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Abstracts 

Many engineering systems can perform their intended tasks with various levels of performance, 

which are modeled as multi-state systems (MSS) for system availability/reliability assessment 

problems. Uncertainty is an unavoidable factor in MSS modeling and it must be effectively 

handled. In this work, we extend the traditional universal generating function (UGF) approach for 

multi-state system (MSS) availability/reliability assessment to account for both aleatory and 

epistemic uncertainties. First, a theoretical extension, named hybrid UGF (HUGF), is made to 

introduce the use of random fuzzy variables (RFVs) in the approach; second, the composition 

operator of HUGF is defined by considering simultaneously the probabilistic convolution and the 

fuzzy extension principle; finally, an efficient algorithm is designed to extract probability boxes 

(p-boxes) from the system HUGF, which allow quantifying different levels of imprecision in 

system availability/reliability estimation. The HUGF approach is demonstrated on a numerical 

example and applied to study a distributed generation system, with a comparison to the widely 

used Monte Carlo simulation method. 
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Acronyms 

BSS binary-state system 

CDF cumulative distribution function 

FV fuzzy variable 

HUGF hybrid universal generating function 

MCS Monte Carlo simulation 

MSS multi-state system 

PDF probability density function 

PMF probability mass function 

RV RV 

RFV random fuzzy variable 

UGF universal generating function 

 

Notations 

    the highest state of component i 

    the performance variable of component i 

       the performance level of component i at its state   

n   number of components of MSS 

      the power output of a solar generator 

      the performance variable of MSS 

      the system structure function of MSS 

w  the demand presented to MSS 

   the system adequacy variable defined as        

    the system adequacy level at state j 

       the availability function of MSS given w 

         p-box of system availability of level   

   probability sample space 

   possibility sample space 

   a random variable 

    a fuzzy variable 

     a random fuzzy variable 

        the u-function of a variable   
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1. Introduction 

Multi-state system (MSS) modeling has been widely applied to resolve system availability/ 

reliability assessment problems [1, 2]. Under this framework, the performance of each component 

is discretized into more than two exclusive states from perfect functioning to complete failure, 

and each state is characterized by a probability of occurrence. In general, the intermediate state 

can be decided by component degradation situation and/or system function requirements, because 

many components are subject to natural deteriorations which can render them being partially 

functioning, and the system function requirement might force the component to reduce its 

performance level even if it bears no degradation. Compared to binary-state system (BSS) models, 

the MSS models offer higher flexibility in the description of the system state distribution and 

evolution, for more precise approximations of real-world systems. MSS is a modeling framework 

capable of handling both availability and reliability assessments. In this paper, we focus on 

availability assessment assuming that the system is repairable.  

In general, the target of the MSS availability assessment is to derive the system availability      

as the probability that the system performance      is no less than the demand w,      

           .      is determined by the MSS system structure, which is a function      of 

the n component performance variables,                     , where    is the i-th 

component performance variable that takes values from the finite set                    
  where 

     is the performance level of component i at its state           and    is the highest 

possible state of component i. Typically,      and      
 represent the performance levels at 

complete failure and perfect functioning conditions, respectively. In this study, we assume that 

the state values in the set                    
  are ascendingly ordered. For MSS availability 

assessment, a number of methods have been proposed: minimal cuts/paths [3], universal 

generating function (UGF) [4], multi-valued decision diagram [5], Monte Carlo simulation (MCS) 

[6], etc. Among them, UGF has been shown to be a flexible tool capable to represent the 

component performance probability distribution and derive the system performance probability 

distribution algebraically [7].  

Uncertainty is an unavoidable factor in MSS availability assessment [2]. Conventionally, the 

uncertain behavior of    is described by its discrete probability distribution           , such 
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that            
  
     . The probability distribution is sufficient to describe the state 

randomness, i.e. uncertainty of objective and aleatory type [8] due to the natural variability or 

stochasticity of the component behavior [9]. Another type of uncertainty to account for is that due 

to the incomplete or imprecise knowledge about the component performance [10-15]. This type 

of uncertainty is often referred to as subjective and epistemic [8, 16].  

Recently, epistemic uncertainty in MSS model has been treated by a fuzzy UGF approach [17-19] 

which assumes that the state probabilities and the state performances of components to be FVs, 

respectively. This approach has been further extended to the time domain for dynamic fuzzy MSS 

by assuming the state transition rates and the state performances to be FVs [20, 21]. Later, 

interval values have been used in [22] to represent the imprecision at both state probability and 

performance. It can be observed that in most existing fuzzy UGF studies the imprecision of the 

state probability (or state transition rate in case of dynamic fuzzy UGF) and the state performance 

are treated separately, and represented as different fuzzy variables. Indeed it is a generalized 

approach of hybrid uncertainty representation.  

