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Robust Pivoting Manipulation using Contact
Implicit Bilevel Optimization
Yuki Shirai‡, Devesh K. Jha‡†, and Arvind U. Raghunathan‡

Abstract—Generalizable manipulation requires that robots be
able to interact with novel objects and environment. This require-
ment makes manipulation extremely challenging as a robot has
to reason about complex frictional interactions with uncertainty
in physical properties of the object and the environment. In this
paper, we study robust optimization for planning of pivoting
manipulation in the presence of uncertainties. We present in-
sights about how friction can be exploited to compensate for
inaccuracies in the estimates of the physical properties during
manipulation. Under certain assumptions, we derive analytical
expressions for stability margin provided by friction during
pivoting manipulation. This margin is then used in a Contact
Implicit Bilevel Optimization (CIBO) framework to optimize
a trajectory that maximizes this stability margin to provide
robustness against uncertainty in several physical parameters
of the object. We present analysis of the stability margin with
respect to several parameters involved in the underlying bilevel
optimization problem. We demonstrate our proposed method
using a 6 DoF manipulator for manipulating several different
objects. We also design and validate an MPC controller using the
proposed algorithm which can track and regulate the position of
the object during manipulation.

Index Terms—Manipulation Planning, Optimization and Op-
timal Control, Dexterous Manipulation, Contact Modeling.

I. INTRODUCTION

CONTACTS are central to most manipulation tasks as they
can provide additional dexterity to robots to interact with

their environment [1]. It is desirable that a robot should be able
to interact with unknown objects in unknown environments
during operation and thus achieve generalizable manipulation.
However, designing systems which can achieve such behavior
is difficult. Such behavior requires that a robot should be
able to reason about and generate plans that are robust to
uncertainties arising from a variety of different reasons. Robust
planning for frictional interaction with objects with uncertain
physical properties is challenging as the mechanical stability
of the object depends on these physical properties. Inspired
by this problem, we consider the task of robust pivoting
manipulation in this paper. The pivoting task considered in this
paper requires that the slipping contact be maintained at the
two external contact points which presents unique challenges
for robust planning. We are interested in ensuring mechanical
stability via friction to compensate for uncertainty in the
physical properties (e.g., physical parameters, coefficient of
friction, contact location.) of the objects during manipulation.
We present a novel formulation and an optimization technique
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that can solve robust manipulation trajectories for manipula-
tion problems.

Robust planning (and control) for frictional interaction is
challenging due to the hybrid nature of underlying frictional
dynamics. Consequently, a lot of classical robust planning
and control techniques are not applicable to these systems
in the presence of uncertainties [2], [3], [4]. While concepts
of stability margin or Lyapunov stability have been well
studied in the context of nonlinear dynamical system controller
design [5], such notions have not been explored in contact-
rich manipulation problems. This can be mostly attributed to
the fact that a controller has to reason about the mechanical
stability constraints of the frictional interaction to ensure
stability. Mechanical stability closely depends on the contact
configuration during manipulation, and thus a planner (or
controller) has to ensure that the desired contact configuration
is either maintained during the task or it can maintain stability
even if the contact sequence is perturbed. Analysis of such
systems is difficult in the presence of friction as it leads to
differential inclusion system (see [6]) . One of the key insights
we present in this paper is that friction provides mechanical
stability margin during a contact-rich task. We call the me-
chanical stability provided by friction as Frictional Stability.
This frictional stability can be exploited during optimization to
allow stability of manipulation in the presence of uncertainty.
We show the effect of several different parameters on the
stability of the manipulation using the proposed approach. In
particular, we consider the effect of contact modes and point
of contact between the robot & object on the stability of the
manipulation.

We study pivoting manipulation where the object being
manipulated has to maintain slipping contact with two external
surfaces (see Fig. 2). A robot can use this manipulation to
reorient parts on a planar surface to allow grasping or assist
in assembly by manipulating objects to a desired pose (see
Fig. 1). Note that this manipulation is challenging as it requires
controlled slipping (as opposed to sticking contact [7], [8],
[9]). Ensuring robustness for slipping contact is challenging
due to the equality constraints for the contact forces compared
to inequality constraints for sticking contact. To ensure me-
chanical stability of the two-point pivoting in the presence of
uncertainty, we derive a sufficient condition for stability which
allows us to compute a margin of stability. This margin is
then used in a bilevel optimization technique, CIBO (Contact
Implicit Bilevel Optimization). Our proposed CIBO designs
an optimal control trajectory while maximizing the worst-case
margin along the entire trajectory for manipulation. Through
numerical simulations as well as physical experiments, we
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Fig. 1: We consider the problem of reorienting parts for assembly using pivoting manipulation primitive. Such reorientation could possibly be required when
the parts being assembled are too big to grasp in the initial pose (such as the gears) or the parts to be inserted during assembly are not in the desired pose
(such as the pegs). The figure shows some instances during the implementation of our controller to reorient a gear and a peg.

verify that CIBO is able to achieve more robustness compared
to the basic trajectory optimization.

Contributions. This paper has the following contributions.
1) We present analysis of mechanical stability of pivoting

manipulation with uncertainty in mass, CoM location,
contact location, and coefficient of friction.

2) We present a robust contact-implicit bilevel optimization
(CIBO) technique which can be used to optimize the
mechanical stability margin to compute robust trajec-
tories for pivoting manipulation. For objects with non-
convex shapes, we present a formulation with mode-
based optimization.

The proposed method is demonstrated for reorienting parts
using a 6 DoF manipulator (see Fig. 1. Please see a video
demonstrating hardware experiments at this link1). A pre-
liminary version of this work was initially presented at a
conference [10]. However, compared to the previous work,
this paper has the following major differences:

1) We present analysis of the proposed manipulation con-
sidering patch contact, uncertain mass on a slope, robot
finger contact location, and stochastic friction coeffi-
cients at the different points of contact.

2) We present a mode-based optimization formulation
which can be used for computing robust trajectories for
objects with non-convex geometry.

3) We also implement a closed-loop controller with vision
feedback which operates in an MPC fashion where we
use CIBO for re-computation of controller up on state
feedback. We show that we are able to achieve additional
robustness for the closed-loop controller.

In Section II, we present work which is relevant to our
proposed work. In Section III, we present the mechanics

1https://www.youtube.com/watch?v=ojlZDaGytSY

of pivoting manipulation. Section IV presents an analysis
of frictional stability margin considering different sources of
uncertainty. In Section V, we present the proposed contact-
implicit bilevel optimization (CIBO) for robust pivoting ma-
nipulation. Section VI presents numerical results of trajectory
optimization as well as experimental evaluation using a manip-
ulator arm and several different objects. Finally, the paper is
concluded in Section VII with some topics for future research.

II. RELATED WORK

Contact modeling has been extensively studied in mechanics
as well as robotics literature [11], [12], [13], [14], [15], [16],
[17], [18]. One of the most common contact models is based
on the linear complementarity problem (LCP). LCP-based
contact models have been extensively used for performing
trajectory optimization in manipulation [3], [19] as well as
locomotion [20], [21]. More recently, there has also been some
work for designing robust manipulation techniques for contact-
rich systems using stochastic optimization [4], [2], [3], [22].
These problems consider stochastic complementarity systems
and consider robust optimization for the underlying stochastic
system. However, these problems consider a dynamical model
and do not explicitly consider the mechanical stability during
planning. Our work is motivated by the concepts of stability
under multiple contacts in legged locomotion. Quasi-static sta-
bility with multiple contacts has been widely studied in legged
locomotion [23], [24], [25], [26], [27]. These works consider
the problem of mechanical stability of the legged robot under
multiple contacts by considering the stability polygon defined
by the frictional contacts. The planning framework for opti-
mizing contact wrench cone margin during locomotion is able
to achieve robust locomotion results [28], [26], [29]. Similar
to the concept of these works, we present the idea of frictional
stability which defines the extent to which multiple points

https://www.youtube.com/watch?v=ojlZDaGytSY
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of contact can compensate for unknown forces and moments
in the presence of uncertainty in the mass, CoM location,
contact location, and frictional parameters. This idea exploits
contact forces to ensure stability of the object during the two-
point pivoting. Our work is also related to manipulation by
shared grasping [30] which discusses mechanics of shared
grasping and shows impressive demonstrations. In contrast
to the work presented in [30], we present a robust contact-
implicit bilevel optimization (CIBO) framework that can be
used to find feasible solutions in the presence of uncertainty
during the pivoting manipulation and avoids consideration of
different modes during planning.

In [8], authors consider stabilization of a table-top manipula-
tion task during online control. They consider a decomposition
of the control task in object state control and contact state
control. The contact state was detected using vision-based
tactile sensors [31], [32]. As the task mostly required sticking
contact for stability, the tactile feedback was designed to make
corrections to push the system away from the boundary of
friction cone at the different contact locations. However, the
authors did not consider the problem of designing trajectories
which can provide robustness to uncertainty. Furthermore, the
authors only considered controlled sticking in [8] which is,
in general, easier than controlled slipping. Similarly, in [33],
authors design and validate their sliding controller for in-
hand tool pivoting. In [34], the authors extend their sliding
controller in [33] such that the sliding controller is able to
achieve adaptive control for friction coefficients using visual
and force measurements, showing impressive demonstrations.
Also, authors in [35] consider pivoting manipulation with a
parallel gripper without relying on fast and precise robotic
systems. In contrast to their work in [33], [34], [35], we present
the pivoting manipulation with extrinsic contacts, which in-
troduces additional complexity of the manipulation, and other
uncertain parameters such as mass, CoM location, and robot
contact location. The work in [36] discusses dexterous in-hand
manipulation including extrinsic contact. However, the work
in [36] does not consider uncertainty in physical parameters.
Other previous works that study stable pivoting also consider
sticking contact during pivoting using multiple points of
contact [7]. The problem in [7] is inherently stable as the
object is always in stable grasp. Furthermore, the authors
do not consider any uncertainty during planning. Similarly,
authors in [37] present a mixed integer programming formu-
lation to generate contact trajectory given a desired reference
trajectory for the object for several manipulation primitives. In
contrast, this work proposes a bilevel optimization technique
which maximizes the minimum margin from instability that
the object experiences during an entire trajectory. Another
related work is presented in [38] where the authors study the
feedback control during manipulation of a half-cylinder. The
idea there is to design a reference trajectory and then use
a local controller by building a funnel around the reference
trajectory by linearizing the dynamics. The online control
is computed by solving linear programs to locally track the
reference trajectory.

