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Abstract—As the basis for prehensile manipulation, it is vital
to enable robots to grasp as robustly as humans. Our innate
grasping system is prompt, accurate, flexible, and continuous
across spatial and temporal domains. Few existing methods
cover all these properties for robot grasping. In this paper, we
propose AnyGrasp for grasp perception to enable robots these
abilities using a parallel gripper. Specifically, we develop a dense
supervision strategy with real perception and analytic labels in
the spatial-temporal domain. Additional awareness of objects’
center-of-mass is incorporated into the learning process to help
improve grasping stability. Utilization of grasp correspondence
across observations enables dynamic grasp tracking. Our model
can efficiently generate accurate, 7-DoF, dense, and temporally-
smooth grasp poses and works robustly against large depth-
sensing noise. Using AnyGrasp, we achieve a 93.3% success rate
when clearing bins with over 300 unseen objects, which is on
par with human subjects under controlled conditions. Over 900
mean-picks-per-hour is reported on a single-arm system. For
dynamic grasping, we demonstrate catching swimming robot fish
in the water.

Index Terms—General grasping, dynamic grasping, AnyGrasp

I. INTRODUCTION

V ISUAL guided object grasping is important in the robotic
community. Other than solely picking objects in the

industrial environment, we would foresee robots working
closely with humans even in household environments. Thus,
a grasping system that can serve most daily manipulation in
unstructured environments is attractive.

To achieve that, we first introspect our own grasping ability.
For humans, we perceive a partial observation without a full
model of the scene. Our visual system processes such input
within 100ms and we would then know how to pre-shape our
hand for comforting contact during grasping [1]. Such a grasp
system is accurate and robust for any object. Moreover, a time-
consistent property is guaranteed so that we can recognize and
grasp moving objects in dynamic scenes.

To date, researchers have proposed different methods for
visual-guided grasping. Some methods [2], [3] assumed full
knowledge of the object and contact model, which does not
always hold in the real world. Some simplified the grasping
perception as a planar detection problem [4], [5] but would
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impose restrictions on afterward manipulation. Some proposed
sampling-evaluation methodologies sample candidates from
the scene and then evaluate their quality [5]–[8]. However,
this approach is time-consuming and cannot generate dense
predictions. Furthermore, these methods mainly focus on static
scene grasp detection, and the dynamic grasp detection prob-
lem remains largely unexplored.

In this paper, we present a spatially and temporally unified
methodology, AnyGrasp, to bridge the grasp perception ability
gap between robots and humans. We focus on grasping with
a parallel gripper in this paper. Specifically, a geometry
processing module estimates dense 7-DoF grasp configurations
for a monocular perceived observation in one feed-forward
pass. A temporal association module identifies the grasp corre-
spondence among these tremendous grasp poses across every
two observations. To reduce the burden of explicit collision
detection during grasping, our model is obstacle-aware and
eliminates the grasp candidates that have no space for hand
placing. This helps accelerate the selection of grasp poses in
afterward manipulation. To improve stability, the awareness of
the center of gravity (COG) for objects is also equipped. These
two properties are also witnessed in human’s visually guided
grasping behavior [1]. Our model can generate accurate, 7-
DoF and continuous grasp poses across space and time in
100ms.

A problem during learning is that we lack a dataset for
dynamic object grasping in the real world. Previous grasp
learning resorts to collecting data in simulation. However, we
show in this paper that when using a low-cost commercial
depth sensor, an algorithm with simple sim-to-real transferring
techniques still performs worse than directly training with
real-world data. Thus, we persist in training with real data.
To avoid extensive human labor, we exploit the grasp pose
correspondence across different observations of a static scene
and propose a dense supervision strategy with real perception
and analytic labels in the spatial-temporal domain that greatly
improves data efficiency.

We have conducted relevant research [9]–[11] before. How-
ever, we only considered the grasping problem in static
scenes and did not fully evaluate the grasp perception system
in different scenarios. Thus, in this paper, we develop the
grasping ability in dynamic scenes that is complementary
to our previous work. Besides, we did not clearly show the
advantages of training with real-world data [9] over simulated
data. In this paper, we explicitly demonstrate the superiority
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of our grasping system, trained with a relatively small amount
of real-world objects (144 objects), on a variety of challenging
tasks that are not presented in previous work trained with
thousands of simulated objects. Extra analyses of different
principles in dataset design are also conducted. We hope our
discovery will encourage the community in related areas to
prioritize real-world training data.

Specifically, we first test our algorithm in a large-scale
bin-picking experiment with over 300 unseen objects with
diverse shapes, materials, and sizes. Our results demonstrate
an average success rate of over 93% and a completion rate
of over 99.8%, which is comparable to the performance of
humans using the same end-effector configuration and open-
loop grasping strategy. We further carry out experiments of our
method on different depth sensing noise to show its robust-
ness. For dynamic scenes, the robot successfully demonstrates
catching moving robot fish in the fish tank, which is difficult
due to the small friction in the water and the tiny size of
the fish. Finally, we discuss the influence of several factors in
dataset construction, such as real-world data versus simulated
data, the number of grasp annotations on an object, the scene
diversity, etc. These analyses may be helpful for future data
collection in this area.

The novelty and contribution of this paper include:
• We propose the first unified system for fast, accurate,

7-DoF and temporally-continuous grasp pose detection,
using a parallel gripper.

• We incorporate the awareness of object COG for grasp
perception and propose a new generation-association
methodology for dynamic 7-DoF grasp configuration
prediction.

• We demonstrate the robustness of our method, trained on
real-world data consisting of only 144 objects, through
extensive experiments in many challenging scenarios.

• We release a grasping library that has on-par performance
with human subjects tested on over 300 unseen objects,
with over 900 mean picks per hour (MPPH).

• We provide a detailed analysis of different training fac-
tors, such as the selection of real or simulated data, the
influence of annotation density, the importance of scene
variance, etc.

To support reproducible research, the library and example
code of AnyGrasp system is provided in supplementary ma-
terials.

II. RELATED WORK

In this section, we introduce some background material
that most relates to the visual grasping topic. The scope is
restricted to the two-finger parallel gripper, which we mainly
discuss in this paper. This section is divided into two parts,
where Sec. II-A focuses on grasp pose detection methods and
Sec. II-B focuses on continuous action learning methods.

A. Grasp Pose Detection

The grasp pose detection problem can be defined as predict-
ing several poses for a given scene, usually in the Cartesian
space, such that the robot can successfully lift the objects when

moving its end-effector to those poses. Early methods would
assume full 2D or 3D knowledge of the objects [12], [13], or
approximate the objects into a set of primitive shapes [14],
[15]. These methods would meet limitations in real-world
environments where the 3D models of objects are hard to
obtain. Learning-based methods help to alleviate this dilemma
through large-scale data and automatic feature extraction.
Representations for grasp pose detection evolved with the de-
velopment of learning-based methods, including a point-based
representation [16]–[18], a point pair representation [19], a
rectangle representation [5], [20]–[25], a grasp quality maps
representation [26], etc. These methods mainly generate 4 DoF
grasp poses on the camera plane. The limitation in the degree
of freedom may neglect some vital grasp poses, e.g. grasp
poses on the edge of a plate, and result in failure.

