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Summary and Conclusions 

Fully Bayesian approaches to analysis can be over ambitious where there exist realistic 

limitations on the ability of experts to provide prior distributions for all relevant 

parameters.  This research was motivated by situations where expert judgement exists to 

support the development of prior distributions describing the number of faults potentially 

inherent within a design but could not support useful descriptions of the rate at which 

they would be detected during a reliability growth test.    
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This paper develops inference properties for a reliability growth model.  The approach 

considered assumes a prior distribution for the ultimate number of faults that would be 

exposed if testing were to continue ad infinitum but estimates the parameters of the 

intensity function empirically.  A fixed-point iteration procedure to obtain the Maximum 

Likelihood Estimate is investigated for bias and conditions of existence.   

 

The main purpose for this model is to support inference in situations where failure data 

are few. A procedure for providing statistical confidence intervals is investigated and 

shown to be suitable for small sample sizes.  An application of these techniques is 

illustrated through an example. 

 

 
1. INTRODUCTION 

Order statistic models assume there is a finite, but unknown, number of faults in a system 

and that these faults will be realized as failures through growth test. In addition, the 

failure times will represent realizations from an underlying probability distribution.  

Models developed from order statistic (OS) approaches have dominated software 

reliability growth modeling [1-10].  This is because such models captured the belief that 

once a fault had been removed from software, it is removed forever and no other faults 

are introduced.   

 

In contrast, non-homogeneous Poisson processes (NHPP) form the basis of many 

hardware reliability growth models [11-17].  This is in part due to mathematical 

tractability and in part due to the belief that hardware systems will possess an asymptotic 
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failure rate.  Therefore even if all significant design weaknesses are exposed during 

growth test, there will still exist a failure rate due to the physical nature of the system.   

 

There are three major differences between the two approaches: 

(i)  the number of faults remaining undetected by an arbitrary time t is assumed an 

unknown constant in OS models, but a random variable in NHPP; 

(ii) if testing continues infinitely then there would be a finite number of faults 

detected for an OS model, however for a NHPP model it would depend upon 

whether or not the integral over the range (0, ∞) of the intensity function diverged 

or converged; 

(iii)  the intensity function for OS models is conditional on the history of the events 

that have occurred by time of analysis, while a NHPP is independent of the 

history of the process. 

 

OS and NHPP modeling approaches can be reconciled through Bayesian methods if the 

integral of the chosen intensity function converges to a finite number and a Poisson prior 

distribution is assumed for the number of faults in the system.  A specific parametric 

example is given in [7], which is a Bayesian counterpart to the NHPP proposed by [11].  

Further, OS reliability growth modeling offers an intuitive approach to explaining and 

estimating aspects of events that have or will occur on test.  For example, consider the 

situation for either software or hardware systems where there exists a finite and 

identifiable list of engineering concerns representing potential faults that may result in 
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failure on growth test.  In this case a prior distribution may be elicited and used with an 

OS models structure as advocated by [18]. 

 

However OS reliability growth models are often criticized [6, 19] for supporting poor 

inference about the ultimate number of faults exposed through test.  Therefore in this 

paper we derive point and interval estimators for the expected number of faults remaining 

in the system and the mean time to failure assuming exponential times to failure and a 

Poisson prior distribution.  The sampling distribution of the estimator of the mean time to 

fault detection is obtained and the properties of the estimator are investigated for typical 

values of sample size parameters experienced in practice. Finally, an example of the 

application of the proposed model and the usefulness of the resulting estimates are 

illustrated for a growth test of an electronic system. 

 

Acronyms and Notation 

CDF  cumulative distribution function 

i.i.d.   independently and identically distributed 

MLE  maximum likelihood estimator 

NHPP  Non Homogeneous Poisson Process 

OS  order stat istic 

PDF  probability density function 

jα  expected number of faults that will be realised as ratio of observed number 
of faults 

 
b  observed number of faults  
 
fb(t)   PDF of time to detection of bth fault given N ≥ b 
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Fb(t)  CDF of time to detection of bth fault given N ≥ b 
 

1γ −p   ratio of MLE to true hazard rate after p-1 iterations 
 

~ 
 
 

L M t  likelihood function for order statistic model 

 
λ   mean number of faults 
 
j  observed number of failures by time t′ 
 
M  parameter set of order statistic model 
 
µ   hazard rate of distribution of times to realisation of faults 
   
N  number of faults 
 

( )π =N n  prior distribution of number of faults 
 

jR  mean total time on test to realisation of jth fault conditioned on faults 
realised to date 

 
ti  accumulated test time to realisation of ith fault 
 

't   observed accumulated test time at point of analysis 
 
~

t   set of accumulated test times 
 

iW  weighted sum of independently and identically distributed exponential 
random variables 

  
 
 
  2. ORDER STATISTIC RELIABILITY GROWTH MODEL 

Assume that prior to implementing a growth test engineering judgement is elicited from 

relevant engineers about the number of concerns they have about the system design.  Further 

assume that the likelihood of these concerns being realized as failures on test can be 

summarized in a prior distribution.  An explanation of how such prior distributions should 

be elicited and constructed is provided in [20].  Here we proceed to use this distribution as a 
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representation of the uncertainty about the number of potential faults (N) that will require 

corrective action. 