From the above discussion, we can arrive at the following
conclusion. In contrast to most of the related work, this

Fig. 2: A schematic showing the free-body diagram of a rigid body during
pivoting manipulation when the relative angle between FW and FS is zero.
Point P is the contact point with a manipulator. The black circle represents
the origin of each frame. The object experiences four forces corresponding to
two friction forces from external contact points A and B, one control input
fP from the manipulator at point P , and gravity at point C.

Fig. 3: A schematic showing the frame definition of a rigid body during
pivoting manipulation. FW , FS , FO , and FB are the world frame, slope
frame, object frame, and frame at contact location B, respectively. Gravity
is defined in FW where the gravity is parallel to y-axis of FW . Pivoting
manipulation happens with extrinsic contact A and B defined in FS . FO is
fixed with CoM of an object. FB is in parallel to FS with offset BS

x along
x-axis of FS . We also show an example of iΣx and iΣx in Table I. In this
example, CB

x and CB
y are illustrated.

proposed work presents a novel formulation for two-point
pivoting which requires slipping contact formation between
the object and the environment. Furthermore, in comparison
to most of the work on contact implicit trajectory optimization,
we present a contact implicit bilevel optimization (CIBO) for
robust trajectory optimization for manipulation. Even though
this method is illustrated on a particular pivoting manipulation
problem in this paper, the proposed optimization algorithm
could be used for other robust manipulation problems based
on the mechanics of the manipulation task.

III. MECHANICS OF PIVOTING

In this section, we explain quasi-static stability of two-point
pivoting in a plane. Before explaining the details, we present
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TABLE I: Notation of variables for analysis of frictional stability margin. In
Σ column, we indicate the frame of variables. We use the following indices
for defining variables in this table: j ∈ {A,B,C, P} for representing the
location of frames, i ∈ {A,B, P} for representing contact location, and
Σ ∈ {W,S,O,B} for representing a frame.

Name Description Size Σ
FΣ Σ frame.
fΣ
nj normal force at j in frame FΣ R1 Σ

fΣ
tj friction force at j in frame FΣ R1 Σ

fΣ
xj force at j along x-axis in frame FΣ R1 Σ

fΣ
yj force at j along y-axis in frame FΣ R1 Σ

m mass R1

g gravity acceleration R1 W
l length of an object R1

w width of an object R1

µi coefficient of friction at i R1

iΣx contact location at i along x-axis in frame FΣ R1 Σ
iΣy contact location at i along y-axis in frame FΣ R1 Σ

i̇Σx slipping velocity at i along x-axis in frame FΣ R1 Σ
i̇Σy slipping velocity at i along y-axis in frame FΣ R1 Σ
θ angle of an object R1 S
ϕ relative angle of frame from {FW } to {FS} R1 W

our assumptions in this work. The following assumptions are
used in the model for the pivoting manipulation task presented
in this paper:

1) The object is rigid.
2) We consider quasi-static equilibrium of the object.
3) The external contact surfaces are perfectly flat.
4) The dimensions and pose of the object is perfectly

known.
5) The object makes point contacts.

A. Mechanics of Pivoting with External Contacts

We consider pivoting where the object maintains slipping
contact with two external surfaces (see Fig. 2). A free body
diagram showing the quasi-static equilibrium of the object is
shown in Fig. 2. The definitions of frames and variables are
summarized in Fig. 3 and Table I, respectively. In the later
sections, we present trajectory optimization formulation where
we consider decision variables at time step k (e.g., fk,ni). In
this section, we remove k to represent variables for simplicity.

The quasi-static equilibrium conditions for the object in FB

when the relative angle between FW and FS is zero (see
Fig. 2) can be represented by the following equations.

fB
nA + fB

tB + fB
xP = 0, (1a)

fB
tA + fB

nB +mg + fB
yP = 0, (1b)

AB
x f

B
tA −AB

y f
B
nA + CB

x mg + PB
x fB

yP − PB
y fB

xP = 0 (1c)

Note that because we define FB as parallel to FS , all
force variables in FB and FS are the same. We consider
Coulomb friction law which results in friction cone constraints
as follows:

|fB
tA| ≤ µAf

B
nA, |fB

tB | ≤ µBf
B
nB , fB

nA, f
B
nB ≥ 0, (2)

To describe sticking-slipping complementarity constraints, we
have the following complementarity constraints at point A,B:

0 ≤ ȦB
y+ ⊥ µAf

B
nA − fB

tA ≥ 0, (3a)

0 ≤ ȦB
y− ⊥ µAf

B
nA + fB

tA ≥ 0, (3b)

0 ≤ ḂB
x+ ⊥ µBf

B
nB − fB

tB ≥ 0, (3c)

0 ≤ ḂB
x− ⊥ µBf

B
nB + fB

tB ≥ 0 (3d)

where the slipping velocities follows ȦB
y = ȦB

y+ −
ȦB

y−, Ḃ
B
x = ḂB

x+ − ḂB
x−. ȦB

y+, Ȧ
B
y− represent the slipping

velocity at A along positive and negative directions for y-
axis in FB , respectively. ḂB

x+, Ḃ
B
x− represent the slipping

velocity at B along positive and negative directions for x-axis
in FB , respectively. The notation 0 ≤ a ⊥ b ≥ 0 means the
complementarity constraints a ≥ 0, b ≥ 0, ab = 0. Since we
consider slipping contact during pivoting, we have ”equality”
constraints in friction cone constraints at points A,B:

fB
tA = µAf

B
nA, f

B
tB = −µBf

B
nB (4)

To realize stable pivoting, actively controlling position of
point P is important. Thus, we consider the following com-
plementarity constraints that represent the relation between
the slipping velocity Ṗy at point P in FO and friction cone
constraint at point P :

0 ≤ ṖO
y+ ⊥ µpf

O
nP − fO

tP ≥ 0 (5a)

0 ≤ ṖO
y− ⊥ µpf

O
nP + fO

tP ≥ 0 (5b)

where ṖO
y = ṖO

y+ − ṖO
y−.

IV. ROBUST PIVOTING FORMULATION

In this section, we present a generic formulation for robust
pivoting manipulation. In particular, we use the quasi-static
equilibrium conditions (1) in the presence of disturbances to
formulate the robust planning problem. In particular, using
sufficiency for stability of the object during manipulation we
can estimate the bound of disturbance that can be tolerated
during manipulation. Since this bound would depend on the
pose of the object, we reason about the margin throughout
the manipulation trajectory during the optimization problem
formulation. We present the general idea in the following
paragraph.

In the most general case, we assume that there is an external
force FB

ext and moment MB
ext acting on the object during

manipulation. Let us assume that the x and y component of
the external force in FB are represented as FB

ext,x and FB
ext,y

respectively. Then the quasi-static equilibrium conditions (1)
can be rewritten as follows:

fB
nA + fB

tB + fB
xP + FB

ext,x = 0, (6a)

fB
tA + fB

nB +mg + fB
yP + FB

ext,y = 0, (6b)

AB
x f

B
tA −AB

y f
B
nA + CB

x mg + PB
x fB

yP − PB
y fB

xP

+MB
ext = 0 (6c)

Note that FB
ext and MB

ext may not be independent of each
other. They are related via the the point of application of
force FB

ext in the quasi-static equilibrium conditions (6). These
equations may not be satisfied for all possible values of FB

ext

and MB
ext. Since the contact forces can be readjusted in (6), the

quasi-static equilibrium can be satisfied for a certain range of
FB
ext and MB

ext. A generic analysis for estimating this margin
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or bound for which these disturbances can be compensated by
contact forces is a bit involved as such a bound is dependent on
the point and angle of application of the external force FB

ext. In
the following sections, we present some specific cases which
can be analyzed by making some simplifying assumptions
on these disturbances. For brevity, we omit superscript B
of variables in the following sections because we consider
quasi-static equilibrium in FB unless we consider quasi-static
equilibrium in a different frame (see Sec IV-E).

A. Frictional Stability Margin

The robust quasi-static equilibrium conditions shown in (6)
can be used to explain the concept of stability margin. The
stability margin is given by the magnitude of the external force
FB
ext and moment MB

ext which can be satisfied in (6) in any
stable configuration of the object. This margin would depend
on the contact force between the object and the environment
as well as the control force used by the manipulator during the
task. This provides the intuition that one can design a control
trajectory such that the stability margin can be maximized.

We briefly provide some physical intuition about frictional
stability for a few specific cases. First suppose that uncertainty
exists in mass of a body. In the case when the actual mass
is lower than estimated, the friction force at point A would
increase while the friction force at point B would decrease,
compared to the nominal case. In contrast, suppose if the actual
mass of the body is heavier than that of what we estimate, then
the body can tumble along point B in the clockwise direction.
In this case, we can imagine that the friction force at point
A would decrease while the friction force at point B would
increase. However, as long as the friction forces are non-zero,
the object can stay in contact with the external environment.
Similar arguments could be made for uncertainty in CoM
location. The key point to note that the friction forces can
re-distribute at the two contact locations and thus provide a
margin of stability to compensate for uncertain gravitational
forces and moments. We call this margin as frictional stability.

In the following sections, we present the mathematical
formulation of frictional stability for cases when the mass,
CoM location, friction coefficients, or finger contact location
are not known perfectly.

B. Stability Margin for Uncertain Mass

For simplicity, we denote ϵ as uncertain weight with respect
to the estimated weight. Also, to emphasize that we consider
the system under uncertainty, we put superscript ϵ for each
friction force variable. Thus, the quasi-static equilibrium con-
ditions in (1) can be rewritten as:

f ϵ
nA + f ϵ

tB + fxP = 0, (7a)
f ϵ
tA + f ϵ

nB + (mg + ϵ) + fyP = 0, (7b)
Axf

ϵ
tA −Ayf

ϵ
nA + Cx(mg + ϵ) + PxfyP = PyfxP (7c)

Then, using (4) and (7c), we obtain:

f ϵ
nA =

−Cx (mg + ϵ)− PxfyP + PyfxP
µAAx −Ay

(8)

To ensure that the body maintains contact with the external
surfaces, we would like to enforce that the body experience
non-zero normal forces at the both contacts. To realize this,
we have f ϵ

nA ≥ 0, f ϵ
nB ≥ 0 as conditions that the system

needs to satisfy. Consequently, by simplifying (8), we get the
following:

ϵ ≥ PyfxP − PxfyP − Cxmg

Cx
, if Cx > 0, (9a)

ϵ ≤ PyfxP − PxfyP − Cxmg

Cx
, if Cx < 0 (9b)

Note that the upper-bound of ϵ means that the friction forces
can exist even when we make the mass of the body lighter up
to ϵ

g . The lower-bound of ϵ means that the friction forces can
exist even when we make the mass of the body heavier up to
ϵ
g . (9) provides some useful insights. (9) gives either upper-
or lower-bound of ϵ for f ϵ

nA according to the sign of Cx (the
moment arm of gravity). This is because the uncertain mass
would generate an additional moment along with point B in
the clock-wise direction if Cx > 0 and in the counter clock-
wise direction if Cx < 0. If Cx = 0, we have an unbounded
range for ϵ, meaning that the body would not lose contact at
point A no matter how much uncertainty exists in the mass.

