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Choosing Stiffness and Damping for Optimal
Impedance Planning

Mathew Jose Pollayil, Franco Angelini, Guiyang Xin, Michael Mistry, Sethu Vijayakumar,
Antonio Bicchi, Fellow, IEEE, and Manolo Garabini

Abstract—The attention given to impedance control in recent
years does not match a similar focus on the choice of impedance
values that the controller should execute. Current methods are
hardly general and often compute fixed controller gains relying
on the use of expensive sensors.

This paper addresses the problem of online impedance plan-
ning for Cartesian impedance controllers that do not assign the
closed-loop inertia. We propose an optimization-based algorithm
that, given the Cartesian inertia, computes the stiffness and
damping gains without relying on force/torque measurements
and so that the effects of perturbations are less than a maximum
acceptable value. By doing so, we increase robot resilience to un-
expected external disturbances while guaranteeing performance
and robustness. The algorithm provides an analytical solution in
the case of impedance-controlled robots with diagonally domi-
nant inertia matrix. Instead, established numerical methods are
employed to deal with the more common case of non-diagonally
dominant inertia.

Our work attempts to create a general impedance planning
framework, which needs no additional hardware and is easily
applicable to any robotic system. Through experiments on real
robots, including a quadruped and a robotic arm, our method is
shown to be employable in real-time and to lead to satisfactory
behaviors.

Index Terms—Impedance, Planning, Control.
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Figure 1. Planning a variable impedance, based on requirements on tracking
and robustness, shapes the impedance ellipsoid and ensures better perfor-
mance.

I. INTRODUCTION

In recent years, robots have been required to operate in
environments where safety and performance are both tight
requisites. In this regard, collaborative robots (cobots) are
being adopted into several branches of the industry [1] to
perform tasks such as shared manipulation [2] or on-site
inspection [3]. Such robots are often built using compliant
elements, such as soft coverings or springs, which enable safer
operation modes that make it easier for humans and machines
to coexist in working environments.

In addition to the robots with built-in compliance, i.e., soft
robots [4], such as the ones with flexible joints/links [5],
[6] or employing variable stiffness/impedance actuators [7],
[8], also traditional “rigid” robots can be made compliant by
enforcing a desired impedance behavior by means of control.
Such a possibility is provided by the impedance control
technique, initially proposed by Hogan [9] and later expanded
by several authors, e.g., see [10], [11]. This control method
offers the advantage of being able to modulate the impedance
of the robot, which, together with proper tuning, can lead
to improved efficiency and robustness. Therefore, employing
impedance control on robots has become common.

This notwithstanding, very few authors have explicitly
addressed the problem of choosing the desired impedance
parameters: Section II highlights the context we refer to and
presents a review of the relevant literature on the topic. One of
the major challenges in computing the impedance gains lies in
their tight dependency on the requirements of the specific tasks
to be performed. As a result, using fixed offline-computed
gains is rarely a good choice and, thus, the possibility of
varying the impedance becomes interesting [12].

http://ieeexplore.ieee.org
http://ieeexplore.ieee.org
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Nevertheless, current variable impedance planning tech-
niques are very much application-oriented and rely on the
use of expensive devices, such as force/torque sensors (cf.
Section II-B). Additionally, these techniques often assume that
the impedance controller performs inertia shaping, i.e., the
controller assigns an arbitrary close-loop inertia. However,
inertia shaping is not easily realizable in practice whenever
expensive and very precise force/torque sensors are not avail-
able or if forces cannot be effectively measured [10]. For
these reasons, current impedance planning methods are hardly
useable out of their contexts.

In this paper, by substantially extending our previous work
[13], we present a general algorithm that provides a framework
to autonomously manage the planning of the impedance gains,
stiffness and damping, of a Cartesian impedance controller.
It attempts to minimize the effects of impacts/perturbations
while ensuring tracking performance. The algorithm resorts to
two methods, which are in turn based on solving constrained
optimization problems. We minimize an objective function,
which depends on the impedance, subject to some constraints
derived from performance requirements. Without relying on
external force/torque measurements to react at impact time,
our approach performs a conservative design of the controller
gains to always assign the minimum closed-loop inertia.

The proposed algorithm can handle both the cases of diago-
nally dominant and non-diagonally dominant Cartesian inertia
matrices. Both can occur whenever inertia shaping cannot
be performed. Hence, our approach aids in designing the
impedance for a relevant class of impedance-controlled robotic
systems, such as humanoids or quadrupeds, in which accurate
measurements of external forces are often not available, and
also for robotic manipulators that do not have precise built-in
force/torque sensors.

The primary contribution of the present paper with respect
to [13] is the overcoming of its main limitation: therein,
planning was restricted to the case of diagonal inertia matrix.
The possibility of using the same algorithm in the case of
inertia matrices with negligible off-diagonal elements was
discussed in [13]. Instead, the algorithm presented herein is
general and can also deal with the non diagonal case, while
including also the method presented in [13].

As a matter of fact, contrarily to [13], the planning frame-
work that we propose in the present paper is not limited to
specific systems, but addresses every robotic system in which
impedance control is used. The results of experiments on
a quadruped, which have been presented in [13], and on a
robotic arm support the general nature of our effort. For this
reason, this work can be considered as a general framework
for impedance planning.

The paper is organized as follows: Section II-A provides the
context for our work with a quick overview of impedance con-
trol. In Section II-B, a review of the literature on impedance
design for robots is conducted. Section III states the problem
we wish to tackle, for which a general optimization-based
procedure and two approaches for its solution are presented
in Sections IV, V, and VI, respectively. These lead to our
impedance planning algorithm explained in Section VII. Then,
in Section VIII, the proposed method is validated through

experiments on real robots and comparisons with a standard
method. Finally, conclusions are drawn in Section IX.

II. STATE OF THE ART

A. Background

Let the dynamic model of a rigid-joint robotic system be

B(q)q̈ + C(q, q̇)q̇ +G(q) = τ + J⊺(q)Fext, (1)

where q ∈ IRnj is the vector of joint positions, τ ∈ IRnj is
the vector of joint torques, B ∈ IRnj×nj is the mass matrix,
C ∈ IRnj×nj is the Coriolis and centrifugal matrix, G ∈ IRnj

is the vector of gravity torques, J ∈ IR6×nj is the analytic
Jacobian of the end-effector, and Fext ∈ IR6 is the external
force/torque acting on the end-effector. We wish to impose a
closed-loop impedance model of the form

Λd
¨̃x+Dd

˙̃x+Kdx̃ = Fext, (2)

where x̃ = x− xd is the deviation of the end-effector pose
x ∈ IR6 from the desired equilibrium pose xd ∈ IR6. The
matrices Λd ∈ IR6×6, Dd ∈ IR6×6 and Kd ∈ IR6×6 are re-
spectively the desired positive-definite Cartesian inertia, damp-
ing, and stiffness. Notice that, using the geometric Jacobian
would reduce the issue of singularity prone representations
of orientation. However, this might require appropriately re-
defining x̃ [14].

For instance, the behavior in (2) can be achieved using the
following control law [10]:

τ = J⊺(q)Fτ + C(q, q̇)q̇ +G(q), (3)

with the control input Fτ ∈ IR6 being

Fτ = Λ(q)ẍd − Λ(q)Λ−1
d (Dd

˙̃x+Kdx̃)

+ (Λ(q)Λ−1
d − I)Fext − Λ(q)J̇(q)q̇,

(4)

where Λ(q) =
(
J(q)B−1(q) J⊺(q)

)−1
is the robot equivalent

Cartesian inertia matrix. Please note that (3)-(4) is merely
one of the many possible impedance controllers. Depending
on the system under analysis, different implementations (e.g.,
[15], [16], [17], [18], [19]) can be employed, leading to closed
loop dynamics analogous to (2). It is worth mentioning that,
according to the choice of the Jacobian, the impedance of not
only the end-effector but multiple points of the robot can be
regulated. However, this might be feasible only to the extent
allowed by the degrees of freedom of the system.

Additionally, notice how the model-based control law (3)-
(4) neglects delays and static nonlinearities that permeate the
real hardware. These are often assumed to be negligible or the
controller fast enough to compensate for them. However, under
such assumptions control law (3)-(4) guarantees to assign the
closed-loop behavior (2). The actual behavior of the controlled
system will depend on whether its real dynamics is faster than
the one that excites it, i.e. Fext.

If we wish to find Λd, Dd, and Kd so that the impedance
is minimized and the tracking performance is guaranteed,
this can be done without big effort since inertia shaping is
performed: in (2) all matrices are arbitrarily assigned and,
hence, can be chosen to be diagonal for enforcing an exact



3

decoupled behavior. As a matter of fact, most of the traditional
stiffness and damping design methods for single degree of
freedom second order systems can be applied.

However, in practice, assigning an arbitrary Λd is not always
trivial. Whenever it is not possible to employ sensors that
provide precise and direct feedback of the external forces
or Cartesian acceleration, the closed-loop inertia cannot be
shaped. Force/torque sensors are not only expensive but usu-
ally have limited measurement areas, out of which forces are
not sensed effectively. Moreover, acquiring accurate measure-
ments of the robot acceleration is also hard.

Without such feedback, the Cartesian inertia needs to be
set identical to the robot Cartesian inertia Λ(q) [10], [16].
Moreover, since the inertia is not constant anymore, if the
impedance model is meant to represent a real mechanical sys-
tem, a non-constant term C̄(q, q̇) should also be introduced1.

The control input (4) can be changed as

Fτ = Λ(q)ẍd −Dd
˙̃x−Kdx̃− C̄(q, q̇) ˙̃x− Λ(q)J̇(q)q̇. (5)

Here, C̄(q, q̇) can be any matrix such that Λ̇(q)− 2C̄(q, q̇) is
skew symmetric (e.g., C̄ = 1

2 Λ̇) [10].
Using (3) together with (5), the following closed-loop

nonlinear impedance behavior is achieved:

Λ(q)¨̃x+ (Dd + C̄(q, q̇)) ˙̃x+Kdx̃ = Fext. (6)

The presence of the term C̄(q, q̇) is usually a hindrance
for the design of the controller gains Dd and Kd. This is
usually solved by assuming slowly varying inertia (Λ̇(q) ≈ 0)
[10] whenever the velocity of the robot is not high, or if
the controller itself (or a lower level controller) compensates
C̄(q, q̇). With this assumption, several approaches have been
proposed in the literature to design the impedance parameters.