On the other hand, the theoretical and practical developments in the area of reliability and risk 

assessment [23-26] reveal that a single entity, namely random fuzzy variable (RFV) [25] or 

hybrid number [26], is sufficient to represent and propagate both types of uncertainties in the 

system. RFV is a random distribution of fuzzy numbers [25]. One simple example of RFV is the 

perceived cost of automobile repair: suppose the actual cost of repair is a RV defined on positive 

real numbers, given little information about its exact sample values one can only perceives it 

through a set of ‘windows’ such as ‘cheap’, ‘moderate’, or ‘expensive’ [27]. By definition, the 

sum of the probability masses attached to all fuzzy numbers in the sample space of a RFV must 

be equal to 1. This property has not been considered in the original works of fuzzy UGF [17-19]. 

In dynamic fuzzy UGF papers [20, 21] it has been imposed as one constraint of the non-linear 

programming formulation for solving the system availability metrics. Differently, RFV possesses 

this property in nature. Due to the discussions above, we propose the UGF representation of RFV, 

namely hybrid UGF (HUGF). It is also noted that in a very recent work [28], UGF has been 

extended to represent an interval-valued random variable. 

The uncertainty propagation process [23], which is analogous to the process of MSS availability 

assessment, propagates the uncertainties associated to the elementary variables onto the system-
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level function with the least possible loss of information. It is typically realized by the MCS 

method [10, 23, 24], which however can be quite time-consuming [29] and can have difficulties 

in obtaining stable results [23]. Based upon the HUGF, the analytical results of uncertainty 

propagation can be achieved by combining the RFVs with a modified UGF composition operator. 

The efficiency of uncertainty propagation can be thus improved and the results stabilized.  

The contributions of this work are summarized as follows: 1) RFV is introduced to represent both 

randomness and fuzziness in the MSS; 2) HUGF is defined to represent the RFV whose random 

dimension is discrete for the multi-state case; 3) composition operators of HUGF is defined for 

joint uncertainty propagation; 4) to extract useful information from the propagation result, an 

algorithm is designed to obtain the probability boxes (p-boxes) of system availability from the 

HUGF of system adequacy, defined as       . 

The rest of this paper is organized as follows. Section 2 illustrates, through a multi-state model of 

solar generation, the co-existence of aleatory and epistemic uncertainty in MSS and presents the 

assumptions made for MSS modeling. In Section 3, the concept of RFV is recalled and HUGF is 

proposed as theoretical extension of UGF for RFV representation. In Section 4, the MCS 

algorithm of joint uncertainty propagation in MSS is presented and the algebraic operators of 

HUGF are defined. In Section 5, the algorithm extracting the probability boxes (p-boxes) of MSS 

availability is proposed. Section 6 presents two case studies with the comparisons to MCS 

method. Section 7 concludes this work and points out some possible future research directions. 

 

2. MSS with Aleatory and Epistemic Uncertainties 

As mentioned in Section 1, the multi-state model of a component might contain both types of 

uncertainties, aleatory and epistemic. We take the solar generator model from [30] as an 

illustrative example. This model consists of two RVs (RVs), solar irradiation and mechanical 

condition, a set of generation parameters and an energy conversion function (which transfers the 

irradiation to power output). In practice, there is usually sufficient historical data to capture the 

variability in the solar irradiation and mechanical condition. In multi-state setting, solar 

irradiation    is discretized into several exclusive states ranging from zero irradiation to 

maximum irradiation; the mechanical condition    is a binary RV taking values from the set {0, 
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1}, where ‘0’ means complete failure and ‘1’ means perfect functioning. The power output of one 

solar generator is given by the following functions [31]: 

                                                                 (1.a) 

                                                                     (1.b) 

                                                                     (1.c) 

         
      

   
                                                       (1.d) 

   
         

       
                                                           (1.e) 

where     is the power output,      is the solar energy conversion function, 

                                     is the vector of operation parameters,     is the total 

number of solar cells consisting the solar generator,     is the short circuit current in A,    is the 

current temperature coefficient A/
o
C,     is the open-circuit voltage in V,    is the voltage 

temperature coefficient V/
o
C,    is the cell temperature in 

o
C,    is the ambient temperature in 

o
C, 

    is the nominal operating temperature in 
o
C,      is the voltage at maximum power point in V, 

and      is the current at maximum power point in A.  

In literature, the operation parameters are typically treated as constants. In practice, they often 

change during the generator operation due to the degradation of materials, changes in the 

operating environments, etc [32]. However, there are seldom sufficient information to model 

them as RVs, due to the unwillingness of the manufacturers to disclose the commercially 

sensitive data [10]. In this situation, the fuzzy variables (FVs) are one promising alternative. It 

can be seen from eq. (1) that each realization of    is a fuzzy number. Essentially,    is a RFV 

which we will show in Sections 3 and 4. It is should be noted that    can also be referred to as a 

fuzzy random variable [27]. These two concepts are interchangeable since they lead to equivalent 

representations, and complementary interpretations and calculation strategies [25]. 

