adopted minStackSize ¼ 4, � ¼ 0:1, and
� ¼ 0:5. These rules for pruning the search tree guarantee
that the worker does not run out of work while donating
nontrivial parts of its search tree.

780 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 8, AUGUST 2006

While rules 1 and 2 are quite straightforward, in order to
explain rule 3, we have to refer to the structural pruning
technique adopted in the sequential algorithm (cf. [8]). An
atom subscript indicates the order in which the atom has
been added to the fragment. All the atoms of the fragment
with a subscript less than lxa cannot be further extended
according to the sequential algorithm. As a consequence,
subtrees rooted at a node with a high lxa value (close to the
number of atoms in the fragment) are expected to have a
low branching factor.

This set of rules filters out many potentially trivial nodes
(nondonable) and changes the subtree visiting time dis-
tribution of Fig. 4b to the one of Fig. 5a. The number of very
small subtasks has been significantly reduced, even if they
have not been completely discarded by the rules. Fig. 5b
shows the distribution of the visiting times of nodes that are
excluded for job donations according to the rules. In this
case, the number of trivial subtasks is very large, with a
distribution still similar to the original one (Fig. 4b). The
moments of the time distributions in Fig. 5 are provided in
Table 1, which facilitates a comparison. The great difference
in the average values (�) confirms that the selected nodes,
on average, can generate more complex subtasks. However,
the standard deviation value (�) is still quite large, which
means that trivial subtasks cannot be completely avoided.

The proposed DLB technique (RRP) further restricts the
possible choices for new subtasks by selecting the most
promising donors. This, once more, changes the distribution
of the subtask visiting time. The final actual distribution is
not available because it is the result of a parallel execution
where subtasks are dynamically generated; task donation
alters the task (subtree) at the donor itself.

4 PERFORMANCE EVALUATION

In order to evaluate the proposed DLB technique (RRP), we
implemented and tested a random polling algorithm (RP)
and a master-slave (MS) approach. The latter, which is
described in [13], is based on a centralized job-pool and new
jobs are always generated by partitioning the longest
running job. These three techniques use the same heuristic
work-splitting mechanism described in Section 2.2.2.

We also considered a random polling policy with a
simple work splitting mechanism, which is not based on
heuristic techniques, nor on the application domain knowl-
edge. Among general techniques [25], there are half
splitting, taking nodes near the bottom of the stack, near a
cutoff depth, or between a cutoff depth and the bottom of
the stack. Half splitting would have a high cost in terms of
computational overheads; each donated fragment has to be
embedded in the molecules at the receiving worker.
Transmitting embeddings would not be effective in terms
of communication overheads, especially for large-scale
systems in shared wide-area networks.

The choice of a cutoff depth would require heuristic
considerations and would, anyway, depend on the parti-
cular data set and the size of molecules.

Hence, for our comparative tests, we have adopted a
plain random polling, where donors take search nodes from
the bottom of the local stack. This method is denoted in the
following as RP1.

All DLB methods are adopted in the same distributed
application to search for the discriminative fragments of
Definition 2 (DFF), i.e., the frequent fragments that are
closed in the focus data sets and constrained to infrequency
in the complement data set (maxSupp = 1 percent).

4.1 Experimental Setup

The distributed algorithm has been tested for the analysis of
a set of real molecular compounds—a well-known, publicly
available data set from the National Cancer Institute, the
DTP AIDS Antiviral Screen data set [26]. This screen
utilized a soluble formazan assay to measure protection of
human CEM cells from HIV-1 infection [27]. Compounds
able to provide at least 50 percent protection to the CEM

DI FATTA AND BERTHOLD: DYNAMIC LOAD BALANCING FOR THE DISTRIBUTED MINING OF MOLECULAR STRUCTURES 781

Fig. 5. Distribution of subtree visiting time with node selection rules (minSupp ¼ 10 percent and maxSupp ¼ 1 percent). (a) Donable nodes and

(b) nondonable nodes.

TABLE 1
Subtree Visiting Time Statistics [msec]

cells were retested. Compounds that provided at least
50 percent protection on retest were listed as moderately
active (CM). Compounds that reproducibly provided
100 percent protection were listed as confirmed active
(CA). Compounds not meeting these criteria were listed as
confirmed inactive (CI). We used a total of 37,169 total
compounds, of which 325 belong to class CA, 875 are of
class CM, and the remaining 35,969 are of class CI. In order
to carry out tests on different sizes of the focus data set we
combined these compounds as follows: In all our tests, we
adopted a threshold (thres ¼ 0:5) such that the CA class
corresponds to the focus data set and classes CM and CI
constitute the complement data set.