To generate the full 6 DoF grasp poses, Ten Pas et al.
[6] proposed a sampling-evaluation-based method that firstly
samples grasp candidates on point cloud and then evaluates
their grasp qualities with a neural network. Different sampling
or evaluation models are later proposed [8], [27], [28]. A
major drawback of the sampling-evaluation methods is that
they need to trade off the computation time and the number
of generated grasp poses. Thus, they usually took several
seconds to run and only generated tens of grasp poses for
a scene. Recently, Fang et al. [9] proposed an end-to-end
network that directly generates abundant grasp poses for an
input scene point cloud. A large-scale dataset with real data
and analytic labels was also built. Similar end-to-end networks
were parallelly developed in [29]–[31]. The major difference
between these methods is how they represent the SE(3) grasp
pose. Later, Wang et al. [11] proposed a graspness module
that eliminates unfeasible grasp poses in the early stage of
the network, which greatly improves the grasp success rate.
Other than point cloud, some researchers also explored other
representations of a scene, including RGB/D image [10], [32]
and neural radiance field [33]. A recent survey [34] provided
a full summary of the 6 DoF grasping methods. In this paper,
we follow the end-to-end methodology and mainly build our
network upon [11]. To improve grasp stability, we further
incorporate awareness of the object’s center-of-mass into the
learning process, which has been less considered before.

The problem formulation of grasp pose detection constrains
them to focus on static scenes. In order to extend to the
dynamic scene, classic methods usually require prior infor-
mation about the objects [35]–[37], or operate on a fixed set
of grasp trajectories [38]. For dynamic grasping without prior,
existing methods either choose the nearest grasp pose in the
next image as the same grasp target [26] or generate possible
future candidates and evaluate their grasp quality [39]. Both
methods only guarantee the tracked grasp pose has a small
distance with respect to the last frame in the image coordinate
system, but cannot guarantee a small distance in the object
coordinate system. In this paper, we propose a new generation-
association methodology for predicting dynamic 7-DoF grasp
configurations.
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B. Continuous Action Learning for Grasping

Different from the above methods that detect the grasp
poses in the scene and move toward the target grasp pose
using a motion planner, this line of research directly maps
the observation to a continuous action space. This line of
research has a different problem formulation than our paper, so
we can only provide a summary of some representative work
due to space limitations. Levine et al. [40] collected 800K
grasp attempts on real robots and learn a CNN grasp predictor
that associates image and motor command. Viereck et al.
[41] proposed to learn with simulated point clouds, such
that no real-robot trials are needed. Bousmalis et al. [42]
investigated the sim-to-real transfer problem in grasp action
learning. Song et al. [43] collected grasping demonstrations
with a low-cost hand-held gripper. Wang et al. [44] extended
the continuous action space to 6D. A problem of these methods
is that they may be prone to the domain shift problem [45],
[46] and perform less robust than the detection-based methods.

C. Training Data for 6-DoF Grasping

For the 6-DoF grasping problem, various simulated object
sets have been collected, including DexNet [25], which has
over 1000 objects, EGAD [47], which generates over 2000
objects using an evolutionary algorithm, and Acronym [48],
which collects over 8000 objects. With each passing year,
the number of objects in these datasets continues to increase.
However, it remains unclear how many training objects are
actually necessary, and the increasing number of objects may
make the training process increasingly burdensome. In this
paper, we demonstrate that a real-world dataset consisting of
only 144 objects can provide a model with grasp performance
comparable to that of human subjects. We hope that our
findings will encourage the community to identify critical
objects for the grasping problem.

III. ANYGRASP DESIGN PRINCIPLES

In this section, we first describe the problem definition of
our spatial-temporal grasp detection. Then we introduce the
principles of our system design, from both the algorithm and
data perspectives.

A. Problem Definition

For parallel jaw-based grasping, we represent a grasp pose
G as

G = [R t w], (1)

where R ∈ R3×3 denotes the gripper orientation, t ∈ R3×1

denotes the center of grasp, and w ∈ R denotes the minimum
gripper width that is suitable for grasping the target object.
This representation covers all the degrees of freedom for a
parallel gripper and is also referred to as the 7-DoF grasp
configuration. In this paper, We use the notation E to represent
the environment including the robot and objects, P to repre-
sent the partial-view point cloud from a depth camera, and
s(E ,P,G) to denote a binary variable indicating the success
or failure of grasp G given environment E and perception P .
A grasp is successful if the object is lifted successfully. Our

goal is to find a set of grasp poses G = {G1,G2, · · · ,Gn} that
maximizes the grasp success rate given a fixed n:

{G∗1 ,G∗2 , · · · ,G∗n} = argmax
|G|=n

∑
Gi∈G

Prob(s = 1|E ,P,Gi).

(2)
This means that we hope our algorithm predicts abundant
grasp poses to cover the whole scene so that we can have
different candidates for grasp execution.

When introducing the temporal dimension, we denote
Et,Pt,Gt as the environment, perception and grasp poses at
time t, dist(Gtk,G

t−1
k |Et, Et−1) as the distance of the paired

grasp poses across two moments under the coordinate system
of the grasped target. Thus, we would have:

{G∗1 ,G∗2 , · · · ,G∗n}
(t)

= argmax
|Gt|=n

∑
Gi∈Gt

Prob(s = 1|Et,Pt,Gi),

s.t. dist(Gtk,Gt−1
k |Et, Et−1) ≤ δ, ∀ Gt−1

k ∈ Gt−1,
(3)

δ is the tolerance error, under which two grasp poses could be
regarded as the same pose.

B. Spatial-Continuous Learning

Previous methods [6], [7] adopt the sampling strategy that
chooses candidates on point cloud and evaluates their quality.
Instead, our geometry processing module directly perceives
the single-view point cloud of the scene and estimates the
grasp quality across the R6 space. We refer to it as “spatial-
continuous learning” owing to the dense property of the
predicted grasp poses, from which we can query a feasible
grasp pose at any target location in most cases.

Compared to the sampling-based methods that classify the
quality of a grasp solely based on the cropped local point
cloud within the gripper space, our method also considers the
geometric structure from neighbor regions that could provide
richer information conveying whether a grasp is of good
quality or not. Such global geometric features can be easily
learned through a 3D convolutional network. By taking the
whole scene as input, two extra advantages are witnessed.
Firstly, to improve the stability of grasping, human tends to
put visual attention on the center of gravity (COG) of the
object at the preparing stage of grasping [1]. Since the mass
distribution is unknown, humans usually assume the COG is
the center of the object. Such intuition can be modeled by
our neural network that directly perceives the whole scene. In
our network, we encode such information for each grasp pose
by predicting a normalized vertical distance from the gripper
plane to the COG of the grasped object. Secondly, researchers
in cognition found that humans would visually attend to the
obstacle during the preparation period of grasping [1], [49].
That is, the visual system would also consider the obstacle
and avoid collision for hand pre-shaping. Such ability can
only emerge when the network takes the whole scene as input.
This aspect has also been emphasized in previous methods that
adopt end-to-end networks [9], [29]–[31]. In our network, if
there is an obstacle around the grasp pose and leaves no space
for gripper pre-shaping, the grasp quality score is directly set
to zero. Although obstacle avoidance can also be performed
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using mesh and point cloud, the neural-based implicit collision
detection helps eliminate a large portion of unreachable grasp
poses and reduces the expensive computation time.

C. Temporal-Continuous Learning

When trying to grasp a moving object, the robot needs
to continuously update the target grasp pose before catching
the object. The grasp poses between every two frames should
have a small SE(3) distance in the object’s coordinate system
to enable a smooth, target-consistent movement of the robot
gripper. We refer to the learning of such property as “temporal-
continuous learning”.