(9) can be reformulated as an inequality constraint:

Cx(ϵ− ϵA) ≥ 0 (10)

where ϵA =
PyfxP−PxfyP−Cxmg

Cx
.

We can derive condition for ϵ based on f ϵ
nB ≥ 0 from (4),

(7a), and (7b):

ϵ ≤ µAfxP − fyP −mg (11)

We only have upper-bound on ϵ based on f ϵ
nB ≥ 0, meaning

that the contact at point B cannot be guaranteed if the actual
mass is lighter than µAfxP − fyP −mg.

C. Stability Margin for Uncertain CoM Location

We denote dOx , d
O
y as residual CoM locations with respect

to the estimated CoM location in FO coordinate, respec-
tively. Thus, the residual CoM location in FW , dWx , dWy , are
represented by dWx = d cos(θ + θd), d

W
y = d sin(θ + θd),

where d =
√
(dOx )

2
+
(
dOy

)2
, θd = arctan

dO
y

dO
x

. For notation
simplicity, we use r to represent dWx . In this paper, we put
superscript r for each friction force variable. The quasi-static
equilibrium conditions in (1) can be rewritten as follows:

fr
nA + fr

tB + fxP = 0, (12a)
fr
tA + fr

nB +mg + fyP = 0, (12b)
Axf

r
tA −Ayf

r
nA + (Cx + r)mg + PxfyP = PyfxP (12c)

Then, using (4) in (12), we obtain:

r ≤ PyfxP − PxfyP
mg

− Cx,

(13a)

r ≥ −
µAAx−Ay

1+µA
(−fxP − fyP −mg)− PyfxP + PxfyP

mg
− Cx

(13b)
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where (13a), (13b) are obtained based on fr
nA ≥ 0, fr

nB ≥ 0,
respectively. (13) means that the object would lose contact
at A if the actual CoM location is more to the right than our
expected CoM location while the object would lose the contact
at B if the actual CoM location is more to the left.

D. Stability Margin for Stochastic Friction

In this section, we present modeling and analysis of pivoting
manipulation in the presence of stochastic friction coefficients.
In particular, we consider stochastic friction at the two differ-
ent contact points A and B. We do not consider stochastic
friction at the contact point between the robot and the ma-
nipulator since that leads to stochastic complementarity con-
straints (please see [22], [4] for detailed analysis on stochastic
complementarity constraints). We make the assumption that
the friction coefficients at A and B are partially known. In
particular, we assume that the friction coefficients for contact
at A could be represented as µA = µ̂A + µ̃A where µ̃A is the
uncertain stochastic variable. Similarly, the friction coefficient
at B could be represented as µB = µ̂B + µ̃B where µ̃B is
the uncertain stochastic variable. Note that we do not need
to need to know any information regarding the probabilistic
distribution (e.g., probability density function of Gaussian
distribution, beta distribution.) of the unknown part. We can
rewrite (6) for this case as follows. We put superscript µ for
each friction variable:

fµ
nA + f̂µ

tB + fxP + ϵB = 0, (14a)

f̂µ
tA + fµ

nB +mg + fyP + ϵA = 0, (14b)

Axf̂
µ
tA +AxϵA −Ayf

µ
nA + Cxmg

+PxfyP − PyfxP = 0 (14c)

where, fµ
tA = f̂µ

tA + fµ
nAµ̃A and fµ

tB = f̂µ
tB + fµ

nBµ̃B . The
above equations are obtained by representing fnAµ̃A as ϵA
for contact at A and similarly, ϵB for the contact at B. Thus,
ϵA and ϵB are the uncertain contact forces for the contacts
at A and B. The robust formulation that we consider in this
paper considers the worst-case effect of these uncertainties on
the stability of the object during manipulation. Thus, we try
to maximize the bound of these variables ϵA and ϵB using
our proposed bilevel optimization. It is noted that ϵA and ϵB
are the stability margin for this particular case of stochastic
friction.

To ensure that the body maintains contact, we impose
fµ
nA ≥ 0, fµ

nB ≥ 0, so that we get the following inequalities
for ϵA, ϵB :

−µAfxP + ϵA +mg + fyP ≤ µAϵB (15a)
ϵB ≤ −µB(ϵA +mg + fyP )− fxP (15b)

To ensure slipping contact even in the presence of uncer-
tainties, we need to satisfy friction cone constraints specified
earlier in (2), (4). Using these constraints, we can find the
upper and lower bound for the variables ϵA and ϵB :

(µ̂A + µ̃A)f
µ
nA = f̂µ

tA + µ̃Af
µ
nA (16a)

(µ̂B + µ̃B)f
µ
nB = −f̂µ

tB − µ̃Bf
µ
nB (16b)

To get a lower bound for the variables ϵA and ϵB , we
make a assumption regarding the uncertainty for the friction
coefficients at A and B. We assume that the unknown part is
bounded above by the known part, i.e., µ̃i ≤ µ̂i, ∀i = A,B.
Note that this is not a restrictive assumption. What this implies
is that the above parameter has bounded uncertainty. For
simplicity, we assume that uncertainty is bounded by the
known part of the parameter. For example, if the friction
coefficient is modeled as a stochastic random variable, then we
assume that we know the mean of the friction parameter and
the standard deviation is bounded by some multiple of mean
(note that this bound is just for simplification and one can
assume any practical bound for uncertainty). Consequently,
we can derive the following relations:

−µ̂Af
µ
nA ≤ ϵA ≤ µ̂Af

µ
nA (17a)

−µ̂Bf
µ
nB ≤ ϵB ≤ µ̂Bf

µ
nB (17b)

Thus, we get constraints (15) and (17) for the stability
margin by considering the stability and the friction cone
constraints in the presence of uncertain friction coefficients.
These constraints are used to estimate the stability margin
during the proposed bilevel optimization.

E. Stability Margin for Finger Contact Location

We consider another case of uncertainty which might arise
due to an imperfect robot controller or due to imperfect pose
information of the object. For this case, we consider the
stability margin d of finger contact location on an object, as
illustrated in Fig. 4. There could be multiple reasons for this
uncertainty. One possible reason could be due to imperfect
state information for the object being manipulated which can
lead to imprecise information about the finger contact location.
Another reason could be imprecise stiffness controller of the
robot. It is noted that we use a stiffness controller for a position
controlled robot to implement the computed force trajectory.
Due to compliance of the object and the robot, the actual
robot trajectory is different from the planned and thus, this
could lead to this uncertainty. We can formulate the following
quasi-static equilibrium in FO. We put superscript d for each
extrinsic friction variable:

fO,d
xA + fO,d

xB +mg sin θ + fO
nP = 0, (18a)

fO,d
yA + fO,d

yB +mg cos θ + fO
tP = 0 (18b)∑

i∈{A,B}

(
iOx f

O,d
yi − iOy f

O,d
xi

)
+PO

x fO
tP − (PO

y + d)fO
nP = 0 (18c)

Note that −AO
x = −BO

x = PO
x = l

2 , A
O
y = −BO

y = w
2 .

Using this relation, we can simplify (18). In particular, we
use fO,d

xA ≥ 0, fO,d
xB ≥ 0, fO

nP ≥ 0 and thus we can get the
following bound for d:

d ≤ d ≤ d̄,

(19a)

d = −Ax
mg cos θ + 2ftP

fnP
−Ay

mg sin θ + fnP
fnP

− PO
y ,

(19b)
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Fig. 4: A schematic showing the free-body diagram of a rigid body during
pivoting manipulation. We consider the stability margin of finger location due
to imperfect control of stiffness controller in a robotic manipulator.

d̄ = −Ax
mg cos θ + 2ftP

fnP
+Ay

mg sin θ + fnP
fnP

− PO
y

(19c)

When fO
nP → 0, the equation suggests that d̄ tends to infinity

and d tends to negative infinity. As fO
nP = 0 implies no force

at point P , the finger’s placement becomes inconsequential as
it does not affect the quasi-static equilibrium of the object.

We can consider that uncertainty in finger contact location
and uncertainty in the geometry of an object have a similar
influence on the manipulation. This is because the relative pose
of the object with respect to the robot changes for both cases,
resulting in the potential contact mode changes.

F. Stability Margin for Uncertain Mass on a Slope

We consider the case where we tilt the two external walls
by the angle of ϕ. Our discussion in Sec. IV-B still holds. The
only difference arises from gravity terms. Hence, the quasi-
static equilibrium conditions in FB can be rewritten as:

f ϵ
nA + f ϵ

tB + fxP + (mg + ϵ) sinϕ = 0, (20a)
f ϵ
tA + f ϵ

nB + fyP + (mg + ϵ) cosϕ = 0, (20b)
Axf

ϵ
tA −Ayf

ϵ
nA + (Cx cosϕ− Cy sinϕ) (mg + ϵ)

+PxfyP − PyfxP = 0 (20c)

Following the same logic in Sec. IV-B, we can get the
following bound for the stability margin ϵ under uncertain
mass when the object is on a slope:

ϵ ≥ PyfxP − PxfyP − (Cx cosϕ− Cy sinϕ)mg

Cx cosϕ− Cy sinϕ
,

if Cx cosϕ > Cy sinϕ (21a)

ϵ ≤ PyfxP − PxfyP − (Cx cosϕ− Cy sinϕ)mg

Cx cosϕ− Cy sinϕ
,

if Cx cosϕ < Cy sinϕ (21b)

Fig. 5: A schematic showing the free-body diagram of a rigid body during
pivoting manipulation with patch contact. We approximate patch contact as
two point contacts P1 and P2 with the same force distribution. We assume
that P1 always lies on the vertex of the object for this simplistic patch contact
model. s is the distance between point contact P1 and P2 along y-axis of
FO .