Experimental tests have been carried out on a network of
Linux workstations2 located in different LANs of the
University of Konstanz. The software has been developed
in Java and the communication among processes has been
implemented using TCP socket API and XML data format.

In our tests, we introduced a synchronization barrier to
wait for a number of processors to join the P2P system
before starting the mining task in order to collect
performance results. In general, this is not necessary, but
in the following results we did not want to consider the
latency that is required to simply start up the remote peers.

4.2 Running Time and Speedup

We carried out the analysis of the distributed approach with
the RRP policy by showing the speedup curve of the
parallel over the serial algorithm for different minimum
support values (minSupp).

The performance of the sequential algorithm that is
used to determine the speedup, is obtained from an
optimized version of the algorithm described in [8] in the
highest performing server3 that is available for our tests.

As shown in Fig. 6a, the speedup is linear in the first part
of the chart, especially for the lowest minSupp value
(4 percent). For minSupp values 6 percent and 8 percent,

it is evident that more resources cannot further decrease the
running time because the amount of work is not significant
enough and additional computational resources cannot be
effectively exploited. Nevertheless, it is positive that the
running time does not increase when unnecessary resources
are used as one might expect because of the additional
communication and computation overheads. This provides
evidence of the good scalability properties of the system.
Moreover, it means that the determination of the optimal
number of processors for a given task is not critical with
respect to the running time.

As expected, the algorithm provides better performance
for lower values of the minimum support, i.e., for larger
problem sizes, where the speedup monotonically increases
till the maximum number of the available computing nodes.
The figure also shows the running time for minSupp ¼ 4
percent for completeness.

In Fig. 6b, we provide a comparison of the speedup
curves of the different DLB methods. In the first part of the
chart, all methods are equivalent. This typically corre-
sponds to a high parallel efficiency and a high ratio of the
problem size over the number of processors. In the second
part, however, it is evident that, for the given problem size,
the RRP method is able to exploit more computational
resources; the speedup always increases when the number
of processors increases. In contrast, the MS method shows
evident scalability issues; from 48 to 64 processors there is a
drop of the speedup, hence the overall time increases. The
two RP-based methods seem to be able to keep the speedup
at least constant, but they are not able to effectively exploit
more resources. It should be noted that the RP-based
methods actually had a high variability in the performance;
the reported values are averages over several trials. Any-
way, in a single trial, they have never performed better than
the RRP method and their speedup typically oscillated
between this and the MS method.

4.3 Dynamic Load Balancing Evaluation

The speedup, or equivalently the running time, gives an

immediate measure of the effectiveness of the different DLB

methods; a comparison of the speedup curves has clearly

782 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 8, AUGUST 2006

Fig. 6. Speedup and running time curves. (a) The Ranked-Random Polling (RRP) policy and (b) comparison of various DLB methods (minSupp =

4 percent).

2. Nodes have different hardware and software configurations. The
group of the eight highest performing machines is equipped with a CPU
Intel Xeon 2.40GHz, 3GB RAM and run Linux 2.6.5-7.151 as well as Java SE
1:4:2 06.

3. AMD Opteron dual Processor 848 2193MHz with 1MB cache and 32GB
RAM.

shown (Fig. 6b) that the distributed application based on the

RRP method has a better performance than the others.
In this section, we have a closer look at the reasons in

order to better understand the differences among the DLB

approaches.
We first compare two overall DLB performance figures,

namely, the Jain’s fairness index [28] and the relative load

imbalance index.
The Jain’s fairness index is often adopted to measure the

equality of the allocation of a shared resource to different

contending entities. In this case, we want to measure the

quality of the load balancing, which aims at the equal

allocation of the overall computational load to processors.