Previous sampling-based method [39] added some distur-
bance to the grasp pose from the previous frame and evaluate
these candidates in the current frame’s geometry. To ensure
computation efficiency, the generated proposals are usually
sparse. Thus they cannot cover all the possible movements
of the objects.

To avoid the speed-accuracy tradeoff, we propose a new
generation-association methodology to ensure dense and con-
sistent grasp poses temporally. Given two observations at dif-
ferent times, our geometry processing module generates dense
grasp poses across the scene. A temporal association module
takes the grasp poses and their corresponding geometric fea-
tures encoded by the spatial model as input and produces their
many-to-many association score matrix. The association score
between each two grasp poses denotes their consistency in
the temporal domain, measured by their SE(3) distance in the
grasping object’s coordinate system. Contributed to the spatial
continuous property of our geometry processing module, we
could generate dense grasp poses around a selected target to
ensure both temporal continuity and grasp quality.

D. Training Data

For data collection, most methods for high DoF grasp pose
detection directly learn from simulation. The main reason is
that obtaining dense grasp pose annotation for data collected
in the real world is difficult. However, although turning to
simulation lowers the training cost, an expensive and high-
precision depth camera is needed [7] to achieve good per-
formance during the inference phase. This is to bridge the
sim-to-real gap since simulation produces perfect partial view
depth. In contrast, we choose to directly learn from real-world
perception, which requires more effort for data collection but
enables the algorithm to adapt to real-world noise, especially
on low-cost cameras. In our experiments, we show how our
grasp detection system can tolerate different sensing noises,
and improve the success rate by a large margin over its
counterpart trained in simulation.

IV. METHODS AND MATERIALS

A. Data Collection and Annotation

For the training data of our algorithm, we mainly adopt
the training set of GraspNet-1Billion [9] and follow the same
methodology to collect 168 extra scenes composed of 104 new
objects. In brief, we obtain objects’ 3D mesh models with a

perpendicular

 distance

gripper 
plane

execute

predicted 
gripper pose

gravity vector

COG

Fig. 1. An illustration of the perpendicular distance from the gripper plane
to the COG of the object. Note that we assume the gripper will move to the
vertical pose, parallel to the gravity force vector when transporting the object.
We observe that this policy provides a larger workspace for our robot.

commercial 3D scanner and calculate dense grasp poses using
analytic antipodal scores [5], [6]. For each scene, we randomly
choose several objects (∼10) and randomly placed them on the
table. Images are taken at 256 different viewpoints for each
scene and we manually annotate the object 6D poses in the
scene to ensure the accuracy. Then the grasp poses on the scene
can be obtained by projecting the poses on each object with the
annotated 6D pose to the scene. Moreover, collision detection
is performed by simplifying the gripper model into three cubes
and checking whether each grasp pose has an intersection with
the object models in the scene. In our pipeline, all annotations
except for the 6D poses are automatically labeled by the
program.. For more details, we refer readers to [9]. In total,
268 scenes that consist of 144 objects are used to train our
network.

In this paper, we annotate three extra labels for the training
data, which help improve the stability during grasping and
enable the grasp pose tracking ability.

Firstly, the original grasp pose annotation consists of four
approach depths, i.e., 1, 2, 3, and 4 centimeters. In this paper,
we add an extra depth of 0.5 centimeters to grasp small objects.

Secondly, as illustrated in [1], human attention will bias to
the center of gravity of the object during grasping. Inspired by
this, we define a stable score for the grasp pose. We assume
that the gripper will move to a vertical pose that is parallel
to the force of gravity when transporting the object after it is
grasped. Thus, we define the stable score as the normalized
perpendicular distance between its gripper plane and the COG
of the object. The normalization process is conducted by
obtaining all the perpendicular distances for an object and then
dividing them by the maximum distance among them. In this
case, the lower this score is, the more disturbance the grasp
pose can tolerate since the gravity moment is more balanced.
To obtain the annotation, we first compute the COG of the
object. Since the center cannot be precisely computed only
from visual perception, the object is assumed to be a solid rigid
body with uniform density, which is similar to human intuition.
Then, the COG is transformed into the gripper coordinate
system according to the grasp pose. The perpendicular distance
is the distance from the COG to the gripper plane. Fig. 1
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Fig. 2. Illustration of the model architecture for AnyGrasp. For a partial point cloud, the geometry processing module predicts dense grasp poses. The temporal
association module generates a feature vector with size C for each of the M predicted grasp poses. The feature vector is learned with the objective that for
the grasp pose pair with a smaller distance in the object coordinate frame, the higher cosine similarity they have. Thus we can construct the correspondence
matrix for the dense grasp pose pairs across two frames. Details of the model structure are given in the text.

gives an example of calculating the perpendicular distance
for a grasp pose. Finally, all the distances are collected and
normalized to [0, 1] to get stable scores.

Thirdly, to ensure temporal consistency of the grasp poses,
our algorithm associates the grasp poses that represent the
same pose w.r.t the target object between two frames. To
achieve that, a training dataset that contains the association
label is needed. We generate such association labels for our
collected training data. Although the original dataset does
not contain dynamic scenes with moving objects, it contains
images captured from 256 different viewpoints for each scene.
The images captured from adjacent viewpoints present subtle
differences which share similar patterns when objects are
moving. Thus, for each image in the training data, we first
find its neighbor images with adjacent viewpoints. For each
pair of adjacent images, we annotate the association of grasp
poses by defining a distance metric. For two grasp poses on
the same object, we transform them to the same coordinate
frame (i.e., the object frame) and compute two distances:

∆R = arccos
trace(R⊤

1 R2)− 1

2
,

∆t = ||t1 − t2||,
(4)

where G1 = [R1 t1 w1] and G2 = [R2 t2 w2] are the
transformed grasp poses, trace(·) is the trace of a matrix, ∆R
and ∆t are the rotation distance and the translation distance
respectively. The distance between two grasp poses is defined
as

d(G1,G2) =
∆t

wmax
+ γ

∆R

π
, (5)

where wmax is the maximum gripper width, γ is a distance
balancing weight. In practice, we set wmax = 0.01m and γ =
0.1. The distance between grasps on different objects is set to
infinity.
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Fig. 3. Detailed illustration of the geometry processing module. The meaning
of each block like the “Backbone”, “MLP”, “Graspable FPS”, etc. are
specified in Sec.IV-B. The position of the seed features, grasp features, and
grasp poses are denoted in different colors.

B. Grasp Perception Model Details

Next, we illustrate the details of our algorithm, which
consists of the geometry processing module and the temporal
association module. Fig. 2 illustrates the model structure.

1) Geometry processing module: Our geometry processing
module is based on GSNet [11], with a minor modification
to incorporate the stable score into the network. To explain
our approach, we first provide an overview of GSNet, which
is also shown in Fig.3. Instead of directly predicting R, t
and w, GSNet decomposes these parameters into grasp point,
view, in-plane rotation, approach depth, and width. Given a
point cloud P , a 3D convolutional backbone extracts geometric
features for each point. A multi-layer perceptron (MLP) block
generates an objectness mask and a heatmap indicating each
point’s graspable probability based on the extracted features.
Graspable farthest point sampling (Graspable FPS) is per-
formed to sample M seed points from the scene according
to the objectness mask and the graspable probability map (M
is set to 1024). For each sampled point, another MLP block
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generates 300 view scores to determine the most suitable view
for grasping through graspable probabilistic view selection
(Graspable PVS). The cylinder grouping module groups the
local geometric features along that view within a cylinder
space. For each group, an MLP block predicts the grasp scores
for 48 grasp poses composed of 12 in-plane rotations and 4
approach depths along that view, as well as 48 grasp widths for
these grasp poses. The in-plane rotation is discretized, but a
heuristic search [50] can also be used. We refer readers to [11]
for more details of GSNet.