 

In general an OS model does not require the prior probability distribution to conform to any 

parametric form. Although here we consider the case of a prior Poisson distribution, namely:  

 

( ) ,         0, 0,1..
!

λλ
π λ

−
= = > =

n e
N n n

n
    (1) 

 

The times of fault detection are assumed i.i.d. with distribution function F(t). The number of 

faults ultimately detected through testing (N) is assumed greater than or equal to the 

observed number of faults detected (b).  This results in the following PDF for the time to 

detection of the bth fault, tb: 

 

( ) [ ] [ ]1
1( ) ( ) 1 ( ) , 0, 1,2,..,

-1 -
− −

−

 
= − > > = 

 

b N b
b b b b b b b

N
f t N F t f t F t t t b N

b N b
                                        

(2) 

It is assumed no immediate faults are detected at time 0 and that failures are properly 

classified as belonging to the fault detection process.  This function can be shown to 

integrate to 1, with a change of variable. 

 

By taking the expectation of this distribution with respect to N and using the expert's prior 

distribution conditional on N being greater than or equal to b, the following distribution 

results: 
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Bayesian methods can be applied to update the prior distribution using observed data at test 

time t′ , by which time it is assumed that j failures have occurred.  Following [21] the 

likelihood function for a OS model conditioned on a set of parameters M, where the first j 

faults have been detected at accumulated test time ti (i = 1 to j) and N-j faults will be 

detected after accumulated test time t′ is given by: 
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where: 

~

1,... , ' =   
jt t t t  

Thus using the relationship derived from Bayes theorem, the updated expert distribution is 

given by: 
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where: 0 < tj < t′ < tj+1 .    

 

This is a Poisson distribution with expectation: 

~

[1 ( ')] λ  = −  
E v t F t             (5) 

 

3.  POINT ESTIMATORS FOR THE MEAN TIME TO FAULT DETECTION 

Assume the times to failure are exponentially and identically distributed with common 

hazard rate µ with PDF and CDF: 

 

( ) ( )
( ) ( )

exp , , 0

1 exp ,

µ µ µ µ

µ µ

= − >

= − −

f t t t

F t t
       (6) 

 

This OS reliability growth model was first explored by [1] using classical inference 

techniques and the poor performance of estimators of the parameter N are well 

documented.  For example, [19] demonstrated that the MLE of N is unstable and 

inconsistent for small samples. However, following [7 and 18], who assume prior 

information about the number of faults present in a system, the MLE of the mean time to 

fault detection, i.e. µ-1 (or the mode of the updated prior distribution) can be shown to be the 

random variable 
^

1
µ

 that solves: 
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^
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NB: MLE’s are invariant under monotonic transformation.  Therefore, the MLE of the 

hazard rate µ is the inverse of the MLE of the mean µ-1.  

 

Taking the limit of equation (7) as the time approaches ∞, we obtain: 

 

^

1 1

'

' exp '
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λ µ
= =
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j j

i i
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t

t t t t

j j
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which is the MLE of µ-1 with j i.i.d. exponential random variables.  Therefore, the 

distribution of the estimate of the (hazard rate) mean tends to that of a(n) (Inverse) Gamma. 

 

Thus the model appears to behave intuitively regarding both the limiting values of number 

of observations (i.e. j) and time of analysis (i.e. t′) by producing sensible estimates as the 

MLE of µ represents the observed number of failures divided by total expected exposure, 

which is a natural estimator of µ [23].  

 

The MLE equation is an implicit function without closed form, and as such it is not 

obvious as to whether there exists a unique solution and what the properties of the point 
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solution are with respect to bias and variability.  We first consider the existence of the 

estimator then we investigate it for bias and variability. 

 

3.1 Existence of Estimator 

Consider the estimator for the mean µ-1 obtained after the pth iteration of a fixed-point 

iteration [24]: 

 

 
( ) ( )

( )1^

11
µλ

µ

−−

=

+
=

∑ p j

j
t

i j
i

p

t t e

j
        (9) 

 

This function can be shown to have at least one solution [25] and have three solutions 

(implying a bi-modal Likelihood function) if both of the following conditions are met 

simultaneously: 
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λ

α =j j
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FIGURE 1 

 

The situation where the likelihood function is bimodal is unlikely to occur for processes 

where faults are few, if the expert is calibrated and the model assumptions are correct.   

