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Abstract—We present a framework for model-free batch local-
ization and SLAM. We use lifting functions to map a control-
affine system into a high-dimensional space, where both the
process model and the measurement model are rendered bi-
linear. During training, we solve a least-squares problem us-
ing groundtruth data to compute the high-dimensional model
matrices associated with the lifted system purely from data. At
inference time, we solve for the unknown robot trajectory and
landmarks through an optimization problem, where constraints
are introduced to keep the solution on the manifold of the lifting
functions. The problem is efficiently solved using a sequential
quadratic program (SQP), where the complexity of an SQP
iteration scales linearly with the number of timesteps. Our
algorithms, called Reduced Constrained Koopman Linearization
Localization (RCKL-Loc) and Reduced Constrained Koopman
Linearization SLAM (RCKL-SLAM), are validated experimen-
tally in simulation and on two datasets: one with an indoor mobile
robot equipped with a laser rangefinder that measures range to
cylindrical landmarks, and one on a golf cart equipped with RFID
range sensors. We compare RCKL-Loc and RCKL-SLAM with
classic model-based nonlinear batch estimation. While RCKL-
Loc and RCKL-SLAM have similar performance compared to
their model-based counterparts, they outperform the model-based
approaches when the prior model is imperfect, showing the
potential benefit of the proposed data-driven technique.

I. INTRODUCTION

STATE estimation, and simultaneous localization and map-
ping (SLAM) in particular, are of prime importance for

many robotics systems. Most state-estimation methods rely on
complex modelling and/or problem-specific techniques, and
the procedure often involves linearization. Moreover, when
process or measurement models are inaccurate, or even un-
available, model-based state estimation methods can struggle
to produce accurate and consistent navigation results. For many
applications [1], [2], [3], the procedure for modelling and/or
solving the estimation problem is much more involved than
the data-gathering process.

In this work, we propose the Reduced Constrained Koopman
Linearization (RCKL) framework for data-driven localization
and SLAM. The method

• learns a high-dimensional (bi)linear system model from
data without requiring prior models,
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Fig. 1: Visualization of the trajectory output of RCKL-Loc (left),
and the trajectory and landmark output of RCKL-SLAM (right), on
Experiment 2 described in Section X-D, showing the estimators’ mean
states and mean landmark positions compared to the groundtruth.
The green regions and the grey regions are, respectively, the 3σ
covariances of the trajectory and of the landmarks. The estimators’
trajectories and landmarks are close to the groundtruth and are within
the estimated 3σ bounds, despite the algorithm having no prior
knowledge of the system models.

• is applicable to systems with control-affine dynamics,
• solves for the unknown states and landmark positions with

an inference cost that scales linearly with the number of
timesteps, and

• has a training cost that scales linearly with the amount
of data and an inference cost that is independent of the
amount of training data.

RCKL is an extension of the Koopman State Estimator
(KoopSE) [4], a framework for data-driven localization where
the landmarks are at the same positions at test time as during
training. RCKL extends KoopSE by allowing for localization
with landmarks at different positions at test time, and allowing
for SLAM when the landmarks are unknown at test time.
Specifically, the main novelties of RCKL over KoopSE are
(i) a formulation that allows for the joint estimation of poses
and landmarks, (ii) the introduction of constrained optimization
over the manifolds defined by the lifting functions, and (iii)
a formulation of a Sequential Quadratic Program (SQP) [5]
to efficiently perform this optimization. Given a robot with
unknown nonlinear dynamics and measurements, we can first
learn its high-dimensional model in a factory setting with
groundtruth, and then deploy the robot in the field and use
RCKL-SLAM to map the new landmarks. Once the landmarks
are known, we can then potentially use RCKL-Loc to perform
batch (or recursive) localization against the map.
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This paper is structured as follows. We review related work
in Section II, summarize themes in our notation in Section III,
and discuss system lifting with Koopman linearization in
Sections IV and V. We outline the model-learning procedure in
Section VI. We then build up the design of RCKL through Sec-
tions VII-IX, where we discuss the procedure and limitations of
Unconstrained Koopman Linearization (UKL) in Section VII,
Constrained Koopman Linearization (CKL) in Section VIII,
and finally RCKL in Section IX. We present experimental
results in Section X and conclude in Section XI.

II. RELATED WORK

Two common concepts for data-driven algorithms are kernel
embeddings [6] and the Koopman operator [7], both used to
transform a system into a simpler form in a high-dimensional
space. Kernel methods lift the system by embedding probabil-
ity distributions in high-dimensional spaces [8], and there has
been some work on kernelized state estimation and SLAM for
limited model types using Gaussian processes [9], [10] and
kernel embeddings [11]. However, pure kernel methods scale
poorly, typically cubically with the amount of training data.
Koopman-based methods, on the other hand, work by lifting
the variables directly, and both the model-learning process and
the inference process typically scale well with data [12]. There
is some work on Koopman-based state estimation, validated for
small problems in simulation [13], [14]. However, validations
on real-world datasets are limited, and efficient learning and
inference techniques have yet to be developed for large-scale
state-estimation problems such as SLAM. Rather, most of the
attention on Koopman in robotics has been on filtering [15] or
model-predictive control for nonlinear systems [16], [17], [18],
which are applications with short time horizons. In general,
there is limited work on using the Koopman operator to lift
and solve large batch optimization problems, including SLAM.

There is a large body of work on system identification
with kernels [19], [20] and Koopman techniques [21], [22],
[23]. These methods solve linear-like optimization problems
a lifted space and typically have better convergence prop-
erties than classic methods. However, there is little work
on actually employing the identified lifted models for state
estimation. Converting them back into the original state space
and using classic nonlinear estimation methods would still
be challenging, especially if the models are noisy or high
dimensional [24]. Instead, we seek a data-driven method that
both identifies the models and employs them for estimation
efficiently in the lifted space.

One method for data-driven state estimation is KoopSE [4],
which lifts a control-affine system such that standard batch
linear-Gaussian state estimation methods can be used. KoopSE
is validated on a mobile robot dataset. However, KoopSE
incorporates all of the measurements as part of one large
model for the whole environment. Thus, when carrying out
localization, the landmarks are required to be at the same
positions at test time as during training. With no explicit
specification for the landmarks, this formulation also cannot
be used for SLAM. This paper aims to begin filling this gap
by formulating data-driven bilinear localization and SLAM for
control-affine systems.

III. NOTATION

We denote matrices with capital boldface letters, A, vectors
with lowercase boldface letters, a, and scalars with normal-
faced letters, a. We use diag(A1, . . . ,AN ) to denote the block-
diagonal matrix with the blocks being A1, . . . ,AN . We denote
quantities in the original, unlifted space with Greek letters, ξ,
and quantities in the lifted space with Roman letters, x. We
use the same letter of the two alphabets to denote connected
quantities whenever possible, e.g., ξ for the original state and
x for the lifted state. For the lifted quantities, we denote batch
terms with italics, x, and non-batch terms without italics.

IV. KOOPMAN LIFTING OF PROCESS MODELS

In this section, we briefly introduce the concept of Koopman
lifting [7] of discrete process models. For a comprehensive
review of the Koopman operator, see [12], [17].

The Koopman framework’s main idea is to lift a nonlin-
ear autonomous system into a high-dimensional space where
the system becomes linear. Suppose a noiseless autonomous
system (i.e., no inputs) is governed by ξk = f(ξk−1), where
ξk is the state at timestep k and f(ξ) is the process model.
Then, there exists an embedding, p, and a linear operator
(the Koopman operator), K, such that p(ξk) = Kp(ξk−1).
We call xk = p(ξk) the embedded state. The lifted system
dynamics become xk = Kxk−1, which is linear. Although
a finite-dimensional K and p may be hard (or impossible;
see [25]) to find, this transformation always exists. As an
example from [25], suppose that a 2-dimensional system is
governed by the nonlinear dynamics[

ξ1,k
ξ2,k

]
= f

([
ξ1,k−1

ξ2,k−1

])
=

[
λξ1,k−1

µξ2,k−1 + (λ2 − µ)ξ21,k−1

]
,

(1)

for some parameters λ and µ. In this case, the nonlinear
system can be transformed into a linear system with the finite-
dimensional lifting function p(ξk) =

[
ξ1,k ξ2,k ξ21,k

]T
=[

x1,k x2,k x3,k
]T

, yieldingx1,kx2,k
x3,k

 =

λ 0 0
0 µ λ2 − µ
0 0 λ2

x1,k−1

x2,k−1

x3,k−1

 . (2)

In cases where an exact finite-dimensional Koopman operator
cannot be found, using a truncated approximation can still
be reasonable [25]. This concept can be generalized to non-
autonomous systems [26]. However, there is limited work on
identifying and using the Koopman operator for estimation
in the presense of noise, inputs, and measurements. In the
next section, we generalize the Koopman lifting framework
to our systems of interest, which include noisy process and
measurement models.

V. LIFTING THE FULL SYSTEM

We focus on systems with process and measurement models
of the form

ξk = f(ξk−1,νk,ωk) (3a)
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= f0(ξk−1) +

Nν∑
i=1

fi(ξk−1)νk,i + ωk, (3b)

γk,j = g(ξk,ψj ,ηk,j) (3c)

=

Ng,ξ∑
i=1

Ng,ψ∑
m=1

gξ,i(ξk)πψ,m(ψj) + ηk,j , (3d)

where ξk ∈ RNξ is the robot state, νk ∈ RNν the control input,
ωk ∈ RNω the process noise, all at timestep k. ψj ∈ RNψ
is the position of landmark j, γk,j ∈ RNγ the measurement
of ψj at timestep k, and ηk,j ∈ RNη the measurement
noise for γk,j . fi are the various components of the process
model, and gξ,i, πψ,m are the various components of the
measurement model. We have chosen to focus on systems
with a control-affine process model (3b) since the model
can be written exactly as a lifted bilinear model when the
system is noiseless [27]. In the same spirit, we have chosen
a measurement model of the form (3d), where it is nonlinear
in the state and the landmark position but not both, such that
the model can be exactly written as a lifted bilinear model.
Many common robot process and measurement models can be
written in this form.

The problem of localization is to estimate the states, ξk,
given a series of inputs, νk, landmark positions, ψj , and
measurements, γk,j . The problem of SLAM is to estimate
the states while moving the landmark positions to the list of
unknowns: estimate ξk and ψj given only νk and γk,j . Both
problems are difficult when the models, fi, gξ,i, πψ,m, are
nonlinear, and especially so if the models are inaccurate or
unknown. Rather than solving these problems directly, we first
embed each of the states, inputs, landmarks, and measurements
into high-dimensional spaces,

xk = pξ(ξk), uk = pν(νk), (4a)
ℓj = pψ(ψj), yk,j = pγ(γk,j), (4b)

where

pξ : RNξ → X , pν : RNν → U , (5a)

pψ : RNψ → L, pγ : RNγ → Y, (5b)

are the embeddings associated with the manifolds X , U , L, and
Y , respectively. These embeddings are user-defined and can be
customized for specific systems. We discuss some choices for
these embeddings later in the Experiments (Section X). For
the rest of the paper, we assume that the manifolds are within
finite-dimensional vector spaces:

X ⊆ RNx , U ⊆ RNu , L ⊆ RNℓ , Y ⊆ RNy , (6)

and let N = max(Nx, Nu, Nℓ, Ny).