Based on the example above, the following assumptions are made for our MSS modeling: 

1. For any component i, it has      different states            where state    and 0 are 

the perfect functioning and the complete failure states, respectively. The generic 
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intermediate state j (      ) is a degradation state where the component is partially 

functioning. The state index j is a crisp value. 

2. In the model of a component i, the FVs are used to represent the model parameters if they 

are tainted with imprecision.  

3. Following assumption 2, the performance of a component i is a discrete RV    if there is 

sufficient data to eliminate all the imprecision in its parameters; otherwise it will be a 

RFV   
  (or a pure FV     if only FVs are involved in the component model). 

4. The state of the system is completely determined by the state of its components. 

5. All components are reparable. 

 

3. HUGF for Hybrid Uncertainty Representation in MSS 

In this Section, the definition of RFV is first recalled. Then the UGF representation of RFV, 

named HUGF, is formally defined and the theoretical connection is drawn by proving that the 

first derivative of HUGF at z = 1 equals the expectation of its corresponding RFV. 

 

3.1 RFV  

RFV was first introduced by Kaufmann and Gupta [26] as a tool to express jointly the epistemic 

and aleatory uncertainties. Later on, RFV were extended by Cooper et al. [33] and Baudrit et al. 

[23] for hybrid uncertainty propagation in the area of risk analysis. Given the monotonicity of the 

cumulative distribution functions (CDFs) of the RVs and the nestedness of the possbility 

distribution functions of the FVs, the formal definition of RFV proposed by Ferson and Ginzburg 

[25] is presented as follows. 

Definition 1 (Ferson and Ginzburg [25]) Let   denote the set of all CDFs defined on the real 

number set   and each element     is an onto function            such that             

whenever      . A RFV is a set of closed intervals, each characterized by a pair of functions 

from  : 
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such as for            ,    
       

       
       

    wherenever      , where    

and    represent fuzzy membership values of  . 

Example: Figure 1(a) depicts the three-dimension representation of a RFV. The x-axis is the real 

number line, F-axis has the cumulative probability values, and  -axis contains the possibility 

values. The shaded area at         level includes all the closed probability intervals 

characterized by    as the lower bound and    as the upper bound. Figure 1(c) shows the two-

dimension representation of this RFV and its   level probability intervals. Figure 1(b) depicts the 

intersection of the RFV with the plane F(x) = p, which is essentially a fuzzy number. Similarly, 

Figure 1(d) depicts this intersection in the two-dimension representation. 

 

Figure 1.Three-dimension and two-dimension representations of an example RFV 

 

3.2 HUGF representation of RFV 
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The UGF for a discrete RV X [34] is defined as:  

          
   

                                                       (2) 

where   is the base of the z-transform,     is the sample space size of  ,    is the j-th sample of 

 , and    is the probability mass attached to    satisfying    
 
     . The u-function is useful in 

representing the PMF of discrete RV because it preserves some basic properties of the moment-

generating function, which uniquely determines its PMF. The readers could refer to [34], where 

the details about UGF are presented.  

Beside Definition 1, RFV can also be regarded as a random distribution of fuzzy numbers [33]. In 

the context of MSS, the random distribution is defined on a finite set of elements, e.g. crisp 

numbers or fuzzy numbers. Figure 2 shows such a RFV. It is seen that the quantity     

                 for     or            for    , is the probability of occurrence of the 

fuzzy number    . 

 

Figure 2. An example RFV defined on finite fuzzy numbers 

 

Definition 2. For a RFV    defined on a finite set of fuzzy numbers          , its u-function 

(i.e. HUGF), denoted by       , is written as follows: 

           
    

        
    

    
  

                                       (3) 

(a) 

1 

1 2 3 4 5 x 

 F(x) 

      

 

   

 

            

0 

(b) 

   
  

   
  

   
  

   
  

   
  

   
  

F(x) 

1 

 (x) 

1 

1 2 3 4 5 x 

α 

0 

   
  

   
  

   
  

   
  

   
  

   
  

    
    

    

    

    

. . 
. . 

. . 

    



10 
 

It is noted that this definition satisfies the basic property of UGF: the coefficient and exponent are 

not necessarily scalar variables but can be other mathematical objects (i.e. FV) [2]. It is seen that 

(2) is the special case of (3): if all the exponents of z in (3) are crisp values (i.e. sufficient 

information is collected to eliminate the imprecision in state values), then (3) will reduce to (2). 