As a result, (21a) and (21b) result in the following inequality
constraint:

(Cx cosϕ− Cy sinϕ) (ϵ− ϵA) ≥ 0 (22)

where ϵA =
PyfxP−PxfyP−(Cx cosϕ−Cy sinϕ)mg

Cx cosϕ−Cy sinϕ . We also de-
rive the bound on ϵ using f ϵ

nB ≥ 0, (21a), and (21b):

(µA sinϕ− cosϕ) ϵ ≥ fyP − µAfxP (23)

Note that the sign of µA sinϕ− cosϕ can change depending
on the angle of slope. In this paper, we choose ϕ such that the
sign of µA sinϕ−cosϕ does not change during manipulation.

The discussion in this section for manipulation under un-
certain mass on a slope can be easily extended with other
uncertain parameters such as CoM location, friction, and finger
contact location.

G. Pivoting with Patch Contact between the object and the
manipulator

In the previous sections, we considered point contact be-
tween the manipulator and the object. This could be potentially
restrictive. Moreover, this may not be a realistic assumption
when a robot is interacting with objects. In this section, we
present a slightly modified formulation by considering patch
contact between the object and the manipulator. We would like
to analyze and understand how patch contact would compare
against a point contact model for stability during pivoting
manipulation. Fig. 5 shows the simplest patch contact model
during the pivoting task we consider in this paper. Using this
model, we can write the following quasi-static equilibrium:

fnA + ftB + fxP1
+ fxP2

= 0, (24a)
ftA + fnB +mg + fyP1

+ fyP2
= 0, (24b)

AxftA −AyfnA + Cxmg
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Largest Fric�onal Stability at

Uncertain Mass UncertainCoM Loca�on

s. t.

Robust Bilevel Trajectory Op�miza�on for Pivo�ng

Kinema�cs, Dynamics

Ini�al and Terminal States

Bounds on Variables

margin

margin

Fig. 6: Conceptual schematic of our proposed frictional stability and robust
trajectory optimization for pivoting. Due to slipping contact, friction forces
at points A,B lie on the edge of friction cone. Given the nominal trajectory
of state and control inputs, friction forces can account for uncertain physical
parameters to satisfy quasi-static equilibrium. We define the range of distur-
bances that can be compensated by contacts as frictional stability. The above
figure shows the case of uncertain mass and CoM location.

+

2∑
i=1

(
PixfyPi

− PiyfxPi

)
= 0 (24c)

where Pix , Piy represent x and y coordinate of P1 and P2 in
FO, respectively. In this work, we assume that patch contact
as two point contacts P1 and P2 as the same force distribution,
which indicates that fxP1 = fxP2 , fyP1 = fyP2 . s is the
distance between point contact P1 and P2 and s is a decision
variable, meaning that location of P2 is a decision variable
and can change over time. In this work, we assume that P1

does not move over time, which simplifies the model of patch
contact.

Using the above quasi-static equilibrium conditions with
fnA ≥ 0, fnB ≥ 0, we can solve and find the upper and the
lower bound of stability margin under the various uncertainties
described earlier in the previous subsections. We will present
some results in the later section using this formulation and
compare them against the point contact formulation.

Remark 1: The patch contact discussion in this section
can be extended into the patch contact at extrinsic contact
with sliding contacts. We can approximate the extrinsic patch
contact as two-point contacts with the same force distribution.
Then, we can formulate the quasi-static equilibrium and derive
the bound of the stability margin.

V. ROBUST TRAJECTORY OPTIMIZATION

Using the notion of frictional stability introduced in the
previous section, we describe our proposed contact implicit
bilevel optimization (CIBO) method for robust optimization of
manipulation trajectories. The proposed method explicitly con-
siders frictional stability under uncertain physical parameters.
It is noted that the proposed method considers robustness un-
der slipping contact which results in equality for friction cone
constraints (see Fig. 6). After describing the formulation for
convex objects, we also describe how to extend the proposed

CIBO to consider objects with non-convex geometry. Our
proposed method is also presented as a schematic in Fig. 6.
As shown in Fig. 6, the proposed CIBO considers frictional
stability margin along the entire trajectory for manipulation
and then maximizes the minimum margin in the proposed
framework. This is also explained in Fig. 7, where we show
that we estimate the bound of stability margin in the lower
level optimization and maximize the minimum margin in the
upper level optimization. Before introducing our proposed
bilevel optimization, we present a baseline contact-implicit TO
which can be formulated as an MPCC.

A. Contact-Implicit Trajectory Optimization for Pivoting

The purpose of our optimal control is to find optimal
control input sequences under constraints for pivoting manip-
ulation. In particular, we consider the objective function for
achieving the minimum motion of objects under kinematics
constrains, quasi-static equilibrium, friction cone constraints,
and sticking-slipping complementarity constraints as follows:

min
x,u,f

N∑
k=1

(xk − xg)
⊤Q(xk − xg) +

N−1∑
k=0

u⊤
k Ruk (25a)

s. t. ik,x, ik,y ∈ FK(θk, P
O
k,y), (1), (4), (5), (25b)

x0 = xs, xN = xg, xk ∈ X , uk ∈ U , 0 ≤ fk,ni ≤ fu (25c)

where xk = [θk, P
O
k,y, θ̇k, Ṗ

O
k,y]

⊤, uk = [fk,nP , fk,tP ]
⊤,

fk = [fk,nA, fk,nB ]
⊤, Q = Q⊤ ≥ 0, R = R⊤ > 0. The

input of (25) consists of physical parameters such as mass,
length, and width of the object and the optimization parameters
such as Q and R. The output of (25) consists of trajectories
of xk, uk, fk,∀k ∈ {0, 1, . . . , N}. We use explicit Euler to
discretize the dynamics with sample time ∆. The function FK
represents forward kinematics to specify each contact point i
and CoM location. X and U are convex polytopes, consisting
of a finite number of linear inequality constraints. fu is an
upper-bound of normal force at each contact point. Note that
we impose (1), (4) at each time step k. xs, xg are the states
at k = 0, k = N , respectively.

B. Robust CIBO

In this section, we present our formulation where we
incorporate frictional stability in trajectory optimization to
obtain robustness. In particular, we first focus on discussing
the optimization problem with uncertain mass, CoM location,
and finger contact location. We later discuss the optimization
problem of uncertain coefficient of friction in Sec V-C.

An important point to note is that the optimization problem
would be ill-posed if we naively add (7), (12), and/or (19) to
(25) since there is no u to satisfy all uncertainty realization in
equality constraints [39]. Therefore, our strategy is that we
plan to find an optimal nominal trajectory that can ensure
external contacts under uncertain physical parameters. In other
words, we aim at maximizing the worst-case stability margin
over the trajectory given the maximal frictional stability at
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Fig. 7: This figure illustrates the idea of the proposed contact implicit bilevel
optimization, CIBO. Given the trajectory of x, u, f , the stability margin
over the trajectory can be computed as shown in lower-level optimization
problem. Then, given the computed stability margin over the trajectory
ϵ, the upper-level optimization problem maximizes the worst-case stability
margin over the trajectory by optimizing the trajectory of x, u, f . Our CIBO
simultaneously optimizes the lower-level optimization problem and the upper-
level optimization problem. In the right plot, red and blue arrows represent
the stability margin along positive and negative directions, respectively. Our
CIBO optimizes the stability margin for each direction.

each time-step k (also shown in Fig. 6). Thus, we maximize
the following objective function:

min
k

ϵ∗k,+ −max
k

−ϵ∗k,− (26)

where ϵ∗k,+, ϵ
∗
k,− are non-negative variables. Note that

ϵ∗k,+, ϵ
∗
k,− are the largest uncertainty in the positive and

negative direction, respectively, at instant k given x, u, f ,
which results in non-zero contact forces (i.e., stability margin,
see also Fig. 6). (26) calculates the smallest stability margin
over time-horizons by subtracting the stability margin along
the positive direction from that along the negative direction.
Hence, we formulate a bilevel optimization problem which
consists of two lower-level optimization problems as follows
(see also Fig. 7):

max
x,u,f,ϵ∗+,ϵ∗−

(min
k

ϵ∗k,+ −max
k

−ϵ∗k,−) (27a)

s. t. (25b), (25c), (27b)
ϵ∗k,+ ∈ argmax

ϵk,+

{ϵk,+ : Akϵk,+ ≤ bk, ϵk,+ ≥ 0}, (27c)

ϵ∗k,− ∈ argmax
ϵk,−

{ϵk,− : −Akϵk,− ≤ bk, ϵk,− ≥ 0} (27d)

where Ak ∈ R2×1, bk ∈ R2×1 represent inequality constraints
in (10) and (11) or (22) and (23) if the object is on a slope.
Akϵk,+ ≤ bk, ϵk,+ ≥ 0, and −Akϵk,− ≤ bk, ϵk,− ≥ 0
represent the lower-level constraints for each lower-level op-
timization problem while (25b), (25c) represent the upper-
level constraints. ϵ+, ϵ− are the lower-level objective functions
while mink ϵ

∗
k,+ − maxk −ϵ∗k,− is the upper-level objective

function. ϵk,+, ϵk,− are the lower-level decision variables of
each lower-level optimization problem while x, u, f, ϵ∗+, ϵ

∗
− are

the upper-level decision variables.
(27) considers the largest one-side frictional stability margin

along positive and negative direction at k. Therefore, by
solving these two lower-level optimization problems, we are
able to obtain the maximum frictional stability margin along
positive and negative direction. The advantage of (27) is that
since the lower-level optimization problem are formulated as
two linear programming problems, we can efficiently solve the

entire bilevel optimization problem using the Karush-Kuhn-
Tucker (KKT) condition as follows:

wk,+,j , wk,−,j ≥ 0, Ckϵk,+ ≤ dk, Ekϵk,− ≤ dk, (28a)
wk,+,j(Ckϵk,+ − dk)j = 0, (28b)
wk,−,j(Ekϵk,− − dk)j = 0, (28c)

∇(−ϵk,+) +

3∑
j=1

wk,+,j∇(Ckϵk,+ − dk)j = 0, (28d)

∇(−ϵk,−) +

3∑
j=1

wk,−,j∇(Ekϵk,− − dk)j = 0 (28e)

where Ck = [A⊤
k ,−1]⊤ ∈ R3×1, dk = [b⊤k , 0]

⊤ ∈
R3×1, Ek = [−A⊤

k ,−1]⊤ ∈ R3×1. wk,+,j is Lagrange multi-
plier associated with (Ckϵk,+ ≤ dk)j , where (Ckϵk,+ ≤ dk)j
represents the j-th inequality constraints in Ckϵk,+ ≤ dk.
wk,−,j is Lagrange multiplier associated with (Ekϵk,− ≤ dk)j .
Using the KKT condition and epigraph trick, we eventually ob-
tain a single-level large-scale nonlinear programming problem
with complementarity constraints:

max
x,u,f,ϵ∗+,ϵ∗−

(t+ + αt−) (29a)

s. t. (25b), (25c), (28), (29b)
t+ ≤ ϵk,+, t− ≤ ϵk,−,∀k (29c)

where α is a weighting scalar. Note that we derive (29) for
the case with an uncertain mass parameter but this formulation
can be easily converted to the case where uncertainty exists in
CoM location by replacing Ak, bk in (27) with (13). Similarly,
we can consider uncertainty in finger contact location by
replacing Ak, bk in (27) with (19). Therefore, by solving
tractable (29), we can efficiently generate robust trajectories
that are robust against uncertain mass, CoM location, and
contact location parameters.

