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Neural-Swarm2: Planning and Control of
Heterogeneous Multirotor Swarms using

Learned Interactions
Guanya Shi, Wolfgang Hönig, Xichen Shi, Yisong Yue, and Soon-Jo Chung

Abstract—We present Neural-Swarm2, a learning-based
method for motion planning and control that allows heteroge-
neous multirotors in a swarm to safely fly in close proximity. Such
operation for drones is challenging due to complex aerodynamic
interaction forces, such as downwash generated by nearby drones
and ground effect. Conventional planning and control methods
neglect capturing these interaction forces, resulting in sparse
swarm configuration during flight. Our approach combines a
physics-based nominal dynamics model with learned Deep Neural
Networks (DNNs) with strong Lipschitz properties. We evolve two
techniques to accurately predict the aerodynamic interactions
between heterogeneous multirotors: i) spectral normalization for
stability and generalization guarantees of unseen data and ii)
heterogeneous deep sets for supporting any number of hetero-
geneous neighbors in a permutation-invariant manner without
reducing expressiveness. The learned residual dynamics benefit
both the proposed interaction-aware multi-robot motion planning
and the nonlinear tracking control designs because the learned in-
teraction forces reduce the modelling errors. Experimental results
demonstrate that Neural-Swarm2 is able to generalize to larger
swarms beyond training cases and significantly outperforms a
baseline nonlinear tracking controller with up to three times
reduction in worst-case tracking errors. Video is available at
https://youtu.be/Y02juH6BDxo.

I. INTRODUCTION

THE ongoing commoditization of unmanned aerial vehi-
cles (UAVs) requires robots to fly in much closer prox-

imity to each other than before, which necessitates advanced
planning and control methods for large aerial swarms [1, 2].
For example, consider a search-and-rescue mission where an
aerial swarm must enter and search a collapsed building. In
such scenarios, close-proximity flight enables the swarm to
navigate the building much faster compared to swarms that
must maintain large distances from each other. Other important
applications of close-proximity flight include manipulation,
search, surveillance, and mapping. In many scenarios, hetero-
geneous teams with robots of different sizes and sensing or
manipulation capabilities are beneficial due to their signifi-
cantly higher adaptability. For example, in a search-and-rescue
mission larger UAVs can be used for manipulation tasks or
to transport goods, while smaller ones are more suited for
exploration and navigation.

A major challenge of close-proximity control and planning
is that small distances between UAVs create complex aerody-
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Fig. 1. We learn complex interaction between multirotors using heterogeneous
deep sets and design an interaction-aware nonlinear stable controller and a
multi-robot motion planner (a). Our approach enables close-proximity flight
(minimum vertical distance 24 cm) of heterogeneous aerial teams (16 robots)
with significant lower tracking error compared to solutions that do not consider
the interaction forces (b,c).

namic interactions. For instance, one multirotor flying above
another causes the so-called downwash effect on the lower one,
which is difficult to model using conventional model-based
approaches [3]. Without accurate downwash interaction mod-
eling, a large safety distance between vehicles is necessary,
thereby preventing a compact 3-D formation shape, e.g., 60 cm
for the small Crazyflie 2.0 quadrotor (9 cm rotor-to-rotor) [4].
Often, a formation is restricted to 2-D planar motions [5].
For heterogeneous teams, even larger and asymmetric safety
distances are required [6]. However, the downwash for two
small Crazyflie quadrotors hovering 30 cm on top of each other
is only −9 g, which is well within their thrust capabilities,
and suggests that proper modeling of downwash and other
interaction effects can lead to more precise motion planning
and dense formation control.

In this paper, we present a learning-based approach, Neural-
Swarm2, which increases the precision, safety, and density of
close-proximity motion planning and control of heterogeneous
multirotor swarms. In the example shown in Fig. 1, we safely
operate with vertical proximities less than half than prior
work [4] using the same robots. In particular, we train deep
neural networks (DNNs) to predict the residual interaction
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forces that are not captured by the nominal models of free-
space aerodynamics. To the best of our knowledge, this is
the first model for aerodynamic interactions between two or
more multirotors in flight. Our DNN architecture supports het-
erogeneous inputs in a permutation-invariant manner without
reducing the expressiveness. The DNN only requires relative
positions and velocities of neighboring multirotors as inputs,
similar to the existing collision-avoidance techniques [7],
which enables fully-decentralized computation. We use the
predicted interaction forces to augment the nominal dynamics
and derive novel methods to directly consider them during
motion planning and as part of the multirotors’ controller.

From a learning perspective, we leverage and extend two
state-of-the-art tools to derive effective DNN models. First,
we extend deep sets [8] to the heterogeneous case and prove
its representation power. Our novel encoding is used to model
interactions between heterogeneous vehicle types in an index-
free or permutation-invariant manner, enabling better general-
ization to new formations and a varying number of vehicles.
The second is spectral normalization [9], which ensures the
DNN is Lipschitz continuous and helps the DNN generalize
well on test examples that lie outside the training set. We
demonstrate that the interaction forces can be computationally
efficiently and accurately learned such that a small 32-bit
microcontroller can predict such forces in real-time.

From a planning and control perspective, we derive novel
methods that directly consider the predicted interaction forces.
For motion planning we use a two-stage approach. In the
first stage, we extend an existing kinodynamic sampling-based
planner for a single robot to the interaction-aware multi-robot
case. In the second stage, we adopt an optimization-based
planner to refine the solutions of the first stage. Empirically,
we demonstrate that our interaction-aware motion planner both
avoids dangerous robot configurations that would saturate the
multirotors’ motors and reduces the tracking error signifi-
cantly. For the nonlinear control we leverage the Lipschitz
continuity of our learned interaction forces to derive stability
guarantees similar to our prior work [10, 11]. The controller
can be used to reduce the tracking error of arbitrary desired
trajectories, including ones that were not planned with an
interaction-aware planner.

We validate our approach on different tasks using two
to sixteen quadrotors of two different sizes, and we also
integrate ground effect and other unmodeled dynamics into
our model, by viewing the physical environment as a special
“robot”. To our knowledge, our approach is the first that
models interactions between two or more multirotor vehicles
and demonstrates how to use such a model effectively and
efficiently for motion planning and control of aerial teams.

II. RELATED WORK

The aerodynamic interaction force applied to a single UAV
flying near the ground (ground effect), has been modeled
analytically [12–14]. In many cases, the ground effect is not
considered in typical nonlinear multirotor controllers and thus
increases the tracking error of a multirotor when operating
close to the ground. However, it is possible to use ground

effect prediction in real-time to reduce the tracking error [10,
14].

The interaction between two rotor blades of a single mul-
tirotor has been studied in a lab setting to optimize the
placement of rotors on the vehicle [15]. However, it remains
an open question how this influences the flight of two or
more multirotors in close proximity. Interactions between two
multirotors can be estimated using a propeller velocity field
model [3]. Unfortunately, this method is hard to generalize to
the multi-robot or heterogeneous case and this method only
considers the stationary case, which is inaccurate for real
flights.

The use of DNNs to learn higher-order residual dynamics
or control actions is gaining attention across a range of control
and reinforcement learning settings [10, 16–21]. For swarms,
a common encoding approach is to discretize the whole space
and employ convolutional neural networks (CNNs), which
yields a permutation-invariant encoding. Another common
encoding for robot swarms is a Graphic Neural Network
(GNN) [22, 23]. GNNs have been extended to heterogeneous
graphs [24], but it remains an open research question how
such a structure would apply to heterogeneous robot teams. We
extend a different architecture, which is less frequently used
in robotics applications, called deep sets [8]. Deep sets enable
distributed computation without communication requirements.
Compared to CNNs, our approach: i) requires less training
data and computation; ii) is not restricted to a pre-determined
resolution and input domain; and iii) directly supports the het-
erogeneous swarm. Compared to GNNs, we do not require any
direct communication between robots. Deep sets have been
used in robotics for homogeneous [11] and heterogeneous [25]
teams. Compared to the latter, our heterogeneous deep set
extension has a more compact encoding and we prove its
representation power.

For motion planning, empirical models have been used
to avoid harmful interactions [2, 4, 6, 26, 27]. Typical safe
boundaries along multi-vehicle motions form ellipsoids [4]
or cylinders [6] along the motion trajectories. Estimating
such shapes experimentally would potentially lead to many
collisions and dangerous flight tests and those collision-free
regions are in general conservative. In contrast, we use deep
learning to estimate the interaction forces accurately in hetero-
geneous multi-robot teams. This model allows us to directly
control the magnitude of the interaction forces to accurately
and explicitly control the risk, removing the necessity of
conservative collision shapes.

We generalize and extend our prior conference paper [11]
significantly: i) we develop heterogeneous deep sets to extend
to the heterogeneous case, which also unifies the approach
with respect to our prior work that considers the ground effect
for improved multirotor landing [10], ii) we introduce a novel
method to use the learned interaction forces for multi-robot
motion planning, and iii) we explicitly compensate for the
delay in motor speed commands in our position and attitude
controllers, resulting in stronger experimental results for both
our baseline and Neural-Swarm2.
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III. PROBLEM STATEMENT

Neural-Swarm2 can generally apply to any robotic system
and we will focus on multirotors in this paper. We first
present single multirotor dynamics including interaction forces
modeled as disturbances. Then, we generalize these dynamics
for a swarm of multirotors. Finally, we formulate our objective
as a variant of an optimal control problem and introduce our
performance metric.