The original GSNet predicts 12 × 4 × 2 values for each
sampled point at the last layer, representing 12×4 grasp scores
and 12 × 4 grasp widths for the grasp poses along the best
view. We modify the last layer and the network now predicts
12 × 5 × 2 + 12 values. The change from 4 to 5 is because
we annotate an extra approach depth for the grasp poses, as
stated in Sec. IV-A. The extra 12 predictions denote the stable
scores for grasp poses with different angles since the stable
score is shared across different grasp depths.

During inference, we multiply the original grasp score by
(1 − stable score) as the new score for a grasp pose. Then
we reparameterize the predicted grasp point, view, in-plane
rotation, approach depth, and width into a 7-DoF grasp pose
G = [R t w]. We then rank all predicted grasp poses according
to their scores, and select the top-n grasp poses as the set of
grasp poses for use in Eqn. 2.

2) Temporal association module: On top of the geometry
processing module, we develop a temporal association module
to enable grasp pose tracking. The key of the temporal
association module is to generate a feature vector for each
grasp pose so that we can compute the correspondence score
between each two grasp poses across time.

We first introduce how we construct the feature vector for
each grasp pose. Given an input point cloud, the geometry
processing module outputs M grasp poses by choosing the
pose with the highest score on each of the M seed points.
Concurrently, we can obtain the seed features and the grasp
features of the seed points. These features are extracted before
the last layer of two MLP blocks in the GSNet. Fig. 3
illustrates the feature location. These features mainly represent
the geometric cues of the grasp poses. Considering that the
texture or color information is also a strong cue for tracking,
we also extract the color features of each seed point. Using the
predicted grasp pose, we group the RGB information along the
grasp direction using cylinder grouping, where the input seed
features are replaced by seed colors. RGB information of K
points inside the cylinder space (K is set to 16) are grouped for
each of the M seed points, resulting in a size of M×K×3.
The local texture information is forwarded through an MLP
block with pooling layers to obtain the color features. Then
the color features, seed features, grasp features, and the grasp
poses (parameters of shapeM×12, the length 12 is composed
of rotation matrix (9) and translation (3)) are concatenated and
fed into an MLP block to get the feature vector with size C
for each predicted grasp (C is set to 256).

After obtaining the feature vector of each grasp pose, we can
calculate the correspondence score between each two grasp
poses. Let f1 be the feature vector for grasp G1 in the first

point cloud, and f2 for grasp G2 in the second point cloud, we
calculate the correspondence score using cosine similarity:

scorres(G1,G2) =
f1 · f2

||f1|| · ||f2||
. (6)

The scores for all (f1, f2) pairs are computed and form the
correspondence matrix.

During training, two point clouds from adjacent viewpoints
are respectively forwarded through the geometry processing
module and the temporal association module to obtain their
feature vectors forM grasp poses, both having a size ofM×
C. Then we calculate the correspondence matrix by the cosine
similarity. The predicted correspondence matrix with sizeM×
M is compared with the ground-truth matrix and the loss is
back-propagated to the temporal association module. The loss
function is introduced in the next subsection.

During inference, only the point cloud at the current time
is required to pass the network, and the feature vectors will
be stored in a temporal buffer. The correspondence matrix
is computed with the current features and those stored in
the temporal buffer from the last frame. If we want to track
n certain grasp poses selected in the previous step, we can
compare its feature vector of size n × C with the M feature
vectors in the current frame and generate an association vector
of size n ×M. Then we pick the feasible grasp poses with
the top-n correspondence scores as the next prediction. These
grasp poses are the set of grasp poses we want in Eqn. 3.

3) Loss function: The loss function for the geometry pro-
cessing module follows [11]. It contains softmax loss for the
objectness classification in the first MLP block, and smooth-
l1 loss for the graspable heatmaps and grasp pose parameter
regression in the three MLP blocks. We refer readers to [11]
for more details.

For the temporal association module, two associated grasp
poses should have a high corresponding score, which indicates
they have similar features. So we adopt supervised contrastive
learning [51] in model training, which pulls together the
features from the same class.

For two grasp poses G1 and G2, they are treated as the same
class if and only if d(G1,G2) ≤ σ. The predicted grasp sets for
two point clouds are denoted by G1 = {G1i |i = 1, 2, · · · ,M}
and G2 = {G2j |j = 1, 2, · · · ,M} respectively. For a grasp
pose G1i in the first point cloud, we collect all the grasp poses
in the second point cloud belonging to the same class of G1i ,
which are denoted by P(i) = {G2k ∈ G2|d(G1i ,G2k) ≤ σ}. The
loss function is defined as

L =
∑

G1
i ∈G1

−1
|P(i)|

∑
G2
k∈P (i)

log
exp(scorres(G1i ,G2k)/τ)∑

G2
j∈G2

exp(scorres(G1i ,G2j )/τ)
,

(7)
where |P(i)| stands for the cardinality of P(i) and τ stands for
the temperature parameter. In our experiment, we set σ = 0.1
and τ = 0.1.

C. Training Details

Input point clouds are down-sampled with a voxel size of
0.005m. We set M = 1024 for each scene and C = 256 for
each feature vector. K is set to 16 in the cylinder grouping of
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temporal module. The two modules are trained on the extended
GraspNet-1Billion dataset using one Nvidia GTX 2080 Ti
GPU with Adam optimizer [52] and an initial learning rate
of 0.001. We adopt the “poly” policy with power = 0.9 for
learning rate decay, which is used in DeepLab [53].

We first train the geometry processing module from scratch
with a batch size of 4. For data augmentation, we randomly
flip the scene horizontally, and randomly rotate the points
by Uniform[−30◦, 30◦] around the Z-axis (in the camera
coordinate frame). We also randomly translate the points by
Uniform[−0.2, 0.2]m in X/Y-axis and Uniform[−0.1, 0.2]m in
Z-axis.

After the geometry processing module converged, we freeze
its weights and train the temporal association module jointly
with it. Each mini-batch contains four pairs of point clouds,
where the two point clouds in one pair are captured by
neighboring viewpoints from the same scene. Besides random
flipping, random rotation, and random translation, we also ran-
domly remove some objects in the scene for data augmentation
with a probability of 0.2.

D. Detection Post-processing

For the detected grasp poses, we conduct two post-
processing steps to improve the stability. The first step is
to perform collision detection. Although our network also
implicitly learns whether a grasp pose would collide with the
scene, such an obstacle-aware property is not a hard constraint
and may be prone to noise. Thus, we perform extra collision
detection for the top-100 grasp poses among the predicted
results. The collision detection is based on the partial-view
point cloud by examining whether there are any points within
the gripper-occupied grid, where the gripper is simplified into
three cubes. This step provides a safety guarantee in most
cases.