The Jain’s fairness index is defined as:

J ¼ fðx1; x2; . . . ; xNÞ ¼
P

N
i¼1xi

� �2

N �
P

N
i¼1x

2
i

; ð1Þ

where xi is a measure of the work load at processor Pi. In

particular, the quantity we consider is the running time

spent in useful work by each processor:

xi ¼ TPi;work:

The index of (1) is continuous and bounded in the range

½0; 1�. It is independent of the scale, the metric and the total

amount of the shared resource and of the number of

contending entities. An index closer to 1 means a better

fairness in the allocation. In our context, the index is a

measure of the quality of the load balance.
Another index that has been adopted to measure the

DLB performance (e.g., in [29]) is the relative load

imbalance index (LI), given by

LI ¼ fðx1; x2; . . . ; xNÞ ¼ 1�
P

N
i¼1xi

N �max N
i¼1xi

: ð2Þ

The index is bounded in the range ½0; 1�, but it does not

have the other properties described above for the Jain’s

index. The LI index is a measure of the load imbalance; a

lower value means better load balancing.

The charts in Fig. 7 show these two performance figures
for the different DLB algorithms. The RRP method confirms
its superiority, especially when the number of processing
elements increases and the system has low parallel
efficiency (ratio between the speedup and the number of
processors). The MS method performs worse than the
others and the two RP-based methods have a similar
intermediate behavior.

In general, the charts in Fig. 7 do not add much
information to the one already provided by the speedup
comparison. However, the Jain’s index shows a small
superiority of the RP-based method with the heuristic
approach (RP) over the simple work splitting technique
(RP1).

Finally, we look at the relative contribution of the two
main components of the DLB strategy, namely the donor
selection and the work splitting mechanism. To evaluate the
quality of the donor selection we consider the idling periods
of the workers, since they can be related to a wrong choice
of the donor. For the evaluation of the work splitting
mechanism, we compute the relative contribution of the
computation overhead to the working time in the overall
distributed application. The two efficiency indices, respec-
tively, for the donor selection (EDS) and the work splitting
(EWS), are defined as follows:

EDS ¼
XN

i

TPi;idle
TPi;work þ TPi;idle

ð3Þ

and

EWS ¼
XN

i

TPi;comp:overhead
TPi;work

: ð4Þ

Fig. 8a shows the donor selection efficiency for different
numbers of processing nodes. The RRP policy manages to
keep the workers more busy than the other policies, the two
RP-based approaches behave very similarly and the MS
method clearly shows its scalability limitations. This is
another confirmation of the results analyzed so far.
However, in the chart of Fig. 8b, the MS method is able to

DI FATTA AND BERTHOLD: DYNAMIC LOAD BALANCING FOR THE DISTRIBUTED MINING OF MOLECULAR STRUCTURES 783

Fig. 7. Overall DLB evaluation (minSupp ¼ 4 percent). (a) Jain’s index (higher values are better) and (b) load imbalance index (lower values are

better).

outperform all the others. This is an evident effect of the
careful selection of the donor in the centralized approach
with global knowledge. Job requests issued by the master
are addressed to a proper donor with a small probability to
generate trivial tasks. The RRP policy, however, is able to
reach a good efficiency, close to the optimal of the MS
method.

This final analysis confirms that the proposed ranked-
random polling DLB policy is able to combine good
scalability properties and low computation overheads by
exploiting global knowledge of job statistics.

5 CONCLUSIONS

In this paper, we presented a peer-to-peer computing
approach to the frequent subgraph mining problem. The
distributed algorithm has been applied to the task of
discriminative molecular fragment discovery. Several issues
have been discussed for an effective design of a large-scale
distributed approach to the frequent subgraph mining
problem. The adopted approach is based on three compo-
nents, which are a partitioning criterion of the search space,
a novel dynamic load balancing policy and a peer-to-peer
communication architecture. Very low communication and
synchronization requirements, a decentralized receiver-
initiated load balancing and high scalability of the commu-
nication framework make this distributed data mining
application suitable for large-scale, multidomain, nondedi-
cated heterogeneous environments like computational
grids. Furthermore, the proposed approach naturally
tolerates node failures and communication latency and
supports dynamic resource aggregation. Experimental tests
on real molecular compounds in a distributed nondedicated
computing environment confirmed its effectiveness in
terms of running time performance, low parallel overhead
and load balancing.

Future research effort will focus on very large-scale
systems, where the centralized server for job statistics could
potentially become a bottleneck. In this case, the dynamic
load balancing framework needs to be improved with a
distributed management of job statistics. For example, the

DLB framework could be extended in a hierarchical

structure resembling the Domain Name Service infrastruc-

ture or a second-generation peer-to-peer system. Moreover,

in the particular application we presented, the focus data

set is relatively small and can be easily duplicated, while the

complement data set is typically large. A data-parallel

approach based on the partitioning of the complement data

set could provide significant improvements and allow the

mining of very large data sets that do not fit in the main

memory of a single system. This data-parallel approach can

be integrated into the proposed task-parallel one in order to

fully exploit a distributed memory system.