For the process model, we follow the same lifting procedure
as [4], [27], where the control-affine model becomes a bilinear-
Gaussian model in the lifted space. That is, (3b) becomes

xk = Axk−1 +Buk +H (uk ⊗ xk−1) +wk, (7)

where ⊗ represents the tensor product, equivalent to the
Kronecker product for a finite-dimensional X . The reasoning is
that a deterministic control-affine model (i.e., ωk = 0) involves

products of nonlinear functions of the robot state and the
control input individually, but not nonlinear functions of both
quantities. Thus, it can be written exactly as a lifted bilinear
model [27]. When there is system noise, [4] suggest that a
stochastic control-affine model can be modelled similarly with
an additive Gaussian noise. In the same spirit, we now lift the
measurement model in (3d) so that it also becomes bilinear in
the deterministic case,

γk,j = g(ξk,ψj ,0) ⇒ yk,j = C(ℓj ⊗ xk), (8)

and assume that the noise from a stochastic measurement
model can also be modelled as additive-Gaussian noise. This
results in the full lifted system,

xk = Axk−1 +Buk +H (uk ⊗ xk−1) +wk, (9a)
yk,j = C(ℓj ⊗ xk) + nk,j , (9b)

where wk ∼ N (0,Q) and nk,j ∼ N (0,R) are the process
and measurement noises, respectively, and

wk ∈ X , nk,j ∈ Y, (10a)
A : X → X , B : U → X , (10b)

H : U ⊗ X → X , C : L ⊗ X → Y, (10c)
Q ∈ X × X , R ∈ Y × Y, (10d)

where Q and R are positive definite. Note that for a closer
parallel to the process model, the measurement model would
contain three terms, yk,j = C1xk+C2ℓj+C3(ℓj⊗xk)+nk,j ,
and the subsequent derivations would still follow through.
However, the extra terms had little effects during the ex-
perimental evaluation, and therefore the one-term version is
presented for simplicity.

As we will see in Section VII, it is significantly easier to
work with the lifted bilinear system in (9) than with the original
nonlinear system in (3). However, we first need to learn the
lifted models from data.

VI. SYSTEM IDENTIFICATION

A. Lifted Matrix Form of Dataset

Our objective is to learn the lifted system matrices
A,B,H,C,Q,R in (9) from data. We assume a dataset of the
control-affine system in (3), including the ground-truth state
transitions with their associated control inputs for P states:
{“ξi, ξi,νi}Pi=1. Here, “ξi transitions to ξi under input νi. If the
dataset consists of a single trajectory of P + 1 states and i
represents the timestep, then we would set “ξi = ξi−1. We also
assume a dataset of the associated landmark measurements:
{{γi,j ,ψi,j}βij=1}Pi=1. Here, βi is the number of landmarks
seen at timestep i, ψi,j is the position of the jth landmark
at timestep i, and γi,j is the measurement received from
landmark ψi,j at timestep i. This format allows for data from
one or multiple training trajectories to be used at once, and
also allows us to combine datasets with different landmark
positions. We write the data neatly in block-matrix form:

Ξ =
[
ξ1 · · · ξP

]
, “Ξ =

[
“ξ1 · · · “ξP

]
, (11a)

Υ =
[
ν1 · · · νP

]
, (11b)

Γ =
[
γ1,1 · · · γ1,β1

· · · γP,1 · · · γP,βP
]
, (11c)
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Ψ =
[
ψ1,1 · · · ψ1,β1 · · · ψP,1 · · · ψP,βP

]
. (11d)

The data lifts to {“xi,xi,ui}Pi=1 and {{yi,j , ℓi,j}βij=1}Pi=1 in
the embedded space such that

xi = A“xi +Bui +H (ui ⊗ “xi) +wi, (12a)
yi,j = C(ℓj ⊗ xi) + ni,j , (12b)

for some unknown noise, wi ∼ N (0,Q), ni,j ∼ N (0,R).
We rewrite the lifted versions of the data and the noises in
block-matrix form:

X =
[
x1 · · · xP

]
, “X =

[
“x1 · · · “xP

]
, (13a)

U =
[
u1 · · · uP

]
, W =

[
w1 · · · wP

]
, (13b)

Y =
[
y1,1 · · · y1,β1 · · · yP,1 · · · yP,βP

]
, (13c)

L =
[
ℓ1,1 · · · ℓ1,β1 · · · ℓP,1 · · · ℓP,βP

]
, (13d)

N =
[
n1,1 · · · n1,β1

· · · nP,1 · · · nP,βP
]
, (13e)

X̐ =
[
x1 · · · x1︸ ︷︷ ︸

β1

· · · xP · · · xP︸ ︷︷ ︸
βP

]
, (13f)

where we defined X̐ as the states duplicated based on the
number of landmarks seen at each timestep. We also define
S =

∑P
i=1 βi as the total number of measurements. Then, X,

“X, U, W are all P columns wide, while Y, L, N, X̐ are all
S columns wide. With these definitions, the lifted matrix form
of the system for (12) is

X = A “X+BU+H
(
U⊙ “X

)
+W, (14a)

Y = C(L⊙ X̐) +N, (14b)

where ⊙ denotes the Khatri-Rao (column-wise) tensor product.

B. Loss Function

The model-learning problem is posed as

{A⋆,B⋆,H⋆,C⋆,Q⋆,R⋆} = argmin
{A,B,H,C,Q,R}

V (A,B,H,C,Q,R),

(15)

where the loss function, V = V1 + V2, is the sum of

V1 =
1

2

∥∥∥X−A “X−BU−H(U⊙ “X)
∥∥∥2
Q−1

+
1

2

∥∥Y −C(L⊙ X̐)
∥∥2
R−1 −

1

2
P ln

∣∣Q−1
∣∣− 1

2
S ln

∣∣R−1
∣∣ ,

(16a)

V2 =
1

2
PτA ∥A∥2Q−1 +

1

2
PτB ∥B∥2Q−1 +

1

2
PτH ∥H∥2Q−1

+
1

2
SτC ∥C∥2R−1 +

1

2
PτQ tr(Q−1) +

1

2
SτR tr(R−1),

(16b)

where |X| represents the determinant of X, and the norm is
a weighted Frobenius matrix norm: ∥X∥W =

√
tr (XTWX).

Similar to [4], V1 represents the negative log-likelihood of the
Bayesian posterior, and V2 contains prior terms to penalize
the description lengths of A, B, H, and C and inverse-
Wishart (IW) priors for the covariances, Q and R. The
regularizing hyperparameters, τA, τB , τH , τC , τQ, τR, can be
tuned to maximize performance if desired.

We find the critical points by setting the derivatives of V

with respect to the model parameters ( ∂V∂A , ∂V∂B , ∂V∂H , ∂V∂C , ∂V
∂Q−1 ,

and ∂V
∂R−1 ) to zero. We define

V = U⊙ “X, J = X−A “X−BU−HV, (17a)

Z = L⊙ X̐, T = Y −CZ. (17b)

This yields the following expressions that can be solved for
A, B, C, and H: “X “XT + PτA1 “XUT “XVT

U “XT UUT + PτB1 UVT

V “XT VUT VVT + PτH1

AT

BT

HT

 =

 “XXT

UXT

VXT

 ,
(18a)

C = (YZT )(ZZT + SτC1)
−1, (18b)

after which we obtain

Q =
1

P
JJT + τAAAT + τBBBT + τHHHT + τQ1,

(18c)

R =
1

S
TTT + τCCCT + τR1, (18d)

where 1 represents the identity operator of the appropriate
domains. The time complexity of solving for A, B, H, Q and
R is O(N3(P + S)), linear in the amount of training data.

C. Data Augmentation

If training data is scarce, system invariances can be exploited
if they are known. The general system in (9) allows the
model behaviour to vary arbitrarily with the states and with
the landmark locations, but this freedom is not necessary for
many systems. A robot may drive similarly within a room,
and a rangefinding sensor may measure distances based only
on the relative location of landmarks with respect to the
robot. Although the injection of known invariances into (9)
is an interesting avenue for future work, for now we can use
data augmentation [28] to improve model accuracy. We make
copies of the gathered data, perturb them based on any known
invariances, and add them into the dataset matrices in (11).
See the dataset experiments in Section X for an example.

VII. UNCONSTRAINED KOOPMAN LINEARIZATION (UKL)

We now outline the procedure to set up and solve a batch
estimation problem with UKL. This approach is in the same
spirit as in [4], which solves batch state estimation with
fixed landmarks through unconstrained optimization. UKL
generalizes [4] in that the formulation includes new landmark
positions at test time, allowing for general localization (UKL-
Loc) when the test landmarks are known but are different
than during training time, and also allowing for SLAM (UKL-
SLAM) when the test landmarks are unknown. We then discuss
the limitations of using the minimum-cost solution of UKL,
and how it leads to the introduction of manifold constraints for
CKL, presented in the next section. Although the constraints
turn out to be crucial for performance, we start by outlining
UKL as it serves as a basis for CKL.

A. UKL Batch Estimation Problem Setup

Having learned the system matrices from training data in
Section VI, we now move to an environment with a new
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set of landmarks, {ψj}Vj=1, where we wish to solve for a
sequence of states, {ξk}Kk=0, given a series of inputs, {νk}Kk=1,
and measurements, {{γk,j}Vj=1}Kk=0. If the landmarks are all
known, the problem is simply localization. If any landmarks
are unknown, the problem is SLAM and we also wish to
estimate the unknown landmarks. We do this in the lifted space,
where the quantities become {ℓj}Vj=1, {xk}Kk=0, {uk}Kk=1, and
{{yk,j}Vj=1}Kk=0, respectively. Since the inputs are completely
determined at test time, we can simplify the bilinear process
model of (9a) into a linear model. Observe that uk ⊗ xk−1 =
(uk ⊗ 1)xk−1, where here 1 : X → X . Using the same trick
as in [4], we use the known input at test time, uk, to define
a new time-varying system matrix, Ak−1, and a new input,
vk, as

Ak−1 = A+H(uk ⊗ 1), vk = Buk. (19)

With this, we have a system in which the process model is
linear-Gaussian:

xk = Ak−1xk−1 + vk +wk, k = 1, . . . ,K, (20a)
yk,j = C(ℓj ⊗ xk) + nk,j , k = 0, . . . ,K, j = 1, . . . , V,

(20b)

where wk ∼ N (0,Q) and nk,j ∼ N (0,R). As the input is
always given at test time, this form applies to both localization
and SLAM.