B. Literature Review

Traditionally, the choice of the gains for impedance control
is based on the common rationale of considering a trade-
off between permissible interaction forces and allowable set-
point errors. Initially, such an analysis, led to the outlining
of fundamental impedance planning strategies, such as the
ones presented in [20]. Therein, the authors carried out some
basic discussions about choosing optimal values of impedance,
based on well-known results in linear optimal control theory.

Soon enough, the option of varying the target impedance for
ensuring stability of interaction emerged. For instance, [21]
examined the importance of the target damping ratio, which
was found to be a critical factor for contact stability with stiff
environments. This study also brought about the idea of a
fuzzy adaptation of the impedance based on deviations of the
measured force from the desired ones in order to limit peaks
in contact forces [22].

Adaptive and iterative learning controls allow tackling the
problem of planning impedance. For example, [23] proposed
an adaptive progressive learning method based on measure-
ments of error and reaction forces for real-time tuning of
stiffness and damping. More recently, iterative learning control

1This aids in proving the asymptotic convergence of the error x̃(t).

has been consistently used to shape impedance. Examples are
[24] and [25]. The former dealt with combining iterative learn-
ing control with an adaption of the stiffness for enabling its
convergence to an optimal value. Instead, the latter proposed
an iterative algorithm to smooth the damping for minimizing
the external force exerted by a human. Another relevant work
is [26], which presented a novel controller that deals with
periodic tasks by estimating interaction forces, and by adapting
feed-forward force and impedance, but also by modifying the
reference trajectory to deal with rigid environments. Two very
recent works are also noteworthy: [27] approaches optimal
control through model predictive impedance control and [28]
derives passivity conditions that provide bounds on the desired
impedance gains.

Control algorithms can also be combined with other tech-
niques, such as programming by demonstration, to learn
impedance parameters while coping with unmodelled uncer-
tainties. For instance, [29] used haptic and proprioceptive
feedback to tune the impedance for accurate reproduction of
learned tasks. Another example of impedance learning method
based on human demonstrations is [30], in which tactile sen-
sors were used to modulate the gains of object-level impedance
control to accomplish robust and dexterous manipulation. A
human-like adaptive learning tool, which does not require
interaction force sensing and that is able to deal with periodic
tasks also in presence of unstable interactions, was proposed
in [31]. In [32], a combination of Gaussian Mixture Model
and LQR control was used to reproduce stiffness geometry
obtained from human demonstrations.

Besides adaptive and iterative learning, also machine learn-
ing algorithms can deal with impedance planning. A very
early example of application of neural networks to the regulate
end-effector impedance for minimizing position/force control
error can be seen in [33]. In [34], the authors presented an
application of reinforcement learning PI2 algorithm to find the
impedance necessary to accomplish a given task. Despite their
efficacy, the price to pay is that learning techniques require
huge datasets and a large number of trials for properly learning
optimal models [35].

Optimization-based techniques have also been proposed. In
[36], particle swarm optimization was used to tune offline the
impedance controller. We proposed robust optimization-based
design of system compliance and impedance, respectively,
in [37] and [13]. We also presented optimal control-based
formulations to algorithmically optimize the spatio-temporal
modulation of impedance in [38], [39] and applied it for
mapping human impedance strategies to heterogeneous robot
actuators [40] and realising explosive movement tasks [41].
Another example of particle swarm optimization is [42].
Therein, the target impedance of an exoskeleton was optimized
for assistance and rehabilitation in accordance with the knowl-
edge of an estimate of human impedance.

Approaches specifically targeted at human-robot interaction
are also topics of research interest. Most of these are based
on measurements of the forces applied by the human. For
instance, [43] and [44] changed the impedance based on a
passivity index and an estimation of the human stiffness,
respectively. A different approach was presented in [45]:
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(a) Constant force disturbance with low impedance. (b) Environment interaction with low impedance.

(c) Constant force disturbance with high impedance. (d) Environment interaction with high impedance.

Figure 2. High impedance vs low impedance on the robot ANYmal with a Cartesian impedance controller regulating its torso. With low impedance, when
subject to an external force disturbance, the robot cannot track correctly the reference position and falls. However, more robustness to unforeseen contacts is
displayed. High impedance, instead, ensures tracking by rejecting force disturbances, but environment interaction destabilizes the robot, which loses support
on two legs (dashed red circle).

Impedance

Planner

Impedance

Controller

Robotic

System

D, K

Requirements

Figure 3. The proposed algorithm acts by modifying the gains K and D
of the impedance controller based on the current state q of the robot and on
some performance requirements (explained later on).

therein, an experimental study on human-robot comanipulation
was carried out and the end-effector dynamics is controlled to
a mass-damper behavior. The damping matrix is changed as
a function of the end-effector velocity in order to improve
accuracy and execution time of the collaborative task.

Some other works are also worth citing. In [46], [47]
and [48], the authors used the concept of Lyapunov stability
margins to regulate the impedance for improved balancing and
walking in humanoids. Finally, [49] and [50] employed force
measurements and visual data to auto-tune the impedance.

The approach proposed in the present paper is novel with
respect to the majority of the state of the art in the following:
1) it does not require the use of any force/torque sensors;
2) it builds on top of established results in control theory
and optimization and is not related to any specific robotic
system or controller; 3) it provides robustness by performing
a worst-case design of the controller gains. These points are
confirmed through experimental validation and comparisons
with a standard method for impedance planning with inertia
shaping (see Section VIII).

III. PROBLEM DESCRIPTION

As mentioned in Section II-A, with the assumption of slowly
varying inertia, the closed-loop impedance without inertia
shaping (6) becomes

Λ(q)¨̃x+D ˙̃x+Kx̃ = Fext. (7)

Here, and also in the remaining of the paper, for the sake
of compactness, we remove the subscript d to both K and

D. Notice that the only difference with (2) is that Λ is
configuration dependent and usually not diagonal, and non
modifiable. Recall that, since Λ(q) is time-varying, constant
positive-definite controller gains might not suffice for the
convergence of (7).

We wish to address the following problem. Let some bounds
be provided on the matrices K and D; these can be related
to the limits on the actuation and on the degree of uncertainty
in the dynamic model (see also Appendix C). Provided also
some limits on the initial states x̃0 and ˙̃x0, and on the
external forces Fext, find an algorithm that autonomously
chooses the values of K and D such that the evolution
of the tracking error x̃ remains bounded in between some
required values. Moreover, we demand that the impedance
assigned by the controller should be the lowest possible that
fulfills the stated requirements. This is because we wish to be
robust to unexpected contacts with external factors, such as
the environment.

This problem clearly requires a solution that is a trade-
off between high and low impedance. A low closed-loop
impedance improves robustness to undesired and unexpected
disturbances; a high impedance increases tracking perfor-
mance (see Figure 2 for an example) [14]. Since, we require
both robustness and good tracking, the solution to our problem
should be somewhere in between high and low gains.

Finding such a solution would be fairly easy if inertia
shaping were performed since decoupled shaping of each
subsystem could be conducted. Instead, in our case, traditional
methods fail in providing a general solution to the stated stiff-
ness and damping planning problem because of the couplings
in the system, caused by non-diagonal inertia, and also since
we assume not to use any force/torque sensor (see the literature
review in Section II-B). Notice that tuning the large number
of parameters of K and D by trial and error while complying
with constraints on positive definiteness of the matrices, on
the boundedness of tracking error, and on minimizing the
impedance is practically never viable.

It is also worth discussing that minimizing the impedance
is one possible way to achieve the aforementioned desired
behavior. Some other viable solutions include regulating the
inner control loops of the robot to quickly react to impacts or
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adding kinetic energy constraints directly into the controller
formulation. Also mechanically modifying the robot to include
soft paddings on the covers can help. However, these solutions
do not fit into the scope of this paper, which extends our
previous work [13] within the context of impedance control.

IV. PROPOSED SOLUTION

The basic idea behind our approach to the problem is
to provide the controller - which realizes (7) - with the
minimum necessary impedance gains, K and D, for achieving
the required performance in presence of bounded external
disturbances. This is the aim of our impedance planner, which
will act on the whole architecture as shown in Figure 3.

We set up an optimization problem aimed at computing at
each planning iteration the minimum impedance in accordance
with the current state of the robot and with some provided
performance and robustness bounds.

argmin
D,K

h(D,K)

s.t.
ldi,j
≤ di,j ≤ udi,j

lki,j
≤ ki,j ≤ uki,j

s.t. maxx̃0, ˙̃x0,Fext
|x̃i(t)| ≤ bi ∀t ∈ [0,+∞)

s.t.

lx̃0i
≤ x̃0i ≤ ux̃0i

l ˙̃x0i
≤ ˙̃x0i ≤ u ˙̃x0i

lFexti
≤ Fexti ≤ uFexti

Λ(q) ¨̃x+D ˙̃x+Kx̃ = Fext.

(8)

The solution to (8) finds the D and K, which minimize h, and
ensure that the error x̃ remains bounded throughout time, by
keeping the peaks of each x̃i(t) below the bounds bi, provided
that the external force Fext and the initial conditions x̃0 and
˙̃x0 are bounded. This constraint on the peak of the error will
be denoted also as performance requirement in the rest of the
paper. The elements of the damping and stiffness matrices are
di,j and ki,j , respectively. The bilateral bounds on the variables
di,j , ki,j , x̃0, ˙̃x0, and Fext are written using the operators l(·)
and u(·), which respectively denote lower and upper bounds.

Notice that (8) is a minimization problem with a maxi-
mization constraint, which needs to be solved ∀ t ∈ [0,+∞)
and ∀ i, j ∈ {1, . . . , 6} (this detail is omitted also in the rest
of the paper for the sake of compactness of equations). It
is noteworthy that the maximization constraint in (8) is a
function of unknown but bounded parameters, namely the
initial conditions and external forces, which are uncertain.
Problems such as (8) are commonly referred to as robust
optimizations [51].

In this work, we choose to keep always at a minimum re-
quired value the impedance regulated by the controller. Hence,
in (8), the cost function h(D,K) is targeted at minimizing the
impedance of (7) to increase resilience to external uncertain-
ties while fulfilling the performance requirement through the
maximization constraint. The impedance matrix of (7) is given
by Z(jω) = −ω2Λ+ jωD+K, where ω = 2πf and f is the
frequency of the external force. For instance, we can choose

hZ(D,K) = ∥Z(jω)∥2F . (9)

Here, the operator ∥·∥F stands for the Frobenius norm of
a matrix. However, since we have no control both over the
angular frequency ω and on the inertia Λ, to minimize (9), a
best effort approach would be attempting to minimize

h(D,K) = ∥κD +K∥2F , (10)

where κ is a constant coefficient for normalizing the different
units in the cost.