A. Single Multirotor Dynamics

A single multirotor’s state comprises of the global position
p ∈ R3, global velocity v ∈ R3, attitude rotation matrix R ∈
SO(3), and body angular velocity ω ∈ R3. Its dynamics are:

ṗ = v, mv̇ = mg + Rfu + fa, (1a)

Ṙ = RS(ω), Jω̇ = Jω × ω + τu + τa, (1b)
η = B0u, u̇ = −λu + λuc, (1c)

where m and J denote the mass and inertia matrix of
the system, respectively; S(·) is a skew-symmetric mapping;
g = [0; 0;−g] is the gravity vector; and fu = [0; 0;T ] and
τu = [τx; τy; τz] denote the total thrust and body torques from
the rotors, respectively. The output wrench η = [T ; τx; τy; τz]
is linearly related to the control input η = B0u, where
u = [n21;n22; . . . ;n2M ] is the squared motor speeds for a vehicle
with M rotors and B0 is the actuation matrix. A multirotor is
subject to additional disturbance force fa = [fa,x; fa,y; fa,z]
and disturbance torque τa = [τa,x; τa,y; τa,z]. We also consider
a first order delay model in (1c), where uc is the actual
command signal we can directly control, and λ is the scalar
time constant of the delay model.

Our model creates additional challenges compared to other
exisiting multirotor dynamics models (e.g., [27]). The first
challenge stems from the effect of delay in (1c). The sec-
ond challenge stems from disturbance forces fa in (1a) and
disturbance torques τa in (1b), generated by the interaction
between other multirotors and the environment.

B. Heterogeneous Swarm Dynamics

We now consider N multirotor robots. We use x(i) =
[p(i); v(i); R(i);ω(i)] to denote the state of the ith multirotor.
We use x(ij) to denote the relative state component between
robot i and j, e.g., x(ij) = [p(j)−p(i); v(j)−v(i); R(i)R(j)>].

We use I(i) to denote the type of the ith robot, where
robots with identical physical parameters such as m, J, and
B0 are considered to be of the same type. We assume there
are K ≤ N types of robots, i.e., I(·) is a surjective mapping
from {1, · · · , N} to {type1, · · · , typeK}. Let r

(i)
typek

be the
set of the relative states of the typek neighbors of robot i:

r
(i)
typek

= {x(ij) | j ∈ neighbor(i) and I(j) = typek}. (2)

The ordered sequence of all relative states grouped by robot
type is

r
(i)
I =

(
r
(i)
type1

, r
(i)
type2

, · · · , r(i)typeK

)
. (3)

The dynamics of the ith multirotor can be written in
compact form:

ẋ(i) = Φ(i)(x(i),u(i)) +


0

f
(i)
a (r

(i)
I )

0

τ
(i)
a (r

(i)
I )

 , (4)

where Φ(i)(x(i),u(i)) denotes the nominal dynamics of robot
i, and f

(i)
a (·) and τ (i)

a (·) are the unmodeled force and torque of
the ith robot that are caused by interactions with neighboring
robots or the environment (e.g., ground effect and air drag).

Robots with the same type have the same nominal dynamics
and unmodeled force and torque:

Φ(i)(·) = ΦI(i)(·), f (i)a (·) = fI(i)a (·), τ (i)
a (·) = τI(i)a (·) ∀i.

(5)
Note that the homogeneous case covered in our prior work [11]
is a special case where K = 1, i.e., Φ(i)(·) = Φ(·), f

(i)
a (·) =

fa(·), and τ (i)
a (·) = τa(·) ∀i.

Our system is heterogeneous in three ways: i) different
robot types have heterogeneous nominal dynamics ΦI(i); ii)
different robot types have different unmodeled f

I(i)
a and τI(i)a ;

and iii) the neighbors of each robot belong to K different sets.
We highlight that our heterogeneous model not only cap-

tures different types of robot, but also different types of
environmental interactions, e.g., ground effect [10] and air
drag. This is achieved in a straightforward manner by viewing
the physical environment as a special robot type. We illustrate
this generalization in the following example.

Example 1 (small and large robots, and the environment).
We consider a heterogeneous system as depicted in Fig. 1(a).
Robot 3 (large robot) has three neighbors: robot 1 (small),
robot 2 (small) and environment 4. Therefore, for robot 3, we
have

f (3)a = f largea (r
(3)
I ) = f largea (r

(3)
small, r

(3)
large, r

(3)
env),

r
(3)
small = {x(31),x(32)}, r

(3)
large = ∅, r(3)env = {x(34)}

and a similar expression for τ (3)
a .

C. Interaction-Aware Motion Planning & Control

Our goal is to move the heterogeneous team of robots from
their start states to goal states, which can be framed as the
following optimal control problem:

min
u(i),x(i),tf

N∑
i=1

∫ tf

0

‖u(i)(t)‖dt (6)

s.t.



robot dynamics (4) i ∈ [1, N ]

u(i)(t) ∈ UI(i); x(i)(t) ∈ X I(i) i ∈ [1, N ]

‖p(ij)‖ ≥ r(I(i)I(j)) i < j, j ∈ [2, N ]

‖f (i)a ‖ ≤ fI(i)a,max; ‖τ (i)
a ‖ ≤ τI(i)a,max i ∈ [1, N ]

x(i)(0) = x
(i)
s ; x(i)(tf ) = x

(i)
f i ∈ [1, N ]

where U (k) is the control space for typek robots, X (k)

is the free space for typek robots, r(lk) is the minimum
safety distance between typel and typek robots, f (k)a,max is the
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maximum endurable interaction force for typek robots, τ (k)a,max

is the maximum endurable interaction torque for typek robots,
x
(i)
s is the start state of robot i, and x

(i)
f is the desired state

of robot i. In contrast to existing literature [6], we assume a
tight spherical collision model and bound the interaction forces
directly, eliminating the need of manually defining virtual
collision shapes. For instance, larger fI(i)a,max and τ

I(i)
a,max will

yield denser and more aggressive trajectories. Also note that
the time horizon tf is a decision variable.

Solving (6) in real-time in a distributed fashion is intractable
due to the exponential growth of the decision space with
respect to the number of robots. Thus, we focus on solving two
common subproblems instead. First, we approximately solve
(6) offline as an interaction-aware motion planning problem.
Second, we formulate an interaction-aware controller that
minimizes the tracking error online. This controller can use
both predefined trajectories and planned trajectories from the
interaction-aware motion planner.

Since interaction between robots might only occur for a
short time period with respect to the overall flight duration but
can cause significant deviation from the nominal trajectory, we
consider the worst tracking error of any robot in the team as
a success metric:

max
i,t
‖p(i)(t)− p

(i)
d (t)‖, (7)

where p
(i)
d (t) is the desired trajectory for robot i. Minimizing

(7) implies improved tracking performance and safety of a
multirotor swarm during tight formation flight.

IV. LEARNING OF SWARM AERODYNAMIC INTERACTION

We employ state-of-the-art deep learning methods to capture
the unknown (or residual) dynamics caused by interactions
of heterogeneous robot teams. In order to use the learned
functions effectively for motion planning and control, we
require that the DNNs have strong Lipschitz properties (for
stability analysis), can generalize well to new test cases, and
use compact encodings to achieve high computational and
statistical efficiency. To that end, we introduce heterogeneous
deep sets, a generalization of regular deep sets [8], and employ
spectral normalization [9] for strong Lipschitz properties.

In this section, we will first recap the homogeneous learning
architecture covered in prior work [8, 11]. Then we will
generalize them to the heterogeneous case with representation
guarantees. Finally, we will introduce spectral normalization
and our data collection procedures.

A. Homogeneous Permutation-Invariant Neural Networks

Recall that in the homogeneous case, all robots are with the
same type (type1). Therefore, the input to functions fa or τa
is a single set. The permutation-invariant aspect of fa or τa
can be characterized as:

fa(r
(i)
type1

) = fa(π(r
(i)
type1

)), τa(r
(i)
type1

) = τa(π(r
(i)
type1

))

for any permutation π. Since the aim is to learn the function
fa and τa using DNNs, we need to guarantee that the learned
DNN is permutation-invariant. Therefore, we consider the

following “deep sets” [8] architecture to approximate homo-
geneous fa and τa:[

fa(r
(i)
type1

)

τa(r
(i)
type1

)

]
≈ ρ

 ∑
x(ij)∈r(i)type1

φ(x(ij))

 :=

[
f̂
(i)
a

τ̂
(i)
a

]
, (8)

where φ(·) and ρ(·) are two DNNs. The output of φ is a
hidden state to represent “contributions” from each neighbor,
and ρ is a nonlinear mapping from the summation of these
hidden states to the total effect.

Obviously the network architecture in (8) is permutation-
invariant due to the inner sum operation. We now show
that this architecture is able to approximate any continuous
permutation-invariant function. The following Lemma 1 and
Theorem 2 are adopted from [8] and will be used and extended
in the next section for the heterogeneous case.