On the other hand, if there is only one term of z, with its coefficient equal to 1, then (4) will 

reduce to the following expression,  

                                                                     (4) 

which is the u-function of a pure FV. Recall that         can be uniquely determined by its α-cut 

        set, thus (4) defines a one-to-one correspondence to   .  

To confirm that HUGF possesses the basic property of UGF, the two propositions presented in 

Appendix proof that the expectation of a RFV equal to the first derivative of HUGF (at z = 1), 

which represents the PMF of this variable [34]. 

 

4. Joint Uncertainty Propagation in MSS  

This Section first presents the conventional simulation procedures for joint uncertainty 

propagation. The HUGF composition operators are then defined to combine different types of 

uncertain variables. Based on the HUGF composition operators, the method for joint uncertainty 

propagation in MSS availability assessment is proposed. 

 

4.1 Simulation approach for joint uncertainty propagation 

Considering the case in eq. (1), the performance level of a solar generator model    is a function 

of       as RVs and                                as FVs. A general model for the MSS 

generation      versus the demand   can be written as                        , function 

of N uncertain variables              (possibly including w), ordered in such a way that the 

first k RVs are described by PMFs     
         

    , whereas the last N-k ones are FVs 

represented by possibility distributions        
          

    . The MCS method proposed in 
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[25, 33, 35] propagates both types of uncertainties into a RFV according to their respective 

calculus: convolution principle for RV and extension principle for FV [36]. The detailed 

procedures are summarized as follows [35]:  

For h = 1, 2, …, m (the outer loop processing aleatory uncertainty), do: 

 Sample the h-th realization    
    

      
   of the RV vector              using sampling 

techniques such as Monte Carlo, Latin Hyper Cube, etc. 

 For                 (the inner loop processing epistemic uncertainty;    is the step 

size, e.g.   =0.05), do: 

 Calculate the corresponding α-cuts of possibility distributions        
         as the 

intervals of the FVs (           ). 

 Compute the minimal and maximal values of the outputs of the model 

                      , denoted by   
  and  

 

 
, respectively. In this computation, 

the RVs are fixed at the sampled values    
    

      
   whereas the FVs take all 

values within the ranges of the  -cuts of their possibility distributions        
        . 

 Record the extreme values   
  and  

 

 
 as the lower and upper limits of the  -cuts of 

    
    

      
              . 

        End 

 Cumulate all the lower and upper limits of different -cuts of     
    

      
               

to establish an approximated possibility distribution (denoted by    
 
) of the model output. 

Assign a probability mass     to each obtained distribution     
 
. 

End 

 

The resulting m possibility distributions are in fact the realizations of the RFV. It is noted that 

this procedure requires to store   
 

  
 intervals (with    typically taken equal to 0.05 in our 

applications). The time complexity of this algorithm is     
 

  
    , where    is the number 

of operations needed to obtain the minimal and maximal values of the output of     . 

 

4.2 HUGF composition operator for joint uncertainty propagation 

Because RFV treats the two types of uncertainties separately, the composition operator of HUGF 

has to equip the properties of both probabilistic UGF composition operator [4] and fuzzy 

extension principle [36]. In Appendix, we show the definitions of HUGF composition operator in 

three basic cases: composition of two FVs, composition of one FV and one RV, and composition 

of two RFVs, respectively. 
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In general, the HUGF composition operator of N u-functions, i.e. uncertain variables, is defined 

as follows 

       
        

          
             

                      
  

   
  
    

  
        (5) 

It is noted that for the case of two arguments, the following two interchangeable notations can be 

used: 

       
        

         
         

                                    (6) 

Two basic properties of   , namely the associative and communicative properties, are recalled 

for the reduction of composition computation time. If the function      possesses the associative 

property for any of its variables, then    also possesses this property 

       
          

          
          

      

          
          

              
          

                    (7) 

If the function      possesses the communicative property for any of its variables, then    also 

possesses this property 

       
          

          
          

      

       
            

        
          

                      (8) 

By applying these two properties, the elementary RVs and FVs might be separated:   

      
          

      

         
         

              
          

                   (9) 

In this way, the u-functions of FVs can be processed prior to the combination with the u-function 

of RVs which involves multiplication to the polynomials. Using the combination rules presented 

above, we can obtain the HUGF of (1) through the following bottom-up way: 
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                                                                      (10) 

Based on the example above, the procedures of computing the MSS adequacy index      
    

given arbitrary demand   are presented as follows: 

(1) Build the u-function for each component. For component   affected by both types of 

uncertainties, obtain     
    by combining the elementary FVs or RVs using    with the 

consideration of the communicative and associative rules; 

(2) Obtain the system performance HUGF       
    using    to combine the component u-

functions according to the system structure function   
        

      
  , where the 

communicative and associative rules also apply; 

(3) Compute the HUGF of MSS adequacy   ,              
          . 