To solve optimization (8), with the cost being (10), we make
the following assumptions:

Assumption 1. Λ(q) is almost a constant Λ between two
planning instances. Hence, we assume quasi-static conditions
between two consecutive impedance updates.

Assumption 2. The external disturbances acting on the
robotic system occur in brief instants of time. Thus, we
approximate Fext to be impulsive: Fext,i = F̄ δd(t).

The first assumption is reasonable if the robot velocity is not
high and if the gain update rate of the planner is relatively high.
These are highly specific to the robot and can be estimated
numerically if a symbolic expression of Λ(q) is available.
However, this tedious procedure can often be replaced by trial
and error. The second assumption requires external forces to
act only for short amounts of time, like in the case of impacts.
However, these should not be ideal impulses with dynamics
much faster than the control rate, which might prevent the
desired impedance behavior to be assigned by the controller.
We also disregard the case of very prolonged interactions.

Remark 1. Suppose a constant force acting on the robot end-
effector is due to an external body attached to it. If the inertial
properties of the body are known, the robot dynamic model can
be modified so that the controller compensates for the load.
The result would be a change of the inertia Λ(q).

In line with Remark 1, in many practical scenarios, e.g.,
a robot manipulator grasping an object, Assumption 2 is not
restrictive and external impacts can be considered impulsive.

Remark 2. The impulse response of a linear system is
equivalent to the free response from suitable non-zero initial
conditions with ˙̃x0 ̸= 0 [52] (see Appendix A). Hence, by
virtue of Assumption 2 we limit ourselves to optimize the free
response of (7).

Assumption 1 and Remark 2 lead us to modify (8) into

argmin
D,K

h(D,K)

s.t.
ldi,j ≤ di,j ≤ udi,j

lki,j
≤ ki,j ≤ uki,j

s.t. maxx̃0, ˙̃x0
|x̃i(t)| ≤ bi ∀t ∈ [0,+∞)

s.t.

lx̃0i
≤ x̃0i ≤ ux̃0i

l ˙̃x0i
≤ ˙̃x0i ≤ u ˙̃x0i

Λ ¨̃x+D ˙̃x+Kx̃ = 0.

(11)

Here, we recompute the bounds on ˙̃x0 also in accordance with
the removed bounds on Fexti (see Appendix A).

Equation (7) is usually not decoupled in six single degree
of freedom equations to be solved independently. To find
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x̃i(t), it is required to compute first x̃(t) and then choose
x̃i(t) = e⊺i x̃(t), where ei is the ith vector of the canonical
basis. Let ξ =

[
x̃⊺ ˙̃x⊺

]⊺
and ν = Fext. System (7) can be

re-written as

ξ̇ =

 O I

−Λ−1K −Λ−1D


︸ ︷︷ ︸

A

ξ +

 O

Λ−1


︸ ︷︷ ︸

B

ν. (12)

The analytical solution of the homogeneous part of (12), in
the general case of time-varying matrix A(t), is given by

ξ(t) = ϕ(t, t0)ξ0. (13)

Here, ϕ(t, τ) is called state-transition matrix and can be found
using various methods: for more details refer [53]. However,
via Assumption 1, A(t) can be assumed constant, and (13)
becomes ξ(t) = eAtξ0. The error x̃(t) = [I O] ξ(t) and its
ith component x̃i(t) = e⊺i [I O] ξ(t).

In the light of the above considerations, (11) becomes

argmin
D,K

h(D,K)

s.t.
ldi,j
≤ di,j ≤ udi,j

lki,j
≤ ki,j ≤ uki,j

s.t. maxx̃0, ˙̃x0
|e⊺i [I O] eAt

[
x̃⊺
0

˙̃x⊺
0

]⊺ | ≤ bi

s.t.
t ≥ 0
lx̃0i
≤ x̃0i ≤ ux̃0i

l ˙̃x0i
≤ ˙̃x0i ≤ u ˙̃x0i

.

(14)

As such, this optimization problem is robust and non-convex
due to the uncertainties and the dependence on time in the
maximization constraint. Hence, this approach is not easily
viable. It is more practical to solve the maximization for
making optimization (12) deterministic. A straightforward way
is by enforcing a decoupled behavior.

Two cases can be identified. Let mij denote the entry in the
ith row and jth column of Λ: we distinguish the following.

Case 1. Diagonally Dominant Inertia:

|mii| ≥
∑
i̸=j

|mij | ∀i, j.

Case 2. Non-diagonally Dominant Inertia:

∃i such that |mii| <
∑
i̸=j

|mij | ∀j.

In the following, the former case is tackled in Section V,
while the latter is addressed in Section VI.

V. CASE 1: DIAGONALLY DOMINANT INERTIA

As discussed in [13], for some robots and control choices,
the Cartesian inertia matrix Λ can be diagonally dominant.
This is the case, for example, when the controller is set to
modulate the impedance of the torso of a quadruped. The
large inertia of the robot base would make the elements on
the diagonal of Λ dominant w.r.t. the off-diagonal terms.

A. Decoupled Optimization

For diagonally dominant Λ, we replace it with its diagonal
approximation. We choose D and K to be diagonal as well.
This yields the decoupled approximation of (7)

mi
¨̃xi + di ˙̃xi + kix̃i = Fext,i. (15)

Here, mi = mii, di and ki are the ith diagonal elements,
respectively, of the constant diagonally dominant Λ, of D and
of K. The scalars x̃i, ˙̃xi and ¨̃xi are the i-th elements of x̃, ˙̃x
and ¨̃x, respectively. Fext,i is ith element of Fext.

As a consequence, (11) becomes decoupled into six distinct
optimizations if we choose the cost h(D,K) to be independent
for each subsystem. Hence, by choosing the cost for the ith

subsystem as hi(di, ki), optimization (11) turns out to be

argmin
di,ki

hi(di, ki)

s.t.
ldi ≤ di ≤ udi

lki ≤ ki ≤ uki

s.t. maxx̃0i
, ˙̃x0i
|x̃i(t)| ≤ bi ∀t ∈ [0,+∞)

s.t.

lx̃0i
≤ x̃0i ≤ ux̃0i

l ˙̃x0i
≤ ˙̃x0i ≤ u ˙̃x0i

mi
¨̃xi + di ˙̃xi + kix̃i = 0,

(16)

∀i ∈ {1, · · · , 6}, i.e., for each subsystem.
We enforce one of the three behaviors of second order

linear systems: in particular, we choose the critically-damped
condition,

ki =
d2i
4mi

, (17)

which guarantees the fastest convergence of the error without
oscillations. Here, since the stiffness becomes a function of the
damping, the optimization is performed only over di. Thus, for
instance, hi(di, ki) can be chosen as a quadratic function of di.
Moreover, by taking into account the analytical solution of (15)
for impulsive external forces [52] (by virtue of Assumption 2
and Remark 2), and defining the worst case initial conditions

x̃0i,max ≜ max(|lx̃0i
|, ux̃0i

),

˙̃x0i,max ≜ max(|l ˙̃x0i
|, u ˙̃x0i

),
(18)

optimization (16) can be re-written as

argmin
di

d2i

s.t. ldi
≤ di ≤ udi

s.t. max
x̃0i

, ˙̃x0i
,t

(
x̃0 +

(
˙̃x0 +

x̃0di
2mi

)
t

)
e
− dit

2mi ≤ bi

s.t.
0 ≤ x̃0i ≤ x̃0i,max

0 ≤ ˙̃x0i ≤ ˙̃x0i,max

t ≥ 0.
(19)

We transform the robust optimization problem into a determin-
istic one. To this end, we solve the maximization constraint,
Using KKT conditions [54], and replace it in (19) with the
following nonlinear inequality:

2mi
˙̃x0i,max + dix̃0i,max

di
e

(
−2mi

˙̃x0i,max

2mi
˙̃x0i,max+dix̃0i,max

)
≤ bi. (20)
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This can be further simplified by finding a conservative linear
upper-bound, such as

max
x̃0i

, ˙̃x0i
,t
x̃i(t) ≤ x̃0i,max +

2mi
˙̃x0i,max

e di
. (21)

This maximum represents the peak that the free response
of (15) would reach from the worst-case initial conditions
(x̃0i,max, ˙̃x0i,max). By using (21), optimization (19) turns into

argmin
di

d2i

s.t. ldi
≤ di ≤ udi

s.t. di ≥
2mi

˙̃x0i,max

(bi−x̃0i,max) e
,

(22)

which has the following closed form solution [13]:

di = min

(
max

(
ldi

,
2mi

˙̃x0i,max

(bi − x̃0i,max) e

)
, udi

)
. (23)

For better explanations and lines of proof of the previous
steps, please refer to [13].

Equation (23) together with (17) provides two direct formu-
lae to compute the optimal damping and stiffness to achieve
a critically damped behavior with minimum impedance and
that complies with the performance requirement. However,
since we considered only a single planning iteration so far,
the stability of the closed loop system (15) with time varying
gains remains to be studied.

B. Stability Analysis

Given the second order linear time-varying system

mi(t)¨̃x+ di(t) ˙̃x+ ki(t)x̃ = 0, (24)

the stability of its equilibrium in the origin for the critically-
damped case (17) can be verified by the following:

Theorem 1. The origin of (24) is uniformly asymptotically
stabile in the critically-damped case if, ∀t ≥ 0, di(t)/mi(t)
is positive, bounded and differentiable, and

ḋi(t) > −
d2i (t)

mi(t)
+

di(t)ṁi(t)

mi(t)
. (25)

The proof of Theorem 1 can be found in [13].
Inequality (25) limits the rate of variation of the damping. It

is noteworthy that this is a sufficient only condition, given by
the particular choice of Lyapunov function in [55], which is
always verified if the damping is incremented, but not when it
is reduced. Since we plan the gains at discrete time intervals,
we can approximate the stability condition (25) as

di(t+ T ) > di(t)−
d2i (t)T

mi(t)
+

di(t)ṁi(t)T

mi(t)
, (26)

where T is the planner update period, i.e., sampling time. The
terms di(t+ T ) and di(t) are respectively the newly planned
damping (solution to (23)) and the current damping. In case
(26) is satisfied, we can update the controller with the new
damping value (23). Otherwise, to guarantee stability, we limit
the damping variation as per (26). Note that ṁi(t) needs to

be estimated online, but since the term di(t)ṁi(t)T/mi(t)
is almost negligible (under Assumption 1), it can also be
substituted by a worst case constant value.