Lemma 1. Define φ̄(z) = [1; z; · · · ; zM ] ∈ RM+1 as a
mapping from R to RM+1, and X = {[x1; · · · ;xM ] ∈
[0, 1]M |x1 ≤ · · · ≤ xM} as a subset of [0, 1]M . For
x = [x1; · · · ;xM ] ∈ X , define q(x) =

∑M
m=1 φ̄(xm). Then

q(x) : X → RM+1 is a homeomorphism.

Proof. The proof builds on the Newton-Girard formulae,
which connect the moments of a sample set (sum-of-power)
to the elementary symmetric polynomials (see [8]).

Theorem 2. Suppose h(x) : [0, 1]M → R is a permutation-
invariant continuous function, i.e., h(x) = h(x1, · · · , xM ) =
h(π(x1, · · · , xM )) for any permutation π. Then there exist
continuous functions ρ̄ : RM+1 → R and φ̄ : R → RM+1

such that

h(x) = ρ̄

(
M∑
m=1

φ̄(xm)

)
, ∀x ∈ [0, 1]M .

Proof. We choose φ̄(z) = [1; z; · · · ; zM ] and ρ̄(·) =
h(q−1(·)), where q(·) is defined in Lemma 1. Note that since
q(·) is a homeomorphism, q−1(·) exists and it is a continuous
function from RM+1 to X . Therefore, ρ̄ is also a continu-
ous function from RM+1 to R, and ρ̄

(∑M
m=1 φ̄(xm)

)
=

ρ̄(q(x)) = h(q−1(q(x))) = h(x) for x ∈ X . Finally, note
that for any x ∈ [0, 1]M , there exists some permutation π
such that π(x) ∈ X . Then because both ρ̄(q(x)) and h(x)
are permutation-invariant, we have ρ̄ (q(x)) = ρ̄ (q(π(x))) =
h(π(x)) = h(x) for all x ∈ [0, 1]M .

Theorem 2 focuses on scalar valued permutation-invariant
continuous functions with hypercubic input space [0, 1]M , i.e.,
each element in the input set is a scalar. In contrast, our learn-
ing target function [fa; τa] in (8) is a vector valued function
with bounded input space, and each element in the input set
is also a vector. However, Theorem 2 can be generalized in a
straightforward manner by the following corollary.

Corollary 3. Suppose x(1),x(2), · · · ,x(M) are M bounded
vectors in RD1 , and h(x(1), · · · ,x(M)) is a continuous
permutation-invariant function from RM×D1 to RD2 , i.e.,
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h(x(1), · · · ,x(M)) = h(xπ(1), · · · ,xπ(M)) for any permuta-
tion π. Then h(x(1), · · · ,x(M)) can be approximated arbitrar-
ily close in the proposed architecture in (8).

Proof. First, there exists a bijection from the bounded vector
space in RD1 to [0, 1] after discretization, with finite but
arbitrary precision. Thus, Theorem 2 is applicable. Second, we
apply Theorem 2 D2 times and stack D2 scalar-valued func-
tions to represent the vector-valued function with output space
RD2 . Finally, because DNNs are universal approximators for
continuous functions [28], the proposed architecture in (8) can
approximate any h(x(1), · · · ,x(M)) arbitrarily close.

B. Heterogeneous K-Group Permutation-Invariant DNN

Different from the homogeneous setting, the inputs to
functions f

I(i)
a and τI(i)a in (5) are K different sets. First,

we define permutation-invariance in the heterogeneous case.
Intuitively, we expect that the following equality holds:

fI(i)a (r
(i)
type1

, · · · , r(i)typeK
)

=fI(i)a (π1(r
(i)
type1

), · · · , πK(r
(i)
typeK

))
(9)

for any permutations π1, · · · , πK (similarly for τI(i)a ). For-
mally, we define K-group permutation invariance as follows.

Definition 1 (K-group permutation invariance). Let x(k) =

[x
(k)
1 ; · · · ;x

(k)
Mk

] ∈ [0, 1]Mk for 1 ≤ k ≤ K, and x =

[x(1); · · · ; x(K)] ∈ [0, 1]MK , where MK =
∑K
k=1Mk. h(x) :

RMK → R is K-group permutation-invariant if

h([x(1); · · · ; x(K)]) = h([π1(x(1)); · · · ;πK(x(K))])

for any permutations π1, π2, · · · , πK .

For example, h(x1, x2, y1, y2) = max{x1, x2} + 2 ·
max{y1, y2} is a 2-group permutation-invariant function, be-
cause we can swap x1 and x2 or swap y1 and y2, but if we
interchange x1 and y1 the function value may vary. In addition,
the f largea function in Example 1 is a 3-group permutation-
invariant function.

Similar to Lemma 1, in order to handle ambiguity due
to permutation, we define XMk

= {[x1; · · · ;xMk
] ∈

[0, 1]Mk |x1 ≤ · · · ≤ xMk
} and

XK = {[x(1); · · · ; x(K)] ∈ [0, 1]MK |x(k) ∈ XMk
,∀k}.

Finally, we show how a K-group permutation-invariant func-
tion can be approximated with the following representation
theorem.

Theorem 4. h(x) : [0, 1]MK → R is a K-group permutation-
invariant continuous function if and only if it has the repre-
sentation

h(x) = ρ̄

(
M1∑
m=1

φ̄1(x(1)m ) + · · ·+
MK∑
m=1

φ̄K(x(K)
m )

)

= ρ̄

(
K∑
k=1

Mk∑
m=1

φ̄k(x(k)m )

)
, ∀x ∈ [0, 1]MK

for some continuous outer and inner functions ρ̄ : RK+MK →
R and φ̄k : R→ RK+MK for 1 ≤ k ≤ K.

Original Space 𝒳"

𝑥$
($)
1

Type1

… 	𝑀$

𝑥*+
($)

𝑥$
(")
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𝑥-
(")

…

𝑥*.
(")

…

+
…

+

Latent Space
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Homeomorphism 𝒒" 𝐱

Target
Space

Continuous
Map

𝜌̅(𝒒"(𝐱)) = ℎ(𝐱)

	2	1 		𝑀"

Fig. 2. Illustration of Theorem 4 and its proof. We first find a homeomorphism
qK(·) between the original space and the latent space, and then find a
continuous function ρ̄(·) such that ρ̄(qK(·)) = h(·).

Proof. The sufficiency follows from that h(x) is K-group
permutation-invariant by construction. For the necessary con-
dition, we need to find continuous functions ρ̄ and {φ̄k}Kk=1

given h. We define φ̄k(x) : R→ RK+MK as

φ̄k(x) = [0M1
; · · · ; 0Mk−1

;


1
x
...

xMk

 ; 0Mk+1
; · · · ; 0MK

]

where 0Mk
= [0; · · · ; 0] ∈ RMk+1. Then

qK(x) =

K∑
k=1

Mk∑
m=1

φ̄k(x(k)m )

is a homeomorphism from XK ⊆ RMK to RK+MK from
Lemma 1. We choose ρ̄ : RK+MK → R as ρ̄(·) = h(q−1K (·))
which is continuous, because both q−1K and h are continuous.
Then ρ̄(qK(x)) = h(x) for x ∈ XK . Finally, because i) for
all x = [x(1); · · · ; x(K)] in [0, 1]MK there exist permutations
π1, · · · , πK such that [π1(x(1)); · · · ;πK(x(K))] ∈ XK ; and ii)
both ρ̄(qK(x)) and h(x) are K-group permutation-invariant,
we have ρ̄(qK(x)) = h(x) for x ∈ [0, 1]MK .

Figure 2 depicts the key idea of Theorem 4 and its
proof. Moreover, we provide a 2-group permutation-invariant
function example to highlight the roles of φ and ρ in the
heterogeneous case.

Example 2 (2-group permutation-invariant function). Con-
sider h(x1, x2, y1, y2) = max{x1, x2} + 2 · max{y1, y2},
which is 2-group permutation-invariant. Then we define
φx(x) = [eαx;xeαx; 0; 0], φy(y) = [0; 0; eαy; yeαy] and
ρ([a; b; c; d]) = b/a+ 2 · d/c. Note that

ρ(φx(x1) + φx(x2) + φy(y1) + φy(y2))

=
x1e

αx1 + x2e
αx2

eαx1 + eαx2
+ 2 · y1e

αy1 + y2e
αy2

eαy1 + eαy2
,

which is asymptotically equal to max{x1, x2}+2·max{y1, y2}
as α→ +∞.

Similar to the homogeneous case, Theorem 4 can general-
ize to vector-output functions with bounded input space by
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applying the same argument as in Corollary 3. We propose
the following heterogeneous deep set structure to model the
heterogeneous functions f

I(i)
a and τI(i)a :[

f
I(i)
a (r

(i)
type1

, · · · , r(i)typeK
)

τ
I(i)
a (r

(i)
type1

, · · · , r(i)typeK
)

]

≈ρI(i)

 K∑
k=1

∑
x(ij)∈r(i)typek

φI(j)(x
(ij))

 :=

[
f̂
(i)
a

τ̂
(i)
a

]
.