We will now describe the process for solving UKL-SLAM,
then briefly outline UKL-Loc as a special case of UKL-SLAM.
A more efficient method for solving UKL-Loc using the RTS
smoother [24] is described in Appendix A.

B. Solving UKL-SLAM

If some or all landmarks are unknown, we can solve for
both the poses and the unknown landmarks by formulating
and solving a batch linear SLAM problem. We first describe
the case where all landmark positions are unknown and where
the robot receives a measurement for all landmarks at each
timestep, and later describe how to modify the method to allow
for variations in the problem. As is often done, we assume that
x0 is known in order to render a unique solution to the SLAM
problem. We define

x =

x1

...
xK

 , ℓ =

ℓ1...
ℓV

 , v =

v1

...
vK

 , y =

y1

...
yK

 , yk =

yk,1...
yk,V

 .
(21)

The pose errors and measurement errors are, respectively,

ev,k(xk) = (Ak−1xk−1 + vk)− xk, (22a)
ey,k,j(xk, ℓj) = C(ℓj ⊗ xk)− yk,j . (22b)

We can formulate the cost function as

J(x, ℓ) =
1

2

K∑
k=1

ev,k(xk)
TQ−1ev,k(xk) (23)

+
1

2

K∑
k=1

V∑
j=1

ey,k,j(xk, ℓj)
TR−1ey,k,j(xk, ℓj),

or, in block-matrix form,

J(q) =
1

2
e(q)TW−1e(q), (24)

where

q =

[
x
ℓ

]
, W =

[
Q 0
0 R

]
, (25a)

Q = diag(Q, . . . ,Q), R = diag(R, . . . ,R), (25b)

e =

[
ev
ey

]
, ev =

 ev,1
...

ev,K

 , ey =

 ey,1
...

ey,K

 , ey,k =

ey,k,1...
ey,k,V

 .
(25c)

Note that the sparsity pattern in W implicitly represents a co-
visibility graph, since there are only entries corresponding to
process priors among adjacent poses, or measurements from
poses to visible landmarks. The UKL-SLAM optimization
objective is

min
q

J(q). (26)

Note that although J(q) is quadratic with respect to e, it
is generally non-quadratic with respect to q, and thus (26)
cannot be solved in one shot. However, we can still use
classic Gauss-Newton optimization to efficiently solve (26)
iteratively by exploiting sparsity structures. See Appendix B
and Appendix C for details on solving (26) with classic
Gauss-Newton. The optimal update, δq, can be computed in
complexity O(N3(V 3+V 2K)) when we have more timesteps
than landmarks, or O(N3(K3 +K2V )) when we have more
landmarks than timesteps. We then update the operating point
with

xop ← xop + αδx, ℓop ← ℓop + αδℓ, (27)

for a step size α. An appropriate step size can be found using a
backtracking line search [5]. Iterating until convergence yields
(x⋆, ℓ⋆), or q⋆ in batch form.

The distribution of the batch system’s solution is q ∼

N (q̂, P̂q), where q̂ =

[
x̂

ℓ̂

]
and P̂q =

[
P̂x P̂xℓ
P̂ T
xℓ P̂ℓ

]
. We have

the batch mean from the Gauss-Newton solution: q̂ = q⋆.
We can compute the individual distributions for xk and ℓj as
follows. The means, x̂k and ℓ̂j , are simply the corresponding
blocks from x̂ and ℓ̂. As a feature of classic Gauss-Newton
SLAM, we can also compute the covariances, P̂x,k and P̂ℓ,j ,
without raising the computation complexity of SLAM. See
Appendix C for details on computing covariances. The final
output is xk ∼ N (x̂k, P̂x,k), ℓj ∼ N (ℓ̂j , P̂ℓ,j).

C. Recovering Estimates from Lifted Space

After solving for the lifted means and covariances of the
states and landmarks, we now convert them back into the
original space. We define the block structures of the means
and covariances of states and landmarks in the original space
for future reference:

ζ =

[
ξ
ψ

]
, ζ ∼ N (ζ̂, Σ̂ζ), (28a)

ξ ∼ N (ξ̂, Σ̂ξ), ψ ∼ N (ψ̂, Σ̂ψ), (28b)
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ξ =

 ξ1...
ξK

 , ψ =

ψ1

...
ψV

 , (28c)

ξk ∼ N (ξ̂k, Σ̂ξ,k), ψj ∼ N (ψ̂j , Σ̂ψ,j). (28d)

In general, recovering ξk from xk involves a retraction
step [29]. However, we will restrict the lifting functions to
include the original variables as the top parts of the lifted
states later in Section VIII. The recovery procedure for the
states then becomes simply picking off the top part of x̂k to
get ξ̂k, and picking off the top-left block of P̂x,k to get Σ̂x,k.
The procedure for the landmarks is analogous. See [4] for a
recovery procedure for general lifting functions.

D. Other UKL Estimation Problems

We can leverage the flexibility of classic Gauss-Newton
SLAM to handle variations to UKL-SLAM, including local-
ization and mapping as special cases. It is possible that yk,j
is missing, meaning the robot does not receive a measurement
from ℓj at timestep k. Or, it is possible that a pose, xk, or
a landmark position, ℓj , is known. In both cases, we can
modify (57) to incorporate missing or known variables without
affecting complexity. See Appendix B for more details. If all
of the landmarks are known, SLAM reduces to localization
(i.e., UKL-Loc). If all of the robot poses are known, SLAM
reduces to mapping. In both of these cases, the cost in (24)
becomes quadratic in the remaining unknowns, and using the
sparse Cholesky solver (see Appendix C) yields the minimum-
cost solution after just one iteration.

E. Limitations of UKL-Loc and UKL-SLAM

At first, solving localization and SLAM through uncon-
strained optimization seems tempting, especially for UKL-Loc
whose solution can be found in one shot. However, observe
that there are no conditions that enforce the solution to be on
the manifold defined by the lifting functions. In the case of
UKL-Loc, we automatically enforce that uk ∈ U , yk,j ∈ Y ,
ℓj ∈ L, as these quantities are given and are directly lifted at
test time. However, there is no guarantee that the minimum-
cost solution of (24) satisfies x∗

k ∈ X . Similarly, for UKL-
SLAM, there is no guarantee that x∗

k ∈ X and ℓ∗j ∈ L. In both
cases, the minimum-cost solution could be very far from the
lifting-function manifold. This can be problematic because the
trained models are likely poor for governing the behaviour of
off-manifold states and landmarks. The states and landmarks
within the training data are always on the manifold since they
are being lifted from data (11) to their lifted versions in (13).
If the minimum-cost solution for (24) happens to be far away
from the manifold, the estimates may not be reflective of the
training data.

For localization, our experiments suggest that the minimum-
cost solution of UKL-Loc tends to be close enough to the mani-
fold when there are frequent measurements. In the simulations
in Section X, we see that the UKL-Loc trajectory outputs are
nearly as good as those of the model-based localizers. We
hypothesize that the measurements are ‘pulling’ the estimates
back onto the manifold, although the exact pulling mechanism

Fig. 2: Visualization of the trajectory output of UKL-Loc (left),
and the trajectory and landmark output of UKL-SLAM (right), on
Experiment 2 described in Section X-D, showing the estimators’ mean
states and mean landmark positions compared to the groundtruth.
The pink lines show the landmark correspondances between the
groundtruth and the output of UKL-SLAM. We observe that the
trajectory estimate of UKL-Loc is poor, which we typically see
when the measurements are sporadic. For UKL-SLAM, both the
trajectory and the landmark estimates are poor, which we typically
see regardless of the regularity of measurements.

is still unclear. When the measurements are sporadic, however,
there are gaps in the measurement stream during which the
system can drift far away from the manifold from purely dead
reckoning. Thus, although unconstrained Koopman localiza-
tion can work in scenarios where the measurements are regular,
such as in [4], it cannot work with sporadic measurements.

On the other hand, the minimum-cost solutions of UKL-
SLAM tend to yield very poor trajectory and landmark esti-
mates in general as a result of deviating too much from the
manifold. This trend appears to be present irregardless of the
type or dimension of the lifting functions used in (4). See
Fig. 2 for a visualization of the outputs of UKL-Loc and of
UKL-SLAM on a dataset with sporadic measurements.

The manifold deviation is related to a known challenge of
finding Koopman-invariant subspaces for Koopman process
models [12]. For a noiseless system, a Koopman-invariant
subspace is such that any on-manifold state stays on the
manifold after passing through the lifted process model. For
our case, this means that given lifting functions pξ and pµ,
the original process model, ξk = f(ξk−1,µk), can be written
exactly as a lifted model, xk = Axk−1+Buk+H(uk⊗xk−1),
such that

xk ∈ X ∀xk−1 ∈ X , ∀uk ∈ U . (29)

Finding Koopman-invariant subspaces for real-world con-
trol problems is challenging and an active area of re-
search [30], [31], [32]. In the literature, the Koopman operator
framework is commonly used for problems with short time
horizons such as model-predictive control [18], where the
manifold deviations are small and can be removed by a
retraction step. For example, we could drop the solution back
into the original space and then re-lift it at the beginning
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of a new time window [21], [29]. However, the solution
quality deteriorates with longer time horizons [33]. In our case,
ensuring invariance is further complicated with the addition of
the measurement model and the addition of lifted landmarks
as unknowns. For batch optimization over very long time
horizons such as in SLAM, we find that reprojections cannot
sufficiently improve the solution quality after converging to an
off-manifold solution.

There is some work on converting nonconvex state-
estimation problems to high-dimensional convex problems
with only linear constraints [13], [14]. However, the conver-
sions assume noiseless systems and ideal, possibly infinite-
dimensional Koopman operators, both of which cannot be
achieved in practice. As a result, these conversions have yet
to be applied on real-world datasets.

In the next section, we solve the same estimation problem
for the system (9), with the addition of constraints to enforce
the solution to be on the manifold of the lifting functions.

VIII. CONSTRAINED KOOPMAN LINEARIZATION (CKL)

In this section, we present the setup and the solution process
for CKL. We present the setup of the optimization problem,
the conversion to an SQP, and finally the algorithm for solving
the SQP in linear time. We first focus on CKL-SLAM, where
we will reuse much of the development for UKL-SLAM.
We then show the necessary modifications for other CKL
estimation problems including dead reckoning, mapping, and
localization (CKL-Loc), followed by a note on reasonable SQP
initializations for these problems.