A quick comment needs to be made on using the solutions
K = diag(ki) and D = diag(di) of (17) and (23), on the non-
decoupled system (7). The off-diagonal terms in Λ couple the
dynamics and make system (7) nonlinear. Using the diagonal
approximation Λ ≈ diag(mi) is equivalent to linearizing the
system about the equilibrium in the origin. For this reason,
the approach presented in this section does not ensure global
uniform asymptotic stability. However, asymptotic stability is
still guaranteed and the effect of the off-diagonal terms is only
to reduce the basin of attraction.

VI. CASE 2: NON-DIAGONALLY DOMINANT INERTIA

In the case in which the inertia Λ is not diagonally dom-
inant, which might be the case, for instance, of a Cartesian
impedance-controlled robotic arm, the method presented in
Section V cannot be applied to solve optimization (11). A
straightforward and blind approach to solve the problem would
be to deal with optimization (14). This can be solved as such
using state-of-the-art methods.

However, robust nonlinear optimization remains to date less
studied than its linear counterpart [56], [57]. For this reason,
hereafter, we present a better option to deal with (11): Section
VI-A describes some preliminaries that lead to Section VI-B,
where decoupling is forced in some new coordinates assuming
a particular type of damping. This will allow us to replace the
robust optimization with a deterministic one.

A. Preliminaries

Mechanical vibration theory (cf. [58]) shows that, if Λ is
symmetric and positive definite, and D and K are symmetric
and non-negative definite, the dynamics of (7) can be decou-
pled if and only if

DΛ−1K = KΛ−1D. (27)

In this case, the matrix of generalized eigenvectors U of the
undamped system, provided by

KU = ΛUΓ, (28)

can be used to find new coordinates in which the system is
decoupled [58]. In (28), Γ is a diagonal matrix containing
the solutions γi of the corresponding generalized eigenvalue
problem, given by

det(K − γiΛ) = 0. (29)

However, condition (27) is hardly applicable in practice since
it leads to an additional nonlinear constraint. A more practical,
sufficient condition for decoupling, which is also a particular
case of (27), is

D = αΛ + βK, (30)

where α and β are real scalars. This condition forces the
damping to be a linear combination of the inertia and the
stiffness and is known in mechanical vibration theory as
proportional damping.
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Remark 3. Proportional damping is to date one of the most
commonly used damping models within linear analysis. It
constrains and limits the oscillations to normal modes but
presents some distinct advantages [59], the most important
being the decoupling of the second order mechanical system.

Assuming (30), equation (7) can be transformed into

µ̈+ (αI + βΓ)µ̇+ Γµ = Ū⊺Fext (31)

by applying the coordinate change

x̃ = Ūµ. (32)

Here Ū is a mass-normalized version of U , i.e., Ū complies
with

Ū⊺ΛŪ = I. (33)

The steps leading from (7) to (31) can be found in [59].
Since Λ is always positive definite, equation (7) can be

brought to the form in (31) only if the non-negative definite-
ness of the damping and the stiffness are assured [58].

Remark 4. The non-negative definiteness of K and D is a
necessary condition for the decoupling and stability of the
closed-loop system.

A symmetric non-negative definite matrix has a Cholesky
decomposition: K can be factorized as

K = WW ⊺, (34)

where W ∈ T , with T being the set of lower triangular
matrices.

Remark 5. Factorizing the stiffness matrix K as in (34)
guarantees its non-negative definiteness and symmetricity.
Additionally, if we constrain also α and β in (30) to be non-
negative, also the damping matrix is ensured to be symmetric
and non-negative definite. Hence, we satisfy the necessary
condition for decoupling and stability.

Taking into account (28), (29), and (33), and enforcing
(30), (32), and (34), the robust optimization problem in (11)
becomes

argmin
α,β,W,Ū,Γ

h(α, β,W )

s.t.

lα ≤ α ≤ uα

lβ ≤ β ≤ uβ

lwi,j
≤ wi,j ≤ uwi,j

W ∈ T
det(WW ⊺ − γiΛ) = 0
WW ⊺Ū = ΛŪΓ
Ū⊺ΛŪ = I

s.t. maxx̃0, ˙̃x0
|x̃i(t)| ≤ bi ∀t ∈ [0,+∞)

s.t.

lx̃0i
≤ x̃0i ≤ ux̃0i

l ˙̃x0i
≤ ˙̃x0i ≤ u ˙̃x0i

Λ ¨̃x+ (αΛ + βWW ⊺) ˙̃x+WW ⊺x̃ = 0
(35)

Here, the cost function to be minimized, the bounds and the
constraints have been reconsidered in function of α, β and W ,
since we imposed D = αΛ + βK and K = WW ⊺.

Remark 6. The set T of lower triangular matrices is convex.
Given a generic matrix A ∈ IRn×n, its orthogonal projection
onto T is trivial since it involves zeroing the elements above
the diagonal of A through an operator tril(·):

ProjT (A) = tril(A).

Projected optimization methods can efficiently deal with the
constraint W ∈ T .

The advantage of (35) is that the constraint

Λ ¨̃x+ (αΛ + βWW ⊺) ˙̃x+WW ⊺x̃ = 0, (36)

together with (28), (29), (30), (32), (33), and (34), expressed
in the coordinates µ (modal coordinates), leads to the homo-
geneous part of (31), which is a set of six decoupled second
order differential equations. Hence, we would be forcing the
decoupling of the closed-loop system in the modal coordinates.

If we choose a convex objective function h(α, β,W ) for
minimizing the impedance, the constrained robust optimiza-
tion problem (35) is convex in all components except for
constraints (28), (29) and (33), which are non-convex and
respectively bilinear, polynomial and quadratic. The constraint
on the peak keeps the complexity of the optimization high.

In the following, (35) is transformed into the modal coordi-
nates. The resulting problem will have the advantage that the
robust optimization problem is made deterministic.

B. Decoupled Optimization

In modal coordinates, applying (32), equation (36) turns out
to be decoupled into p single degree of freedom systems:

µ̈i + (α+ βγi)︸ ︷︷ ︸
a1

µ̇i + γi︸︷︷︸
a0

µi = 0. (37)

An analytical solution to the maximum of µi(t) can be found.
Re-writing (35) in modal coordinates yields

argmin
α,β,W,Ū,Γ

h(α, β,W )

s.t.

lα ≤ α ≤ uα

lβ ≤ β ≤ uβ

lwi,j
≤ wi,j ≤ uwi,j

W ∈ T
det(WW ⊺ − γiΛ) = 0
WW ⊺Ū = ΛŪΓ
Ū⊺ΛŪ = I

s.t. maxµi0
,µ̇i0
|µi(t)| ≤ bµi ∀t ∈ [0,+∞)

s.t.
lµ0i
≤ µ0i ≤ uµ0i

lµ̇0i
≤ µ̇0i ≤ uµ̇0i

µ̈i + a1µ̇i + a0µi = 0.

(38)

Here, recalling that for the generalized eigenvalue problem
it generally holds that Ū−1 ̸= Ū⊺, the whole maximization
constraint has been transformed into the new coordinates.

lµ0i
= Ū−1lx̃0i

; uµ0i
= Ū−1ux̃0i

;

lµ̇0i
= Ū−1l ˙̃x0i

; uµ̇0i
= Ū−1u ˙̃x0i

;

bµi
= Ū−1bi.
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In (38), α, β, and W being fixed, the robust maximization can
be replaced by p nonlinear inequality constraints.

To show this, observe the following. The p maximization
constraints of (38) impose to comply with the bounds bµi at
each instant for unknown but bounded initial conditions µi0

and µ̇i0 . Hence, similarly to [13] and Section V, we focus on
the worst case and consider, without loss of generality, µi0 > 0
and µ̇i0 > 0. As a matter of fact, the absolute value on µi(t)
can be removed since the peak would be positive. Moreover,
re-adjusting the bounds as µ0i,max ≜ max(|lµ0i

|, uµ0i
) and

µ̇0i,max ≜ max(|lµ̇0i
|, uµ̇0i

), each maximization constraint in
(38) can be re-written as

max
µi0

,µ̇i0
,t

µi(t) ≤ bµi

s.t.

t ≥ 0.

0 ≤ µ0i ≤ µ0i,max

0 ≤ µ̇0i ≤ µ̇0i,max

µ̈i + a1µ̇i + a0µi = 0.

(39)

Following the steps in Appendix B, an upper bound fci on
the peak of µi(t) can be found (cf. (57)) for the worst-case
initial conditions µ0i,max and µ̇0i,max and for a specific os-
cillatory behaviour (for instance, over-damped). By imposing
this upper bound to be below bµi

, (38) can be modified into

argmin
α,β,W,Ū,Γ

h(α, β,W )

s.t.

lα ≤ α ≤ uα

lβ ≤ β ≤ uβ

lwi,j
≤ wi,j ≤ uwi,j

W ∈ T
det(WW ⊺ − γiΛ) = 0
WW ⊺Ū = ΛŪΓ
Ū⊺ΛŪ = I
χi(α, β,Γ) > 1
fci(µ0i,max, µ̇0i,max, α, β,W ) ≤ bµi

.

(40)

Here, as mentioned before, the last inequality replaced
the maximization constraint. The additional constraint on the
damping ratio χi, used for ensuring an over-damped behavior
of the ith closed-loop subsystem (37), is nonlinear.

Minimization problem (40) is deterministic and, thus, much
simpler than (35). There is a very wide literature on determin-
istic optimizations involving the types of constraint functions
in (40); see, for example, [60], [61], [62] and [63]. Even
though global optimization of such non-convex problems is
time-consuming and cannot be achieved in real-time, numeri-
cal methods can efficiently address them utilizing branch-and-
bound, cutting, and approximation algorithms; for instance,
[64] and [65] present two Reformulation-Linearization Tech-
niques that lead to linear programming problems, which in
turn produce tight lower bounds on the solution of the original
bilinear and polynomial problems. Some efficient algorithms
for nonlinear programming include the Interior Point Method
[66] and some others found in [67].

It behoves us to point out that it is not conceivable to
guarantee a priori that nonlinear programs, such as (40),
always lead to non-empty solution space [68]. However,

experiments performed on a state-of-the-art robot show that,
in practice, numerical solutions to (40) are always found
(see Section VIII). This is reasonable since, as long as the
maximum allowed initial perturbation x̃0i,max

is within the
bounds bi, it is theoretically always possible to find controller
gains to limit the relative peak to arbitrarily small values.
Moreover, in the very unlikely case that no solution is found,
we forward to the controller the solution found at the previous
iteration, adequately modified to ensure stability of the origin
and passivity of the closed-loop system.