Figure 1 illustrates the region where these conditions are met.  This phenomenon is 

discussed in greater detail in [25].  

 

3.2 Bias of Estimator 

We consider the MLE expressed as an iterative function (9) and evaluate the expectation 

of the estimator obtained after the pth iteration conditioned on the estimator obtained after 

the p-1th iteration.  Furthermore, we consider the expectation in two stages, firstly 

conditioned on the number of faults that exist within the system, i.e. N, and then with 

respect to N.  This allows us to consider the sum of the first j order statistics as a 

weighted sum of independent and identically distributed exponential random variables 

with mean µ-1, i.e. Wi,  [21]. 
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This can be reduced to: 
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1
1Where:         

µ
γ

µ
−

− = p
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We cannot obtain a closed form solution to this equation.  However, a numerical solution 

can be easily obtained, which shows (12) to be an unbiased estimator, if γp-1 is 1.  Figure 

2 is an illustration of the expectation of the MLE as a function of γp-1 compared with the 

function 1/γp-1.  The functions can be seen to intersect at γp-1 equal to 1. 

 

The estimator obtained through the fixed-point iteration (9) is a biased estimator but the 

expectation is that it is drawn towards the true parameter value on every iteration.  

Consider Figure 2, and suppose a starting value for the iteration were chosen such that γ0  

were greater than 1, then it is expected that γ1 (to be used in the next iteration) would be 

greater than 1 but closer to 1 (i.e. γ1< γ0).  Only in the situation where E[1/γp] is 1 is the 

expectation of the iteration to remain unchanged.  The same result is obtained if we 

consider an initial value chosen which is less than 1.   

  

FIGURE 2 
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4.  INTERVAL ESTIMATORS  

The MLE can be expressed as a weighted sum of independent exponential random 

variables. 
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We can consider the expression involving λ as the expected number of faults remaining 

in the system and obtain the following approximation: 
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The weighted sum expressed in (13) is approximately the average of j independently and 

identically distributed exponential random variables and as such the distribution of the 

MLE is approximately Gamma distributed with mean and variance: 
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The approximate mean (14) is equal to the actual mean and the approximate variance is 

the limiting variance as we realise all the faults within the system (in addition to the 

limiting variance as λ approaches infinity).  From (12) it is clear that the ratio of the MLE 

to µ, i.e. γ , is not strictly a pivotal quantity but should be approximately. 

 

Asymptotically, the relative log-likelihood function has a Gamma distribution [26] and as 

such we conducted an extensive simulation exercise to investigate this property for small 

sample sizes.  Specifically, we compared the distribution of (15) with a χ2 having 1 

degree of freedom.  
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The simulation exercise was conducted on Maple 6 [27].  The parameter values chosen 

were λ equal to 1, 3, 5, 7, 9 and 25, µ equal to 10-5, 10-4, 10-3, 10-2,10-1 and 1 and j equal 
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to 1, 3, 5, 7 and 9.  1000 simulations were conducted for each combination.  Described 

within Table 1 are the maximum absolute deviations the empirical distributions from the 

simulations had compared with χ2 with 1 degree of freedom. 

 

The results of the exercise showed no major difference in the maximum deviation 

through changing µ or λ.  On average the maximum deviation decreases as the number of 

faults detected (i.e. j) increases.  In addition, a Kolmogorov-Smirnov test [28] was used 

to assess the goodness-of-fit of the χ2 with 1 degree of freedom to the simulation results.  

We found that 78% of the 168 simulations indicate a good fit at the 5% significance level 

and 89% are good fits at the 1% significance level.  Removing the situation where we 

have only one fault detected, i.e. j = 1, only 1 of the remaining 132 sets of simulations fail 

at the 1% significance level. 

 

TABLE 1 

 

5. EXAMPLE 

The example is based around the context and data from the reliability growth test of a 

complex electronic system.  While a synthetic version of the data is presented here this 

does not detract from the key issues arising and the way in which they are treated.   

 

Before testing commenced, engineering experts were interviewed individually and asked 

to note any concerns they had about likely faults in the system design.  This information 

was combined into a prior probability distribution.  This is discussed in detail in [20, 22].  
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During test four faults were detected.  None by 500h.  Three between 500h and 1000h 

and a further one in a subsequent 500h of test. Numerous no fault found failures were 

also identified and later attributed to a particular external test problem. 

 

At each of the review points, the Bayes OS model was applied and a selection of key 

results obtained. 