A. CKL-SLAM Problem Setup

For CKL-SLAM, the optimization objective is identical
to (26), with the added constraint that the solution must lie
on the manifold of the lifting functions. The objective is

min
q

J(q)

s.t. xk ∈ X , k = 1, . . . ,K,

ℓj ∈ L, j = 1, . . . , V,

(30)

where J(q) is defined in (24). In order to simplify the form of
the constraints, we enforce that the estimated quantities’ lifting
functions, pξ(·) and pℓ(·), consist of the original quantities
stacked on top of the actual lifted features:

xk = pξ(ξk) =

[
ξk

p̃ξ(ξk)

]
=

[
ξk
x̃k

]
, (31a)

ℓj = pψ(ψj) =

[
ψj

p̃ψ(ψj)

]
=

[
ψj
ℓ̃j

]
, (31b)

where

p̃ξ : RNξ → RNx−Nξ , p̃ψ : RNψ → RNℓ−Nψ . (32)

We can write the manifold constraints as equality constraints:

xk ∈ X ⇒ hx(xk) = x̃k − p̃ξ(ξk) = 0, (33a)

ℓj ∈ L ⇒ hℓ(ℓj) = ℓ̃j − p̃ψ(ψj) = 0. (33b)

The optimization objective in (30) becomes

min
q

J(q)

s.t. h(q) = 0,
(34)

where

h(q) =

[
hx(x)
hℓ(ℓ)

]
, hx(x) =

hx(x1)
...

hx(xK)

 , hℓ(ℓ) =

hℓ(ℓ1)...
hℓ(ℓV )

 .
(35)

This objective is identical to the UKL-SLAM objective in (26),
with the added manifold constraints. Note that h(q) is gen-
erally nonlinear, but it has an exploitable structure: each of
the blocks in hx(x) can be nonlinear but affects only one
robot state, and each of the blocks in hℓ(ℓ) affects only
one landmark. This blockwise structure will be especially
important for solving the optimization problem efficiently.

B. Solving CKL-SLAM with a Sequential Quadratic Program

We formulate an SQP [5] to solve (34). The Lagrangian is

L(q,λ) = J(q)− λTh(q), (36)

where λ is the Lagrange multiplier. Given the Lagrangian, we
can solve for the SQP’s optimal update, (δq, δλ). The solution
process involves similar matrix structures as the unconstrained
problem in (26). See Appendix D for more details on the SQP
formulation for CKL-SLAM. We then update the operating
point of the primal variable and the multiplier as

qop ← qop + αδq, λop ← λop + αδλ, (37)

with an appropriate step size α. With (34) containing the
same J(q) as (26) and a blockwise structure on h(q), we
can extend the sparsity exploitation process of UKL-SLAM
to CKL-SLAM. See Appendix E for details. With this, the
optimal updates can be solved in the same time complexity
as the unconstrained problem: O(N3(V 3 + V 2K)) when we
have more timesteps than landmarks, or O(N3(K3 +K2V ))
when we have more landmarks than timesteps.

To extract the covariances of the estimates, Σ̂ξ,k and Σ̂ψ,j ,
we need to take into account the effect of the added constraints.
We show in Appendix F that at convergence, the batch covari-
ance of the original variable satisfies

Σ̂−1
ζ = ST|| FS||, (38)

where F is the Gauss-Newton approximation of the Hessian
of the Lagrangian [34, §2], [35, §3.2], and S|| = null(S) is
a matrix constructed by a basis of the nullspace of S. We
can then use a similar procedure as for UKL-SLAM to extract
the required covariances from Σ̂−1

ζ . This can be done without
raising the computational complexity of SLAM.

C. Other CKL Estimation Problems and SQP Initializations

CKL-SLAM can be easily modified for other estimation
problems including dead reckoning, localization (CKL-Loc),
and mapping. We would make similar adjustments to the
cost as described in Section VII-D for UKL-SLAM, and also
analogous adjustments to the constraints. For all of these
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problems, the matrix sparsity structures are preserved, and we
can still use the nullspace method to efficiently solve the SQP.

In the presence of nonlinear constraints, the problems of
dead reckoning, mapping, localization, and SLAM are all
nonlinear optimization problems, and good initial points are
often required to avoid convergence to local minima. For dead
reckoning, mapping, and localization, we acquire an initial
point by dropping the constraints (i.e., the UKL solution). For
SLAM, we initialize the robot trajectory by dead reckoning,
then initialize the landmarks by mapping from the dead-
reckoned trajectory.

IX. REDUCED CONSTRAINED KOOPMAN LINEARIZATION
(RCKL)

With the manifold constraints introduced, CKL-SLAM
yields much better results than UKL-SLAM. However, as we
will explain, CKL is sensitive to poorly fit process models
of the lifted features. As a result, CKL’s outputs are often
still less accurate than those of the model-based methods
under experimental evaluation. We now introduce RCKL, a
framework that further improves upon CKL by removing the
portion of the learned process model that tends to be poorly fit.
We first present the framework, and then discuss our hypothesis
for its improvement over CKL.

A. Reducing the Koopman Process Model

We analyze the Koopman process model in (9a) with the
form of the lifting function, pξ(·), enforced in (31a). We break
down A, B, and H into two components:

A =

[
Aξ
Ã

]
, B =

[
Bξ
B̃

]
, H =

[
Hξ

H̃

]
, (39)

where

Aξ ∈ RNξ×Nx , Ã ∈ R(Nx−Nξ)×Nx , (40a)

Bξ ∈ RNξ×Nu , B̃ ∈ R(Nx−Nξ)×Nu , (40b)

Hξ ∈ RNξ×NxNu , H̃ ∈ R(Nx−Nξ)×NxNu . (40c)

Then, the process model (9a), along with the form of pξ(ξk)
in (31a), yields{

ξk = Aξxk−1 +Bξuk +Hξ(uk ⊗ xk−1) +wξ,k, (41a)

x̃k = Ãxk−1 + B̃uk + H̃(uk ⊗ xk−1) + w̃, (41b)

where wk =

[
wξ,k
w̃k

]
∼ N

(
0,

[
Qξ Qξx
QT
ξx Qx

])
.

If there are no constraints in place, both models are nec-
essary to fully determine xk. With the manifold constraints
introduced, however, (41a) alone is sufficient to determine
xk, since the constraint hx(xk) = 0 in (33a) enforces that
x̃k = p̃ξ(ξk). This means that when (41b) is a poor model, we
can use (41a) to only determine the original state variables, and
let the lifting-function constraints determine the lifted features.

To clarify, the lifted features are still used in the process
model of (41a) as part of the previous state, xk−1, but just
not determined by the model for the current state. Note that
reducing the model does not break the theoretical justifications
previously mentioned in Section V, including the fact that the

conversion of a control-affine model to a lifted bilinear model
is exact in the noiseless case.

To train the reduced process model, we train for
Aξ,Bξ,Hξ,Qξ. The procedure is similar to the one described
in Section VI, except that the transitioned state is not lifted in
the process model. That is, the model in (12) becomes

ξi = Aξ“xi +Bξui +Hξ (ui ⊗ “xi) +wi, (42a)
yk,j = C(ℓj ⊗ xi) + ni,j , (42b)

where xi is replaced with ξi in the process model. After
making similar modifications to the loss function in (16), the
solutions for Aξ,Bξ,Hξ,Qξ can be found with

V = U⊙ “X, J = Ξ−Aξ “X−BξU−HξV, (43a) “X “XT + PτA1 “XUT “XVT

U “XT UUT + PτB1 UVT

V “XT VUT VVT + PτH1

AT
ξ

BT
ξ

HT
ξ

 =

 “XΞT

UΞT

VΞT

 ,
(43b)

Qξ =
1

P
JJT + τAAξA

T
ξ + τBBξB

T
ξ + τHHξH

T
ξ + τQ1.

(43c)

At test time, we modify the time-varying quantities defined
in (19),

Aξ,k−1 = Aξ +Hξ(uk ⊗ 1), vk = Bξuk, (44)

and modify error functions in (22) to be

ev,k(xk) = (Aξ,k−1xk−1 + vk)− ξk, (45a)
ey,k,j(xk, ℓj) = C(ℓj ⊗ xk)− yk,j , (45b)

where the pose error is modified to weigh only the ξk compo-
nent of xk, while the measurement error is still using the full
set of features in xk. The cost function is modified from (23)
to be

J(x, ℓ) =
1

2

K∑
k=1

ev,k(xk)
TQ−1

ξ ev,k(xk) (46)

+
1

2

K∑
k=1

V∑
j=1

ey,k,j(xk, ℓj)
TR−1ey,k,j(xk, ℓj),

which can be written in the familiar block-matrix form of
J(q) = 1

2e(q)
TW−1e(q) in (24). This means that the RCKL-

SLAM objective is the same form as (35), the CKL-SLAM
objective. To solve for q, we can follow the same procedure
as Section VIII-B. The complexity of the SQP iterations are the
same, possibly with a lower coefficient owing to the smaller
process model.

B. Theoretical Justification of RCKL
For the experimental scenarios presented Section X, RCKL’s

process model always performs better than CKL’s model. See
Fig. 3 for a visual example of noiseless dead reckoning with
UKL, CKL, and RCKL, where RCKL’s output is much closer
to the groundtruth trajectory. We now discuss our hypothesis
for this improvement in performance.

The main difference between RCKL and CKL is that RCKL
avoids fitting a model for the evolution of the lifted features.
A poor process model of the features would negatively affect
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Fig. 3: UKL vs. CKL vs. RCKL in noiseless dead reckoning. We train the three estimators on noiseless data corresponding to Simulation 1
described in Section X-A1, then compare their dead-reckoning outputs on a noiseless test trajectory. UKL’s output is on top of groundtruth
at first but eventually drifts off as the states deviate from the feature manifold. CKL’s output remains on the feature manifold, but solution is
worsened by the poor process models on the features. Meanwhile, RCKL stays on the manifold and its output corresponds to the groundtruth
almost exactly.

the whole system through the constraints. In our experiments,
we see that when a model contains all of the lifting functions
required to fit the system, adding extraneous lifting functions
to CKL degrades its performance. Even when x̃k−1 is essential
for determining ξk in (41a), its own evolution to x̃k in (41b)
may be poor, which would affect ξk through the constraint
hx(xk) = x̃k − p̃ξ(ξk) = 0.

This concept is related to how Koopman invariance (29)
is hard to satisfy especially for the process models of the
lifted features. See [12, p. 263] for an example of where the
Koopman representation of even a simple system becomes
intractable when using polynomial features. The higher-order
polynomials added require even higher-order polynomials to
fit their own process model, ad infinitum.

After selecting the features from a large pool of possible
lifting functions, we find that the linear process models on
the features tend to be poorly fit. RCKL, in contrast, fits
a linear model on only the original variables and relies on
the nonlinear manifold constraints for the evolution of the
features. Assuming that we have enough training data to avoid
overfitting, adding more lifting functions in RCKL would only
add more expressiveness for fitting the model.

Note that RCKL’s reduced model follows the same spirit
as the original sparse identification of nonlinear dynamics
(SINDy) algorithm [36]. For a nonlinear system, ξk =
f(ξk−1), SINDy optimizes for a sparse A and a low-
dimensional pξ(·) such that the model can be written as
ξk = Apξ(ξk−1). That is, SINDy identifies the nonlinear
functions in pξ(·) necessary to reconstruct the original system.
This form is similar to our reduced process model in (42a) with
pξ as the lifting function. However, SINDy’s nonlinear model
is not originally compatible with Koopman methods (without
constraints). Instead, many Koopman methods use a modified
version of SINDy to reconstruct pξ(ξk) = Apξ(ξk−1) [25],
which is essentially finding the full process model. With the
manifold constraints introduced, the reduced model is once
again possible for Koopman systems.