The second step is to perform a gripper-centering process.
It comes from an observation that if the two fingertips of
the gripper contact the object surface sequentially, the earlier
contact may push the object away and cause a failed grasp.
The main reason is that the GraspNet-1Billion dataset does
not restrict the gripper fingertips to have the same distance to
the object. Thus, we perform the gripper centering process by
calculating the distance from both fingertips to their contact
points and translating the gripper along the connection direc-
tion of the fingertips to ensure the same moving distance from
both fingertips to their contact points. We define the ”contact
points” as the outermost points inside the gripper space. We
transform the partial-view point cloud to the gripper frame
based on the predicted grasp poses. It is possible that the actual
contact points are not visible in the partial view. However, we
found that this step ensures the gripper is center-located in
most real-world cases.

The above two processes are implemented on GPU with
matrix computation and take 80 ms for 100 grasp poses.
During the execution phase, our method outputs the top-100
ranking grasp poses, and a self-implemented grasp planner is
used to select a target grasp pose. Further details are provided
in Section V-B.

V. EXPERIMENTAL SETUP

To verify the performance of our grasp perception system,
we embed it with real robot platforms and conduct grasping
experiments.

A. Hardware and Human Subject

For the static scene grasping, we use a UR5 robot arm
with an overhead camera. Intel RealSense D415 and D435 are
adopted to evaluate the algorithm performance across depth
sensors. We use a Robotiq-85 gripper. In [7], the authors used
a customized silicone soft fingertip [54] that is designed for
robust grasping. Since it is not available to us, we attach a
soft table tennis rubber1 to the fingertips, which is publicly
available to any research group.

We also invite human subjects to conduct the bin picking
and compare it with the AnyGrasp perception system. Human
subjects are required to use a two-finger jaw for a fair
comparison. The two-finger jaw has the same opening width
as the robot gripper. Note that since we focus on the visual
perception for grasping, we ask the volunteers to adopt an
open-loop strategy during grasping. It means that they shall
not adjust the grasp pose with tactile feedback after contacting
the object. To enable fair comparison with human grasping,
we attach the same soft rubber to the human hold jaw. Fig. 4
shows the robot and human subject settings.

For dynamic grasping, we use a Flexiv Rizon arm since
it can update the servo targets more smoothly. An Intel
RealSense L515 camera is attached to the wrist of the robot.
We adopt the in-hand setting since the overhead camera might
be occluded by the robot during tracking and choose the
L515 since it has a larger depth range and can work robustly
when the object is close to the camera. The D415 or D435
depth camera cannot generate depth information when the
object distance to the camera is less than 15 cm. For safety
reasons, we extend the fingertips of the Robotiq-85 gripper by
mounting two extra 3D-printed parallel jaws. Fig. 5 illustrates
the hardware setting in this experiment.

All the models in the following experiments run on a
workstation with Ubuntu 20.04 system, Intel i9-10900K CPU,
and Nvidia 2060 GPU. The code is written in Python.

B. Experimental Procedure

For the parallel-jaw bin picking experiments, we conduct
two independent trials for each experiment. The camera ex-
trinsic parameters to the robot are obtained by Aruco marker
detection and extra human measurement. In each trial, we
randomly pour the objects onto the plate without too much
human intervention. For each grasp attempt, our algorithm
receives a single-view point cloud and predicts abundant grasp
poses for the scene. For safety, we set a workspace limit.
The limit includes the restriction on the plate plane (area
enclosed by the blue dashed line on the plate, see Fig. 9)
and the restriction on grasp pose orientation. Specifically, we
restrict the angle between the grasp approach direction and the

1https://www.amazon.com/Rubbers-DHS-Table-Tennis/s?rh=n%
3A3419421%2Cp 89%3ADHS

https://www.amazon.com/Rubbers-DHS-Table-Tennis/s?rh=n%3A3419421%2Cp_89%3ADHS
https://www.amazon.com/Rubbers-DHS-Table-Tennis/s?rh=n%3A3419421%2Cp_89%3ADHS
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global 
camera w w

open-loop 
control

Fig. 4. Illustration of the hardware and volunteer setting in the static scene. Objects are moved from the object plate (surrounded by a blue line) to the target
bin (surrounded by a yellow line). The robot is equipped with a global camera. We ensure the same fingertip material and the same opening width of the
robot gripper and the human-held jaw. The human subjects are asked to perform an open-loop control, where adjusting the grasp pose with tactile feedback
after contacting the object is not allowed.

inhand 
cameraextended 

parallel jaw

Fig. 5. Illustration of the hardware setting in the fish-catching task. An in-
hand camera is attached to the robot’s wrist. The moving trajectories of the
robot fish are visualized with colored lines. We attach two 3D-printed parallel
jaws to the Robotiq gripper.

vertical direction to be less than 25◦, as we empirically found
that a larger angle may result in an unreachable pose for the
UR5 arm. The grasp pose without occlusion, located within
the workspace and with the highest grasp score is selected.

To obtain a trajectory without collision with the scene
during grasping, we set a waypoint pose by translating the
grasp pose 10 cm backward along its approach direction.
The waypoint and grasp pose are sent to the UR5 robot arm
through UR script command movels() via Ethernet and
the motion planner of UR5 would move the gripper to these
poses sequentially. We found that this simple strategy can
avoid most collision situations. The gripper will close after
the robot reaches the target pose, grasp the object, lift it, and
then move it to the target bin. During the grasping procedure,

the objects may scatter outside of the plane workspace. We
would manually push these objects back. The operator will
record whether the object is successfully moved to the target
bin. Each trial of experiments is regarded as finished if the
algorithm cannot estimate grasp poses for the scene ten times.

For the human bin-picking task, two volunteers are invited
to conduct the grasping experiments and each is required to
clear the plate twice.

For the dynamic fish-catching experiment, we conduct
five independent trials. The camera extrinsic is obtained by
measuring the customized camera holder. The pseudo-code
of our dynamic grasping algorithm is illustrated in Alg. 1.
In each fish-catching trial, we first generate abundant grasp
poses for the scene (Line. 6 in Alg. 1) and select the best
grasp pose G∗1 for the first frame (Line. 12 in Alg. 1) using
the same procedure in the static scene. For simplicity, we
assume that the grasp pose has already been transformed
into the robot coordinate system using the camera extrinsic
parameters. Then the robot enters the pre-grasp servoing stage.
The grasp perception system keeps active during this process
and generates updated grasp pose Gt∗ of time step t (Line. 14
in Alg. 1) that has a high association score with the previous
grasp pose Gt−1

∗ . Empirically, we found that it is important
to predict the future grasp pose when catching the moving
fish since it takes some time to close the gripper. Hence,
the selected grasp poses during the tracking procedure are
saved to a temporary buffer of length 10 for future grasp
pose prediction. The system will predict a future grasp pose
G̃t∗ (Line. 16 in Alg. 1) by adding the moving momentum
calculated from the temporary buffer to the last grasp pose
Gt∗. In the pre-grasp servoing stage, we do not directly servo
to the future grasp pose. Instead, the servoing target pose Tt

p

during the pre-grasp stage is obtained by translating G̃t∗ along
the z-axis by dpregrasp = 3.5cm backward (Line. 24 in Alg. 1).
This is to avoid touching the moving fish and changing their
motion status during servoing. Meanwhile, we only preserve
the rotation along the z-axis of the gripper and eliminate the
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Algorithm 1 Dynamic Grasping Algorithm
1: Initialize: robot.move(Tready), open gripper, empty buffer
2: Mark G0 as empty
3: for time step t← 1 to ∞ do
4: Tt

tcp ← robot.pose
5: Pt ← camera.perception
6: Gt ← GetGraspPoses(Pt)
7: if Gt is empty then ▷ lost tracking of objects
8: robot.servo(Tready), empty buffer
9: continue