Remark 2: If we consider the case where uncertainty exists
in both mass and CoM location simultaneously, we would
have a nonlinear coupling term (Cx + r)(mg + ϵ) in quasi-
static equilibrium of moment. This makes the lower-level
optimization non-convex optimization, making it extremely
challenging to solve during bilevel optimization. Once the
lower-level optimization becomes a non-convex optimization
problem, there is no guarantee that the lower-level optimiza-
tion finds globally optimal solutions, resulting in finding a
very sub-optimal controller. Similarly, all of the constraints
(e.g., considering sticking-slipping contact at point contact A
and B requires complementarity constraints) which results in
non-convex constraints cannot be handled in our CIBO.

C. Robust CIBO for Frictional Uncertainty

We consider the case where the system has uncertainty in
the friction coefficients at A and B as discussed in Sec IV-D.
In order to design a robust open-loop controller for the system,
we can use the similar formulation presented in Sec V-B. The
proposed formulation aims at maximizing the stability margin
from stochastic friction. In particular, to avoid non-convex
optimization as the lower-level optimization problem, we con-
sider the stability margin along positive and negative direction
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for both ϵA and ϵB , as we discuss in Sec V-B. By borrowing
the optimization problem (27), the proposed formulation can
be seen as follows. For simplicity, we abbreviate subscript k.

max
x,u,f,ϵ∗A,+,ϵ∗A,−,ϵ∗B,+,ϵ∗B,−

∑
c∈C

(min
k

ϵ∗c,+ −max
k

−ϵ∗c,−) (30a)

s. t. (25b), (25c), (30b)
ϵ∗A ∈ [−ϵ∗A,−, ϵ

∗
A,+], ϵ

∗
B ∈ [−ϵ∗B,−, ϵ

∗
B,+], (30c)

ϵ∗A,+ ∈ argmax
ϵA,+

{ϵA,+ : g(x, u, f, ϵA,+, ϵ
∗
B) ≤ 0,

ϵA,+ ≥ 0}, (30d)
ϵ∗A,− ∈ argmax

ϵA,−

{ϵA,− : g(x, u, f,−ϵA,−, ϵ
∗
B) ≤ 0,

ϵA,− ≥ 0, }, (30e)
ϵ∗B,+ ∈ argmax

ϵB,+

{ϵB,+ : g(x, u, f, ϵB,+, ϵ
∗
A) ≤ 0,

ϵB,+ ≥ 0, }, (30f)
ϵ∗B,− ∈ argmax

ϵB,−

{ϵB,− : g(x, u, f,−ϵB,−, ϵ
∗
A) ≤ 0,

ϵB,− ≥ 0}, (30g)

where g summarizes the constraints for each lower-level
optimization problem and C = {A,B}. For each lower-level
optimization problem, we consider that another uncertain fric-
tion is in the range of optimal stability margin. For instance,
(30d) is one of the four lower-level optimization problems
which aims at maximizing the stability margin under stochastic
friction forces at A, given stochastic friction force at B, ϵ∗B .
(30c) ensures that ϵ∗B needs to be within the range of stability
margin computed from other two lower-level optimization
problems (30f) and (30g).

The resulting optimization introduces many complementar-
ity constraints through the KKT condition because of four
lower-level optimization problems, but the resulting compu-
tation is still tractable. We discuss computational results in
Sec VI-J.

Remark 3: In practice, the choice of the particular parameter
for the which one should use CIBO to obtain robust trajectories
depends on the amount of uncertainty in different parameters
associated with the manipulation task. For instance, if we have
access to the CAD model of the objects, we can have a good
guess of mass and CoM location of the object and thus the
major source of uncertainty can be from other parameters such
as coefficients of friction.

D. Robust CIBO for Non-Convex Objects

The method introduced in the previous subsections assumes
convex geometry of the object being manipulated and can
not be applied to objects with non-convex geometry (such as
pegs as shown in Fig. 1). This is because non-convex objects
could result in different contact formations between the object
and the environment and it is not trivial to identify a feasible
contact sequence. In [10], the proposed optimization (29) was
solved sequentially for pegs with non-convex geometry. As
illustrated in Fig. 8, we first solve the optimization for a
particular contact set (i.e., mode 1 in Fig. 8) and then solve
the optimization for another contact set (i.e., mode 2 in Fig. 8)

given the solution obtained from the first optimization. While
this method works, it requires extensive domain knowledge.
We observed that the second stage optimization can result
in infeasible solutions given the solution from the first stage
optimization. Thus, we had to carefully specify the parameters
of optimization and, in particular, the initial state and terminal
state constraints. Such a hierarchical approach has difficulty
in finding a feasible solution once the object becomes more
complicated.

To overcome these issues, in general, complementarity con-
straints can be used to model the change of contact. However,
introducing complementarity constraints inside the lower-level
optimization makes the lower-level optimization non-convex
optimization. Hence, the KKT condition is not a necessary
and sufficient condition for optimality but rather a necessary
condition. Thus, it is not guaranteed to find globally optimal
safety margins over the trajectory.

In this work, we propose another approach to deal with the
non-convexity of the object. Inspired by [3], we formulate
the optimization that optimizes the trajectory given mode
sequences instead of optimizing mode sequences. It is worth
noting that our framework still optimizes the trajectory over
the time duration of each mode given the sequence of the
mode. Our goal is that the optimization has a larger feasible
space so that less domain knowledge is required.

Using the formulation presented in [3], we present a mode-
based formulation for non-convex shaped objects. See [3] for
more details regarding mode-based optimization. For simplic-
ity of exposition, we only present the formulation considering
two modes. But one can easily extend this to problems with
multiple modes. For each contact mode, the system has the
different constraints. For brevity, we abbreviate the subscript
k:

ix, iy ∈ FKm(θk, P
O
k,y),∀i ∈ {A,Bm} (31a)

gm(fnA, ftA, fnB1
, ftB1

, fnP , ftP , P
O
y ) if m = 1 (31b)

gm(fnA, ftA, fnB2 , ftB2 , fnP , ftP , P
O
y ) if m = 2 (31c)

ftA = µAfnA, ftB1
= −µB1

fnB1
, ftB2

= −µB2
fnB2

(31d)
(5), xk ∈ X , uk ∈ U , 0 ≤ fk,ni ≤ fu (31e)

where m ∈ {1, 2} to represent each contact mode. gm
represents the quasi-static model of pivoting manipulation for
mode m. It is worth noting that since we decompose the
optimization problem into the two mode optimization problem,
complementarity constraints are encoded for each mode.

What the optimization problem needs to perform is that
for each mode, it only considers the associated constraints
and does not consider constraints associated with different
contact mode. For example, during mode 1, the optimization
should consider only constraints associated with mode 1
and should not consider constraints such as (31c). Another
thing the optimization needs to consider is that it needs to
scale θ̇, ṖO

y since we would like to optimize over the time
duration. To achieve that, we employ the scaled time variables
as discussed in [3]. As a result, we recast the quasi-static
model by introducing a new state variable with a scaled time,
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Fig. 8: A schematic of pivoting for a non-convex shape object where contact set changes over time. During mode 1, the peg rotates with contact at A and
B2. During mode 2, the peg rotates with contact at A and B1. γ represents one of the kinematic features of peg, which is used to discuss the result in Sec 9.

x̃k =

[
θk, P

O
k,y,

θ̇k
T ,

ṖO
k,y

T

]⊤
where T = T1 during mode 1

and T = T2 during mode 2.
For two contact modes, we can remodel our optimization

(25) as follows:

min
x̃,u,f

N−1∑
k=0

(x̃k − xg)
⊤Q(x̃k − xg) + u⊤

k Ruk +

2∑
l=1

Tl (32a)

s. t. h1(x̃k, uk, fk) ≤ 0, for k∆ ≤ 1 (32b)
h2(x̃k, uk, fk) ≤ 0, for k∆ > 1 (32c)

where x̃k =

[
θk, P

O
k,y,

θ̇k
T1
,
ṖO

k,y

T1

]⊤
for k∆ ≤ 1 and x̃k =[

θk, P
O
k,y,

θ̇k
T2
,
ṖO

k,y

T2

]⊤
for k∆ > 1. We use h1 and h2 to

represent all constraints for each mode. Given (32), we can
obtain bilevel optimization formulation for non-convex shape
objects by following the logic in Sec V-B.

E. Robust CIBO with Patch Contact

The formulation for robust CIBO is similar to the point
contact case except that the underlying equilibrium conditions
are different. The quasi-static equilibrium conditions for the
patch contact case were earlier presented in (24). Using
these equations and the analysis presented in Sections IV-B
through IV-D, it is straightforward to compute the constraints
for the corresponding robust CIBO similar to (27). More
explicitly, this can be achieved by computing the appropriate
constraints of the type Akϵk,+ ≤ bk and −Akϵk,− ≤ bk
using (24) and the frictional stability margin discussion in
Sec IV-G.