One potential drawback of RCKL is that for some systems,
the process model of some features could be simpler to
construct than that of the original variables. In this case, a

hybrid method could be used. As this is likely very problem-
specific, we leave the investigation of this idea for future work.

X. EXPERIMENTS AND RESULTS

We evaluate the performance of the Koopman estimators for
localization and SLAM in two simulation scenarios and on two
real-world datasets. We investigate the performances of UKL,
CKL, and RCKL in simulation, and focus on RCKL on the
datasets, owing to its superior performance in simulation. We
compare our results with those of a classic model-based nonlin-
ear batch estimator optimized using Gauss-Newton [24, §8/9].
We term this estimator “MB” for model-based. To demonstrate
the advantages of our data-driven approach, we also compare
with a classic estimator where the model parameters are
imperfect, and we term this estimator “MBI” for model-based
imperfect. We will show that our Koopman estimators can
outperform MBI by learning the model parameters. Both the
Koopman estimators and the model-based estimators follow
the initialization procedure outlined in Section VIII-C: initial-
izing with dead reckoning for localization, and initializing with
mapping from dead reckoning for SLAM.

To evaluate accuracy, we compute the root-mean-squared-
error (RMSE) of an estimator’s mean output. To evaluate
consistency, we compute the normalized trajectory-level Maha-
lanobis distance of an estimator’s mean and covariance outputs.
This Mahalanobis distance measures the consistency of the en-
tire batch solution and is computed with

√
(δζ)TΣ−1(δζ)/N ,

where δζ is the error of the estimator’s mean outputs compared
to the groundtruth, Σ−1 is the inverse covariance output, and
N is the degrees of freedom of the system. An accurate
estimator has an RMSE close to 0, and a consistent estimator
has a Mahalanobis distance close to 1. For evaluating SLAM,
we first perform an alignment step where the groundtruth is
aligned to the output trajectory through a rigid transformation
before computing the RMSEs and the Mahalanobis distances.
This is because SLAM is used to derive a relative map between
the trajectory and the landmarks, and the global SLAM error
within the frame of the first pose is usually of lesser interest.

In the experiments below, the main lifting functions used are
squared-exponential Random Fourier Features (SERFFs) [37],
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(a) Simulation 1 Results (b) Simulation 2 Results

Fig. 4: Localization and SLAM results for Simulation 1 (left) and Simulation 2 (right). RMSEs and Mahalanobis distances for localization
(left plots) and SLAM (right plots) for UKL, CKL, RCKL, MB (model-based with correct µ), and MBI (model-based with imperfect µ). In
both simulations, RCKL has slightly higher RMSEs than MB but encounters local minima less frequently, and it has lower RMSEs than MBI.
UKL-SLAM RMSEs are off the charts, and CKL-SLAM RMSEs are more reasonable than UKL-SLAM but still higher than RCKL-SLAM,
demonstrating the necessity of the constraints and the reduced process model in RCKL. RCKL is also more consistent than MB and MBI.

which take in any number of vector-space inputs and generate
a user-specified number of sinusoidal functions. SERFFs are
common lifting functions for Koopman methods used for their
experimentally determined high performance [4], [38], and
for their connection to the squared-exponential kernel [4],
[39]. The formulas for generating the SERFFs can be found
in [37]. Note that the generation of SERFFs involve picking
hyperparameter values that can be tuned based on data if
necessary. Below, we use the notation rx(x) to denote the
SERFFs for input x.

A. Simulation Setup

For both simulation scenarios, the setup consists of a robot
driving in a 2D plane, receiving measurements from landmarks
scattered around the plane. We evaluate localization and SLAM
on 100 test instances, each with a 1000-timestep trajectory and

10 landmarks. The measurements are scaled by a constant fac-
tor of µ = 1.05, which our Koopman estimators will learn from
data. We compare the performance of the Koopman estimators
against MB, whose measurement model uses the correct value
of µ = 1.05, and MBI, whose measurement model uses µ = 1.
To clarify, MB and MBI are using the same raw data, but they
are doing estimation with slightly different prior measurement
models, thus affecting their solutions. See [24, §8/9] for how
the prior measurement models are used for computing costs
and Jacobians in classic Gauss-Newton estimation.

1) Simulation 1: Unicycle Model, Range Measurements

The inputs for the unicycle model [40] are the translational
and rotation speeds of the robot, and the measurements are
distances. For timestep k and landmark j, the robot state, input,
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landmark position, and measurement are, respectively,

ξk =

ξx,kξy,k
ξθ,k

 , νk =

[
uk
ωk

]
, ψj =

[
ψx,j
ψy,j

]
, γk,j = µrk,j ,

(47)

where (ξx,k, ξy,k) is the robot’s global position, ξθ,k is the
robot’s global orientation, uk is the robot’s linear speed, ωk
is its angular speed, (ψx,j , ψy,j) is the landmark’s global
position, rk,j is the range measurement from the robot to the
jth landmark, and µ is the constant scaling factor. Contrary
to the assumption made in (31), the state is not within a
vector space since it includes orientation as a circular quantity.
As such, we convert it to an augmented state, ξ

′

k, with the
substitutions ξcos θ,k = cos ξθ,k and ξsin θ,k = sin ξθ,k. For
CKL and RCKL, we introduce an additional state constraint,
hξ(ξ

′
k) = ξ2cos θ,k+ ξ2sin θ,k− 1 = 0. See Appendix G for more

details on handling the orientation. We used SERFFs for the
state, the landmark position, the measurements, and input:

ξ′k =


ξx,k
ξy,k
ξcos θ,k
ξsin θ,k

 , pξ′ (ξ
′

k) =



ξ
′

k

rx,y(ξx,k, ξy,k)
rcos θ,sin θ(ξcos θ,k, ξsin θ,k)

rx,cos θ(ξx,k, ξcos θ,k)
rx,sin θ(ξx,k, ξsin θ,k)
ry,cos θ(ξy,k, ξcos θ,k)
ry,sin θ(ξy,k, ξsin θ,k)


,

(48a)

pψ(ψj) =

[
ψj

rψ(ψj)

]
, pγ(γk,j) =

[
γk,j

rγ(γk,j)

]
, pν(νk) =

[
νk

rν(νk)

]
,

(48b)

where for the state, SERFFs are constructed on all pos-
sible pairs of variables in ξ′k rather than constructing
rξ′(ξx,k, ξy,k, ξcos θ,k, ξsin θ,k). We find this form to be suffi-
cient for our environment, without the burden of a vastly high-
dimensional lifted state and requiring much more training data
to avoid overfitting.

2) Simulation 2: Bicycle Model, Range-Squared Measure-
ments

The setup is the same as for Simulation 1, except that the
robot has a bicycle process model [41] and the measurement
is the squared range (to show the generalizability of our data-
driven methods):

νk =

[
uk
ϕk

]
, γk,j = µr2k,j , (49)

where uk is still the linear speed but ϕk is the steering angle
of the bicycle’s front axle. The lifting functions used are in
the same form as in (48) except for the input, for which we
account for the circular input of ϕk by using

pν(νk) =


uk

cosϕk
sinϕk

ru,cosϕ,sinϕ(uk, cosϕk, sinϕk)

 . (50)

Fig. 5: Setup for Experiment 1. A wheeled robot drives around 17
cylindrical landmarks (2 are not visible in this photo) in an indoor
environment. It logs wheel odometry and measures the range to its
surrounding landmarks using a laser rangefinder. The landmarks for
testing are highlighted in red.

B. Simulation Results Discussion

The results for Simulation 1 and Simulation 2 are shown
in Fig. 4. We see that MB tends to have the lowest errors for
localization and SLAM, whereas RCKL has similar or slightly
higher errors. This outcome is expected since the models and
the noise distributions are perfectly known for MB, whereas
the Koopman estimators have learned the model through noisy
data. However, RCKL has similar or better accuracy compared
to MBI, demonstrating the advantages of the data-driven
approach. In addition, while the model-based estimators, MB
and MBI, encounter local minima in both localization and
SLAM, RCKL appears to encounter local minima much less
frequently.1 This suggests that another potential benefit of
reformulating nonlinear estimation problems in a lifted space
is improved convergence properties.2

For the other Koopman estimators, we see that UKL-
Loc is viable in our environment where a measurement is
received from every landmark at every timestep. However,
UKL-SLAM is not at all viable, and only becomes viable when
the constraints are added to yield CKL-SLAM. CKL still has
higher errors than the model-based estimators, MB and MBI.
It only become comparable to MB for RCKL, that is, after the
reduced process model is employed.

C. Experiment 1: Indoor Navigation with Laser Rangefinder

The setup consists of a wheeled robot driving around in
a 2D indoor environment, with 17 tubes scattered throughout
the space to act as landmarks (see Fig. 5). The robot has an

1We have verified the optimality of our solutions by running our opti-
mization problems two times: the first time is after following our standard
initialization procedure described in Section VIII-C, and the second time is
after initializing at groundtruth. Through this procedure, we can verify that a
local minimum has occurred when the first solution (standard initialization)
has a higher cost than the second solution (groundtruth initialization). Global
optimality is harder to verify, but we assume that the groundtruth initialization
converges near the global minimum for our considered noise levels. Then, a
global mimimum has likely occurred when the first and second solution has
the same cost.

2We chose not to compare to globally optimal estimation methods be-
cause they tend to be prohibitively expensive for even moderately sized
problems [42]. If desired, one could attempt to add a global optimality
certificate [43] to either MB or RCKL.
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Fig. 6: Localization and SLAM errors for Experiment 1: position and orientation errors of the mean trajectory and the mean landmark
outputs of RCKL, MB, and MBI (whose robot-to-rangefinder distance is offset by 10 cm), on the 6 dataset folds. For localization, RCKL
has similar position errors and generally lower orientation errors compared to MB. Against MBI, RCKL has lower position and orientation
errors, demonstrating the advantage of the data-driven approach. These trends are also present for SLAM on folds 1, 2, 3, and 5. On folds
4 and 6, the model-based SLAM errors are much higher as a result of convergence to local minima (see Fig. 8 for a visualization).

odometer to measure its translational and rotational speed, and
uses a laser rangefinder to measure its range to the cylindrical
landmarks. The groundtruth positions of the robot are recorded
using a Vicon motion capture system. All data are logged at
10 Hz. There are approximately 4 visible landmarks at any
given time. The robot state, input, landmark position, and
measurement are in the same form as in (47), where we adopt
the common practice of using interoceptive measurments as
inputs in the process model [44]. We use the lifting functions
given in (48).