10: end if
11: if Gt−1 is empty then ▷ for the first frame
12: Gt∗ ← argmaxGt∈Gt Prob(s = 1 | Pt,Gt)
13: else ▷ for the following tracking frames
14: Gt∗ ← argmaxGt∈Gt scorres(Gt−1

∗ ,Gt)
15: end if
16: Add Gt∗ into buffer and predict G̃t∗ from buffer
17: Calculate ∆R,∆t and ∆txOy between G̃t∗ and Tt

tcp.
18: if ∆R ≤ δR and ∆t ≤ δt and ∆txOy ≤ δtxOy then
19: ▷ grasp when gripper is close enough to the fish
20: robot.move(G̃t∗), gripper.close()
21: Move robot to the throw pose and open gripper
22: Re-initialize the system. ▷ See L1 for details
23: else ▷ continue tracking with pregrasp pose
24: Calculate pregrasp pose Tt

p using G̃t∗ and dpregrasp
25: robot.servo(Tt

p)
26: end if
27: end for

rotation along the other two axes to improve the tracking
stability. The servoing target Tt

p is sent to the Flexiv arm
through Flexiv RDK and the robot would servo to the target
pose (Line. 25 in Alg. 1). The ending criterion for the servoing
process is that the 3D distance ∆t between the predicted future
grasp pose G̃t∗ and the robot’s current end-effector pose is less
than δt = 5.5cm, the 2D distance ∆txOy in the horizontal
plane is less than δtxOy = 2cm, and the angle ∆R between
two poses is less than δR = 20◦ (Line. 18 in Alg. 1). The
robot will then enter the grasping stage which moves to the
grasp pose and closes its gripper (Line. 19-21 in Alg. 1). If
the tracked pose moves outside of the robot’s workspace or
camera’s view, the robot will return to the initial state, empty
the temporary buffer, and choose a new grasp target (Line. 7
in Alg. 1).

C. Evaluation Metric

In the area of robotic grasping, there are two different
success rates used to evaluate the performance. The first
metric, which we refer to as the attempt-centric success rate, is
defined as the ratio of the number of successful grasp attempts
to the total number of grasp attempts. This metric is commonly
used in the literature [7]–[9], as it measures the ability of
a grasping method to successfully perform grasps on a per-
attempt basis.

The second metric, which we refer to as the object-centric
success rate, is defined as the ratio of the number of suc-
cessfully grasped objects to the total number of objects. This

metric measures the ability of a grasping method to adapt to
different objects, which is less strict than the attempt-centric
success rate since it does not take into account the number
of grasp attempts per object. This metric has been previously
adopted by [31] (they allow two attempts per object) and was
referred to as “completion rate” in [29], [30].

It is important to note that we use the attempt-centric suc-
cess rate in our work. However, to provide a clear comparison
with previous work that adopted the object-centric success
rate, we report the results of our proposed grasping method
under both metrics in Table I.

TABLE I
SUCCESS RATES OF DIFFERENT METHODS ON OUR REAL TEST SET.

“DEX.” DENOTES DEXNET 4.0 AND “ANY.” DENOTES OUR ANYGRASP.

Attempt-Centric Object-Centric
Object Success Rate (%) Success Rate (%)

Dex. Any. Human Dex. Any. Human
Hardware 59.3 81.5 91.4 97.2 100.0 100.0

Snack 52.3 100.0 93.9 93.9 100.0 100.0
Ragdoll 87.4 100.0 96.6 100 100.0 100.0

Toy 72.8 93.1 91.8 99.6 99.6 100.0
Household 64.6 85.5 94.4 98.1 100.0 100.0

All 72.2 93.3 93.9 98.9 99.8 100.0

VI. EXPERIMENTAL RESULTS

In this section, several experiments are demonstrated to
evaluate the following properties of our 7-DoF grasp percep-
tion system: (i) generalization ability to different objects and
sensors; (ii) accuracy on different kinds of objects compared
with humans; (iii) temporal consistency for random moving
objects; (iv) efficiency of the whole perception system.

A. Static Scenes

We first conduct grasping experiments in static scenes. To
build a representative test set that can fully evaluate the grasp
perception system, we collect several common categories of
daily-life objects. In total, over 300 objects are collected.
Fig. 6 (a) gives an overview of the objects. The size of the
objects ranges from 1.5×1.5×1.5 cm3 to 36×4×11.5 cm3.

We first compare the grasping system on daily objects with
human operators using the same end-effector configuration
and a previous method [7]. The overall grasping results on
different objects are presented in Fig. 6 (b). The detailed
numerical results are given in Tab. I. The videos can be found
in Appendix B (Movie S1-S4). From Fig. 6 (b), we can see that
our perception system is robust towards different categories
of objects. On the large scale benchmark, its accuracy ranges
from 81.5% to 100% on different kinds of objects, yielding
93.3% on average. Such grasping accuracy is on-par with
human subjects, which is 93.9% on average. However, human
subjects give more stable performance on different kinds of
objects. The grasp accuracy ranges from 91.4% to 96.6%.

For each trial, the grasp perception system predicts the grasp
poses in 100ms and the overall grasp decision time (including
collision detection and pose adjustment) is less than 200 ms.
Thus, the mean picks per hour (MPPH) only depends on the
robot moving and gripper executing speed. With a single UR5
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Fig. 6. (a) Example objects from the unseen object test set. (b) The grasp
success rate of our system compared to a previous grasp pose detection system
and the human’s performance using a parallel jaw.

arm that has a maximum end-link speed of 1m/s and a Robotiq
gripper, our grasping system achieves over 900 MPPH, which
is a dramatic improvement compared to previous state-of-the-
art [7], 300 MPPH achieved by a dual-arm system. Such a
metric can be further optimized in the industry using a higher-
speed robot arm and gripper. We also observe that humans can
achieve over 1,500 MPPH with their maximum speed, and on
average they can achieve 1,000-1,200 MPPH.

We then show the performance of our algorithm on different
depth sensors. We visualize the typical deviation maps of the
two cameras we use in Fig. 7 (a). The deviation map is ob-
tained by subtracting the mean depth value of 100 repeatedly
captured images from a randomly chosen depth image. We
can see that the depth given by the D435 camera presents a
larger variance and can achieve up to ±5mm error. Even with
this noise, our algorithm can still perform well, as illustrated
in Fig. 7 (b). The video of grasping using a D435 camera
can be found in Appendix B (Movie S5). The experiments
demonstrate the robustness of our algorithm towards depth
sensing noise, mainly owing to the training data collected with
real sensors.

We further evaluate our grasp perception system on a
challenging adversarial object set, which contains the 13
adversarial objects used in DexNet2.0 [5] and the 49 evaluation
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Fig. 7. (a) Typical depth deviation maps of two frequently adopted depth
cameras. The distance unit is a millimeter. (b) The grasp success rate
comparison of AnyGrasp when using these two cameras.

objects from EGAD [47]. The objects from the EGAD eval-
uation set are generated by the program to ensure the shape
complexity and grasp difficulty. Fig. 8 shows the examples
of the adversarial object set and the statistics of the success
rate. Full videos can be found in Appendix B (Movie S6-S8,
part of S3-S4). We can see that the accuracy decreases for
our algorithm and the previous method [7]. However, humans
can still perform stably. The main reason is that our grasp
perception system would repeat the failed trials on an object
without utilizing the feedback from each trial. It deserves more
exploration in the future.