C. Stability and Passivity Analysis

Optimization (35), or equivalently (40), produces, at the
nth iteration, a solution, i.e., a stiffness Kn = WnW

⊺
n and

a damping Dn = αnΛn + βnWnW
⊺
n . The actual gains of the

impedance controller should be updated, only after ensuring
the stability of the origin and the passivity of the closed-loop
system (7).

Given the second order linear time-varying system

Λ(t)¨̃x+D(t) ˙̃x+K(t)x̃ = Fext, (41)

its stability and passivity properties can be studied using the
analyses presented in [12] and [28]. We re-write (41) as

¨̃x+ Λ−1(t)D(t)︸ ︷︷ ︸
D′(t)

˙̃x+ Λ−1(t)K(t)︸ ︷︷ ︸
K′(t)

x̃ = F̄ext. (42)

We define two operators λ̄(·) and λ
¯
(·) that extract the largest

and smallest eigenvalues from their arguments.

Theorem 2. Let D′(t) and K ′(t) be symmetric, positive
definite and continuously differentiable matrices ∀t ≥ 0, the
origin of (41) is globally uniformly asymptotically stable (for
Fext = 0) and (41) is a passive map from Fext to ˙̃x + δtx̃ if
Y (t) = K̇ ′(t) + δtḊ

′(t)− 2δtK
′(t) is negative definite (n.d.)

for δt = mint λ¯
(D′(t)).

The proof of Theorem 2 follows directly from Theorem 1
in [12] and equations (12)-(13) in [28].

Remark 7. Equation (42) assumes Λ(t) positive definite. This
always holds except in pathological situations, e.g., kinematic
singularity. This brings back the requirement of positive defi-
niteness of D′(t) and K ′(t) to that of D(t) and K(t).

Remark 8. Theorem 2 provides a sufficient only condition
to ensure the uniform asymptotic stability of the origin and
the passivity of (7) [12], [28]. It might be possible to find
less conservative conditions for other choices of Lyapunov
candidate and storage function.

Theorem 2 can be re-formulated in relation to the discrete-
time solutions of the optimization as follows.

Given a newly planned impedance (Λn, Dn,Kn) (nth plan-
ning iteration with optimization (35)) and the previous step
solution (Λn−1, Dn−1,Kn−1), assuming the planning period
T to be relatively small, the newly computed impedance does
not compromise the stability of the origin and the passivity of
(7) if the following is verified at each iteration:
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Condition 1.

Yd =
(K ′

n −K ′
n−1)

T
+ δ

(D′
n −D′

n−1)

T
− 2δK ′

n

is n.d. for δ = minj λ¯
(D′

j) and j ∈ {0, · · · , n− 1}.

If Condition 1 is not satisfied, we might want to modify
Kn or Dn so that stability/passivity is ensured. To this end,
we introduce two scaling factors cKn , cDn > 0 to scale the
variations ∆Kn

and ∆Dn
.

K⋆
n = Kn−1 + cKn∆Kn ; ∆Kn = Kn −Kn−1.

D⋆
n = Dn−1 + cDn∆Dn ; ∆Dn = Dn −Dn−1.

We substitute these in Condition 1 to compute the cKn
and

cDn
that guarantee a stable and passive closed-loop system.

We apply triangle inequalities on the largest eigenvalue of the
modified Yd.

λ̄(Y ⋆
d ) ≤ λ̄(

1

T
cKn

∆Kn
+

δ

T
δcDn

∆Dn

− 2δ
[
K ′

n−1 + cKn
∆Kn

]
)

(43)

≤ cKn

T
λ̄(∆Kn

) +
cDnδ

T
λ̄(∆Dn

)

− 2δλ
¯
(K ′

n−1)− 2cKnδλ¯
(∆Kn).

(44)

If Condition 1 is not met, to render the error dynamics stable
and the closed-loop system passive, the variations of the
stiffness ∆Kn and damping ∆Dn can be scaled respectively
of factors cKn and cDn that comply with

Condition 2.
cKn

T
λ̄(∆Kn

) +
cDnδ

T
λ̄(∆Dn

)− 2δΘ ≤ 0,

with Θ = λ
¯
(K ′

n−1) + cKnλ¯
(∆Kn).

Notice that the unknowns of the single inequality in Con-
dition 2 are cKn

and cDn
. It should be noted that guar-

anteeing stability/passivity can undermine the observance of
the performance requirement. Indeed, small scaling factors
might make it impossible to comply with the maximization
constraint in (39). It is not possible to guarantee that both the
stability/passivity and the performance requirement are always
met using the proposed method. If the solution provided by
optimization (40) does not comply with Condition 1, we
limit ourselves to ensure only the stability/passivity using
Condition 2.

VII. IMPEDANCE PLANNING

In this section, we outline our general algorithm. It chooses
one of the two methods, presented in Sections V and VI, for
computing the optimal impedance for the cases of diagonally
dominant and non-diagonally dominant inertia.

According to the inertia Λ, either optimization (16) or (40)
are solved in a loop with a period T in combination with the
respective methods for guaranteeing stability/passivity, shown
in Sections V-B and VI-C. In the case of diagonally dominant
inertia, the closed-form solution provided by (23) is directly
employed and (26) is utilized to ensure stability. On the
contrary, if the closed-loop system has a non-diagonally dom-
inant inertia, (40) is solved by using state-of-the-art numerical

methods (e.g., the Interior Point Method [66]). Condition 2
ensures stability/passivity.

Algorithm 1 Optimal Impedance Planning
Input: S, T
Output: Kout, Dout

(K0, D0)← InitializeImpedance(S)
repeat
S ← GetBounds()
Λn ← GetMassMatrix()
(Kn, Dn)← SolveOptimization(Λn,S)
if Stability/PassivityCheck(Λn,Kn, Dn) then

(Kout, Dout)← OutputGains(Kn, Dn)
else

(K⋆
n, D

⋆
n)

← EnforceStability/Passivity(Λn,Kn, Dn,S)
(Kout, Dout)← OutputGains(K⋆

n, D
⋆
n)

end if
WaitForPeriod(T )

until StoppingCondition

The basic structure of the optimal impedance planner is
shown in Algorithm 1. It requires two inputs: (i) the set
S = {lki,j

, uki,j
, ldi,j

, udi,j
, lx̃0i

, ux̃0i
, l ˙̃x0i

, u ˙̃x0i
, bi} of bounds

on the stiffness and damping, on the initial conditions, and on
the peak of the Cartesian error and (ii) the planner period T .

Initially, two matrices K0 and D0, which ensure compliance
with the performance requirement, are initialized by the func-
tion InitializeImpedance. At this point the planner repeats
in a loop with period T the following:

1) The bounds in S are updated by GetBounds if any new
ones are specified by a higher-level task planner.

2) The current Cartesian mass matrix Λn is read using the
function GetMassMatrix.

3) For the read inertia, according to its diagonal domi-
nance, the function SolveOptimization finds optimal
impedance (Kn, Dn) solving either (16), using (23) and
(17), or (35) by means of numerical methods on (40).

4) Using equation (26) or Condition 1, based on Λn,
Stability/PassivityCheck returns true if the update of
the controller gains with the new ones is guaranteed to
preserve stability/passivity. Else, it returns false.

5) If stability/passivity are not compromised, closed-loop
impedance is updated by OutputGains.

6) Else, the function EnforceStability/Passivity utilizes
either the boundary of (26) as the new damping or
Condition 2 to restore stability/passivity. Also this step is
performed based on whether Λn is diagonally dominant.

7) Then, the new stiffness K⋆
n and damping D⋆

n are used to
update the controller gains.

8) Finally, the planner waits for the completion of the
planning period T .

The choice of the planning period T should be a trade-off
between small T , to have a precise estimate of the derivatives
of the impedance gains for guaranteeing stability/passivity, and
high T for ensuring the convergence of the optimizations in
Algorithm 1. The set S is provided by a higher level reasoning
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Table I
PARAMETERS USED FOR EXPERIMENTAL VALIDATION

Validation Parameter Unit Value‡ Parameter Unit Value‡

A
N

Y
m

al
B

w
ith

[1
9]

an
d

[1
3]

b
(1)
i m {0.06, 0.055, 0.05} b

(2)
i m {0.02, 0.02, 0.02}

x̃0i,max m {0.034, 0.036, 0.019} ˙̃x0i,max m/s {0.216, 0.181, 0.126}
lki

N/m {300, 300, 300} uki
N/m {1800, 1800, 1800}

ldi Ns/m {230, 230, 230} udi Ns/m {450, 450, 450}
Klow N/m diag([500, 500, 500]) Khigh N/m diag([1500, 1500, 1500])

Dlow Ns/m diag([90, 90, 90]) Dhigh Ns/m diag([200, 200, 200])

Fr
an

ka
E

m
ik

a
Pa

nd
a

w
ith

[1
0]

or
[6

9]
an

d
St

an
da

rd
M

et
ho

d
or

A
lg

or
ith

m
1

b
(1)
i m {0.03, 0.03, 0.03} b

(2)
i m {0.036, 0.036, 0.036}

x̃0i,max m {0.025, 0.025, 0.025} ˙̃x0i,max m/s {0.03, 0.03, 0.03}
lki,j

N/m {150, 5, 5, 150, 5, 150}∗ uki,j
N/m {390, 50, 50, 390, 50, 390}∗

ldi,j Ns/m {1280, 460, 460, -30, 1990, -880, 1350}∗ udi,j Ns/m {5035, 2000, 330, 4800, 5500, 3300}∗

Klow N/m diag([150, 150, 150]) Khigh N/m diag([390, 390, 390])

Dlow Ns/m diag([24.5, 24.5, 24.5]) Dhigh Ns/m diag([39.5, 39.5, 39.5])

∗ Elements of the vectorization of the lower triangular blocks of matrices Kmin, Kmax, Dmin, and Dmax, respectively. See Appendix C.
‡ For the sake of conciseness, we show only the values of the components of each parameter related to translation, i.e., x̃1, x̃2, and x̃3.

or task planner, which, for instance, can change the bounds
based on the robot model, on the information provided by a
vision system and on the required precision for the task being
performed by the robot. An example of strategy that the higher
level planner can adopt for the choice of the set S is provided
in Appendix C.

An observation is due on why we do not always use the
approach presented in Section VI. The main reason is the
advantage provided by the closed form solution (23). Hence,
whenever the inertia is diagonally dominant, the method of
Section V is to be preferred since it provides a faster solution,
which is valid for small tracking errors. Instead, solving opti-
mization (40) in the case of non-diagonally dominant inertia
might be more time consuming depending on the particular
numerical optimization tool (and its implementation), but the
solution is more precise than (23) and globally valid.