To empirically evaluate RCKL, we split the entire 20-minute
dataset into training data and testing data. We use 5/6 of the
trajectories for training, where measurements derived from
only 11 of the 17 landmarks are used to train the measure-
ment model. We test on the remaining 1/6 trajectories using
measurements derived from only the 6 remaining landmarks.
We assume that there are no factors such as slippage that would
cause the robot to drive differently in one area of the room
compared to another, and that the measurements are dependent
only on the landmark positions relative to the robot poses.
Thus, we perform data augmentation by adding translational
and rotational transformations of the original training data to
the training set.

We do 6-fold cross-validation by repeating the training/test-
ing procedure for different sections of the dataset’s trajectories,
and compare the results of RCKL to MB. To demonstrate the
advantages of the model-free framework, we also compare

Fig. 7: Mahalanobis distances of localization and SLAM for Exper-
iment 1: Mahalanobis distances of the outputs of RCKL, MB, and
MBI (whose robot-to-rangefinder distance is offset by 10 cm), on
the 6 folds of the dataset. For localization, RCKL’s Mahalanobis
distances are close to 1, signifying that RCKL-Loc is consistent.
MB’s Mahalanobis distances are slighly higher than 1, signifying
that its estimates are slightly overconfident, and MBI is similarly
to marginally more overconfident than MB. For localization, MB and
MBI are more overconfident in fold 5 than in the other folds as a
result of converging to local minima. These trends are also present
for SLAM on folds 1, 2, 3, and 5. On folds 4 and 6, the estimates of
the model-based estimators, MB and MBI, are way overconfident as
a result of convergence to local minima.

these results with MBI, whose robot-to-rangefinder distance
in the measurement model is offset by 10 cm with respect to
the generated measurements. Again, MB and MBI are using
the same raw measurements but different prior models. The
errors for RCKL, MB, and MBI are shown in Fig. 6, and their
respective Mahalanobis distances are shown in Fig. 7.
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Fig. 8: Visualization of SLAM output of Experiment 1 fold 6 for
RCKL-SLAM (top) and MB-SLAM (bottom), showing the estima-
tors’ mean states and mean landmark positions compared to the
groundtruth. The green regions and the grey regions are, respectively,
the 3σ covariances of the trajectory and of the landmarks, though
the 3σ bounds of the landmarks are barely visible. The pink lines
show the landmark correspondences between the groundtruth and
the estimators’ outputs. RCKL-SLAM’s trajectories and landmarks
are close to the groundtruth and are generally within the estimated
3σ bounds. On the other hand, MB-SLAM has converged to a local
minimum with one landmark on the opposite side of the trajectories,
and its estimate is far from being within 3σ bounds of the groundtruth.

In Fig. 6, we see that for both localization and SLAM,
RCKL has similar error levels as MB but outperforms MBI.
The Mahalanobis distances in Fig. 7 show that RCKL is
fairly consistent. Meanwhile, the model-based estimators are
overconfident, and even more overconfident with the model
offset. These results suggest that RCKL has learned a more
accurate and more consistent model than MB and especially
MBI. While RCKL appears to have not encountered any local
minima in localization or SLAM, the model-based estimators
have encountered local minima in 1 of the 6 folds for localiza-
tion, and 2 of the 6 folds for SLAM (see Fig. 8). This suggests
that RCKL has better convergence properties.

D. Experiment 2: Golf Cart with RFID Measurements

For this experiment, we train on Dataset A3 and test on
3000 steps of Dataset A1 of [45]. The setup for these two

TABLE I: Ablation results of Experiment 2 for localization (top)
and SLAM (bottom). The first row corresponds to RCKL, the second
row corresponds to MB, the third row corresponds to RCKL with
MB’s measurement model, and the fourth row corresponds to RCKL
with MB’s process model. The fifth row is MBI, the model-based
estimator whose measurement model has imperfect scaling factors.
For both localization and SLAM, RCKL has similar or lower RMSEs
than MB, and a more consistent Mahalanobis distance. RCKL is
especially better than MBI, demonstrating the advantage of the data-
driven method.

Localization Method Position
RMSE (m)

Orientation
RMSE (rad)

Maha.
distance

RCKL Process,
RCKL Measurement 0.592 0.0246 0.834

MB Process,
MB Measurement 0.768 0.0339 6.167

RCKL Process,
MB Measurement 0.790 0.0359 1.092

MB Process,
RCKL Measurement 0.582 0.0253 6.161

MBI
(imperfect model) 8.187 0.1249 6.422

SLAM Method Position
RMSE (m)

Orientation
RMSE (rad)

Landmark
RMSE (m)

Maha.
distance

RCKL Process,
RCKL Measurement 0.552 0.0293 1.073 0.865

MB Process,
MB Measurement 0.495 0.0280 1.233 6.154

RCKL Process,
MB Measurement 0.553 0.0289 1.298 0.971

MB Process,
RCKL Measurement 1.781 0.0699 2.307 6.956

MBI
(imperfect model) 1.428 0.0638 7.773 6.240

datasets consists of a cart driving on a golf course. The robot
is equipped with a transponder with four radio-frequency (RF)
antennae mounted on the four corners of the robot. As it
moves, it measures ranges to RF tags placed on top of ten
traffic cones that are scattered around the course. The range
measurements are sporadic, occuring only at certain points on
the trajectory. The measurements for each transponder contain
a rather large scaling factor, corresponding to µ in (47), of
around 1.2. The groundtruth positions of the robot and of the
cones are found with GPS. The control input consists of linear
and angular velocities found with a fibre-optic gyro and wheel
encoders. With just dead reckoning, the test trajectory drifts in
orientation owing to repeated turns in the same direction [45].
This drift will be corrected by localization or SLAM.

Similar to Experiment 1, the robot state, input, landmark
position, and measurement are in the same form as in (47),
and the same form of lifting functions are used as in (48).
The landmark locations in A1 and A3 are the same. As such,
we train on A3 with measurements from only 5 landmarks,
and test on A1 with measurements from the 4 remaining
landmarks, ignoring the one landmark with no measurements.
We treat each RFID tag as an independent measurement
model, so there are three sets of {C,R} to train, ignoring
the one tag with only two measurements. We do a similar data
augmentation procedure as Experiment 1, adding translational
and rotational transformations on the original training data
into the training set. We compare against MB, whose model
contains the correct scaling factors, and against MBI, whose
model uses a scaling factor of 1. The error plots for RCKL and
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(a) RCKL-Loc (b) MB-Localization (c) RCKL-SLAM (d) MB-SLAM

Fig. 9: Error plots for Experiment 2, comparing RCKL-Loc with MB-Localization (left two plots) and comparing RCKL-SLAM with MB-
SLAM (right two plots). The blue lines represent the errors of the estimated trajectories, and the red envelopes represent the estimated 3σ
covariance bounds. For both localization and SLAM, RCKL’s errors are similar to or smaller than those of MB. RCKL’s errors are bounded
by the 3σ bounds, while MB’s errors sometimes exceeds the 3σ bounds especially in localization. The shapes of the errors and the covariance
envelopes of RCKL are similar to those of MB, suggesting that RCKL’s outputs reflect the model reasonably well.

the model-based estimators are shown in Fig. 9. A visualization
of the outputs of RCKL-Loc and RCKL-SLAM can be seen in
Fig. 1. As an ablation study, we also perform estimation with
parts of RCKL’s learned models swapped out with MB’s prior
models. The RMSEs and Mahalanobis distances of the above
estimators are shown in Table I.

Fig. 9 qualitatively validates RCKL, since the errors and
covariances of RCKL appear similar to those of MB. Quanti-
tatively, we see from Table I that RCKL has similar or better
accuracy and consistency than MB in both localization and
SLAM. This suggests that RCKL’s learned models are better
than MB’s prior models. The ablation results in Table I also
show that swapping to RCKL’s measurement model reduces
more error than swapping to RCKL’s process model. This
suggests that RCKL’s measurement model is especially better
than MB’s measurement model, while the two process models
are of similar quality. Finally, RCKL is vastly better than MBI,
demonstrating the advantage of the data-driven framework.

E. Computation Time

We briefly discuss the computation time of RCKL compared
with that of the model-based estimators. It is difficult to
compare the convergence speed of RCKL vs. MB based on
cost tolerances since the two algorithms have vastly different
cost functions. Thus, we instead view convergence as being
sufficiently close to the groundtruth. In this sense, RCKL takes
1-3 times longer to converge than MB and MBI, depending
on the environment setup. As an example, we compare the
computation time of CPU-based implementations of RCKL
and MB on an Intel Core i7-9750H Processor. We show
in Fig. 10 the estimator runtime for the folds where both
estimators converged near the groundtruth in Experiment 1.
Each fold contains 200 seconds of data, consisting of 2000
timesteps (and inputs) and about 8000 range measurements. As
seen in Fig. 10, both estimators converge near the groundtruth

Fig. 10: Position RMSE vs. estimator runtime for Experiment 1 for
folds 1, 2, 3, 4, and 6 for localization, and folds 1, 2, 3, and 5 for
SLAM, ignoring the folds where MB converges to a local minimum.
For both RCKL and MB, markers are placed at every iteration, and the
first markers are placed at the end of their initialization procedures.
On all of these 200-second trajectories, both estimators converged to
near the groundtruth within 30 seconds.

in less than 30 seconds. RCKL has the same Big-O inference
complexity as the model-based estimators for both localization
and SLAM, scaling linearly with the number of timesteps.
The model-based estimators work with smaller matrices and
thus have faster iterations than RCKL. However, they are not
substantially faster overall because they usually require more
iterations to converge near the groundtruth.

F. Hyperparameter Tuning

We discuss our procedure and recommendations for tun-
ing the hyperparameters involved in RCKL. The main hy-
perparameters unique to this algorithm are the regularizers
in (16b), namely τA, τB , τH , τC , τQ, τR. We used a different
set of hyperparameter values for each of the experimental
scenarios presented (Simulation 1, Simulation 2, Experiment
1, Experiment 2). We hand-tuned these values by manually
adjusting them until a desired performance is reached on a
validation dataset. Hyperparameters were never trained nor
tuned on the test dataset. To achieve maximum performance,
we recommend further refining the hyperparameters through a
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Fig. 11: Hyperparameter sensitivity test: Position errors, orientation
errors, and Mahalanobis distances of RCKL-Loc and RCKL-SLAM
results on Experiment 1 (all 6 folds) vs. different hyperparameter
values (τA, τB , τH , τC , τQ, τR). For all plots, the middle marker is
placed at the hand-tuned hyperparameter value used to generate the
results in Section X-C. In each row, a hyperparameter is varied an
order of magnitude above and below its hand-tuned value, while all
other hyperparameters are set to their hand-tuned values. In the first
two columns, we show the 25th, 50th, and 75th percentiles of the
errors by representing them with the error bars’ lower bounds, the
circle markers, and the error bars’ upper bounds. In the third column,
the markers represent the mean Mahalanobis distances.

grid search or other hyperparameter optimization methods [46].
In our experiments, we saw that RCKL’s performance is
sensitive to only a few hyperparameter values. To show this, we
performed a sensitivity analysis on the τ ’s used in Experiment
1. Fig. 11 shows the accuracy and consistency of RCKL-Loc
and RCKL-SLAM as we individually vary each of the τ ’s
within an order of magnitude above and below our hand-tuned

values. We see that RCKL’s accuracy and consistency does not
change significantly across the tested ranges of τA, τB , τH ,
and τC . The covariance regularizers, τQ and τR, have larger
effects on performance. Notably, the estimates are generally
less consistent if τQ and τR are set either too low or too high,
and generally less accurate if τQ and τR are set too high.