This method involves both the fuzzy arithmetic and probabilistic convolution operations, either of 

which could lead to high computational cost. To reduce the computational complexity of this 

method, approximation techniques have to be applied especially when the MSS contains a large 

number of uncertain variables. In the next Section the computational issues are addressed in 

further details. 

 

4.3 Computation issues 

As shown in eq. (10), the non-linear fuzzy arithmetic operators (e.g. multiplication) could 

produce complex polynomials that are difficult to evaluate and computationally expensive. In the 
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literature, the efficient standard approximation proposed by Dubois and Prade [37] has been 

widely used to reduce the computation time of fuzzy arithmetic operations. Take the fuzzy 

multiplication as an example: let                                and     

                          , then their actual product is                 
  

                                          
                 

             and the standard approximation of this product is                    

                   . Figure 3 shows the actual and approximated products of the FV 

obtained in eq. (B.2). It should be noted that the standard approximation also has some limits, for 

instances it is adequate only when the spread of the FV is small and the membership value near to 

1, so that too frequent use of it may lead to wrong results [37]. To tackle these problems, more 

advanced techniques have been proposed; interested readers can refer to [38-40] for detailed 

information. 

  

Figure 3. Actual and approximated products of the FV obtained in eq. (6) 

Given the standard approximation method, the computation complexity of the proposed HUGF 

approach is presented as follows. In conventional MSS, the UGF approach has              

time complexity in the worst case, where      is the maximum highest state across all 

components and n is the number of components. In our MSS formulation, the component model 
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might contain more than one constituent RV so that the worst case time complexity is mainly 

dependent on the number of RVs,   and the maximum sample size of the RVs,     :         
  . 

When k or      are large, the clustering technique introduced in [18] can be applied to control 

the number of resulting states of each composition operation between two RVs or two RFVs. The 

time complexity (in worst case) of each clustering operation is                    [41], 

where l is the number of required iterations in the clustering algorithm, and    is the number of 

clusters. Thus, the time complexity (in worst case) of the whole UGF approach is            

         . Recall the time complexity of the MCS method     
 

  
    , its parameters   

and    have to be chosen by the users and    is relevant to the total number of uncertain 

variables N. It is seen that when k and      are relatively small, the HUGF approach without 

clustering is preferable as it can produce the exact results of uncertainty propagation with the 

computation time comparable to that of the MCS method. When k or      is large, the clustering 

technique can be applied in the HUGF approach.  

 

5. Extracting Information from System Adequacy HUGF 

As shown in Section 4, the MSS adequacy index    is a RFV. Thus the MSS availability 

                          is no longer a precise value but a set of probability 

intervals, one for each   level. They are often too complex to be utilized by the decision maker. 

In order to extract useful information from these probability intervals, the post-treatment methods 

are proposed. In this Section, we present two widely used post-treatment methods, p-boxes [42] 

and homogenous post-processing [23], and propose one efficient algorithm to produce them from 

the system adequacy HUGF. 

  

5.1 p-boxes 

The concept of p-box is similar to that of RFV. Ferson and Ginzburg [42] proposed to fix the   

level and then to build the lower and upper probability bounds               of an event B, i.e. 

    . Two representative cases of the p-boxes are     and    . The p-box               
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corresponds to a pessimistic condition where the imprecision is maximized while the p-box 

              corresponds to an optimistic situation where the imprecision is minimized. It is 

noted that even in the optimistic case, there still can be imprecision if the     level of each FV 

is not a single number. 

 

5.2 Homogenous post-processing 

Baudrit et al. [23] proposed this method to extract only one lower and one upper probability 

bounds, which takes the fuzzy mean [43] over all p-boxes: 

               
 

 
 and                

 

 
                       (11) 

It is shown that                          and                   . Note that 

Baudrit et al. [23] has established the link between the average p-box                 and the 

belief functions in evidence theory, under the condition that there are finite elements in the 

probability sample and possibility sample spaces, which is not true in our case. Figure 4 depicts 

the CDF curves of the p-boxes at the   levels equal to 0 and 1, and the average p-boxes.  

 

Figure 4. CDF curves of              ,                , and               

 

5.3 Algorithm for the system availability p-boxes extraction 
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Let B denote the event     ; we have the system availability p-box:         where      

      and           . To show the extraction of         (at a fixed   level), we take    

as an example. By definition, we have          
    

  , where           and     is the 

highest state of   . Its computation is straightforward and    can be calculated similarly. To show 

the extraction of the average availability p-box          , we take     as an example. By 

definition we have            
    

    
 

 
. For its computation, at a particular state j the 

following mutually exclusive conditions are identified: 1)    
   for any        , then we 

have       
   

 

 
      

  because      
  is a constant for any  ; 2)    

   for any 

       , then we have       
   

 

 
  ; 3)     

   and     
   for certain             

and      , then we have       
   

 

 
      

        
  where     

    (See Fig. 5).     

can be obtained similarly. 