(10)

Example 3 (Use of 3-group permutation-invariant function
for multirotors). For example, in the heterogeneous system
provided by Example 1 (as depicted in Fig. 1(a)), we have[

f
(3)
a

τ
(3)
a

]
=

[
f largea (r

(3)
small, r

(3)
large, r

(3)
env)

τ large
a (r

(3)
small, r

(3)
large, r

(3)
env)

]
≈ ρlarge

(
φsmall(x

(31)) + φsmall(x
(32)) + φenv(x(34))

)
,

for the large robot 3, where φsmall captures the interaction
with the small robot 1 and 2, and φenv captures the interaction
with the environment 4, e.g., ground effect and air drag.

The structure in (10) has many valuable properties:
• Representation ability. Since Theorem 4 is necessary

and sufficient, we do not lose approximation power
by using this constrained framework, i.e., any K-group
permutation-invariant function can be learned by (10).
We demonstrate strong empirical performance using rel-
atively compact DNNs for ρI(i) and φI(j).

• Computational and sampling efficiency and scala-
bility. Since the input dimension of φI(j) is always
the same as the single vehicle case, the feed-forward
computational complexity of (10) grows linearly with the
number of neighboring vehicles. Moreover, the number
of neural networks (ρI(i) and φI(j)) we need is 2K,
which grows linearly as the number of different robot
types increases. In practice, we found that one hour flight
data is sufficient to accurately learn interactions between
two to five multirotors.

• Generalization to varying swarm size. Given learned
φI(j) and ρI(i) functions, (10) can be used to predict
interactions for any swarm size. In other words, a model
trained on swarms of a certain size may also accurately
model (slightly) larger swarms. In practice, we found that
trained with data from one to three multirotor swarms,
our model can give good predictions for five multirotor
swarms.

C. Spectral Normalization for Robustness and Generalization

To improve a property of robustness and generalizability
of DNNs, we use spectral normalization [9] for training
optimization. Spectral normalization stabilizes a DNN training
by constraining its Lipschitz constant. Spectrally normalized
DNNs have been shown to generalize well, which is an indi-
cation of stability in machine learning. Spectrally normalized
DNNs have also been shown to be robust, which can be used
to provide control-theoretic stability guarantees [10, 29]. The

bounded approximation error assumption (Assumption 1) in
our control stability and robustness analysis (Sec. VI-B) also
relies on spectral normalization of DNNs.

Mathematically, the Lipschitz constant ‖g‖Lip of a function
g(·) is defined as the smallest value such that:

∀x,x′ : ‖g(x)− g(x′)‖2/‖x− x′‖2 ≤ ‖g‖Lip.

Let g(x,θ) denote a ReLU DNN parameterized by the DNN
weights θ = W1, · · · ,WL+1:

g(x,θ) = WL+1σ(WLσ(· · ·σ(W1x) · · · )), (11)

where the activation function σ(·) = max(·, 0) is called the
element-wise ReLU function. In practice, we apply the spectral
normalization to the weight matrices in each layer after each
batch gradient descent as follows:

Wi ←Wi/‖Wi‖2 · γ
1

L+1 , i ∈ [1, L+ 1], (12)

where ‖Wi‖2 is the maximum singular value of Wi and γ is
a hyperparameter. With (12), ‖g‖Lip will be upper bounded by
γ. Since spectrally-normalized g is γ−Lipschitz continuous, it
is robust with respect to noise ∆x, i.e., ‖g(x+ ∆x)−g(x)‖2
is always bounded by γ‖∆x‖2. In this paper, we apply the
spectral normalization on both the φI(j)(·) and ρI(i)(·) DNNs
in (10).

D. Curriculum Learning

Training DNNs in (10) to approximate f
I(i)
a and τ

I(i)
a

requires collecting close formation flight data. However, the
downwash effect causes the nominally controlled multirotors
(without compensation for the interaction forces) to move
apart from each other. Thus, we use a curriculum/cumulative
learning approach: first, we collect data for two multirotors
without a DNN and learn a model. Second, we repeat the data
collection using our learned model as a feed-forward term
in our controller, which allows closer-proximity flight of the
two vehicle. Third, we repeat the procedure with increasing
number of vehicles, using the current best model.

Note that our data collection and learning are independent
of the controller used and independent of the f

I(i)
a or τI(i)a

compensation. In particular, if we actively compensate for a
learned f

I(i)
a or τI(i)a , this will only affect η in (1a) and not

the observed f
I(i)
a or τI(i)a .

V. INTERACTION-AWARE MULTI-ROBOT PLANNING

We approximately solve (6) offline by using two simpli-
fications: i) we plan sequentially for each robot, treating
other robots as dynamic obstacles with known trajectories,
and ii) we use double-integrator dynamics plus learned in-
teractions. Both simplifications are common for multi-robot
motion planning with applications to multirotors [2, 30]. Such
a motion planning approach can be easily distributed and is
complete for planning instances that fulfill the well-formed
infrastructure property [31]. However, the interaction forces
(10) complicate planning significantly, because the interactions
are highly nonlinear and robot dynamics are not independent
from each other anymore.
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For example, consider a three robot team with two small
and one large robot as in Fig. 1(a). Assume that we already
have valid trajectories for the two small robots and now plan a
motion for the large robot. The resulting trajectory might result
in a significant downwash force for the small robots if the
large robot flies directly above the small ones. This strong in-
teraction might invalidate the previous trajectories of the small
robots or even violate their interaction force limits f small

a,max and
τ small
a,max. Furthermore, the interaction force is asymmetric and

thus it is not sufficient to only consider the interaction force
placed on the large robot. We solve this challenge by directly
limiting the change of the interaction forces placed on all
neighbors when we plan for a robot. This concept is similar
to trust regions in sequential optimization [32].

The simplified state is x(i) = [p(i); v(i); f̂
(i)
a ] and the

simplified dynamics (4) become:

ẋ(i) = f (i)(x(i),u(i)) =

 v(i)

u(i) + f̂
(i)
a

˙̂
f
(i)
a

 . (13)

These dynamics are still complex and nonlinear because of
f̂
(i)
a , which is the learned interaction force represented by

DNNs in (10). We include f̂
(i)
a in our state space to simplify

the enforcement of the bound on the interaction force in (6).
We propose a novel hybrid two-stage planning algorithm,

see Algorithm 1, leveraging the existing approaches while
still highlighting the importance of considering interactive
forces/torques in the planning. The portions of the pseudo-
code in Algorithm 1 that significantly differ from the existing
methods and add interaction-awareness to our approach are
highlighted. In Stage 1, we find initial feasible trajectories
using a kinodynamic sampling-based motion planner. Note that
any kinodynamic planner can be used for Stage 1. In Stage 2,
we use sequential convex programming (SCP) [2, 32, 33] to
refine the initial solution to reach the desired states exactly and
to minimize our energy objective defined in (6). Intuitively,
Stage 1 identifies the homeomorphism class of the solution
trajectories and fixes tf , while Stage 2 finds the optimal
trajectories to the goal within that homeomorphism class. Both
stages differ from similar methods in the literature [2], because
they need to reason over the coupling of of the robots caused
by interaction forces f̂

(i)
a .

A. Stage 1: Sampling-Based Planning using Interaction
Forces

For Stage 1, any kinodynamic single-robot motion planner
can be extended. For the coupled multi-robot setting in the
present paper, we modify AO-RRT [34], which is is a meta-
algorithm that uses the rapidly-exploring random tree (RRT)
algorithm as a subroutine.

Sampling-Based Planner: Our adaption of RRT (Lines 3
to 15 in Algorithm 1) works as follows. First, a random state
xrand is uniformly sampled from the state space (Line 6)
and the closest state xnear that is already in the search tree
T is found (Line 7). This search can be done efficiently in
logarithmic time by employing a specialized data structured
such as a kd-tree [35] and requires the user to define a distance

Algorithm 1: Interaction-aware motion planning

Input: x(i)
0 , x(i)

f , ∆t

Result: X (i)
sol =

(
x
(i)
0 ,x

(i)
1 ,x

(i)
2 , . . . ,x

(i)

T (i)

)
,

U (i)
sol =

(
u
(i)
0 ,u

(i)
1 ,u

(i)
2 , . . . ,x

(i)

T (i)−1

)
. Stage 1: Find duration tf and initial trajectories that are

close to the goal state
1 c(i) ←∞,X (i)

sol ← (),U (i)
sol ← () ∀i ∈ {1, . . . , N}

2 repeat
3 foreach i ∈ RandomShuffle({1, . . . , N}) do
4 T = ({x(i)

0 }, ∅)
5 repeat
6 xrand ← UniformSample(X I(i))
7 xnear ← FindClosest(T , xrand)
8 urand ← UniformSample(UI(i))
9 xnew, c← Propagate(xnear, urand, ∆t,

{X (j)
sol |j 6= i})

10 if StateValid(xnew, {X (j)
sol |j 6= i}) and c ≤ c(i)

then
11 Add(T ,xnear → xnew)

12 if ‖xnew − x
(i)
f ‖ ≤ ε then

13 c(i) ← c

14 X (i)
sol ,U

(i)
sol ← ExtractSolution(T ,xnew)

15 break

16 until TerminationCondition1()
17 X (i)

sol ,U
(i)
sol ← PostProcess(X (i)

sol ,U
(i)
sol)

. Stage 2: Refine trajectories sequentially; Based on SCP
18 repeat
19 foreach i ∈ RandomShuffle({1, . . . , N}) do
20 X (i)

sol ,U
(i)
sol ← SolveCP(Eq. (17), {X (i)

sol |∀i}, {U
(i)
sol |∀i})

21 until Converged()

function on the state space. Second, an action is uniformly
sampled from the action space (Line 8) and the dynamics (4)
are forward propagated for a fixed time period ∆t using xnear

as initial condition, e.g., by using the Runge-Kutta method
(Line 9). Note that this forward propagation directly considers
the learned dynamics f̂

(i)
a . Third, the new state xnew is checked

for validity with respect to i) the state space (which includes
f̂
(i)
a ), ii) collisions with other robots, and iii) change and bound

of the neighbor’s interaction forces (Line 10). The first validity
check ensures that the interaction force of the robot itself is
bounded, while the third check is a trust region and upper
bound for the neighbor’s interaction forces.