There are other settings that can be classified as hyperparam-
eters, such as the lifting functions used and parameters within
the SQP (e.g., µ in the line search acceptance criterion; see
(64) in Appendix D). We recommend using standard methods
found in literature to choose these parameters. For example,
we chose SERFFs as our lifting functions because they are
universal [37], but more methodical Koopman identification
methods [47], [48] can be used as well.

XI. CONCLUSION

The results highlight the advantages of RCKL’s data-driven
approach to localization and SLAM. When the classic model-
based estimator that relies on Gauss-Newton has access to
perfect models in simulation, it has similar or slightly better
accuracy than RCKL. However, RCKL has similar or slightly
better accuracy than the model-based estimator with an imper-
fect model. On real-world datasets, RCKL is generally more
accurate and more consistent than the classic model-based
estimator, and even more so when comparing with classic
estimators with imperfect models. While the performance of
the model-based estimators depends on the validity of their
prior models, RCKL simply applies the high-dimensional
model learned through data. In addition, RCKL appears to have
the unanticipated benefit of being less prone to local minima.

Many avenues deserve interest for future work. It is worth
investigating the origin of RCKL’s improvement in conver-
gence properties as a result of lifting estimation into a high-
dimensional space. Another direction is to investigate updating
the solution incrementally for real-time localization or SLAM,
possibly by applying factor graph solvers [49], [50] or smooth-
ing methods [51] in the lifted space. As well, we can broaden
the model types that can be converted into lifted forms, making
a further step towards data-driven state estimation for general
robotics systems. Moreover, many of the techniques developed
in this paper could potentially be applied for other applications,
such as data-driven optimal control of nonlinear systems.

REFERENCES

[1] W. Zhao, J. Panerati, and A. P. Schoellig, “Learning-based bias correction
for time difference of arrival ultra-wideband localization of resource-
constrained mobile robots,” IEEE RA-L, vol. 6, no. 2, pp. 3639–3646,
2021.

[2] Y. Tao, L. Wu, J. Sidén, and G. Wang, “Monte Carlo-based indoor RFID
positioning with dual-antenna joint rectification,” Electronics, vol. 10,
no. 13, 2021.

[3] C. Pezzato, R. Ferrari, and C. H. Corbato, “A novel adaptive controller
for robot manipulators based on active inference,” IEEE RA-L, vol. 5,
no. 2, pp. 2973–2980, 2020.

[4] Z. C. Guo, V. Korotkine, J. R. Forbes, and T. D. Barfoot, “Koopman
linearization for data-driven batch state estimation of control-affine
systems,” IEEE RA-L, vol. 7, no. 2, pp. 866–873, 2022.

[5] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New
York, NY, USA: Springer, 2006.

[6] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in machine
learning,” Ann. Stat., vol. 36, no. 3, p. 1171–1220, Jun 2008.



16

[7] B. O. Koopman, “Hamiltonian systems and transformation in Hilbert
space,” PNAS, vol. 17, no. 5, pp. 315–318, 1931.

[8] L. Song, J. Huang, A. Smola, and K. Fukumizu, “Hilbert space em-
beddings of conditional distributions with applications to dynamical
systems,” in Proceedings of the 26th ICML, ser. ICML ’09. New York,
NY, USA: Association for Computing Machinery, 2009, p. 961–968.

[9] J. Ko and D. Fox, “GP-BayesFilters: Bayesian filtering using Gaussian
process prediction and observation models,” in IEEE/RSJ IROS, 2008,
pp. 3471–3476.

[10] B. Ferris, D. Fox, and N. Lawrence, “Wifi-SLAM using Gaussian process
latent variable models,” vol. 7, 01 2007, pp. 2480–2485.

[11] Y. Nishiyama, A. Afsharinejad, S. Naruse, B. Boots, and L. Song, “The
nonparametric kernel Bayes smoother,” in AISTATS, 2016.

[12] S. L. Brunton and J. N. Kutz, Data-Driven Science and Engineering.
Cambridge, U.K.: Cambridge Univ. Press, 2019.

[13] A. Surana, M. O. Williams, M. Morari, and A. Banaszuk, “Koopman
operator framework for constrained state estimation,” in IEEE 56th CDC,
2017, pp. 94–101.

[14] A. Surana, Koopman Framework for Nonlinear Estimation. Cham:
Springer International Publishing, 2020, pp. 59–79.

[15] M. Netto and L. Mili, “A robust data-driven Koopman Kalman filter
for power systems dynamic state estimation,” IEEE Trans. Power Syst.,
vol. 33, no. 6, pp. 7228–7237, 2018.

[16] I. Abraham and T. Murphey, “Active learning of dynamics for data-
driven control using Koopman operators,” IEEE Trans. Robot., vol. 35,
pp. 1071–1083, 2019.
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APPENDIX

A. Solving UKL-Loc with the RTS smoother

Here, we outline the process of applying the RTS smoother
to the system in (20) to solve UKL-Loc. This may be a more

https://github.com/decargroup/pykoop
https://doi.org/10.21105/joss.02104
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efficient solution process than the sparse Cholesky solver. Note
that the two methods are algebraically equivalent [24, §3].

With the landmarks given, we convert the measurement
model to be linear-Gaussian using the same trick as in the
process model. Observe that

ℓj ⊗ xk = (ℓj ⊗ 1)xk = (1⊗ xk)ℓj . (51)

With this, we can rewrite the measurement equation at each
timestep k by stacking the measurements, yk, and defining
matrices, C′ and R′ as

yk =

yk,1...
yk,V

 , C′ =

C(ℓ1 ⊗ 1)
...

C(ℓV ⊗ 1)

 , R′ = diag(R, . . . ,R),

(52)

where yk is filled with known values of the landmarks and R′

is R stacked diagonally V times. The system in (20) can then
be written as

xk = Ak−1xk−1 + vk +wk, k = 1, . . . ,K, (53a)
yk = C′xk + nk, k = 0, . . . ,K, (53b)

where wk ∼ N (0,Q), nk ∼ N (0,R′). If any measurement is
missing, we can make C′ and R′ be time-varying and omit the
corresponding entries when constructing yk, C′

k, and R′
k. In

any case, we have converted the bilinear time-invariant system
in (9) into a linear time-varying (LTV) system. We can then
apply the standard RTS smoother [24] to (53) to solve for the
states in O(N3KV ) time. The output is xk ∼ N (x̂k, P̂x,k),
where x̂k is the state mean and P̂x,k is the covariance at
timestep k, for all k = 0, . . . ,K. In contrast to [4], by using
a measurement model that is individually applicable to each
landmark, we have generalized localization to environments
with new landmark positions.

B. Gauss-Newton Setup for UKL-SLAM

We use Gauss-Newton optimization to solve (26) for x
and ℓ. Given an operating point, qop, the Gauss-Newton
approximation of (24) yields

J(q) = J(qop + δq) ≈ J(qop)− gT δq +
1

2
δqTF δq, (54)

where

F =HTW−1H, g =HTW−1e(qop), (55a)

H =

[
A−1 0
Gx Gℓ

]
, A−1 =

−A0 1
. . . . . .

−AK−1 1

 ,
(55b)

Gx = diag(Gx,1, . . . ,Gx,K), GT
ℓ =

[
GT
ℓ,1 · · · GT

ℓ,K

]
,

(55c)
GT

x,k =
[
GT

x,k,1 · · · GT
x,k,V

]
, Gℓ,k = diag(Gℓ,k,1, . . . ,Gℓ,k,V ),

(55d)

where, using (51), the measurement Jacobians are

Gx,k,j =
∂yk,j
∂x

∣∣∣∣
xop,k,ℓop,j

= C(ℓop,j ⊗ 1), (56a)

Gℓ,k,j =
∂yk,j
∂ℓ

∣∣∣∣
xop,k,ℓop,j

= C(1⊗ xop,k). (56b)

Note that F is at least positive semidefinite when Q and R
are positive definite, and F is positive definite when the lifted
system is observable [24]. Observability of the lifted system
depends on the test data and the Jacobians in H [52]. We
found that in simulation and experimental testing, when UKL
has a good initialization, F is positive definite and successful
convergence of the Gauss-Newton algorithm is realized. See
Section VIII-C for an initialization procedure. This empirically
suggests that when the original system is observable, the lifted
system is also observable once given good priors in (16b),
reasonable lifting functions, and sufficient training data. An
interesting avenue for future work is explicitly enforcing
observability when learning A, B, H, and C.

The optimal update, δq, satisfies

F δq = g, (57)

where we can solve for δq by following the standard approach
for classic batch SLAM [24]. As we will see in Appendix C,
the complexity of solving (57) is O(N3(V 3+V 2K)) when we
have more timesteps than landmarks, or O(N3(K3 +K2V ))
when we have more landmarks than timesteps.

As mentioned in Section VII-D, we can easily accomodate
for missing or known variables. If yk,j is missing, we simply
remove ey,k,j from the cost and delete the corresponding
blocks in R−1, Gx,k, and Gℓ,k. If xk or ℓj is already known,
we modify (57) to incorporate the known variable by setting
xk or ℓj to its value, removing it from the list of variables
in q, and moving its corresponding equation in F δq to the
right-hand side as part of g.

The CKL-SLAM problem (34) contains the same objective
function as UKL-SLAM (26). As we will see in Appendices D
and E, CKL-SLAM’s solution process uses the same Gauss-
Newton approximation as described above. The case is similar
for RCKL-SLAM, where owing to its slightly-modified cost
function (46), the only required changes are to replace Q−1 =[
Q−1
ξ 0

0 0

]
in (25b) and Ak−1 =

[
Aξ,k−1

0

]
in (55b).