 

Figure 3a shows the prior distribution elicited from the engineers.  Figure 3b shows the 

posterior distribution with 95% confidence intervals, updated in light of the faults that 

were detected.  Not surprisingly, the average number of faults that remain undetected in 

the system design decreases as test exposure increases. The prior and posterior 

distribution is Poisson and the time of realising these faults was modelled with an 

exponential distribution.   

 

FIGURE 3 

 

The confidence intervals in Figure 3b are obtained through the method describe in section 

4 using the relative log-likelihood function to obtain confidence intervals for µ.   

 

The usefulness of this procedure for developing confidence intervals is evident through 

Figure 4 where the asymmetry in the confidence intervals is apparent.  A decision 

confronting the Project Manager was in setting the stress levels of the reliability growth 
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test.  While the point estimate of the probability of detecting a fault within the next 1000 

hours of testing was felt to be satisfactory, the lower bound of this function was not.  This 

supported the decision to increase the stress levels of the testing in order to induce the 

faults that were believed to exist within the design. 

 

FIGURE 4 

 

Figure 5 shows the estimate of the probability of detecting all faults that remain within 

the system by specified further testing time.  The asymmetry in the confidence intervals is 

interesting, as it supports a more optimistic view of the design. 

 

FIGURE 5 
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Figure 1  Region where likelihood function is bimodal. 
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(a) j = 1 and λ = 40       (b)  j = 40 and λ = 40 

 

Figure 2  Relationship between mean of the MLE after p iterations and γp-1 



 23 

Table 1  Maximum absolute deviations of simulations from χ2 (1) 

λ\µ 10-5 10-4 10-3 10-2 10-1 1 

1 0.0383 0.0256 0.0191 0.0353 0.0773 0.0383 

 

3 0.0661 0.0239 0.0465 0.0578 0.0568 0.0661 
j=1 

5 0.0485 0.0478 0.0522 0.0464 0.0597 0.0485 
 

7 0.0586 0.0536 0.0671 0.0468 0.0497 0.0586 
 

9 0.0540 0.0597 0.0651 0.0575 0.0449 0.0540 
 

25 0.0495 0.0450 0.0462 0.0348 0.0457 0.0495 
 

λ\µ 10-5 10-4 10-3 10-2 10-1 1 

1 0.0246 0.0322 0.0216 0.0207 0.0201 0.0239 

 

3 0.0224 0.0201 0.0273 0.0247 0.0184 0.0233 
j=3 

5 0.0150 0.0291 0.0171 0.0412 0.0429 0.0234 
 

7 0.0580 0.0577 0.0433 0.0426 0.0280 0.0325 
 

9 0.0280 0.0313 0.0469 0.0266 0.0346 0.0542 
 

25 0.0161 0.0200 0.0458 0.0301 0.0346 0.0543 
 

λ\µ 10-5 10-4 10-3 10-2 10-1 1 

1 0.0243 0.0202 0.0184 0.0194 0.0232 0.0184 

 

3 0.0394 0.0377 0.0140 0.0243 0.0348 0.0140 
j=5 

5 0.0303 0.0177 0.0137 0.0194 0.0294 0.0137 
 

7 0.0171 0.0300 0.0371 0.0274 0.0159 0.0371 
 

9 0.0330 0.0365 0.0357 0.0343 0.0406 0.0357 
 

25 0.0382 0.0342 0.0284 0.0256 0.0193 0.0284 
 



 24 

λ\µ 10-5 10-4 10-3 10-2 10-1 1 
 

3 0.0418 0.0259 0.0199 0.0218 0.0218 0.0217 
j=7 

5 0.0281 0.0255 0.0219 0.0201 0.0201 0.0239 
 

7 0.0232 0.0361 0.0167 0.0333 0.0333 0.0134 
 

9 0.0320 0.0265 0.0333 0.0328 0.0328 0.0521 
 

25 0.0202 0.0337 0.0265 0.0394 0.0394 0.0359 
 

λ\µ 10-5 10-4 10-3 10-2 10-1 1 
 

3 0.0156 0.0286 0.0339 0.0238 0.0334 0.0175 
j=9 

5 0.0285 0.0250 0.0404 0.0351 0.0275 0.0243 
 

7 0.0367 0.0308 0.0423 0.0178 0.0147 0.0227 
 

9 0.0275 0.0493 0.0457 0.0217 0.0209 0.0286 
 

25 0.0216 0.0259 0.0390 0.0350 0.0166 0.0247 
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(a) Prior distribution (b) Posterior distribution with 95% 

confidence intervals  

 

Figure 3 Prior and posterior distribution for the number of faults remaining  

                  undetected within the system 
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Figure 4 Estimate of the probability of detecting at least one fault if testing were to 

continue with 95% confidence intervals 
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Figure 5 Estimate of the probability of detecting all faults if testing were to 

continue with 95% confidence intervals 

 

 