 

Figure 5. The computation of       
   

 

 
 when     

   and     
   for certain       

      and      , for a particular state j 

Based upon the discussions above, the following algorithm is proposed for the p-boxes extraction: 

Initialize: set                  

For j = 0 to     do 

 Obtain    
 and    

 by substituting the given   value into the fuzzy number expression.  

            If    
  , then          . 
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x    
  0 

 (x) 
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            If    
  , then          . 

            If    
  , then            ; 

            Else-if    
   and    

  , then calculate   
  and                  

  . 

            If    
  , then            ; 

            Else-if    
   and    

  , then calculate   
  and               

  (where 

    
   , similar to the definition of   

 ). 

End 

 

6. Case Studies 

This Section presents two application examples. The first example is relatively small in size. It 

intends to clearly show the steps of the proposed methods for joint uncertainty propagation and p-

boxes extraction. The second example is more practical in terms of size and complexity. The 

HUGF approach is compared with the MCS method. All experiments in this example are 

performed in MATLAB 7.11 on a PC with the Intel CPU of 2.67GH and the memory of 4.00 GB.  

 

6.1 Flow transmission system 

In this Section, we demonstrate the proposed HUGF method on the three-element flow 

transmission system, whose block diagram is shown in Fig. 6.  

 

Figure 6. A three component flow transmission system 

 

The u-function of each component performance variable is presented as follows,  
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Then, HUGF of the system can be written as: 

             
         

            
    

                                                                             

                                                           

                                                                  

                                                                                         

                                                               

Suppose that the load demand is a constant value 4.25, then the HUGF of system adequacy is: 

                                                                                               

                                                                                   

                                             

Based on this u-function, the useful quantities for p-boxes constructions are presented in Table 1. 

Table 1. Quantities for constructing p-boxes 

Term 1 2 3 4 5 6 7 8 9 10 

   
 -3.25 -1.25 -1.25 -0.25 -0.25 0.75 0.75 1.75 2.75 3.75 

   
 -0.25 0.75 1.75 1.75 2.75 2.75 3.75 3.75 4.75 5.75 

   
 -2.25 -0.25 -0.25 0.75 0.75 1.75 1.75 2.75 3.75 4.75 

   
 -1.25 -0.25 0.75 0.75 1.75 1.75 2.75 2.75 3.75 4.75 

  
     0.25 0.25      

  
   0.75         

Probability 0.01 0.05 0.04 0.04 0.03 0.2 0.02 0.4 0.178 0.032 

 

According to our algorithm, the upper and lower bounds of system availability p-boxes 

(including the average p-box of as the results of homogeneous post-processing) are computed as 

follows: 
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Therefore,                    ,                          , and                   .  

 

6.2 Multi-state distributed generation system availability assessment 

This Section presents a relative larger scale case study concerning a distributed generation (DG) 

system of literature [30], with a comparison to the MCS method. The system considered is 

modified from the IEEE 34 node distribution test feeder [44], and is a radial distribution network 

downscaled to 4.16 kV via the in-line transformer. The rated power of the transformer is 5000 

kW. A number of renewable generators are added onto the network. The ratio of renewable 

energy to conventional energy is 25%. Within the renewable energy, wind, solar, and electric 

vehicle (EV) occupy a share of 60%, 30% and 10%, respectively. The DG system infrastructure 

consists of 5 identical wind turbines with rated power of 150 kW, 5 solar generators/arrays (each 

one containing 1000 solar cells), and 25 identical EVs with rated power 5 kW. It is noted that the 

EVs are treated as a single aggregation due to their similar daily charging and discharging 

patterns [30]. Figure 7 shows the reliability block diagram of this system.  
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Figure 7. Reliability block diagram of the distributed generation system [30] 

 

Table 2 summarizes the classifications of the uncertainties in all components. More details 

regarding these classifications can be found in [10]. 