Finally, we set a challenging real-world task, where the
robot is required to clean the fragments of a broken clay
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Fig. 8. (a) The 3D-printed adversarial objects. It can be seen that the object’s
surface is quite smooth. (b) The grasp success rate of different methods on
the challenging adversarial object set.

(a) (b)

(c) (d)

(e) (f)

Fig. 9. Snapshots of the fragments cleaning task. It requires the grasp pose
detection model to generate accurate poses for the thin pieces. The sequence
order is from (a) to (f).

pot. It is challenging since the fragments are pretty thin,
usually less than 3mm, which requires an accurate estimation
of the grasp pose. The noisy depth perception further increases

(a)

0 2 4 6 8 10 12 14 16
# Grasps

0

1

2

3

4

5

6

7

8

# 
Gr

as
pe

d 
Fis

h

Ideal (100.00%)
Exp. 1 (80.00%)
Exp. 2 (100.00%)
Exp. 3 (53.33%)
Exp. 4 (72.73%)
Exp. 5 (88.89%)
Avg. (75.47%)

(b)

Fig. 10. (a) Different robot fish were used in our experiments. (b) Performance
of the fish-catching experiments.

the difficulty. We haven’t seen previous grasp pose detection
algorithms demonstrate success in this scenario. Fig. 9 shows
the snapshots of a robot cleaning the thin fragments under the
guidance of the AnyGrasp perception system and the video is
given in Appendix B (Movie S9).

B. Dynamic Scenes

To verify the temporal consistency of the grasp perception
system, we conduct a robot fish-catching experiment. A fre-
quently used heuristic baseline [26] that keeps tracking the
nearest grasp poses across frames is also implemented and
compared with our temporal association module.

Previous literature examines the grasp pose tracking method
in a human-robot hand-over setting [39]. For our fish-catching
experiment, it poses extra challenges for the tracking system:
(i) the underwater environment greatly decreases the contact
friction between the gripper and the robot fish; (ii) the fish
is pretty small and tolerates small final pose errors, while the
handing object is usually larger; (iii) humans tend to stabilize
the objects when the robot is about to grasp, while the fish
keeps moving in the whole grasping process; (iv) the point
cloud would be noisier due to the light reflection and refraction
in water.

In our experiment, we randomly place 8 robot fish in the
fish tank each time. Fig. 10 (a) shows different robot fish used
in our experiments. Note that we have multiple instances for
each kind of fish. The robot will try to catch all the swimming
fish, and we record the success rate during grasping. The
whole procedure is repeated 5 times, and we show the detailed
performance in Fig. 10 (b). We illustrate the process of the
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Fig. 11. Snapshots of the robot fish-catching procedure: (a) robot selects a
grasp target, denoted by a red dashed line; (b)-(e) robot servos to the target
grasp pose while updating the pose; (e) robot closes the gripper; (f) robot lifts
the grasped fish.

robot catching a fish in Fig. 11 and the full video can be
found in Appendix B (Movie S10). The average success rate
achieves 75.5%. We can see that our grasp perception system
is robust in this challenging dynamic grasping scenario.

We further conduct a failure analysis and found that the
failed cases can be divided into five categories, as shown in
Fig. 12. In nearly half of the failure cases, the fish slips away
although the grasp pose is good, mainly due to the small
friction in the water. The second and fourth reasons are that the
predicted future grasp pose falls in front of or behind the fish.
The main reason is that the robot fish would change its speed
during moving and the historical momentum is outdated. The
third reason is that the grasp quality is not good enough, and
the gripper finger would push the fish away during closing.
The last reason is the correspondence switch, which happens
when there are two close and similar fish. The correspondence
switch would inject noise into the history pose buffer and lead
to a wrong predicted future grasp pose.

On the other hand, the heuristic method achieves an average
success rate of 62.5%. During grasping, we found that this
nearest target policy is more likely to fall behind the moving
target during tracking, and takes a longer time to enter the
grasping state. Specifically, it takes 12.7% more time than our
method on the successful grasps on average.

Overall, the grasp perception system can run at 7 Hz on an
Nvidia 2060 GPU.

Fig. 12. Failure analysis in the fish catching experiments. We illustrate each
failure case with an example image. Zoom in for more details and see the
text for more explanation.

VII. DISCUSSION

A. Train in Simulation

As most methods and datasets provide training data in
simulation, we try to figure out the performance gap between
training on real data and simulated data. Since our dataset
contains object 3D models and their 6D poses in the scene,
we obtain simulated RGBD images by rendering the scene
in PyRender [55]. The same model is trained on these simu-
lated depth images. We also try the frequently adopted data
augmentation technique that adds Gaussian noise to the depth
images [5], [7] for better sim-to-real transfer.

We first analyze the detailed performance on the GraspNet-
1Billion benchmark, which directly evaluates the grasp pose’s
quality based on object mesh using the force-closure analysis.
The original metric computes the averaged AP for the Top-
50 predicted grasp poses in the scene. To show more details,
we compute the averaged AP for grasp poses ranging from
Top-1 to Top-50. The performance on different test splits
for our network trained with different strategies is shown in
Fig. 13. We can see that adding Gaussian noise to the point
cloud can improve the performance during evaluation, but still
remains a large performance gap with directly trained on real
data. Besides, their performance gap widens when the test set
contains harder objects (the novel test scenes), especially for
the high-score grasp poses.

Then we evaluate the model trained on simulated data with
Gaussian noise in the real-world bin-picking experiment. The
results are shown in Fig. 14. Movie S11 in Appendix B
records the grasping process. We can see that the performance
decreases a lot compared to the original model. Besides the
lower success rate, we also observe that the network cannot
generate grasp poses for a scene when there remain few
objects. We conjecture the model trained in the simulation
would generate fewer grasp poses with high scores in the real
world due to the domain shift.

In this experiment, we showed that the frequently adopted
sim-to-real technology in the grasping community is insuf-
ficient. We encourage future researchers to explore different
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Fig. 13. Evaluation results on the GraspNet-1Billion test set when training
with simulated and real-world data. From (a) to (d) we present the average
precision (AP) on the whole test set, the test set with seen objects in the
training set, the test set with similar objects in the training set, and the test
set with novel objects. “sim” denotes the model trained with perfect simulated
depth images, “sim w. noise” denotes the model trained with simulated depth
with Gaussian noise.
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Fig. 14. The success rate of our system when training with real and simulated
data. Note that here the “sim. data” denotes the simulated depth images with
extra Gaussian noise.

sim-to-real techniques (e.g. [56]) and hope [9] can be used
as a benchmark for this direction.

B. Influence of the Stable Score

To investigate how awareness of an object’s center of
mass can benefit stable grasping, we conducted an analytical
experiment. We selected a long, heavy object from our test

(a) (b) (c) (d)
Fig. 15. Visualization of the top-ranking grasp poses with and without
considering the stable score. The red grasp pose represents the case where
we considered the stable score, while the green pose is the case without it.
We see that the red grasp pose is closer to the COG of the object.

set as it better reflects the importance of COG awareness
during grasping. We conducted grasping for the object with
and without taking the stable score into account separately. In
each experiment, we made 25 attempts, and we counted how
many times in-hand slippage occurred. In total, 16 in-hand
slippages (including 3 failed grasps) occurred when the stable
score was not considered, and 11 in-hand slippages (including
2 failed grasps) occurred when the stable score was considered.
Figure 15 illustrates some examples of the highest-ranking
grasp poses with and without considering the stable score.