If xnew is valid, it is added as a child node of xnear in the
search tree T (Line 11). Finally, if xnew is within an ε-distance
to the goal x

(i)
f , the solution can be extracted by following the

parent pointers of each tree node starting from xnew until the
root node x

(i)
0 is reached (Line 15). We note that our RRT

variant departs from ones in the literature which either sample
∆t, use a best-control approximation of the steer method in
RRT, or use a combination of both [34]. We are interested
in a constant ∆t for our optimization formulation in Stage
2. In this case, a best-control approximation would lead to a
probabilistic incomplete planner [36].

While RRT is probabilisticly complete, it also almost surely
converges to a suboptimal solution [37]. AO-RRT remedies
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Fig. 3. Example for Stage 1 of our motion planning with learned dynamics.
Here, we have an initial solution for a small (blue) robot and plan for a large
(orange) robot. The created search tree of the large robot is color-coded by
the magnitude of the interaction force on the orange robot. During the search,
we reject states that would cause a significant change in the interaction force
for the blue robot (edges in blue).

this shortcoming by planning in state-cost space and us-
ing RRTs sequentially with a monotonically decreasing cost
bound. The cost bound c(i) is initially set to infinity (Line 1)
and the tree can only grow with states that have a lower cost
associated with them (Line 10). Once a solution is found, the
cost bound is decreased accordingly (Line 13) and the search
is repeated using the new cost bound (Line 2). This approach
is asymptotically optimal, but in practice the algorithm is
terminated based on some condition, e.g., a timeout or a fixed
number of iterations without improvements (Line 16).

Modification of Sampling-Based Planner: We extend AO-
RRT to a sequential interaction-aware multi-robot planner
by adding f̂

(i)
a and time to our state space and treating the

other robots as dynamic obstacles. As cost, we use a discrete
approximation of the objective in (6). For each AO-RRT
outer-loop iteration with a fixed cost bound, we compute
trajectories sequentially using a random permutation of the
robots (Line 3). When we check the state for validity (Line 10),
we also enforce that the new state is not in collision with
the trajectories of the other robots and that their interaction
forces are bounded and within a trust region compared to
their previous value, see Fig. 3 for visualization. Here, the red
edges show motions that cause large (≈ 10 g) but admissible
interaction forces on the orange robot, because the blue robot
flies directly above it. The blue edges are candidate edges
as computed in Line 9 and are not added to the search tree,
because their motion would cause a violation of the interaction
force trust region of the blue robot (condition in Line 10).
Once the search tree contains a path to the goal region, a
solution is returned (orange path).

The output of the sequential planner (Line 15) is a sequence
of states X (i)

sol and actions U (i)
sol , each to be applied for a

duration of ∆t. Note that the sequences might have different
lengths for each robot. Implicitly, the sequences also defines

tf . Furthermore, the first element of each sequence is the
robots’ start state and the last element is within a ε-distance
of the robots’ goal state. We postprocess this sequence of
states to make it an appropriate input for the optimization,
where the sequences have a uniform length (Line 17). In
practice, we found that that repeating the last state and adding
null actions, or (virtual) tracking of the computed trajectories
using a controller are efficient and effective postprocessing
techniques.

Other sampling-based methods can be used as foundation
of the first stage as well, with similar changes in sequential
planning, state-augmentation to include the interaction forces,
state-validity checking, and postprocessing.

B. Stage 2: Optimization-Based Motion Planning

We employ sequential convex programming (SCP) for our
optimization. SCP is a local optimization method for non-
convex problems that leverages convex optimization. The key
concept is to convexify the nonconvex portions of the opti-
mization problem by linearizing around a prior solution. The
resulting convex problem instance is solved and a new solution
obtained. The procedure can be repeated until convergence
criteria are met. Because of the local nature of this procedure, a
good initial guess is crucial in particular for high-dimensional
and highly nonlinear system dynamics. In our case, we use the
searched trajectories from Stage 1 in Sec. V-A as the initial
guess.

We use the following approach. First, we adopt a simple
zero-order hold temporal discretization of the dynamics (13)
using Euler integration:

x
(i)
k+1 = x

(i)
k + ẋ

(i)
k ∆t. (14)

Second, we linearize ẋ
(i)
k around our prior states x̄

(i)
k and

actions ū
(i)
k :

ẋ
(i)
k ≈ Ak(x

(i)
k − x̄

(i)
k ) + Bk(u

(i)
k − ū

(i)
k ) + f (i)(x̄

(i)
k , ū

(i)
k ),
(15)

where Ak and Bk are the partial derivative matrices of f (i)

with respect to x
(i)
k and u

(i)
k evaluated at x̄

(i)
k , ū

(i)
k . Because

we encode f̂
(i)
a using fully-differentiable DNNs, the partial

derivatives can be efficiently computed analytically, e.g., by
using autograd in PyTorch [38].

Third, we linearize f̂
(j)
a around our prior states x̄

(i)
k for all

neighboring robots j ∈ neighbor(i):

f̂ (j)a ≈ C
(j)
k (x

(i)
k − x̄

(i)
k ) + f̂ (j)a (r

(i)
I (x̄

(i)
k )), (16)

where C
(j)
k is the derivative matrix of f̂

(j)
a (the learned

interaction function of robot j, represented by DNNs) with
respect to x

(i)
k evaluated at x̄

(i)
k ; and r

(i)
I (x̄

(i)
k ) is the ordered

sequence of relative states as defined in (3) but using the fixed
prior state x̄

(i)
k rather than decision variable x

(i)
k in (2).
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Now we can formulate the following convex programs, one
per robot:

min
X (i)

sol ,U
(i)
sol

T∑
t=0

‖u(i)
k ‖

2 + λ1‖x(i)
T − x

(i)
f ‖∞ + λ2δ (17)

subject to:

robot dynamics (14) and (15) i ∈ [1, N ]

u
(i)
k ∈ UI(i) i ∈ [1, N ]

x
(i)
k ∈ X

I(i)
δ i ∈ [1, N ], δ ≥ 0

〈p̄(ij)
k ,p

(i)
k − p̄

(i)
k 〉 ≥ r(I(i)I(j))‖p̄

(ij)
k ‖2 i < j, j ∈ [2, N ]

x
(i)
0 = x

(i)
s i ∈ [1, N ]

|C(j)
k (x

(i)
k − x̄

(i)
k )| ≤ bfa i < j, j ∈ [2, N ]

|x(i)
k − x̄

(i)
k | ≤ bx; |u(i)

k − ū
(i)
k | ≤ bu i ∈ [1, N ]

where X I(i)δ is the state space increased by δ in each direction,
the linearized robot dynamics are similar to [32], and the
convexified inter-robot collision constraint is from [2]. We
use soft constraints for reaching the goal (with weight λ1)
and the state space (with weight λ2), and trust regions around
x̄
(i)
k , ū

(i)
k , and the neighbors’ interaction forces for numerical

stability. Interaction forces are constrained in (17) because f̂
(i)
a

is part of the state space X I(i).
We solve these convex programs sequentially and they con-

verge to a locally optimal solution [2]. For the first iteration,
we linearize around the trajectory computed during Stage 1
of our motion planner while subsequent iterations linearize
around the solution of the previous iteration (Lines 18 to 21
in Algorithm 1). It is possible to implement Algorithm 1 in a
distributed fashion similar to prior work [2].

VI. INTERACTION-AWARE TRACKING CONTROLLER

Given arbitrary desired trajectories, including ones that have
not been computed using the method presented in Sec. V, we
augment existing nonlinear position and attitude controllers
for multirotors [39, 40] that account for interaction force and
torques and compensate motor delays.

A. Tracking Control Law with Delay Compensation

We use a typical hierarchical structure as shown in Fig. 4 for
controlling multirotor robots. Given the desired 3-dimensional
position trajectory p

(i)
d (t) for robot i, we define a reference

velocity
v(i)
r = ṗ

(i)
d −Λ(i)

p p̃(i), (18)

with position error p̃(i) = p(i)−p
(i)
d and gain matrix Λ

(i)
p � 0.