 

Table 2. Uncertainties in the DG system model 

 Component Parameter Source of uncertainty Type of Information 

available 

Uncertainty 

representation 

Solar 

generator 

Solar irradiation 

   

Irradiation variability Historical data  Probabilistic  

Operation 

parameters    

Incomplete knowledge  Experts’ judgments, 

users’ experiences 

Possibilistic  

Mechanical 

state    

Mechanical failure Historical data  Probabilistic 

Wind 

turbine  
Wind speed    Speed variability Historical data Probabilistic  

Operation 

parameters    

Incomplete knowledge Experts’ judgments, 

users’ experiences 

Possibilistic 

Mechanical 

state    

Mechanical failure Historical data Probabilistic  

EV 

aggregation 

Power output 

    

Incomplete knowledge, 

subjective decisions 

Experts’ judgments, 

users’ experiences 

Possibilistic  

Transformer Grid power    Power  

fluctuations 

Historical data Probabilistic  

Mechanical 

state    

Mechanical failure date Historical data Probabilistic  

Wind turbine 1 

Solar generator 1 

EV aggregation 

Wind turbine 5 

Solar generator 5 

Transformer 

Load demand : w 
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Loads Load value   Consumption 

variability 

Historical data Probabilistic  

 

The single solar generator model is presented in eq. (1). The single wind generator model is 

presented as follows 

                

 
 
 

 
 

                                                          

   
        

        
                       

                                          
                                                      

     (12) 

The transformer power output is         . The HUGF of the system adequacy can be 

expressed as follows: 

           
         

          
        

           

where  

    
         

          
          

          
          

    

and 

    
         

          
          

          
          

    

where      
    is the u-function of the i-th solar generator and      

    is the u-function of the i-

th wind turbine. It is noted that because the DG system is located in a relatively small region the 

renewable resource variables    and    are identical in each of the solar and wind generators. 

The possibility and probability distributions of all the parameters in the DG system availability 

assessment are presented in Table 3.  

Table 3. Possibility and probability distributions of the parameters in the DG system 

Components FVs Core Support 

Solar 

generator 

      (A) [4.56, 4.86] [4.36, 5.06] 

      (V) [16.32, 18.02] [15.32, 18.32] 

     (V) [20.98, 21.98] [19.98, 22.98] 

     (A) [5.12, 5.42] [4.82, 5.62] 

    (
o
C) [29, 30.5] [27, 32] 

     (
o
C) [41, 44] [39, 46] 

    (A/
o
C) [0.00112, 0.00132] [0.00102, 0.00152] 

    (V/
o
C) [0.0134, 0.0144] [0.0124, 0.0164] 
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Wind 

turbine 

     (m/s) [3.2, 3.4] [3.0, 3.5] 

     (m/s) [48, 51] [45, 54] 

    (m/s) [11, 11.5] [10, 12] 

    (kW) [145, 155] [140, 160] 

EV      (kW) [-75, 75] [-125, 125] 

 RVs State performance value State probability 

Solar 

generator 

   (kW/m
2
) 0.05 

0.15 

0.25 

0.35 

0.45 

0.55 

0.65 

0.75 

0.85 

0.95 

5.36E-01 

8.90E-02 

6.11E-02 

4.91E-02 

4.26E-02 

3.91E-02 

3.74E-02 

3.77E-02 

4.12E-02 

6.64E-02 

   0 

1 

4.00E-02 

9.60E-01 

Wind 

turbine 

   (m/s) 0.75 

2.25 

3.75 

5.25 

6.75 

8.25 

9.75 

11.25 

12.75 

14.25 

4.36E-02 

1.54E-01 

2.30E-01 

2.33E-01 

1.75E-01 

1.00E-01 

4.42E-02 

1.50E-02 

3.94E-03 

7.93E-04 

   0 

1 

4.00E-02 

9.60E-01 

Transformer 

   (kW) 4050 

4150 

4250 

4350 

4450 

4550 

4650 

4750 

4850 

4950 

1.00E-01 

1.00E-01 

1.00E-01 

1.00E-01 

1.00E-01 

1.00E-01 

1.00E-01 

1.00E-01 

1.00E-01 

1.00E-01 

   0 

1 

3.00E-02 

9.70E-01 

Load 

demand 

  (KW) 1673 

1971 

2268 

2566 

2864 

3161 

3459 

3756 

4054 

4351 

4.41E-02 

1.37E-01 

1.74E-01 

1.31E-01 

1.61E-01 

1.24E-01 

1.10E-01 

8.78E-02 

2.88E-02 

4.00E-03 
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The results from the HUGF approach are compared to those obtained by the MCS method 

(with        ). To investigate the convergence property of MCS, different number of 

simulation runs: 10000, 100000, and 1000000, have been performed and all realizations are 

subdivided into 10 subsamples of equal size. The sample mean and standard deviations of the 

estimated p-boxes are presented in Table 4. The comparisons are made on the absolute errors 

between the upper and lower bounds of the p-boxes obtained by HUGF and the mean upper and 

lower bounds of the p-boxes (i.e. the belief functions) obtained by the MCS method with 

different numbers of runs. It is clearly seen that the MCS p-boxes are getting closer to the HUGF 

p-boxes when the number of simulation runs increases. In addition, the HUGF approach is in 

general much more efficient than the MCS method. It should be noted that the standard 

approximation method has been applied due to the large number of FVs in this case study.  