VI. EXPERIMENTAL RESULTS

In this section, we verify the performance of our proposed
approach for pivoting. Through the experiments we present in
this section, we evaluate the efficacy of the proposed planner
in several different settings and the computational requirement
of the method. We also present results of implementation of
the proposed planner on a robotic system using a 6 DoF
manipulator arm and compare it against a baseline trajectory
optimization method.

TABLE II: Parameters of objects. m, l, w represent the mass, length, and the
width of the object, respectively. For pegs, the first element in l, w are l1, w1

and the second element in l, w are l2, w2, respectively, shown in Fig. 20. For
pegs, since they are made of the same material and they make contact on the
same environment, we can assume µB = µB1 = µB2 .

m [g] l [mm] w [mm] µA, µB , µP

gear 1 140 84 20 0.3, 0.3, 0.8
gear 2 100 121 9.5 0.3, 0.3, 0.8
gear 3 280 84 20 0.3, 0.3, 0.8
peg 1 45 36, 40 20, 28 0.3, 0.3, 0.8
peg 2 85 28, 40 10, 11 0.3, 0.3, 0.8
peg 3 85 28, 40 10, 27.5 0.3, 0.3, 0.8

TABLE III: Worst-case stability margin over the control horizon obtained
from optimization for gear 1. Note that the stability margin for the solution
of the benchmark optimization is analytically calculated.

ϵ∗+, ϵ∗− [N] r∗+, r∗− [mm]

Benchmark optimization (25) 0.10, 0.66 1.5, 0.85
Ours (29) with mass uncertainty 0.34, 0.50 N/A
Ours (29) with CoM uncertainty N/A 3.43, 2.70

A. Experiment Setup

We implement our method in Python using IPOPT solver
[40] with PYROBOCOP wrapper [3]. We use HSL MA86 [41]
as a linear solver for IPOPT. The optimization problem is
implemented on a computer with Intel i7-12800K.

We demonstrate our algorithm on several different objects,
as detailed in Table II. During optimization, we set Q =
diag(0.1, 0), R = diag(0.01, 0.01). We use α = 1 when we
run (29). We set xs = [0, w

4 ]
⊤, θg = π

2 . Note that we only
enforce terminal constraints for convex shape objects. For non-
convex shape objects, we do not enforce terminal constraints
since the peg cannot achieve θN = π

2 unless we consider
another contact mode (see Fig. 8). In PYROBOCOP wrapper,
we did warm-start for the state at k = 0, N by setting initial
and terminal states as initial guesses. We did not explicitly
conduct a warm-start for other decision variables and we set
them to 0.

We use a Mitsubishi Electric Factory Automation (MELFA)
RV-5AS-D Assista 6 DoF arm (see Fig. 1) for the experiments.
The robot has a pose repeatability of ±0.03mm. The robot
is equipped with Mitsubishi Electric F/T sensor 1F-FS001-
W200 (see Fig. 1). To implement the computed force trajectory
during manipulation, we use the default stiffness controller
for the robot. By selecting an appropriate stiffness matrix
[42], we design a reference trajectory that would result in
the desired interaction force required for manipulation [43],
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(a) (b) (c) (d) (e)

Fig. 9: Trajectory of frictional stability margin. ϵA, ϵB are bounds of ϵ from (10), (11). rA, rB are bounds of r from (13). ϵ+, ϵ−, r+, ri are solutions
obtained from CIBO. (a), (b): Trajectory of frictional stability of gear 1 based on uncertain mass obtained from baseline optimization, our CIBO, respectively.
(c), (d): Trajectory of frictional stability of gear 1 based on uncertain CoM location obtained from baseline optimization, CIBO, respectively. (e): Snapshots
of pivoting motion for gear 1 obtained from CIBO considering uncertain CoM location.

(a) (b)

(c)

Fig. 10: (a), (b): Trajectory of frictional stability margin of peg 1 based
on uncertain mass obtained from CIBO, baseline optimization, respectively.
Note that here we solve CIBO sequentially for each mode (i.e., hierarchical
planning), instead of using the proposed mode-sequence-based optimization.
(c): Snapshots of pivoting motion for peg 1, obtained from CIBO considering
uncertain mass.

TABLE IV: Obtained worst stability margins over the time horizons from
optimization for peg 1. Note that the stability margin for the solution of the
benchmark optimization is analytically calculated.

ϵ∗+, ϵ∗− [N] r∗+, r∗− [mm]

Benchmark optimization (25) 0.035, 0.018 31, 0
Ours (29) with mass uncertainty 0.050, 0.021 N/A
Ours (29) with CoM uncertainty N/A 38, 0

[44]. More specifically, we use the following relationship,
xr
k = xk + ukK

−1
s , where, xk and fk are the configuration

trajectory and the force trajectory at time step k, respectively,
obtained by CIBO as output. Ks is the stiffness matrix for the
robot which is appropriately chosen. At each time step k, we
command xr

k as a reference trajectory of the robot’s internal
position controller. Note that this trajectory is implemented
in open-loop and we do not design a controller to ensure
that the computed force trajectory is precisely tracked during
execution.

For the MPC experiments discussed in Section VI-L, the
object states are tracked using AprilTag [45]. The robot states
are tracked using the robot’s joint encoders. The contact states
at contact A,B, P in Fig. 2 are estimated using the object
state, the robot state, and the known geometry of the object.

B. CIBO for Uncertain Mass and CoM Parameters

Fig. 9 shows the trajectory of frictional stability margin of
gear 1 obtained from the proposed robust CIBO considering
uncertain mass and uncertain CoM location, and the bench-
mark optimization. Overall, CIBO could generate more robust
trajectories. For example, at t = 0 s, fnB in (a) is almost
zero so that the stability margin obtained from (11) is almost
zero. In contrast, CIBO could realize non-zero fnB as shown
as a red arrow in (b). In (d), to increase the stability margin,
the finger position PO

y moves on the face of gear 1 so that
the controller can increase the stability margin more than the
benchmark optimization. This would not happen if we do not
consider complementarity constraints (5). Also, our obtained
ϵ+, ϵ−, r+, r− follows bounds of stability margin. It means
that CIBO can successfully design a controller that maximizes
the worst stability margin given the best stability margin for
each time-step.

Fig. 11 shows that both the benchmark and CIBO actually
change the finger position PO

y by considering complementarity
constraints (5). In fact, we observed that at t = 25 s, PO

y

in both results moves to the negative value to maintain the
stability of the object. In practice, we are unable to find any
feasible solutions with fixed PO

y , instead of using (5). Thus,
(5) is critically important to find a feasible solution.

Next, we discuss how much CIBO improves the worst-case
stability margin. The trajectories of fnP in Fig. 11 show that
the magnitude of fnP from CIBO increase at t = 25 s to
improve the worst-case stability margin. On the other hand,
fnP from the benchmark optimization does not increase at
t = 25 s. Hence, we verify that by increasing normal force, the
robot could successfully robustify the pivoting manipulation.
This result can be also understood in Fig. 9 (c) and (d) where
the stability margin in (d) at t = 25 s is larger than that in
(c), as discussed above.

Table III and Table IV summarize the computed stability
margin from Fig. 9. In Table III, for the case where CIBO
considers uncertainty of mass, we observe that the value of
ϵ∗− from CIBO is smaller than that from the benchmark opti-
mization although the sum of the stability margin ϵ∗++ϵ∗− from
CIBO is greater than that from the benchmark optimization.
This result means that CIBO can actually improve the worst-
case performance by sacrificing the general performance of
the controller. Regarding the case where we consider the
uncertain CoM location, CIBO outperforms the benchmark
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Fig. 11: We show the time history of object angle, finger position, and contact forces from a manipulator during pivoting of gear 1. The top row shows
the result using CIBO (29) considering CoM uncertainty and the bottom one shows the result using (25) (i.e., it does not consider robustness criteria in the
formulation explicitly.). The top row results and the bottom row results are used in visualizing the stability margin in Fig. 9 (d), (c), respectively.
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Fig. 12: Time history of frictional stability margin considering CoM location
with different initial manipulator position PO

y (t = 0).

trajectory optimization in both r∗+, r
∗
−. For peg 1, the bilevel

optimizer without using mode sequence-based optimization
(i.e., hierarchical optimization) finds trajectories that have
larger stability margins for both uncertain mass and CoM
location as shown in Table IV. The trajectory of stability
margin obtained from CIBO considering mass uncertainty is
illustrated in Fig. 10. We discuss the results using CIBO with
mode-sequence based optimization in Sec VI-G.

C. CIBO with Different Manipulator Initial State

We believe that the efficiency of the optimization depends
on the initial location of the manipulator finger. This is

TABLE V: Computed worst-case stability margin considering uncertain CoM
location with different PO

y at t = 0 over the control horizon obtained from
optimization for gear 1.

r∗+, r∗− [mm]

Ours with PO
y (t = 0) = 0 16.47, 1.36

Ours with PO
y (t = 0) = 0.125w 12.99, 2.98

Ours with PO
y (t = 0) = 0.25w 10.00, 4.41

Ours with PO
y (t = 0) = 0.375w 5.94, 5.67

Ours with PO
y (t = 0) = 0.5w 1.94, 6.77

because the stability margin depends on the manipulation
finger location, which is partially governed by its location
at t = 0. Thus we present some results by randomiz-
ing over the manipulator finger location at t = 0. We
sample initial state of finger position PO

y (t = 0) from
a discrete uniform distribution with the range of PO

y (t =
0) ∈ [−0.5w,−0.375w,−0.25w,−0.125w, . . . , 0.5w]. Then
we run CIBO considering CoM location uncertainty.

Fig. 12 illustrates the time history of stability margin with
different PO

y (t = 0). CIBO is not able to find feasible solu-
tions with PO

y (t = 0) < 0. It makes sense since there may not
be enough moment for the desired motion if PO

y (t = 0) < 0.

Fig. 12 shows that different PO
y (t = 0) leads to different

stability margin over the time horizon. Table V summarizes
the worst-case stability margin over the trajectory obtained
from Fig. 12. Table V also shows that the worst-case stability
margin is different with different PO

y (t = 0). Finding a good
PO

y (t = 0) is not trivial and it requires domain knowledge.
Thus, ideally, we should formulate CIBO where PO

y (t = 0)
is also a decision variable so that the solver can optimize the
trajectory over PO

y (t = 0) as well.