C. Dense Supervision Strategy

Besides providing data captured in real-world, another dif-
ference between GraspNet-1Billion [9] and other datasets [5],
[47], [48], [57] is that the grasp pose annotation is much
denser in [9]. For examples, Jacquard [57], DexNet 2.0 [5]
and EGAD [47] generates 100 grasp poses on each object,
ACRONYM [48] generates 2k grasp poses and [8] generates
34k grasp poses. In contrast, the GraspNet-1Billion generates
over 10M grasp poses on each object. Here we also evaluate
the influence of this factor. We train multiple models on the
dataset with different numbers of annotations. The models
are evaluated on the GraspNet-1Billion test set with the same
metric introduced in the above subsection.

In Fig. 16, we show the model evaluation results with
different training configurations. We downsample the training
set at different dimensions, namely the grasp pose density
on each object, the image amount, and the scene amount.
These dimensions are uniformly downsampled by 10 times and
50 times respectively. We can see that when downsampling
the grasp poses on objects by 10 times, the performance
degradation is similar to decreasing the number of training
images. Meanwhile, the performance decreases more in the
novel object test scenes. When we downsample the training
samples by 50 times, we can see that the degradation is still
similar for the grasp pose dimension and the image dimension.
These results suggest that the densely annotated grasp poses
are as equal importance as the number of training images.
Considering that they can be annotated automatically without
extra human efforts in collecting images, it is a good trade to
annotate dense grasp poses on objects.

Another interesting finding is that when we downsample the
scene dimension of the training data, the model performance
shows larger degradation on the test sets. When we down-
sample the scene by 50 times (namely 2 training scenes are
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Fig. 16. Evaluation results on the GraspNet-1Billion test set when training with different portions of real-world data. “pose / 10” denotes we downsample the
grasp pose density on each object by 1/10. “image / 10” denotes that we downsample the training images by 1/10. “ scene / 10” denotes that we downsample
the training scene by 1/10. So are the meaning of “pose / 50”, “image / 50” and “scene / 50”.

t

Fig. 17. Illustration of tracking two sampled grasp poses on a deformable, textureless tube. We can see that the grasp poses are stable in this case, even
under severe noise input. The object 6D pose tracking algorithm cannot handle this scenario.

used), the model cannot converge. It suggests that the diverse
scene might be more important for model training. We hope
our analyses would be beneficial to future dataset design.

D. Comparison with 6D Pose Tracking

Recently, there is also research focusing on novel object 6D
pose tracking [58]. Thus, it may be intuitive to adopt an unseen
object 6D pose tracking pipeline for grasp tracking. Here, we
explain the advantages of grasp pose tracking versus object
6D pose tracking. Firstly, the 6D pose tracking algorithm
cannot handle deformable objects, and thus is not applicable
for grasping in such cases. Secondly, the 6D pose tracking
algorithm may be prone to large depth noise like incomplete
point cloud, since it focuses on the object level features. But
the grasp tracking algorithm can work robustly for a target
grasp pose, even though other parts of the object are heavily
occluded. In Fig. 17 we show an example illustrating these
two cases.

E. Closed-loop Grasp Adjustment under Occlusion

Humans conduct closed-loop grasping in daily manipula-
tion. Although our algorithm is also temporal continuous and
can enable closed-loop grasping, it is fragile to the occlusion
induced by the robot. When the robot approaches the object,
the gripper would occlude the grasp target. Thus, the visual
perception would fail. How to enable the closed-loop grasp

perception against occlusion is an open question. A missing
piece here is tactile perception. It aids grasp slip detection and
enables in-hand adjustment. This ability is out of the scope of
this paper and will be our future work.

VIII. CONCLUSION

In this paper, we presented AnyGrasp, a visual grasp percep-
tion system that can generate spatially dense and temporally
smooth grasp poses. We proposed a unified model, wherein
the dense prediction of the geometry processing module is the
basis to enable smooth grasp pose tracking in the temporal
association module. The collisions and object COG were
implicitly learned through the supervision signal. Owing to
our learning strategy with real-world data, the model per-
forms robustly against different real-world depth sensor noise.
Various experiments were conducted to verify the accuracy,
robustness, and efficiency of our method. Finally, we analyzed
the influence of several factors in the dataset design.

Although our method provides the closed-loop grasping
ability, it cannot adjust the grasp pose using visual or tactile
feedback. This ability can help the robot to recover from
previous errors soon. Meanwhile, we only focused on visual
grasping for the two-finger parallel gripper in this section. It
would be significant to transfer such ability to different robotic
hands. Our future research will be conducted accordingly.
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APPENDIX

A. Object Collection
To comprehensively evaluate the algorithm performance in daily

scenario, we decide to collect a fairly large scale test object set, as
we found that the results varied on different objects. To construct
the object set, we go to the supermarket, the hardware store and the
toy store for procurement. The principle for selecting objects is that
there exists some graspable place smaller than the gripper width on
a object. In total, over 300 objects are collected, which is an order of
magnitude larger than previous practice [7]. We believe such a large
object test can provide a thorough evaluation to algorithms. Note that
we do not collect objects with a large portion of transparent or black
surface, since current depth sensor cannot give good prediction on
these materials. Some recent papers [59], [60] focused on solving this
problem with RGB information, but it is not fully addressed yet.The
challenging adversarial object set is 3D printed with poly-lactic acid
material. This results a smooth surface and makes the grasping even
harder.

B. Supplementary Videos
We record all the real robot experiments conducted in this paper.

All the videos are uploaded to YouTube and will be permanently
stored in support of this paper. The original length of the videos is
over 12 hours. They are speeded up according to their importance to
the paper. We honestly report the statistics of each video. Below we
provide the links to these supplementary videos.

• S1: “AnyGrasp Demo: RealSense D415 camera on daily ob-
jects”, https://youtu.be/dNnLgAGreec

• S2: “DexNet4.0 tested on daily objects”, https://youtu.be/
vDqsrj rtk8

• S3: “AnyGrasp experiment: Human subject 1 on daily objects
and adversarial objects”, https://youtu.be/-h0yvFZDfko

• S4: “AnyGrasp experiment: Human subject 2 on daily objects
and adversarial objects”, https://youtu.be/yItVN-Awjrg

• S5: “AnyGrasp Demo: RealSense D435 camera on daily ob-
jects”, https://youtu.be/7pgdbyLN0A4

• S6: “DexNet4.0 tested on adversarial objects”, https://youtu.be/
9vOop28YReg

• S7: “AnyGrasp Demo: RealSense D435 camera on adversarial
objects”, https://youtu.be/AK nHgH4RBA

• S8: “AnyGrasp Demo: RealSense D415 camera on adversarial
objects”, https://youtu.be/8FztVFRcvMY

• S9: “AnyGrasp Demo: Cleaning fragments of a broken pot”,
https://youtu.be/s0SUw1vgtr8

• S10: “AnyGrasp Demo: Robot Fish Catching by A Robot”,
https://youtu.be/2O7UoOxeLlk

• S11: “AnyGrasp trained solely in simulation, tested in real
world”, https://youtu.be/lBKoa9OAIOA
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