 

Table 4 The system availability p-boxes and the comparisons 

Methods  HUGF MCS 

   1000 runs 10000 runs 100000 runs 

          Mean [0.9680, 0.9697] [0.9689, 0.9711] [0.9684, 0.9701] [0.9682, 0.9699] 
 Std* N.A. 0.0043, 0.0055 0.0020, 0.0019 0.0005, 0.0005 
 AE* N.A. 0.0009, 0.0009 0.0004, 0.0004 0.0002, 0.0002 

        Mean [0.9674, 0.9697] [0.9682, 0.9712] [0.9679, 0.9701] [0.9676, 0.9699] 

 Std N.A. 0.0042, 0.0055 0.0021, 0.0019 0.0005, 0.0005 
 AE N.A. 0.0009, 0.0009 0.0005, 0.0004 0.0002, 0.0002 

        Mean [0.9684, 0.9696] [0.9696, 0.9711] [0.9688, 0.9700] [0.9686, 0.9698] 

 Std N.A. 0.0044, 0.0054 0.0020, 0.0020 0.0005, 0.0005 

 AE N.A. 0.0009, 0.0008 0.0004, 0.0004 0.0002, 0.0002 

Computation 

time (Sec) 

 0.8403 4.1194 41.1859 413.4156 

Std*: standard deviation 

AE*: absolute error 

The MATLAB source code of this case study is available upon request to the first author. 

 

7. Conclusions 

Aleatory and epistemic uncertainties always co-exist in the models of the assessment of 

industrial systems. How to properly handle them poses challenges to the reliability engineers. In 

this work, we have proposed an efficient approach based on UGF for joint uncertainty 

representation, propagation and exploitation in availability assessments of MSS. Drawing from 

the well-established RFV theory, HUGF has shown to be adequate for the representation of RFVs 

defined on a finite set of FVs. Based upon this foundation, the composition operator of HUGF 
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has been defined by combining probabilistic convolution with the fuzzy extension principle. The 

computation complexity of the propagation procedure has been evaluated and reduction methods 

are presented. Finally, an efficient algorithm has been designed to extract availability p-boxes 

from the system adequacy HUGF. The case studies show the effectiveness of the HUGF 

approach in comparison to the widely used MCS method. However, the computational efficiency 

and accuracy of the HUGF can be still improved by, for example, using advanced approximation 

techniques for FV arithmetic operations and more efficient clustering algorithms for fuzzy state 

reduction. 
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Appendix  

Proposition 1. For a RFV    defined on a finite set of fuzzy numbers          , its statistical 

expectation       is a nested FV expressed as      
   

 
        

   
 
    . 

Proof: Let     
    

  denote the j-th fuzzy number in the finite set   such that at any  -cut level 

     
    

      
 and      

    
      

 for any            . 

According to Definition 1,                           . Because   is finite, at any   cut 

level the PMFs of the two boundary values    
 and    

 can be described by the 2-tuples 

    
      

   and     
      

  , respectively. Recall that the CDF of a discrete RV X can be 

written as                . Then we have             
    

   and 

             
    

  . For the j-th fuzzy number, we have      
       

      , where 

      
    

 . Let          
       

 , then              
   

 
    and           

    
   

 
   . 

For any fuzzy membership value         and    , due to the nestedness of the possibility 

distribution we have    
    

 and     
    

. Then,     
   

 
        

   
 
    and 

    
   

 
        

   
 
   . Therefore, the       is a nested FV.   

Proposition 2. For a RFV    defined on a finite set of fuzzy numbers          , the first 

derivative of        at     equals to      . 

Proof: The first derivative of        is 
       

  
 

 

  
     

    
            

      
   , hence 

       

  
       

 
           

 
       

 
      

 . Let       ; we, then, obtain       

       

 
       

 
      

 .   

 

Case 1:    between the u-functions of two FVs     and    , 
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                                                           (B.1) 

The extension principle [36] reads that                             
         

     . For 

example, in the denominator of eq. (1.e) if we have                and      

          then u-function of the denominator can be written as 

     
          

                                                        (B.2) 

It is noted that the fuzzy arithmetic assumes the total dependence between the  -cuts [23]. 

Case 2:   between one RV    and one FV    , 

   
         

         
  
                                                 (B.3) 

For example, on the right hand side of eq. (1.b) the first term is        . Suppose that    has three 

state levels (0, 0.2, 0.8) with the probability vector (0.4, 0.4, 0.2), then the u-function of this term 

can be written as 

   
          

                                                                        (B.4) 

Case 3:   between two RFVs   
  and   

 , 

              
          

  
         

                 
                                    (B.5) 

For example, by substituting eq. (1.d) into eq. (1.b) we have the first and second terms to be 

        and           . Let               and              ; then, we have the 

following u-function for the addition of these two terms 
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(B.6) 

 