VIII. EXPERIMENTAL VALIDATION

We validate the proposed impedance planner (Algorithm 1)
on two different robots: the quadruped ANYmal B [3] and the
7 DoF robotic arm Franka Emika Panda [70]. We modulate the
impedance of the torso of ANYmal using the controller in [19].
The Panda robot is controlled using the non inertia shaping
Cartesian impedance controller provided by Franka Emika
(similar to the one presented in [69]), which has been modified
only to receive varying stiffness and damping matrices. We
also implemented an inertia shaping impedance controller,
based on [10]. To this end, we used an ATI Mini45 6-axis
force/torque sensor [71] since the external force measurements
provided by the robot were too noisy to be fed back to the
controller (see again Section II-A). We mounted a soft gripper
[72] developed by QB Robotics for grasping objects. The
three impedance controllers run on ROS at an average rate of
≈ 400 Hz for ANYmal and ≈ 850 Hz for the Panda. To solve
optimization (40), used in Algorithm 1, we used the interior-

Figure 4. Experiments on ANYmal. ANYmal colliding with an unperceived
obstacle. A fixed high impedance produces high contact forces that trigger
the emergency stop. Variable impedance, instead, increases robot compliance
to withstand the disturbance.

point method provided by MATLAB. The main parameters
used for validation are reported in Table I.

A. Case: Diagonally Dominant Inertia

Since the closed-loop inertia of the torso of ANYmal is
diagonally-dominant, Algorithm 1 chooses the method pro-
posed in Section V. A planning period T = 0.0025 s is
used. We set the parameters x̃0i,max and ˙̃x0i,max as in Table I.
These are the maximum position and velocity errors that we
measured while walking the real robot on an uneven terrain
with the fixed gains employed in [19]. The diagonal impedance
limits lki

, uki
, ldi

, and udi
are also reported in Table I.

1) Identification Procedure: Initially, we found a mismatch
between the simulated and the real closed loop dynamics. This
was caused by inaccuracies in the dynamic model used by the
impedance controller. In particular, the translational damping
of the system was much different from the expected one.

Hence, we estimated the intrinsic translational damp-
ing and mass of the system using a least squares ap-
proach. After zeroing the damping gain, for several stiff-
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Figure 5. Experiments on ANYmal. ANYmal engaging rough terrain aided
by our impedance planning algorithm.

ness gains we applied the following displacements to the
robot: x̃0 = {10, 20, 35, 50} mm along the x axis,
x̃0 = {10, 20, 35, 50} mm along the y axis and x̃0 =
{50, 100, 150, 170} mm along the z axis. For each of
the tested stiffness values, we applied the displacements for
three times. The stiffness values we used are k = 800 N/m,
k = 1000 N/m and k = 1200 N/m.

The identification process resulted in d̃x = 50.4885 Ns/m,
d̃y = 64.4859 Ns/m and d̃z = 75.6533 Ns/m, while m̃x, m̃y

and m̃z were found to be approximately equal to the diagonal
elements of the matrix Λ in the default configuration. These
identified damping values were used as an offset to the optimal
ones (23) in Algorithm 1.

2) Obstacle Interaction Experiment: In the first experiment,
we walk the robot along a path where it touches an obstacle
placed at approximately 0.6 m of height from the ground. We
perform the same test using fixed-low (Klow, Dlow), fixed-
high (Khigh, Dhigh), and Algorithm 1 using boundaries b

(1)
i .

The values of these parameters are reported in Table I. The
fixed impedance values are the same as in [19]. In Figure 4, we
show some photo-sequences for the cases of high and variable
impedance. The low impedance case had similar behavior to
the variable gains’ scenario. In the case of high impedance, as
expected, a large interaction force causes the robot to stop. On
the contrary, by varying the impedance using our planner, the
robot withstands the reduced force exerted by the environment.
This clearly shows the benefit of our approach.

3) Rough Terrain Experiment: In the second experiment,
we walk ANYmal on rough terrain (see Figure 5). We use the
locomotion planner proposed in [73]. The terrain consists of
randomly combined wooden tiles (approximately 0.4× 0.4m)
with different inclinations ({π/36, π/18, π/12}rad).

Towards the middle of the path, we change the task
requirements from b

(1)
i to b

(2)
i (see Table I) and then we

reset them to the initial values. The tracking error and the
varying impedance are reported in Figure 6. The unevenness
of the terrain and the changes in the support polygon are
taken into account by the impedance planner, which causes
variations of the impedance gains. This allows achieving the
desired tracking performance and, hence, to keep balance. The
values of the tracking error stay always within the specified

boundaries even when the bi are tightened in the time interval
from t = 38 s to t = 53 s. Notice also that, due to the offset
explained in Section VIII-A1, the damping coefficients reach
also values smaller than ldi

.

B. Case: Non-diagonally Dominant Inertia

The Cartesian inertia (without inertia shaping) of the Panda
robot is non-diagonally dominant. Hence, Algorithm 1 chooses
the method proposed in Section VI to plan the impedance.
A planning period T = 0.03 s is used. The planner input
parameters are reported in Table I. We set the parameters
lx̃0i

= −x̃0i,max, ux̃0i
= x̃0i,max and l ˙̃x0i

= − ˙̃x0i,max, and
u ˙̃x0i

= ˙̃x0i,max. The impedance limits lki,j
, uki,j

, ldi,j
, and

udi,j are also reported. Please refer to Appendix C for a
possible method to compute the input set S of our planner.

For a fair evaluation, we perform two sets of experiments:
the first with the inertia shaping controller, which gives us
a baseline for comparison, and the second with the non
inertia shaping controller. Each set consists of three tests
with different choices of impedance: 1) fixed-low impedance,
2) fixed-high impedance, and 3) variable impedance.

In this last case, according to the controller, we use either
Algorithm 1 or the method in [12] to guarantee stability
while switching between high and low impedance (which
are the same used for the fixed impedance cases). We call
this latter approach Standard Method. We wish to stress that
the Standard Method, which switches between fixed gains
for complying with requirements on the tracking error and
compliance, requires closed-loop decoupling through inertia
shaping in order to apply established single DoF techniques.

For both sets of experiments, the fixed gains are chosen
to be diagonal: the low and high stiffness matrices, Klow and
Khigh, contain the diagonal elements respectively of Kmin and
Kmax from Appendix C. The dampings Dlow and Dhigh are
chosen to ensure a critically damped behavior.

We introduce three metrics for quantitative performance
evaluation. These are

Mx̃ =
∑
i

∫ tf

t0

ReLU(|x̃i| − bi) dt, (45)

for the compliance of tracking error x̃ with its bound b,

MFext =
∑
i

∫ tf

t0

|Fext,i|dt, (46)

measuring the minimization of the contact force, and

Mτ =
∑
i

∫ tf

t0

|τi|dt, (47)

measuring the minimization of the control torque. The lower
the value of these M(·) in the time interval [t0, tf ], the better
the performance of the corresponding gain choosing method.

We also use an additional binary metric Mtask related to
the correct execution of the task.

Mtask =

{
0, if task failed,
1, if task success.

(48)
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(a) Translational tracking error. (b) Translational damping coefficients. (c) Translational stiffness coefficients.

Figure 6. Experiment with ANYmal on rough terrain. (a) The margins bi are tightened at t = 38s and later reset at t = 53s. The tracking error is always
maintained within the boundaries. (b,c) Algorithm 1 automatically computes impedance gains.

A photo of the experimental setup and the manipulated
objects is provided in Figure 7. The manipulandum is a piece
of wood that has the shape of a rectangular cuboid and weighs
approximately 0.15 kg. The desired Cartesian trajectory of the
gripper consists of an approach phase towards the grasp pose
(red cross), a post-grasp phase, in which the grasped object is
lifted, a moving phase, where the robot moves to the other end
of the table with the object grasped, and, finally, the release
phase, when the object is released in a target location (green
tick). We place three heavy cans of pickle as obstacles in such
a way that, while tracking ideally the desired trajectory, the
robot end-effector collides with all three cans.

The choice of this particular setup is motivated by its sim-
plicity, which favors reproducibility and repeatability. These
are critical for comparing the different approaches in the
same conditions. Additionally, with this setup, we emulate a
worst-case scenario, in which motion planning and sensing
capabilities are weakened. This highlights the actual benefits
provided by the controller and the choice of the impedance.

Photo sequences of the two sets of three experiments are
shown in Figures 8 and 9, respectively, for the cases of
inertia shaping and no inertia shaping. Results are shown in
Figures 10 and 11 through plots of the controller gains, the
external force, the tracking errors, and the control torques.
For the sake of space, we do not show the plots of orientation
tracking errors, which had similar behavior to the translational
ones. We also do not show the tracking error along x̃3, since
interactions mostly happen in the other two directions.

The values of the metrics are reported in Table II. Please,

Figure 7. The experimental setup for the case of non-diagonally dominant
inertia. A Franka Emika Panda robot mounts an ATI Mini45 force/torqe sensor
and a QB SoftClaw gripper. The object (■) should be grasped and transported
from the initial (✗) to the goal (✓) position.

see also the video attached to this submission. In the following,
we discuss the results and present relevant insights categorized
based on the choice of impedance.

1) Fixed Low Impedance: Here, we discuss the results of
the two tests using fixed-low stiffness Klow and damping Dlow

(see Table I). The blue lines in Figures 10 and 11 show the
evolution of the relevant quantities for the inertia shaping and
non inertia shaping cases, respectively.

In both cases, the task is failed because of the reduced
precision. This is because low impedance does not compensate
for model uncertainties in the controllers. Indeed, the object
is not grasped (see submitted video). However, the trajectory
is tracked till the end despite the collisions with the obsta-
cles since interaction forces are not high. Because of the
decoupling performed by inertia shaping, Figures 10d and 10e
display smaller tracking errors than in Figures 11d and 11e.
Also, notice how the interaction forces are surprisingly very
high (see blue lines in Figures 10c and 11c, and Table II): this
is caused by the high tracking errors accumulated from the
beginning of the task leading, in turn, to deeper interactions.

2) Fixed High Impedance: Here, we discuss the fixed-high
impedance experiments with the two controllers. We employ
stiffness Khigh and damping Dhigh (see Table I). The relevant
quantities are plotted in yellow in Figures 10 and 11.