Since CIBO is non-convex optimization, it is still possible
that a feasible solution exists for PO

y (t = 0) < 0. However, we
can at least argue that it is much more difficult to find a feasible
solution with PO

y (t = 0) < 0 than that with PO
y (t = 0) ≥ 0.
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(a) Time history of stability margin considering CoM location with different mass. The
trajectory with the same color means that the same mass is used in the CIBO. The
trajectories where r > 0 are the trajectories of r+ and the the trajectories where r < 0
are the trajectories of r−.

0 5 10 15 20 25 30
t [s]

5
4
3
2
1
0

f n
p  

[N
]

mass 0.1 kg
mass 0.12 kg
mass 0.14 kg
mass 0.16 kg
mass 0.18 kg
mass 0.2 kg

(b) Time history of fO
nP

0 5 10 15 20 25 30
t [s]

1.0
0.5
0.0
0.5
1.0
1.5

f tp
  [

N]

mass 0.1 kg
mass 0.12 kg
mass 0.14 kg
mass 0.16 kg
mass 0.18 kg
mass 0.2 kg

(c) Time history of fO
tP

Fig. 13: Results of CIBO considering CoM location with different mass.

D. CIBO for Uncertain CoM parameters with Different Mass
and Friction of Object

We first study how stability margin with uncertain CoM
location changes with different mass parameters. We sample
the mass of the object from a discrete uniform distribution
with range of m ∈ [0.1, 0.12, 0.14, 0.16, 0.18, 0.2] kg. Then
we run CIBO considering CoM location uncertainty.

Fig. 13 shows the time history of stability margin and
contact forces over the time horizon. For this analysis, the
projection of CoM lies on the contact B (i.e., CB

x = 0.) at
t = 15 s. At t ∈ [0, 15] s (i.e., CB

x > 0), the robot has
to execute the contact forces to support the object against
gravity. In fact, Fig. 13b and Fig. 13c show that the contact
forces increase as mass increases. Since other parameters of
the system are the same, the CIBO designs the trajectory
whose stability margin is the same with different mass by
changing the contact forces from the robot. At t ∈ [15, 30]
s, the upper-bound of stability margin r+ shows the larger
value with the lighter object, and the lower-bound of stability
margin r− also shows the larger value with the lighter mass
of the object. This makes sense because as the object becomes
lighter, the system allows for a longer moment arm r in quasi-
static equilibrium.

Second, we study how stability margin with uncertain CoM
location changes with different coefficients of friction between
the object and the robot finger (i.e., µP at contact P in Fig. 2).
We sample the friction of the object from a discrete uniform
distribution with a range of µP ∈ [0.6, 0.7, 0.8, 0.9, 1.0]. Then
we run CIBO considering CoM location uncertainty.

(a) Time history of stability margin considering CoM location with different friction at P .
The trajectory with the same color means that the same mass is used in the CIBO. The
trajectories where r > 0 are the trajectories of r+ and the the trajectories where r < 0
are the trajectories of r−.
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Fig. 14: Results of CIBO considering CoM location with different friction.

Fig. 14 shows the time history of stability margin, finger
contact location PO

y , and the contact normal force fO
nP over

the time horizon. We observe that the different friction leads
to different trajectories of the stability margin. In particular,
we observe that the CIBO considering the lower µP results
in a larger r+. As Fig. 14b, the finger keeps moving during
the manipulation to complete the pivoting. It means that the
complementarity constraints at P (5) are always equality
constraints like (4), fO

tP = µP f
O
nP . With the small µP , the

robot can execute the large fO
nP with the small fO

tP , which is
beneficial at t ∈ [0, 18] s to avoid losing the contact A, before
the projection of CoM lies on the contact B.

E. CIBO for Uncertain Friction Parameters

Fig. 15 shows the time history of frictional stability margin
of gear 1 and gear 3 using (30). CIBO could successfully
design an optimal open-loop trajectory by improving the
worst-case performance of stability margin. We observe that
Fig. 15 (b) shows a larger stability margin compared to (a).
This result makes sense since in (b), we consider gear 3 whose
weight is heavier than the weight of gear 1 and thus we get
stability margins which are bigger than those obtained for (a).

F. CIBO for Uncertain Finger Contact Location

In this section, we present results for pivoting manipulation
under uncertain finger contact location. Fig. 16 shows the time
history of the stability margin of gear 2 using (29). Our CIBO
could successfully design a controller for an uncertain contact
location. Also, Fig. 16 shows that stability margin has a quite
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Fig. 15: Trajectory of frictional stability margin of (a) gear 1 and (b) gear 3,
based on uncertain friction obtained from CIBO (30), respectively.
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Fig. 16: We consider CIBO with uncertain finger contact location. (a): Time
history of frictional stability margin. (b) Time history of normal force at the
finger.

large value at t = 37 s. At t = 37 s, the controller makes
the finger move with zero normal force, resulting in a large
stability margin as we explain in Sec IV-E.

G. CIBO over Mode Sequences for Non-Convex Objects

In this section, we present results for objects with non-
convex geometry using the mode-based optimization presented
in Section V-D. Fig. 17 shows the time history of states,
control inputs, and frictional stability margins for pegs whose
geometry are non-convex and the contact sets change over
time. First of all, we can observe that CIBO in (32) could
successfully optimize the stability margin over trajectory while
it optimizes the time duration of each mode. We observe that

T1

T1+T2
(i.e., the ratio of mode 1 over the horizon) of peg 2 is

much smaller than that of peg 3 since γ (see Fig. 8 for the
definition of γ) of peg 2 is smaller than that of peg 3 and
thus, it spends less time in mode 1. Fig. 17 shows that ftP
of peg 3 dramatically changes at t = T1 s while that of peg
1 does not. In contrast, the shape of peg 2 has smaller γ (i.e.,
less non-convex shape) and it can be regarded as a rectangle
shape. Thus, the effect of contact mode is less, leading to a
smaller change of ftP at t = T1 s.

In order to show that we can find solutions much more ef-
fortlessly using (32) compared to two-stage optimization (that
was earlier used in [10]), we sample 20 different py at t = 0
s and count the number of times the benchmark two-stage
optimization problem and the proposed optimization problem
over the mode sequences (32) can find feasible solution. We
observed that the benchmark two-stage optimization problem
found feasible solutions only 2 times while the mode-based
optimization using (32) was successfully able to find feasible
18 out of 20 times. Therefore, we verify that our proposed

TABLE VI: Average Solving Time (AST) comparison between benchmark
optimization (25) and CIBO under mass uncertainty using (29) with gear 2.

N AST (s) of (25) AST (s) of (29)
30 0.21 0.38
60 0.50 0.68

120 1.01 1.24

optimization problem enables to find solutions much more
effortlessly. The benchmark method requires careful selection
of parameters to ensure feasibility (as was explained in [10]).

H. CIBO for Uncertain Mass on a Slope
We present results of objects with uncertain mass with

varying angles of slope discussed in Sec IV-F. We consider
gear 2 with ϕ = [−20◦, 0◦, 20◦] as an angle of slope.

Fig. 18a and Fig. 18b shows the time history of the stability
margin ϵ+ and ϵ−, respectively. Fig. 18a shows that the smaller
ϕ is, the larger ϵ+ is during the manipulation. ϵ+ under mass
uncertainty considers if contact B is losing as we discuss in
(11). Fig. 18a means that contact B can more easily lose
contact as phi increases. This makes sense because the larger
the angle of slope ϕ is, the larger the moment which makes the
object rotate along the counter-clockwise direction, resulting in
the loss of contact at B. Similarly, ϵ− under mass uncertainty
considers if contact A is losing as we discuss in (9). Fig. 18b
means that contact A can more easily lose contact as ϕ
decreases at t =∈ [0, 15] s. This makes sense because the
smaller the angle of slope ϕ is, the larger the moment which
makes the object rotate along the clockwise direction, resulting
in the loss of contact at A.

I. CIBO for Patch Contact
Table IX shows the computed stability margin considering

patch contact shows the greater margins for both positive and
negative directions. Hence, we verify that our optimization can
still work with patch contact and design the robust controller
for maximizing the worst-case stability margin. Intuitively, this
result makes sense since the contact area increases and the
pivoting system has a larger physically feasible space, resulting
in a greater stability margin.

Fig. 19 illustrates the time history of frictional stability
margin of gear 2 from CIBO with considering point contact
and with considering patch contact. Both CIBO with point
contact and patch contact have the smallest (i.e., worst-case)
stability margin at t = 0. However, CIBO with patch contact
shows a greater margin at t = 0, as we discuss above.
In addition, over the trajectory, CIBO with patch contact
shows a greater margin than that with point contact. Thus,
we quantitatively verify that using patch contact is beneficial
over the trajectory even though the optimization aims at
maximizing the worst-case margin, not the stability margin
over the trajectory. It is noted that we are not able to obtain
better margins using patch contact due to the non-convexity
of the underlying optimization problem.

J. Computation Results
Table VI compares the computation time between bench-

mark optimization (25) and CIBO under mass uncertainty
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Fig. 17: We show the time history of object angle, finger position, contact forces from a manipulator, and frictional stability margins. The top row shows the
result with peg 2 and the bottom one shows the result with peg 3. The pink and blue shade regions represent that the system follows mode 1 and mode 2,
respectively.

(a) (b)

Fig. 18: We consider CIBO with uncertain mass on varying angles of slope.
(a): Time history of stability margin, ϵ+. (b) Time history of stability margin,
ϵ−. The case where the object is on the slope whose angle of slope is 20◦

is illustrated in Fig. 18b.

TABLE VII: NLP specification for CIBO under frictional uncertainty using
(30) with gear 1.

N # of Variables # of Constraints Average Solving Time (s)
30 2339 2280 1.9
60 4679 4560 10.6

120 9359 9130 30.9

using (29) for gear 2. Overall, (29) is not so computationally
demanding compared to (25). However, as you can see in
Table VII and Table VIII, once the optimization problem has
too many complementarity constraints because of the KKT
condition, we clearly observe that the computational time
increases.

Table VII and Table VIII shows the computational results
for CIBO considering frictional uncertainty (30) and bilevel
optimization over mode sequences (32), respectively.

In general, the computational time for CIBO is larger than
the benchmark optimization as CIBO has larger number of
complementarity constraints. In the future, we will try to work
on better warm-starting strategies so that we might be able to
accelerate the optimization.