The position controller is defined by the desired thrust vector

f
(i)
d = −m(i)g +m(i)v̇(i)

r − f̂ (i)a

−
(
K(i)
v +mΓ(i)

v

)
ṽ(i) −K(i)

v Γ(i)
v

∫
ṽ(i),

(19)

where ṽ(i) = v(i) − v
(i)
r is the velocity error, and K

(i)
v ,

Γ
(i)
v are positive definite gain matrices. From (1a), by set-

ting R(i)f
(i)
u = f

(i)
d , we compute the total desired thrust

T
(i)
d = f

(i)
d · k̂ and the desired attitude R

(i)
d [10]. We convert

Desired
Trajectory

Position
Controller

Attitude
Controller

Interaction Estimation

Relative Neighbor States {𝐱($%)}

Delay Compensation

Vehicle
Dynamics

Thrust
Mixing

Environment

𝐟)
($) 𝝉)

($)

𝐟+,
($) 𝝉-,

($)

𝐮/
($)

𝐱($)

−

Fig. 4. Hierarchy of control and planning blocks with information flow
for commands and sensor feedback. We use different colors to represent
heterogeneous neighbors. Note that the neighbors will influence the vehicle
dynamics (dashed arrow).

the error rotation matrix R̃(i) = R
(i)>
d R(i) to a constrained

quaternion error q̃(i) = [q̃
(i)
0 , q̃

(i)
v ], and define the reference

angular rate as

ω(i)
r = R̃(i)>ω

(i)
d −Λ(i)

q q̃(i)
v . (20)

We use the following nonlinear attitude controller from [39]
with interaction torque compensation:

τ
(i)
d = J(i)ω̇(i)

r − J(i)ω(i) × ω(i)
r − τ̂ (i)

a

−K(i)
ω ω̃

(i) − Γ(i)
ω

∫
ω̃(i). (21)

K
(i)
ω and Γ

(i)
ω are positive definite gain matrices on angular

rate error ω̃(i) = ω(i) − ω(i)
r and its integral, respectively.

From (19) and (21), the desired output wrench for the i-th
robot η(i)

d =
[
T

(i)
d ; τ

(i)
d

]
must be realized through a delayed

motor signal u
(i)
c from (1c). Here, we implement a simple yet

effective method to compensate for motor delay [41]:

u(i)
c = B

(i)+
0

(
η
(i)
d +

η̇
(i)
d

λ(i)

)
, (22)

where the actuation matrix B
(i)
0 and delay constant λ(i) are

determined apriori. We consider the multirotor to be fully
or over-actuated, thus (·)+ denotes either the inverse or
right pseudo-inverse. η̇(i)

d can be obtained through numerical
differentiation [41].

B. Analysis of Stability and Robustness

The robust position and attitude controllers (19) and (21)
can handle bounded model disturbance [10, 39]. Here, we
make the same assumption as in [10, 11], that the learning
errors and their rates of change are upper bounded.

Assumption 1 (Bounded approximation error of DNNs). We
denote the approximation errors between the learned model
in (10) and the true unmodeled dynamics for interaction force
and torque as εf = f

(i)
a − f̂

(i)
a and ετ = τ

(i)
a − τ̂ (i)

a ,
respectively. For each robot, we assume εf and ετ are
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uniformly upper bounded. Formally, supx(i)∈XI(i)‖εf‖ = ε̄
(i)
f

and supx(i)∈XI(i)‖ετ‖ = ε̄
(i)
τ . Furthermore, we assume the

time derivative of errors are upper bounded as well, i.e
supx(i)∈XI(i)‖ε̇f‖ = d̄

(i)
f and supx(i)∈XI(i)‖ε̇τ‖ = d̄

(i)
τ .

Note that the ε̄(i)f , ε̄(i)τ , d̄(i)f and d̄(i)τ can all be derived from
Lipschitz of DNNs in (10) if spectrally normalized [9, 29].
Under Assumption 1, we can show the stability of the position
and attitude controllers using results from [11, 39]:

Theorem 5. For the position controller defined in (18)
and (19) under Assumption 1, the position tracking error
‖p̃(i)‖ converges exponentially to an error ball:

lim
t→∞

‖p̃(i)‖ =
d̄
(i)
f

λmin(Λ
(i)
p )λmin(Γ

(i)
v )λmin(K

(i)
v )

(23)

Proof. We select sliding variables: s1 = ˙̃p(i) + Λ
(i)
p p̃(i) and

s2 = mṡ1 + Kvs1. Then, (19) can be written as

f
(i)
d = −m(i)g +m(i)v̇(i)

r − f̂ (i)a −K(i)
v s1 − Γ(i)

v

∫
s2.

Applying to (1a), we can get closed-loop dynamics ṡ2 +

Γ
(i)
v s2 = ε̇f . Thus combining hierarchical linear systems of

ṡ1 and ṡ2, we can easily arrive at (23).

Theorem 6. For the attitude controller defined in (20)
and (21) under Assumption 1, the attitude tracking error ‖q̃(i)

v ‖
converges exponentially to an error ball determined by d̄(i)τ .

Proof. Applying (21) to (1b), we get closed-loop dynamics

J(i) ˙̃ω(i) − J(i)ω(i) × ω̃(i) −K(i)
ω ω̃

(i) − Γ(i)
ω

∫
ω̃(i) = ετ .

Following the proof structure for Theorem 2 in [39], we can
derive an ultimate bound for ‖q̃(i)

v ‖ determined by d̄(i)τ .

With motor delay, we can state the following result for
stabilizing the output wrench error η̃(i) = η(i)−η(i)

d with (22),
assuming the motor delay constant is obtained from testing.

Theorem 7. For robot i, the controllers (19), (21) and (22)
will exponentially stabilize the augmented states of position,
attitude and output wrench error: [p̃(i); ṽ(i); q̃

(i)
v ; ω̃(i); η̃(i)].

Proof. (19) and (21) stabilizes [p̃(i); ṽ(i); q̃
(i)
v ; ω̃(i)] exponen-

tially from Theorems 5 and 6. Thus by Theorem 3.1 from [41],
it follows that the augmented states is also exponentially
stabilized by (22).

Even with small modelling error on λ(i), controller (22)
can robustly cancel out some effects from delays and improve
tracking performance in practice. Furthermore, it can handle
not only first-order motor delay (1c), but also signal transport
delays as discussed in [41]. In case of the small quadrotors
used in our experiments, such delays exist on similar order
of magnitude, thus making (22) essential for improving the
control performance.

TABLE I
SYSTEM IDENTIFICATION OF THE USED QUADROTORS.

Small Large

Weight 34 g 67 g
Max

Thrust 65 g 145 g

Diameter 12 cm 19 cm
λ 16 16

ψ1(p̂, v̂)
11.09−39.08p̂−9.53v̂+

20.57p̂2 + 38.43p̂v̂

44.1.0− 122.51p̂−
36.18v̂ + 53.11p̂2 +

107.68p̂v̂

ψ2(f̂ , v̂)
0.5 + 0.12f̂ − 0.41v̂ −

0.002f̂2 − 0.043f̂ v̂
0.56 + 0.06f̂ − 0.6v̂ −
0.0007f̂2 − 0.015f̂ v̂

ψ3(p̂, v̂) −9.86 + 3.02p̂− 26.72v̂ −29.91 + 8.1p̂+ 65.2v̂

VII. EXPERIMENTS

We use quadrotors based on Bitcraze Crazyflie 2.0/2.1 (CF).
Our small quadrotors are Crazyflie 2.X, which are small
(9 cm rotor-to-rotor) and lightweight (34 g) products that are
commercially available. Our large quadrotors use the Crazyflie
2.1 as control board on a larger frame with brushed motors
(model: Parrot Mini Drone), see Table I for a summary of
physical parameters. We use the Crazyswarm [42] package to
control multiple Crazyflies simultaneously. Each quadrotor is
equipped with a single reflective marker for position tracking
at 100 Hz using a motion capture system. The nonlinear con-
troller, extended Kalman filter, and neural network evaluation
are running on-board the STM32 microcontroller.

For the controller, we implement the delay compensation
(22) in the following way: i) we numerically estimate Ṫ (i)

d as
part of the position controller (19), and ii) we approximate
τ̇
(i)
d by adding the additional term −K

(i)
ω̇

˙̃ω(i) to the attitude
controller (21), where ˙̃ω(i) is numerically estimated and K

(i)
ω̇

is a positive definite gain matrix. We found that the other terms
of τ̇ (i)

d , i.e. the time-derivative of (21), are negligible for our
use-case. Our baseline controller is identical (including the
chosen gains) to our proposed controller with the exception
that the interaction force is set to zero. Note that our baseline
controller is more robust than the default controller in the
Crazyswarm package, which cannot safely execute the close-
proximity flight shown in Fig. 1(c).

For data collection, we use the uSD card extension board
and store binary encoded data roughly every 10 ms. Each
dataset is timestamped using the on-board microsecond timer
and the clocks are synchronized before takeoff using broadcast
radio packets. The drift of the clocks of different Crazyflies
can be ignored for our short flight times (less than 2 min).