Both experiments display smaller tracking errors, which is
reasonable since high controller gains compensate for model
uncertainties and improve tracking. Nevertheless, a stiffer
robot leads to higher contact forces during unforeseen col-
lisions. This is what happens at t ≈ 33 s (yellow line in
Figures 10c and 11c). It is worth mentioning that, due to
coupling, slightly higher external forces are generated in the
case of avoidance of inertia shaping, triggering the safety stop
of the Panda robot and causing task failure.

3) Variable Impedance (Standard Method / Algorithm 1):
In the following, we discuss experiments using the Standard
Method and compare it with the proposed impedance planner.

The red lines in Figures 10 and 11 show the evolution of
the relevant quantities for the two cases. Notice how, while
the Standard Method acts directly by changing the gains with
no guarantees on the performance requirements, Algorithm 1
automatically tunes the gains taking into account changes in
the bounds on the tracking error. Indeed, the bi are relaxed
from b

(1)
i to b

(2)
i during the moving phase, in which impacts are
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Table II
EXPERIMENTAL RESULTS AND OBSERVATIONS

Impedance
Controller Impedance Planner Mx̃ MFext Mτ Mtask

Observations

F/T Sensor Precision Ext. Forces Control Torques

In
er

tia
Sh

ap
in

g
([

10
])

Fixed Low 4.22 5.18e3 6.61e3 ✗ Required Low Low High

Fixed High 1.67 5.70e3 7.26e3 ✓ Required High High High

Standard Method 0.35 5.27e3 6.81e3 ✓ Required High Low High

N
o

In
er

tia
Sh

ap
in

g
([

69
])

Fixed Low 1.25 5.63e3 3.42e3 ✗ Not Required Low Low Low

Fixed High 19.76§ 1.16e4§ 4.19e3 ✗ Not Required High High Low

Algorithm 1 0.65 5.70e3 3.53e3 ✓ Not Required High Low Low

§ High values of Mx̃ and MFext attributable to task failure resulting from the trigger of robot safety stop. See Figure 9b and the yellow line in Figure 11c.

foreseen and precision can be reduced. In case of Algorithm 1,
impedance gains are varied both within the same phase due
to the changes in robot configuration, and across two phases
because of the variation of the bounds. Tighter bounds produce
higher impedance values, while loosening the bounds results
in lower stiffness and damping computed by the impedance
planner. Notice, in both cases, the smooth variations of the
impedance caused by guaranteeing stability/passivity (see Sec-
tion VI-C and [12]). We also note that, during the experiments,
optimization (40) always converged to a feasible solution.

Additionally, recall Remark 1: since, in our setup, the
properties of the object are known, the controllers compensate
for the constant load lifted by the gripper. However, if the
load were unknown, another practical and viable solution
enabled by Algorithm 1 would be to tighten the bounds bi
during the post-grasp and moving phases. This would generate
slightly higher impedance gains that counterbalance the model
uncertainty introduced by the constant load.

For both the variable impedance cases, results show better
tracking performance with respect to the corresponding low
impedance cases, as the red lines in Figures 10d and 10e,
and Figures 11d and 11e clearly indicate. The specified
bounds are observed except for the brief instants of time in
which the manipulator falls behind the planned trajectory as
it is colliding compliantly with the obstacles with non ideal
impulsive contact forces. Here, notice also how the forces in
Figures 10c and 11c have dynamics much slower than reaction
time of the control-loop (≈ 1 ms for the Franka Emika).
Hence, impedance control will be able to properly set the
desired behavior.

In both the tests, the manipulation task is successfully
completed. Indeed, the robot never triggers a safety stop
because the measured external forces are kept low. Higher
accuracy in tracking the references w.r.t. the low gains case and
lower impedance w.r.t. the fixed high impedance case produce
smaller contact forces (red lines in Figures 10c and 11c).

The evaluation clearly demonstrates the advantages of vari-
able impedance. Some additional experiments on a slightly
different setup, using the non inertia shaping controller, are
also shown in the submission video: these provide further
support to our claims.

An additional insight emerging from the experiments is that

using fixed impedance does not always guarantee consistent
results: notwithstanding compliance, low impedance can pro-
duce high contact forces due to increased tracking errors; high
gains can produce task failures, despite increased precision,
due to strong impacts.

Finally, the proposed planner is shown to be comparable in
terms of performance to a standard impedance varying method
using inertia shaping. More in detail, our method compares to
the Standard Method as follows (cf. Table II):

1) The Standard Method has better tracking performance
Mx̃ thanks to the decoupling of the inertia. Algorithm 1
achieves comparable performance despite avoiding inertia
shaping.

2) Decoupling reduces the external forces (see MFext
) dur-

ing impacts in the case of the Standard Method, while
coupled inertia causes slightly higher contact forces when
using Algorithm 1.

3) The feedback of external forces leads to higher values
of control torques (confirmed by Mτ ) for the Standard
Method, despite smaller tracking errors. Algorithm 1
keeps the control low by avoiding inertia shaping.

4) The Standard Method demands the use of precise (and
often costly) force/torque sensors for performing the
required inertia shaping. Our Algorithm does not require
costly sensors since no inertia shaping is required.

These observations are also summarized in the last column
block of Table II.

By autonomously choosing the minimum closed-loop
impedance that ensures compliance with some provided per-
formance requirement, Algorithm 1 attacks the hindrance of
coupled inertia and reduces the entity of unexpected impacts
while assuring that the required task is performed with suffi-
cient accuracy without requiring costly sensors.

IX. CONCLUSIONS

In this paper, we extended our previous work [13] by
overcoming its main limitation, i.e., the assumption of diagonal
inertia. By building ot top of established methods in control
theory and optimization, we proposed a novel and general
framework for planning the stiffness and damping matrices
for impedance controllers. In contrast with traditional methods,
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(a) Low decoupled impedance reduces precision and increases compliance.

(b) High decoupled impedance increases precision and reduces compliance.

(c) The Standard Method alternates high and low impedance.

Figure 8. Experiments using the inertia shaping controller in [10]. Fixed-low impedance reduces precision, causing task failure. Fixed-high gains, instead,
produce high external forces. The Standard Method attempts to balance precision with compliance.

(a) Low coupled impedance reduces precision and increases compliance.

(b) High coupled impedance increases precision and reduces compliance.

(c) Algorithm 1 varies precision and compliance as required.

Figure 9. Experiments using the non inertia shaping controller (similar to [69]). Due to coupling, low gains cause high imprecision and high gains produce
external forces that violate the robot safety limits. In both cases, the task fails. Algorithm 1 sets the impedance required to properly balance tracking error
reduction and impedance minimization.

we do not rely on the use of expensive sensors to shape the
inertia.

After introducing the background and performing a review
of the state-of-the-art, we presented our optimization-based
solution to the impedance planning problem. Therein, we
proposed to minimize some cost related to the impedance of
the closed-loop system subject to constraints on the tracking
error and on the controller gains. Subsequently, we discussed
two possible approaches to solve the minimization by distin-
guishing the cases of diagonally-dominant and non-diagonally-
dominant inertia. In the former case, we provided an analytic
formula, which computes the optimal impedance. Instead,
the latter case was addressed with numerical methods that
produce the stiffness and damping matrices that minimize

the cost and comply with the constraints. Merging these two
approaches, we outlined the basic algorithm of our impedance
planner. We validated it through extensive experiments on two
different robotic platforms and compared it with typical fixed
impedance gain cases and a standard impedance choosing
method with inertia shaping.

The validity and robustness of our method also with respect
to the standard one was clearly shown. Notwithstanding the
avoidance of inertia shaping and without using force/torque
sensors, our method displayed comparable performance to the
standard approach.

Future works will focus on lifting the assumptions of
negligible Coriolis-like term and slowly-varying inertia. We
will also explore the possibility of techniques that modulate
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(a) Frobenius norm of stiffness matrices. (b) Frobenius norm of damping matrices. (c) Norm of external force.

(d) Tracking error along x̃1. (e) Tracking error along x̃2. (f) Norm of control torque.

Figure 10. Experiments with the Franka Emika Panda using the inertia shaping controller [10]. The impedance gains for the cases of low, high and variable
(Standard Method) impedance are shown in (a) and (b). The inserts in (a) show how the Standard Method smooths sudden variations using [12] for guaranteeing
stability. The norm of the contact forces are plotted in (c). Notice that in real-world scenarios the contact forces are not ideally impulsive. The tracking errors
along x̃1 and x̃2 together with the boundaries used by the impedance planner are shown in (d) and (e). The norm of the control torque is plotted in (f).

(a) Frobenius norm of stiffness matrices. (b) Frobenius norm of damping matrices. (c) Norm of external force.

(d) Tracking error along x̃1. (e) Tracking error along x̃2. (f) Norm of control torque.

Figure 11. Experiments with the Franka Emika Panda using the non inertia shaping controller [69]. The impedance gains for the cases of low, high and variable
(Algorithm 1) impedance are shown in (a) and (b). Here, the damping for the fixed impedance cases are computed with the critically damped condition, as
traditionally done. The norm of the contact forces are plotted in (c). For a fair comparison, the fixed gains are the same as in the inertia shaping case. The
tracking errors along x̃1 and x̃2 together with the boundaries used by the impedance planner are shown in (d) and (e). The norm of the control torque is
plotted in (f).
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the kinetic energy of the robot to react to peak impact
forces. Additionally, based on some insights provided by the
experiments on the robots, we will also work on eventually
making use of the available sensors in the planning algorithm.

APPENDIX

A. From Impulse Response to Free Response

The combination of free and forced response of (12) is

ξ(t) = ϕ(t, t0)ξ(t0) +

∫ t

t0

ϕ(t, τ)B(τ) ν(τ)dτ. (49)

Here, ϕ(t, τ) is the so-called state-transition matrix [53] and
ν(t) is impulsive with all impulses occurring at t0: ν(t) =
ν̄ 16 δd(t−t0), where 16 ≡ [1, 1, 1, 1, 1, 1]⊺ and δd(t) the Dirac
delta function. We can apply the sifting property of Dirac delta
and (49) becomes

ξ(t) = ϕ(t, t0)ξ(t0) + ϕ(t, t0)B(t0) ν̄ 16 (50)
= ϕ(t, t0) (ξ(t0) +B(t0) ν̄ 16)︸ ︷︷ ︸

ξ′(t0)

. (51)

Hence, the impulse response from ξ(t0) is equivalent to the
free response from ξ′(t0). Notice that, given the form of B in
(12), ξ′ =

[
x̃′⊺ ˙̃x′⊺]⊺ differs from ξ only for the ˙̃x′⊺ . Hence,

we justify Remark 2.