K. Hardware Experiments

We implement our controller using a 6 DoF manipulator to
demonstrate the efficacy of our proposed method. In particular,
we perform a set of experiments to compare our method

TABLE VIII: NLP specification for CIBO over mode sequences considering
uncertain CoM location using (32) with peg 3.

N # of Variables # of Constraints Average Solving Time (s)
30 1648 1590 3.68
60 3298 3180 61.6

120 6598 6360 73.0

TABLE IX: Computed worst-case stability margin considering uncertain CoM
location over the control horizon obtained from optimization for gear 2.

r∗+, r∗− [mm]

Ours with point contact 5.27, 1.31
Ours with patch contact 6.81, 8.82

against a baseline method using gear 1. To evaluate robustness
for objects with unknown mass, we solve the optimization with
mass different from the true mass of the object and implement
the obtained trajectory on the object. We implement trajecto-
ries obtained from the two different optimization techniques
using 4 different mass values, m = {100, 110, 140, 170} g.
Then, we implement the obtained trajectory on the object with
known mass. Note that the actual mass of gear 1 is 140 g. We
test the trajectories over 10 trials for the two different methods.

We observe that our proposed bilevel optimization is able
to achieve 100 % success rates for all 4 mass values while
benchmark optimization cannot realize stable pivoting for
all 4 mass values over 10 trials. Note that the benchmark
trajectory optimization also generates trajectories with non-
zero frictional stability margin but they failed to pivot the
object. The reason would be that the system has a num-
ber of uncertainties such as incorrect coefficient of friction,
sensor noise in the F/T sensor (for implementing the force
controller), etc. which are not considered in the model. We
believe that these uncertainties make the objects unstable
leading to the failure of pivoting. In contrast, even though
CIBO also does not consider these uncertainties, it generates
more robust trajectories and we believe that this additional
robustness could account for the unknown uncertainty in the
real hardware. We also observe that the trajectories generated
by benchmark optimization can successfully realize pivoting if
the manipulator uses patch contact during manipulation (thus
getting more stability).
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Fig. 19: Trajectory of frictional stability margin of gear 2 based on uncertain
CoM obtained from CIBO using point contact model and patch contact model,
respectively. The vertical blue line represents the moment when the projection
of CoM lies on the contact B.

Fig. 20: Snapshots of hardware experiments. We show snapshots of the white
peg and gear (instead of overlaid images) for clarity.

We perform hardware experiments with additional objects to
evaluate the generalization of the proposed planning method.
All the objects used in the hardware experiments are shown in
Fig. 21. Fig. 20 shows the snapshots of hardware experiments
for the 4 objects detailed in Table II. We observe that our
bilevel optimization can successfully pivot all the objects
during hardware experiments (see Fig. 20 and the videos).
This shows that we can use the proposed method with objects
with different size and shape.

L. Recovery from Disturbance during Execution

In the next set of hardware experiments, we present the re-
covery of the proposed controller from disturbances applied on
the object during execution. For performing these experiments
we use a cuboid object (see Fig. 22 for the experimental setup,
l = 110, w = 55, and m = 110 g). During the execution of
the trajectory, we apply random disturbances and record the

Fig. 21: The different objects used in hardware evaluation of the proposed
method. Please check the hardware experiments results in the video at this
link https://www.youtube.com/watch?v=ojlZDaGytSY.

object orientation using a vision-tracking system. The results
from 5 runs of the trajectory are shown in Fig. 23. As can be
seen in the figure, we apply external disturbance on every run
of the trajectory at t = 30. It is noted that the disturbance can
not be large enough which results in loss of contact. As long as
the contact between the object and the robot is maintained, the
robust planner can successfully recover from the disturbance
applied during execution and can reach the desired goal (see
Fig. 23).

Furthermore, we also implement the algorithm in an MPC
fashion to understand if it implements the algorithm in a
closed-loop fashion as well as its performance. We use an
initial reference trajectory planned by CIBO to initialize the
controller. During online execution, we use a trajectory track-
ing cost function for CIBO. In particular, the vision system is
used to estimate θW of the object. For brevity, we abbreviate
the superscript W here. The following cost function is used
for CIBO:

λ1

T∑
t=k

(
θ̂t − θ⋆t

)2

+ λ2u
2

where θ⋆ is the initial planned orientation trajectory of the
object obtained by CIBO. We optimize the controller after
every 10 control steps till the object reaches the goal. Results
of 5 such runs are shown in Fig. 24. We apply random
disturbances during execution between t = 20 and t = 50
as could be seen in the plot (please see the image inset in
Fig. 24). As we can observe from these plots, the controller
is successfully able to recover from these disturbances and
thus, the controller can always guide the system from any
initial state to the desired goal state. This shows that the
proposed controller can be used in closed-loop to perform the
desired pivoting manipulation. Note that we can not precisely
estimate slip between the robot and the object accurately
using the vision system. We believe we can generate more
complex recovery behavior using additional slip information.
However, designing such an estimator requires new hardware

https://www.youtube.com/watch?v=ojlZDaGytSY
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Fig. 22: The vision-based feedback pivoting system which can observe the
state in real-time and adapt to recover from disturbances during execution.
The inset image shows the tracking of the object using an Apriltag system.

Fig. 23: This plot shows recovery from disturbance applied during execution
of the robust trajectories obtained from CIBO. The inset image shows the
amount of disturbance applied during execution at t = 30. As could be seen
in the plots, the robot we could successfully recover in all test runs.

and additional work on tactile estimation [46] which is left as
a future exercise.

VII. DISCUSSION AND FUTURE WORK

Generalizable manipulation through contact requires that
robots be able to incorporate and account for uncertainties
during planning. However, designing the robust controller for
achieving such manipulation remains an open problem and
remains largely unexplored. This paper presents frictional
stability-aware optimization, a strategy that exploits friction
for robust planning of pivoting manipulation. By considering
a variety sources of uncertainty such as mass, CoM location,
finger contact location, and friction coefficients, we discussed
the stability margin for pivoting manipulation with slipping
contact. We presented CIBO, which solves novel bilevel

Fig. 24: We run the proposed CIBO in MPC fashion with state feedback
using the vision system shown in Fig. 22. We apply multiple disturbances
between t = 20 and t = 50 during execution which could be seen in the
zoomed image. We show that due to the closed-loop nature of the controller,
the controller is always able to guide the object to the desired goal.

optimization for pivoting manipulation while optimizing the
worst-case stability margin of pivoting manipulation for (non-
convex) objects. The proposed method was evaluated in simu-
lation using several test settings. We showed that our proposed
bilevel optimization method is able to design trajectories which
are robust to larger uncertainties compared to a baseline
trajectory optimization method. The proposed method was also
demonstrated on a physical robotic system by implementing
the computed trajectories on a large variety of objects of
different geometries and physical properties. Furthermore, we
also designed an MPC controller using the proposed algorithm
which can successfully tracking and regulate the pose of
objects during manipulation providing additional robustness
during execution.

Although this paper focuses on pivoting manipulation as a
demonstration of our framework, our work can be generalized
to other manipulation primitives such as pivoting with one-
point contact, pushing, and grasping. This is because our
stability margin analysis and CIBO are derived from quasi-
static equilibrium (1) and the corresponding friction cone
constraints (2). These conditions are very common across
most manipulation problems, and thus our framework can be
applicable to the aforementioned manipulation primitives as
long as they satisfy (1) and (2).

There are a number of limitations in this work:
Contact-Rich CIBO This work assumes that dynamics of

an object with quasi-static equilibrium. For objects with non-
convex geometry, CIBO is still able to design robust open-
loop controller using mode-based optimization. CIBO using
mode-based optimization is able to find feasible solutions
if users can provide CIBO with physically feasible mode
sequences. However, for objects with a very complex shape,
it is quite challenging to identify mode sequences prior to
optimization [47]. As a result, CIBO might not be able to find
feasible solutions. In order to avoid providing mode sequences,
CIBO needs to consider mode sequences by itself. This can
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be realized by considering complementarity constraints or
integer constraints inside the lower-level optimization problem
of CIBO. However, as we explained in Sec V-D, CIBO
considering these non-convex constraints inside the lower-
level optimization problem is not guaranteed to find globally
optimal safety margins.

Geometric Uncertainty Although we consider a variety of
uncertainties, we do not explicitly consider the uncertainty in
the geometry of an object. Because geometric uncertainty is
one of the main uncertainties due to imperfect vision sensing
and can change the contact mode such as from making to
breaking contact, considering geometric uncertainty is impor-
tant. This paper discusses the uncertainty in the finger contact
location, which indirectly considers geometric uncertainty.
This is because the relative pose between the object and the
robot changes due to the finger contact location uncertainty.
Since geometric uncertainty also changes the relative pose,
we believe considering the uncertainty in robot finger contact
location is one way to get started working on geometric
uncertainty.

Dynamic Manipulation with Uncertainty Propagation
In this work, we make quasi-static assumption during ma-
nipulation. The natural extension of this work is to relax
this assumption and consider quasi-dynamic model during
manipulation. To work on these cases, we need to explicitly
consider dynamic version of the stability margin. However, this
is not trivial. We need to understand how we can propagate
uncertainty for contact dynamics as it is not well understood.
The stability margin needs to incorporate this uncertainty
propagation for such cases. See [22] for more discussion on
uncertainty propagation for contact-rich dynamical systems.

Accurate Contact Mechanics One of the contributions
of this paper is that we consider patch contact. However, in
reality, the robot should be able to switch contact mode from
patch contact to point contact and vice versa. This enables
CIBO to have a larger stability margin but, again, makes the
lower-level optimization of CIBO non-convex.

Another limitation here is modeling of compliant contact.
We observed that introducing compliant contact improves the
stability of the object. However, modeling compliant contact
is difficult. One approach to model compliant contact can be
learning-based approach. One of the assumptions of this work
is that we consider pivoting in 2D. Thus, extending our work in
3D is promising, which requires the discussion of generalized
friction cones [48].

Closed Loop Tactile Control We also implemented the pro-
posed CIBO in a closed-loop fashion with real-time feedback
from a vision system. However, once uncertainty of the system
is too large (e.g., the mass of the object used in CIBO and the
actual mass of the object is so different), we observed slipping
between the robot end-effector and the object. It is difficult to
observe slip using vision sensors alone. In the future, we would
like to design a closed-loop controller using tactile sensing to
obtain the slip information between the robot and the object
for precise closed-loop control [9], [49].
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