ACKNOWLEDGMENTS

This work was supported by the Italian National Research

Council (CNR) and the DFG Research Training Group GK-

1042 “Explorative Analysis and Visualization of Large

Information Spaces.” The authors thank the Department

of Computer and Information Science of the University of

Konstanz for the use of their machines.

REFERENCES

[1] M. Deshpande, M. Kuramochi, and G. Karypis, “Frequent Sub-
Structure-Based Approaches for Classifying Chemical Com-
pounds,” Proc. IEEE Int’l Conf. Data Mining (ICDM ’03), Nov. 2003.

[2] T. Washio and H. Motoda, “State of the Art of Graph-Based Data
Mining,” ACM SIGKDD Explorations Newsletter, vol. 5, no. 1,
pp. 59-68, July 2003.

[3] R. Agrawal, T. Imielinski, and A.N. Swami, “Mining Association
Rules between Sets of Items in Large Databases,” Proc. 1993 ACM
SIGMOD Int’l Conf. Management of Data, May 1993.

[4] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “New
Algorithms for Fast Discovery of Association Rules,” Proc. Third
Int’l Conf. Knowledge Discovery and Data Mining (KDD ’97), pp. 283-
296, 1997.

[5] R. Finkel and U. Manber, “DIB—A Distributed Implementation of
Backtracking,” ACM Trans. Programming Languages and Systems,
vol. 9, no. 2, pp. 235-256, Apr. 1987.

[6] M. Deshpande, M. Kuramochi, and G. Karypis, “Automated
Approaches for Classifying Structures,” Proc. Workshop Data
Mining in Bioinformatics (BioKDD), pp. 11-18, 2002.

[7] X. Yan and J. Han, “gSpan: Graph-Based Substructure Pattern
Mining,” Proc. IEEE Int’l Conf. Data Mining (ICDM ’02), 2002.

784 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 8, AUGUST 2006

Fig. 8. Efficiency evaluation of DLB mechanisms (minSupp ¼ 4 percent). (a) Donor selection efficiency EDS (higher values are better) and (b) work

splitting efficiency EWS (higher values are better).

[8] C. Borgelt and M.R. Berthold, “Mining Molecular Fragments:
Finding Relevant Substructures of Molecules,” Proc. IEEE Int’l
Conf. Data Mining (ICDM ’02), pp. 51-58, Dec. 2002.

[9] S. Kramer, L. de Raedt, and C. Helma, “Molecular Feature Mining
in HIV Data,” Proc. Seventh Int’l Conf. Knowledge Discovery and Data
Mining, (KDD ’01), pp. 136-143, 2001.

[10] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman, 1979.

[11] E.M. Luks, “Isomorphism of Graphs of Bounded Valence Can Be
Tested in Polynomial Time,” J. Computer and System Sciences,
vol. 25, pp. 42-65, Aug. 1982.

[12] M.J. Zaki, “Parallel and Distributed Association Mining: A
Survey,” IEEE Concurrency, vol. 7, no. 4, pp. 14-25, 1999.

[13] G. Di Fatta and M.R. Berthold, “Distributed Mining of Molecular
Fragments,” Proc. IEEE DM-Grid Workshop Int’l Conf. Data Mining
(ICDM ’04), Nov. 2004.

[14] C. Wang and S. Parthasarathy, “Parallel Algorithms for Mining
Frequent Structural Motifs in Scientific Data,” Proc. 18th Ann. Int’l
Conf. Supercomputing (ICS ’04), June 2004.

[15] F. Schreiber and H. Schwöbbermeyer, “Towards Motif Detection
in Networks: Frequency Concepts and Flexible Search,” Proc. Int’l
Workshop Network Tools and Applications in Biology (NETTAB ’04),
pp. 91-102, Sept. 2004.

[16] G. Di Fatta and M.R. Berthold, “High Performance Subgraph
Mining in Molecular Compounds,” Springer’s LNCS Proc. 2005
Int’l Conf. High Performance Computing and Comm. (HPCC-05), Sept.
2005.

[17] G. Di Fatta and M.R. Berthold, “Efficient Mining of Discriminative
Molecular Fragments,” Proc. 17th IASTED Int’l Conf. Parallel and
Distributed Computing and Systems (PDCS-05), Nov. 2005.