B. Free Response of Second Order Linear System

Refactoring the second order single degree of freedom
differential equation (37) to draw attention to the damping
ratio, we re-write it as

µ̈i + 2ξiωi︸ ︷︷ ︸
a1

µ̇i + ω2
i︸︷︷︸

a0

µi = 0. (52)

This system is said to be overdamped if ξi > 1. In this case
the modes of the system are real and distinct.

The general form of the free response of (52), for initial
conditions µi(0) = µ0i and µ̇i(0) = µ̇0i , is provided by

µi(t) = θ1e
λ1t + θ2e

λ2t, (53)

where, the coefficients are given by

λ1,2 = −a1
2
±

√
a21 − 4a0

2
,

θ1 = −λ2µ0i − µ̇0i

λ1 − λ2
,

θ2 =
λ1µ0i − µ̇0i

λ1 − λ2
.

(54)

It is clear that (53) is valid independently of its boundedness,
which holds only if the damping coefficient ξi > 0 and the
undamped natural frequency ωi > 0. To compute the time of
peak response, it suffices to differentiate (53) and equate to
zero. We get

tmax = −
log

(
− θ1λ1

θ2λ2

)
λ1 − λ2

. (55)

Hence, assuming tmax ≥ 0, the peak value of (53) is

µimax
= θ1

(
−θ1λ1

θ2λ2

)− λ1
λ1−λ2

+ θ2

(
−θ1λ1

θ2λ2

)− λ2
λ1−λ2

, (56)

A conservative upper-bound can be found for (56) so that the
new expression fci(µ0i , µ̇0i , ·) is linear w.r.t. the initial states
µ0i and µ̇0i :

µimax ≤ µ0i + µ̇0i


(

λ2

λ1

) λ1
λ1−λ2 −

(
λ2

λ1

) λ2
λ1−λ2

λ1 − λ2


︸ ︷︷ ︸

fci (µ0i
,µ̇0i

,·)

. (57)

C. Example of Bound Choosing Method
The set S = {lki,j , uki,j , ldi,j , udi,j , lx̃0i

, ux̃0i
, l ˙̃x0i

, u ˙̃x0i
, bi}.

Its first four parameters depend on the maximum and
minimum controller gains (Kmax, Kmin, Dmax, and Dmin).
The remaining are related to the tracking error x̃ and its
derivative ˙̃x.

The below procedure can be followed to choose them:
1) From the task-specific required precision, choose bi. For

instance, if the task regards grasping, bi is the needed
tolerance. Instead, if the controller regulates the CoM
of a walking robot, bi might be related to the physical
feasibility of the CoM trajectory.

2) Choose lx̃0i
, ux̃0i

, l ˙̃x0i
, and u ˙̃x0i

based on the max-
imum position and velocity errors, x̃max and ˙̃xmax,
that occur while using the considered impedance con-
troller with the commonly used fixed gains. For instance,
lx̃0i

= −|x̃max|, ux̃0i
= |x̃max|, l ˙̃x0i

= −| ˙̃xmax|, and
u ˙̃x0i

= | ˙̃xmax|. Alternatively, l ˙̃x0i
and u ˙̃x0i

can also
be chosen from an estimate of the maximum expected
(impulsive) contact force by leveraging Remark 2 (see
also Appendix A).

3) Clearly, it should hold that the bounds bi on the tracking
error are above the bound on the initial error ux̃0i

: i.e.,
ux̃0i

≤ bi. Otherwise, the tracking error is not within the
bounds at the initial instant.

4) Choose Dmax and Dmin to enforce a critically damped
behaviour: Dmax = 2Λ

1
2
maxKmaxΛ

1
2
max and Dmin =

2Λ
1
2

minKminΛ
1
2

min. Here, Λmax and Λmin are respectively
the maximum and minimum Cartesian inertia w.r.t. some
cost: for instance, ∥Λ(q)∥F .
More in detail, we define the operator (·)max that, applied
to a matrix A(q) function of q, finds

q⋆ = argmax
q
||A(q)||F .

Then, Amax = A(q⋆). The operator (·)min is defined
analogously with the only difference that the norm is
minimized. Similarly, also other matrices of the model
can be maximized/minimized. Notice that the matrices
obtained by applying the operators (·)min and (·)max lead
to under or overestimations of the matrix itself.

5) Finally, choose Kmax and Kmin following the common
rationale of choosing Kmax so that control limits are not
violated and Kmin high enough to compensate for model
uncertainties.
On the impedance control law (3)-(5), we assume quasi-
static conditions: this yields

τ = J⊺(q)Fτ +G(q), (58)
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and
Fτ = −Kx̃. (59)

The following can approximate analysis be performed:
1) Choosing Kmax: Scale the maximum allowed torque
τmax of a safety factor 0 < δs < 1. Inverting (58)
and considering a worst-case scenario, get the maximum
admissible Cartesian force:

Fτmax = (J⊺
max)

†(δsτmax +Gmax). (60)

Here, Jmax and Gmax are respectively obtained by ap-
plying the operator (·)max to the Jacobian and gravity
torques. Notice that Fτmax is an conservative estimate of
the maximum allowed Fτ that would not violate τmax.
From (59), equation (60) should match

Fτmax
= −Kmaxx̃max. (61)

Equating (60) and (61) leads to

(J⊺
max)

†(δsτmax +Gmax) = −Kmaxx̃max, (62)

Equality (62) can be solved numerically (recall that this
is done only once offline) with the only unknown Kmax

constrained to be positive definite (e.g., using Cholesky
decomposition).
2) Choosing Kmin: Assuming model uncertainties only
on the dynamic parameters (since kinematic quantities
are easier to identify), model them as multiplicative
uncertainties: e.g., Ĝ(q) = (I +∆)G(q) is the estimated
gravity torques with a relative error ∆.
Within the quasi-static assumption, the control law τ̂
using the estimated model acts on the robot as follows:

�
�>

0
Bq̈ +�

�>
0

Cq̇ +G = J⊺Fτ +�
��

0

Ĉq̇ + Ĝ︸ ︷︷ ︸
τ̂

. (63)

Solving for Fτ gives Fτmin
, an under estimate of the

minimum necessary Fτ that would provide robustness to
model uncertainties.

Fτmin
= (J⊺

max)
†(−∆Gmax), (64)

which, together with (59), yields the equality

(J⊺
max)

†(−∆Gmax) = −Kminx̃avg. (65)

Here, the unknown is Kmin and x̃avg is an average
tracking error. Also (65) can be solved numerically.
In practice, if estimates of maximum and minimum inter-
action forces are already provided, these can be directly
used instead of Fτmax

and Fτmin
to compute Kmax and

Kmin, respectively.
It is worth mentioning that the presented procedure is

approximate because the Fτmin
and Fτmax

are not the actual
minimum/maximum wrench capabilities of the robot. This is
because of the under/overestimations performed during the
procedure. Indeed, to properly translate joint capabilities, such
as joint torque limits, to the Cartesian space (for instance, to
maximum/minimum wrenches), complicated techniques such
as vertices enumeration are required [74].

However, the procedure eases tuning by reducing the pa-
rameters to be tuned to just the tracking error bound bi.
All the other parameters are computed automatically from
measurements or from the knowledge of the robot hardware
or its model.

Finally, we stress that the above procedure is in no way a
required component of the proposed framework. It is just one
of many possible ways to choose the set S.
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E. Burdet, D. G. Caldwell, R. Carloni, M. G. Catalano et al., “Variable
stiffness actuators: Review on design and components,” IEEE/ASME
transactions on mechatronics, vol. 21, no. 5, pp. 2418–2430, 2015.
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[26] Y. Li, G. Ganesh, N. Jarrassé, S. Haddadin, A. Albu-Schaeffer, and
E. Burdet, “Force, impedance, and trajectory learning for contact tooling
and haptic identification,” IEEE Transactions on Robotics, vol. 34, no. 5,
pp. 1170–1182, 2018.

[27] M. Bednarczyk, H. Omran, and B. Bayle, “Model predictive impedance
control,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2020, pp. 4702–4708.

[28] M. Bednarczyk, H. Omran, and B. Bayle, “Passivity filter for variable
impedance control,” in 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2020, pp. 7159–7164.

[29] E. Gribovskaya, A. Kheddar, and A. Billard, “Motion learning and
adaptive impedance for robot control during physical interaction with
humans,” in 2011 IEEE International Conference on Robotics and
Automation. IEEE, 2011, pp. 4326–4332.

[30] M. Li, H. Yin, K. Tahara, and A. Billard, “Learning object-level
impedance control for robust grasping and dexterous manipulation,”
in 2014 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2014, pp. 6784–6791.

[31] C. Yang, G. Ganesh, S. Haddadin, S. Parusel, A. Albu-Schaeffer, and
E. Burdet, “Human-like adaptation of force and impedance in stable and
unstable interactions,” IEEE transactions on robotics, vol. 27, no. 5, pp.
918–930, 2011.

[32] Y. Wu, F. Zhao, T. Tao, and A. Ajoudani, “A framework for autonomous
impedance regulation of robots based on imitation learning and optimal
control,” IEEE Robotics and Automation Letters, 2020.

[33] T. Tsuji, K. Ito, and P. G. Morasso, “Neural network learning of robot
arm impedance in operational space,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), vol. 26, no. 2, pp. 290–
298, 1996.

[34] J. Buchli, F. Stulp, E. Theodorou, and S. Schaal, “Learning variable
impedance control,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 820–833, 2011.

[35] J. Xu and Z. Zhu, “Reinforced continual learning,” in Proceedings of
the 32nd International Conference on Neural Information Processing
Systems, ser. NIPS’18. Red Hook, NY, USA: Curran Associates Inc.,
2018, p. 907–916.

[36] H. Mehdi and O. Boubaker, “Impedance controller tuned by particle
swarm optimization for robotic arms,” International Journal of Advanced
Robotic Systems, vol. 8, no. 5, p. 57, 2011.

[37] G. Gasparri, F. Fabiani, M. Garabini, L. Pallottino, M. Catalano, G. Gri-
oli, R. Persichin, and A. Bicchi, “Robust optimization of system com-
pliance for physical interaction in uncertain scenarios,” in 2016 IEEE-
RAS 16th International Conference on Humanoid Robots (Humanoids).
IEEE, 2016, pp. 911–918.

[38] J. Nakanishi, A. Radulescu, and S. Vijayakumar, “Spatio-temporal
optimization of multi-phase movements: Dealing with contacts and
switching dynamics,” in 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2013, pp. 5100–5107.

[39] D. J. Braun, F. Petit, F. Huber, S. Haddadin, P. Van Der Smagt, A. Albu-
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