A. Calibration and System Identification of Different Robots

Prior to learning the residual terms f
(i)
a and τ

(i)
a , we

first calibrate the nominal dynamics model Φ(i)(x,u). We
found that existing motor thrust models [43, 44] are not
very accurate, because they only consider a single motor
and ignore the effect of the battery state of charge. We
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calibrate each Crazyflie by mounting the whole quadrotor
upside-down on a load cell (model TAL221) which is directly
connected to the Crazyflie via a custom extension board using
a 24-bit ADC (model HX711). The upside-down mounting
avoids contamination of our measurements with downwash-
related forces. We use a 100 g capacity load cell for the
small quadrotor and a 500 g capacity load cell for the large
quadrotor. We randomly generate desired PWM motor signals
(identical for all 4 motors) and collect the current battery
voltage, PWM signals, and measured force. We use this data
to find three polynomial functions: ψ1, ψ2, and ψ3. The first
function f̂ = ψ1(p̂, v̂) computes the force of a single rotor
given the normalized PWM signal p̂ and the normalized battery
voltage v̂. This function is only required for the data collection
preparation in order to compute f

(i)
a . The second function

p̂ = ψ2(f̂ , v̂) computes the required PWM signal p̂ given
the desired force f̂ and current battery voltage v̂. Finally,
f̂max = ψ3(p̂, v̂) computes the maximum achievable force
f̂max, given the current PWM signal p̂ and battery voltage v̂.
The last two functions are important at runtime for outputting
the correct force as well as for thrust mixing when motors are
saturated [45].

We use the same measurement setup with the load cell
to establish the delay model of T

(i)
d with a square wave

PWM signal. While the delay model is slightly asymmetric
in practice, we found that our symmetric model (1c) is a good
approximation. All results are summarized in Table I. We use
the remaining parameters (J, thrust-to-torque ratio) from the
existing literature [44].

B. Data Collection

Recall that in (10), we need to learn 2K neural networks
if we have K types of robots. In our experiments, we con-
sider two types of quadrotors (small and large) and also the
environment (mainly ground effect and air drag), as shown
in Example 1. Therefore, we have 5 neural networks to be
learned:

ρsmall, ρlarge, φsmall, φlarge, φenv, (24)

where we do not have ρenv because aerodynamical force
acting on the environment is not interesting for our purpose.
To learn these 5 neural networks, we fly the heterogeneous
swarm in 12 different scenarios (see Table II) to collect labeled
f
(i)
a and τ (i)

a data for each robot. For instance, Example 1 (as
depicted in Fig. 1(a)) corresponds to the “{S, S}→L” scenario
in Table II, where the large robot has two small robots and
the environment as its neighbors.

We utilize two types of data collection tasks: random walk
and swapping. For random walk, we implement a simple reac-
tive collision avoidance approach based on artificial potentials
on-board each Crazyflie [46]. The host computer randomly
selects new goal points within a small cube for each vehicle
at a fixed frequency. These goal points are used as an attractive
force, while neighboring drones contribute a repulsive force.
For swapping, the drones are placed in different horizontal
planes on a cylinder and tasked to move to the opposite side.
All the drones are vertically aligned for one time instance,

causing a large interaction force. The random walk data helps
us to explore the whole space quickly, while the swapping
data ensures that we have data for a specific task of interest.
Note that for both random walk and swapping, the drones also
move close to the ground, to collect sufficient data for learning
the ground effect. For both task types, we varied the scenarios
listed in Table II.

To learn the 5 DNNs in (24), for each robot in each scenario,
we collect the timestamped states x(i) = [p(i); v(i); R(i);ω(i)]
for each robot i. We then compute y(i) as the observed value
of f

(i)
a and τ (i)

a . We compute f
(i)
a and τ (i)

a using (4), where
the nominal dynamics Φ(i) is calculated based on our system
identification in Sec. VII-A. Note that the control delay is also
considered when we compute f

(i)
a and τ (i)

a . Our training data
consists of sequences of

(
{r(i)type1

, · · · , r(i)typeK
},y(i)

)
pairs,

where r
(i)
typek

= {x(ij)|j ∈ neighbor(i) and I(j) = typek} is
the set of the relative states of the type-k neighbors of i. We
have the following loss function for robot i in each scenario
(see Table II for the detailed model structure in each scenario):∥∥∥∥∥ρI(i)(

K∑
k=1

∑
x(ij)∈r(i)typek

φI(j)(x
(ij))

)
− y(i)

∥∥∥∥∥
2

2

, (25)

and we stack all the robots’ data in all scenarios and train on
them together.

In practice, we found the unmodeled torque ‖τ (i)
a ‖ is very

small in magnitude and almost like white noise, so we only
learn f

(i)
a . We compute the relative states from our collected

data as x(ij) = [p(j) − p(i); v(j) − v(i)] ∈ R6 (i.e., relative
position and relative velocity both in the world frame), since
the attitude information R and ω are not dominant for f

(i)
a .

If the type of neighbor j is “environment”, we set p(j) = 0
and v(j) = 0. In this work, we only learn the z component
of f

(i)
a since we found the other two components, x and y,

are very small, and do not significantly alter the nominal
dynamics. Therefore, the output of our learning model in (10)
is a scalar to approximate the z component of the unmodeled
force function f

(i)
a .

C. Learning Results and Ablation Analysis

Each scenario uses a trajectory with a duration around 1000
seconds. For each scenario, we equally split the total trajectory
into 50 shorter pieces, where each one is about 20 seconds.
Then we randomly choose 80% of these 50 trajectories for
training and 20% for validation.

Our DNN functions of φ (φsmall,φlarge,φenv) have four
layers with architecture 6 → 25 → 40 → 40 → H , and
our ρ DNNs (ρsmall,ρlarge) also have L = 4 layers, with
architecture H → 40 → 40 → 40 → 1. We use the ReLU
function as the activation operator, and we use PyTorch [38]
for training and implementation of spectral normalization (see
Sec. IV-C) of all these five DNNs. In training, we iterate all
the data 20 times for error convergence.

Note that H is the dimension of the hidden state. To study
the effect of H on learning performance, we use three different
values of H and the mean validation errors for each H are
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TABLE II
12 SCENARIOS FOR DATA COLLECTION

Scenario S S→ S L→S {S, S}→ S
Model ρsmall(φenv) ρsmall(φenv + φsmall) ρsmall(φenv + φlarge) ρsmall(φenv+φsmall+φsmall)

Scenario {S, L}→ S {L, L}→ S L S→L
Model ρsmall(φenv+φsmall+φlarge) ρsmall(φenv+φlarge+φlarge) ρlarge(φenv) ρlarge(φenv + φsmall)

Scenario L→L {S, S}→L {S, L}→L {L, L}→ S
Model ρlarge(φenv + φlarge) ρlarge(φenv+φsmall+φsmall) ρlarge(φenv+φsmall+φlarge) ρlarge(φenv +φlarge +φlarge)

Fig. 5. fa,z prediction generated by the trained {ρsmall,ρlarge,φsmall,φlarge,φenv} networks. Each heatmap gives the prediction of fa,z of a vehicle in
different horizontal and vertical (global) positions, and the (global) position of neighboring drones are represented by drone icons. A more detailed explanation
is in Sec. VII-C.

shown in Table III. Meanwhile, we also study the influence of
the number of layers by fixing H = 20 and changing L, which
is the number of layers of all ρ nets and φ nets. For L = 3
or L = 5, we delete or add a 40 → 40 layer for all ρ nets
and φ nets, before their last layers. We repeat all experiments
three times to get mean and standard deviation. As depicted
in Table III, we found that the average learning performance
(mean validation error) is not sensitive to H , but larger H
results in higher variance. In terms of the number of layers,
four layers are significantly better than five (which tends
to overfit data), and slighter better than three. To optimize
performance, we finally choose H = 20 and use four-layer
neural networks, which can be efficiently evaluated on-board.

Figure 5 depicts the prediction of fa,z , trained with flying
data from 12 scenarios listed in Table II. The color encodes
the magnitude of f̂a,z for a single small multirotor positioned
at different global (y, z) coordinates. The big/small black
drone icons indicate the (global) coordinates of neighboring
big/small multirotors, and the dashed line located at z = 0
represents the ground. All quadrotors are in the same x-plane.
For example, in Fig. 5(e) one large quadrotor is hovering at
(y = −0.1, z = 0.5) and one small quadrotor is hovering
at (y = 0.1, z = 0.5). If we place a third small quadrotor
at (y = 0, z = 0.3), it would estimate f̂a,z = −10 g as
indicated by the red color in that part of the heatmap. Similarly,
in Fig. 5(a) the small multirotor only has the environment

as a special neighbor. If the small multirotor is hovering at
(y = 0, z = 0.05), it would estimate f̂a,z = 5 g, which is
mainly from the ground effect. All quadrotors are assumed to
be stationary except for Fig. 5(d), where the one neighbor is
moving at 0.8 m/s.