[18] R. Agrawal and J. Shafer, “Parallel Mining of Association Rules,”
IEEE Trans. Knowledge and Data Eng., vol. 8, no. 6, pp. 962-969, Dec.
1996.

[19] E. Han, G. Karypis, and V. Kumar, “Scalable Parallel Data Mining
for Association Rules,” IEEE Trans. Knowledge and Data Eng.,
vol. 12, no. 3, pp. 337-352, May/June 2000.

[20] Daylight Chemical Information Systems, Inc., SMILES—Simpli-
fied Molecular Input Line Entry Specification, http://
www.daylight.com/smiles, 2006.

[21] R. Karp and Y. Zhang, “A Randomized Parallel Branch-and-
Bound Procedure,” Proc. 20th Ann. ACM Symp. Theory of
Computing (STOC ’88), pp. 290-300, 1988.

[22] S. Chakrabarti, A. Ranade, and K. Yelick, “Randomized Load-
Balancing for Tree-Structured Computation,” Proc. Scalable High
Performance Computing Conf. (SHPCC ’94), pp. 666-673, May 1994.

[23] Y. Chung, J. Park, and S. Yoon, “An Asynchronous Algorithm for
Balancing Unpredictable Workload on Distributed-Memory Ma-
chines,” ETRI J., vol. 20, no. 4, pp. 346-360, Dec. 1998.

[24] V. Kumar, A. Grama, and V.N. Rao, “Scalable Load Balancing
Techniques for Parallel Computer,” J. Parallel and Distributed
Computing, vol. 22, no. 1, pp. 60-79, July 1994.

[25] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to
Parallel Computing. Addison-Wesley, 2003.

[26] Nat’l Cancer Inst., DTP AIDS Antiviral Screen Dataset, http://
dtp.nci.nih.gov/docs/aids/aids/data.html, May 2004.

[27] O. Weislow, R. Kiser, D. Fine, J. Bader, R. Shoemaker, and M.
Boyd, “New Soluble Formazan Assay for HIV-1 Cytopathic
Effects: Application to High Flux Screening of Synthetic and
Natural Products for AIDS Antiviral Activity,” J. Nat’l Cancer Inst.,
vol. 81, pp. 577-586, 1989.

[28] R. Jain, D. Chiu, and W. Hawe, “A Quantitative Measure of
Fairness and Discrimination for Resource Allocation in Shared
Computer Systems,” DEC Research Report TR-301, Technical
Report, 1984.

[29] R. Sakellariou and J.R. Gurd, “Compile-Time Minimisation of
Load Imbalance in Loop Nests,” Proc. 11th ACM Int’l Conf.
Supercomputing (ICS ’97), pp. 277-284, July 1997.

Giuseppe Di Fatta received the masters degree
in electronic engineering in 1995 and the PhD
degree in electronic, computer science, and
telecommunications engineering in 2002 from
the University of Palermo (Italy). In 1999, he was
with the International Computer Science Insti-
tute, Berkeley, California, as research fellow.
Since 2000, he has joined the High Performance
Computing and Networking Institute of the Italian
National Research Council (ICAR-CNR) and he

has been a lecturer at the University of Palermo (Italy). Since March
2004, he has been with the University of Konstanz, Germany. His
research interests include distributed computing, computer networks,
data mining, and soft computing. He is a member of the IEEE.

Michael R. Berthold spent more than seven
years in the US, among others, at Carnegie
Mellon University, Intel Corporation, the Univer-
sity of California at Berkeley, and—most recen-
tly—as director of an industrial think tank in South
San Francisco. Since August 2003, he has been
at the ALTANA-Chair for Bioinformatics and
Information Mining at Konstanz University, Ger-
many, where his research focuses on using
machine learning methods for the interactive

analysis of large information repositories in the Life Sciences. He is past
president of the North American Fuzzy Information Processing Society,
associate editor of several journals, and on the Board of Governors of the
IEEE System, Man, and Cybernetics Society. He has been involved in the
organization of various conferences, most notably the IDA-series of
symposia on Intelligent Data Analysis. Together with David Hand, he
coedited the successful textbook Intelligent Data Analysis: An Introduc-
tion, which has recently appeared in a completely revised, second edition.
He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

DI FATTA AND BERTHOLD: DYNAMIC LOAD BALANCING FOR THE DISTRIBUTED MINING OF MOLECULAR STRUCTURES 785

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