We observe that the interaction between quadrotors is non-
stationary and sensitive to relative velocity, as well as not a
simple superposition between pairs. In Fig. 5(d), the vehicle’s
neighbor is moving, and the prediction becomes significantly
different from Fig. 5(c), where the neighbor is just hovering.
We can also observe that the interactions are not a simple
superposition of different pairs. For instance, Fig. 5(g) is
significantly more complex than a simple superposition of
three repeated Fig. 5(b). Moreover, we find that the ground
effect and the downwash effect from neighboring multirotor
interact in an interesting way. For instance, in Fig. 5(b), the
downwash effect is “mitigated” as the vehicle gets closer to
the ground. Finally, we observe that the large quadrotors cause
significantly higher interaction forces than the small ones (see
Fig. 5(e)), which further emphasizes the importance of our
heterogeneous modeling.

Note that in training we only have data from 1-3 vehicles
(see Table II). Our approach can generalize well to a larger
system. In Fig. 5, predictions for a 4-vehicle team (as shown
in Fig. 5(g,h)) are still reasonable. Moreover, our models work
well in real flight tests with 5 vehicles (see Fig. 9) and even
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TABLE III
ABLATION ANALYSIS. TOP: L = 4 AND H VARIES. BOTTOM: H = 20

AND L VARIES. THE ERROR IS THE MEAN SQUARED ERROR (MSE)
BETWEEN fa,z PREDICTION AND THE GROUND TRUTH.

H 10 20 40
Validation Error 6.70±0.05 6.42±0.18 6.63±0.35

L 3 4 5
Validation Error 6.52±0.17 6.42±0.18 7.21±0.28

16 vehicles (see Fig. 1).

D. Motion Planning with Aerodynamics Coupling

We implement Algorithm 1 in Python using PyTorch
1.5 [38] for automatic gradient computation, CVXPY 1.0 [47]
for convex optimization, and GUROBI 9.0 [48] as underlying
solver. To simulate the tracking performance of the planned
trajectories, we also implement a PID controller, which uses
the planned controls as feed-forward term. We compare tra-
jectories that were planned with a learned model of fa,z
with trajectories without such a model (i.e., fa,z = 0) using
Algorithm 1 with identical parameters. At testing time, we
track the planned trajectories with our controller, and forward
propagate the dynamics with our leaned model of fa,z in all
cases.

We visualize an example in Fig. 6, where two small and one
large robots are tasked with exchanging positions. We focus
on the 2D case in the yz-plane to create significant interaction
forces between the robots. The first stage of Algorithm 1
uses sampling-based motion planning to identify the best
homeomorphism class where the small multirotors fly on top
of the large multirotor (the interaction forces would require
more total energy the other way around). However, the robots
do not reach their goal state exactly and motions are jerky
(Fig. 6, left). The second stage uses SCP to refine the motion
plan such that robots reach their goal and minimize the total
control effort (Fig. 6, middle). The planned trajectory can be
tracked without significant error and the interaction forces
are very small for the two small quadrotors and within the
chosen bound of 10 g for the large quadrotor. We compare
this solution to one where we do not consider the interaction
forces between robots by setting fa,z = 0 in Algorithm 1. The
planned trajectories tend to be shorter (Fig. 6, right, dashed
lines) in that case. However, when tracking those trajectories,
significant tracking errors occur and the interaction forces are
outside their chosen bounds of 5 g for the small multirotors.

We empirically evaluated the effect of planning with and
without considering interaction forces in several scenarios, see
Fig. 7. We found that ignoring the interaction forces leads to
significant tracking errors consistently in all cases (top row).
While this tracking error could be reduced when using our
interaction-aware control law, the interaction forces are in
some cases significantly over their desired limit. For example,
in the small/large, small/small/large, and large/large cases, the
worst-case interaction forces were consistently nearly double
of their limit (red line, bottom row). In practice, such large
disturbances might cause instabilities or even total loss of

control, justifying the use of an interaction-aware motion
planner.

E. Control Performance in Flight Tests

We study the flight performance improvements on swapping
tasks with varying number of quadrotors. For each case, robots
are initially arranged in a circle when viewed from above but
at different z-planes and are tasked with moving linearly to
the opposite side of the circle in their plane. During the swap,
all vehicles align vertically at one point in time with vertical
distances of 0.2 m to 0.3 m between neighbors. The tasks are
similar, but not identical, to the randomized swapping tasks
used in Sec. VII-B because different parameters (locations,
transition times) are used.

Our results are summarized in Fig. 8 for various combi-
nations of two and three multirotors. Here, we compute a
box plot with median (green line) and first/third quartile (box)
of the maximum z-error (repeated over 6 swaps). In some
cases, the downwash force was so large that we upgraded
the motors of the small quadrotor to more powerful ones
to improve the best-case thrust-to-weight ratio to 2.6. Such
modified quadrotors are indicated as “S*”. We also verified
that the x- and y-error distributions are similar across the
different controllers and do not report those numbers for
brevity.

Our controller improves the medium z-error in all cases and
in most cases this improvement is statistically significant. For
example, in the “L2S” case, where a large multirotor is on top
of a small multirotor for a short period of time, the median
z-error is reduced from 17 cm to 7 cm.

To estimate the limits of our learning generalization, we
test our approach on larger teams. First, we consider a team
of five robots, where two large robots move on a circle in the
horizontal plane and three small robots move on circle in the
vertical plane such that the two circles form intertwined rings.
In this case, the fa,z prediction is accurate and the maximum
z-error can be reduced significantly using our neural network
prediction, see Fig. 9 for an example. Second, we consider
a team of 16 robots moving on three intertwined rings as
shown in Fig. 1(b,c). Here, two large and four small robots
move on an ellipsoid in the horizontal plane, and five robots
move on circles in different vertical planes. In this case, robots
can have significantly more neighbors (up to 15) compared
to the training data (up to 2), making the prediction of fa,z
relatively less accurate. However, the maximum z-error of a
small multirotor in one of the vertical rings with powerful
motors is still reduced from 15 cm to 10 cm.

VIII. CONCLUSION

In this paper, we present Neural-Swarm2, a learning-based
approach that enables close-proximity flight of heterogeneous
multirotor teams. Compared to previous work, robots can
fly much closer to each other safely, because we accurately
predict the interaction forces caused by previously unmodeled
aerodynamic vehicle interactions. To this end, we introduce
heterogeneous deep sets as an efficient and effective deep neu-
ral network architecture to learn the interaction forces between
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Fig. 6. Example motion planning result for a three-robot swapping task in 2D (blue and orange: small robots; green: large robot). Top row: yz-state space
plot, where the arrows indicate the velocities every second, and the circles show the robot shape at the middle of the task. Bottom row: interaction force
for each robot over time (dashed: desired limit per robot). Left: Sampling-based motion planning with neural network to compute trajectories where the
large robots moves below the small robots. Middle: Refined trajectories using SCP (dashed) and tracked trajectories (solid). Right: Planned trajectories when
ignoring interaction forces (dashed) and tracked trajectories (solid). In this case, a dangerous configuration is chosen where the large robot flies on top of the
small robots, exceeding their disturbance limits of 5 g.
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Fig. 7. Motion planning results for different scenarios (e.g., SSL refers to two
small and one large robot) comparing planning without neural network (BL)
and planning with neural network (NN) over 5 trials. Top: Worst-case tracking
error. Ignoring the interaction force can result in errors of over 10 cm. Bottom:
Worst-case interaction force for small and large quadrotors. The baseline has
significant violations of the interaction force bounds, e.g., the SL case might
create interaction forces greater than 10 g for the small quadrotor.
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Fig. 8. Flight test results comparing our solution with learned interaction
compensation (NN) with the baseline (BL) in different scenarios. For each
case, robots are initially arranged in a circle when viewed from above but at
different z-planes and are tasked with moving linearly to the opposite side of
the circle in their plane. For each swap, we compute the worst-case z-error
of the lowest quadrotor and plot the data over six swaps.

multiple quadrotors and only relies on relative positions and
velocities of neighboring vehicles. Our architecture also allows
to model the ground effect and other unmodeled dynamics
by viewing the physical environment as a special neighboring
robot. To our knowledge, our approach provides the first model
of interaction forces between two or more multirotors.
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Fig. 9. Generalization to a team of five multirotors. Three small multirotor
move in a vertical ring and two large multirotor move in a horizontal ring.
The maximum z-error of a small multirotor in the vertical ring with powerful
motors is reduced from 10 cm to 5 cm and fa is predicted accurately.

We demonstrate that the learned interactions are crucial in
two applications of close-proximity flight. First, they can be
used effectively in multi-robot motion planning to compute
trajectories that have bounded disturbances caused by neigh-
boring robots and that consider platform limitations such as
maximum thrust capabilities directly. The resulting trajectories
enable a higher robot density compared to existing work that
relies on conservatively enlarged collision shapes. Second, we
can compute the interaction forces in real-time on a small 32-
bit microcontroller and apply them as additional feed-forward
term in a novel delay-compensated nonlinear stable tracking
controller. Such an approach enables to reduce the tracking
error significantly, if the maximum thrust capabilities of the
robots are sufficient.

We validate our approach on different tasks using two to
sixteen quadrotors of two different sizes and demonstrate that
our training method generalizes well to a varying number of
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neighbors, is computationally efficient, and reduces the worst-
case height error by a factor of two or better.
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