C. Solving UKL-SLAM in Linear Time

Although the linear system in (57) is very large, it can be
efficiently solved with Cholesky factorization and by exploiting
sparsity patterns. F has the structure

F =

[
A−TQ−1A−1 +GT

xR
−1Gx GT

xR
−1Gℓ

GT
ℓR

−1Gx GT
ℓR

−1Gℓ

]
=

[
Fx Fxℓ
F Txℓ Fℓ

]
,

(58)

which exhibits the usual SLAM arrowhead pattern where Fx is
block-tridiagonal and Fℓ is block-diagonal [24]. As discussed
in Section VII-B, F is usually positive definite. Then, when
we have more robot poses than landmarks, we can use the
lower-Cholesky decomposition on F ,

F =

[
Lx 0
Lxℓ Lℓ

]
︸ ︷︷ ︸

L

[
LTx LTxℓ
0 LTℓ

]
︸ ︷︷ ︸

LT

=

[
LxL

T
x LxL

T
xℓ

LxℓL
T
x LxℓL

T
xℓ +LℓL

T
ℓ

]
,

(59)
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where we can use the fact that F11 is block-tridiagonal to
efficiently compute the nonzero blocks in Lxx (see [24, §3]),
and then compute Lxℓ and Lℓℓ. For the right-hand side of (57),
g has the structure

g =HTW−1eop =

[
A−TQ−1ev,op +G

T
xR

−1ey,op
GT
ℓR

−1ey,op

]
=

[
gx
gℓ

]
,

(60)

for which we can efficiently compute using the appropriate
blocks. The solution process for (57) becomes first solving
Lp = g for a placeholder variable p using forward substitu-
tion, then solving LT q̂ = p for q̂ using backward substitution.
Thus, (57) can be solved without ever constructing the large
sparse system, rather just working with the required blocks.
The exact solution for q̂ can be computed in O(N3(V 3 +
V 2K)) time. On the other hand, if we have more landmarks
than poses, we can use the upper-Cholesky decomposition
with a similar procedure, solving in O(N3(K3+K2V )) time.
See [24, §9] for an example.

After iterating until convergence, we can also efficiently
compute the covariances of the system. To find P̂x,k and P̂ℓ,j ,
we compute the diagonal blocks of F−1. Since P̂q = F =
LLT [24], we can use [53] to compute only the blocks of F−1

corresponding to the nonzero blocks of L. This can be done
without raising the computational complexity of SLAM given
the sparsity pattern of L present in SLAM problems [54]. The
final output is xk ∼ N (x̂k, P̂x,k), ℓj ∼ N (ℓ̂j , P̂ℓ,j).

D. Formulating the SQP for (R)CKL-SLAM

We formulate an SQP [5] to solve (34). The Lagrangian
is L(q,λ) = J(q) − λTh(q), where λT =

[
λTx λTℓ

]
,

λTx =
[
λTx,1 · · · λTx,K

]
, λTℓ =

[
λTℓ,1 · · · λTℓ,V

]
are the

Lagrange multipliers. Using the same matrix structures as (55),
we can write the Jacobian of the Lagrangian at an operating
point, qop and λop, as ∂L

∂qT
|qop = −g − STλop, where g

is defined in (55), and S is the Jacobian of the constraints,
defined as

S =
∂h

∂q

∣∣∣∣
qop

=

[
Sx 0
0 Sℓ

]
, (61a)

Sx = diag(Sx,1, . . . ,Sx,K), Sℓ = diag(Sℓ,1, . . . ,Sℓ,V ),
(61b)

Sx,k =
∂hx(x)

∂x

∣∣∣∣
xop,k

, Sℓ,j =
∂hℓ(ℓ)

∂ℓ

∣∣∣∣
ℓop,j

. (61c)

Note that S is block-diagonal owing to the blockwise structure
of the constraints.

We use a generalized Gauss-Newton approximation of the
Hessian of the Lagrangian [34, §2], [35, §3.2], which simply
corresponds to the Gauss-Newton approximation of the objec-
tive function:

∂2L

∂q∂qT

∣∣∣∣
qop

≈

(
∂J

∂qT

∣∣∣∣
qop

)(
∂J

∂q

∣∣∣∣
qop

)
= F , (62)

where F is defined in (55). In contrast to the full Hessian of
the Lagrangian, which may be indefinite, the Gauss-Newton
approximation is guaranteed to be at least positive semidefinite.
The condition for a valid descent direction from the SQP is

that the reduced Hessian, or the Hessian projected onto the
tangent space of the constraints, is positive definite [5, p. 452].
With our Gauss-Newton approximation, the reduced Hessian
is at least positive semidefinite. It is also empirically full rank
in our experiments, thus meeting the SQP’s requirement. See
Appendix E for more discussion on this condition.

We now follow the procedure in [5] to set up the SQP system
of equations at each iteration as[

F ST

S 0

] [
δq
−δλ

]
=

[
g + STλop
−h

]
, (63)

then update the operating point of the primal variable and the
multiplier as qop ← qop +αδq and λop ← λop +αδλ, with an
appropriate step size α. We find α using a backtracking line
search with an acceptance criterion [5],

ϕ1(qop + αδq, µ) ⩽ ϕ1(qop, µ) + ηα
∂J

∂qT

∣∣∣∣
qop

δq, (64)

where η ∈ (0, 1), µ > 0, and ϕ1(q, µ) = J(q) + µ||h(q)||1 is
the L1 merit function.

We can now solve for (δq, δλ) and iterate to convergence,
yielding (q∗,λ∗). We then recover the mean estimates in the
original space, ζ̂, by picking off the top blocks of the lifted
estimates in q∗. Although the linear system in (63) is quite
large, as we will see in Appendix E, we can solve it efficiently
by exploiting the SLAM arrowhead structure in F and the
block-diagonal structure in S.

E. Solving (R)CKL-SLAM in Linear Time

In this section, we efficiently solve the large linear system in
(63) for δq and δλ, and also describe the requirements on the
SQP Hessian for valid descent directions. We define t = δq
and ν = δλ for brevity.

We solve the SQP with the nullspace method [5]. This
method is recommended for systems where the degrees of
freedom of the free variables is small. For our system, this
number simply corresponds to the degrees of freedom of the
original system in (3), since the rest of the variables are lifted
from, and thus constrained by, the original variables. As we
will see, (63) can be solved in the same time complexity as
the unconstrained problem: O(N3(V 3+V 2K)) when we have
more timesteps than landmarks, or O(N3(K3 +K2V )) when
we have more landmarks than timesteps.

We break down t and v as t =

[
tx
tℓ

]
, v =

[
vx
vℓ

]
,

tTx =
[
tTx,1 · · · tTx,K

]
, tTℓ =

[
tTℓ,1 · · · tTℓ,V

]
, vTx =[

vTx,1 · · · vTx,K
]
, vTℓ =

[
vTℓ,1 · · · vTℓ,V

]
.

Let S|| = null(S) be a matrix constructed by a basis of the
nullspace of S, where S is defined in (61). Then, span(S||)
represents the tangent space of the linearized constraints. Let
S⊥ be a matrix that completes the basis for S||, meaning that
the square matrix

[
S|||S⊥

]
is full rank3. Since S is block-

3Note that one choice for S⊥ that contains the desired block-diagonal
sparsity structure is S⊥ = ST . However, other choices of a block-diagonal
S⊥ are just as efficient, and fixing S⊥ = ST in particular does not simplify
any future computations. Rather, this restriction could limit a user from freely
constructing S⊥ to resolve any numerical issues that may arise. Thus, in this
section, we kept S⊥ as a separate entity from ST , in the same spirit as how
the nullspace method is presented in [5].
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diagonal, we can choose a block-diagonal construction of S||
and S⊥ as

S|| =

[
S||,x 0
0 S||,ℓ

]
, S⊥ =

[
S⊥,x 0
0 S⊥,ℓ

]
, (65a)

S||,x = diag(S||,x,1, . . . ,S||,x,K), S||,ℓ = diag(S||,ℓ,1, . . . ,S||,ℓ,V ),

(65b)
S⊥,x = diag(S⊥,x,1, . . . ,S⊥,x,K), S⊥,ℓ = diag(S⊥,ℓ,1, . . . ,S⊥,ℓ,V ),

(65c)
S||,x,k = null(Sx,k), S||,ℓ,j = null(Sℓ,j), (65d)

S⊥,x,k = null(ST||,x,k), S⊥,ℓ,j = null(ST||,ℓ,j). (65e)

We decompose t into two components, t⊥ and t||:

t = t⊥ + t||, t⊥ = S⊥c⊥, t|| = S||c||. (66)

Here, t⊥ represents the update direction orthogonal to the con-
straints, and t|| represents the update direction tangent to the
constrants. c⊥ and c|| are, respectively, the coordinates of t⊥
and t|| in the basis of S⊥ and S||. We write c⊥ and c|| as c⊥ =[
c⊥,x
c⊥,ℓ

]
, c|| =

[
c||,x
c||,ℓ

]
, cT⊥,x =

[
cT⊥,x,1 · · · cT⊥,x,K

]
, cT⊥,ℓ =[

cT⊥,ℓ,1 · · · cT⊥,ℓ,V
]
, cT||,x =

[
cT||,x,1 · · · c||,x,K

]T
,

cT||,ℓ =
[
cT||,ℓ,1 · · · cT||,ℓ,V

]
.

To make the coordinates c||,x,k and c||,ℓ,j more inter-
pretable, we can enforce that the choice of S||,x,k and S||,ℓ,j
has the identity matrix of the appropriate size on top:

S||,x,k =

[
1Nξ
∗

]
, S||,ℓ,j =

[
1Nψ
∗

]
, (67)

where the ∗ block consists of any entries such that (65d) is
satisfied. Then, each element in c||,x,k and c||,ℓ,j represents,
respectively, the update in each dimension of ξk and ψj
tangent to the constraints. This structure will also simplify the
extraction of covariances later.

To solve for t, we first solve for t⊥, then solve for t||. From
the second equation of (63), we have St = −h,
⇒ S(S⊥c⊥ + S||c||) = −h,

⇒ (SS⊥)c⊥ = −h. (68)

We assume that S has full row rank, or else the SQP is not
feasible. Note that SS⊥ is nonsingular. To see why, notice that[
S|||S⊥

]
has full rank, so the product S

[
S|||S⊥

]
=
[
0|SS⊥

]
has full row rank, and thus SS⊥ is a square nonsingular
matrix. Therefore, we can uniquely solve for c⊥ from (68).
With our choice of S⊥ in (65), SS⊥ also becomes block-
diagonal with the same structure as in (65). We can thus solve
for c⊥ in O(N3(K + V )) time with

(Sx,kS⊥,x,k)c⊥,x,k = −hx,k, k = 1, . . . ,K, (69a)
(Sℓ,jS⊥,ℓ,j)c⊥,ℓ,j = −hℓ,j , j = 1, . . . , V. (69b)

To find t||, we premultiply the first equation of (63) by ST|| to
elimininate any ST|| S

T terms:

ST|| (Ft− S
Tv) = ST|| (g + S

Tλ), (70a)

⇒ ST|| F (S⊥c⊥ + S||c||) = S
T
|| g, (70b)

⇒ (ST|| FS||)c|| = S
T
|| g − S

T
|| FS⊥c⊥, (70c)

⇒ F||c|| = g||, (70d)

where F|| = S
T
|| FS|| and g|| = ST|| g−S

T
|| FS⊥d⊥. Here, F||

represents the reduced Hessian [5], with its size just being the
degrees of freedom of the original unlifted system.

The SQP solution is guaranteed to be a direction of descent
if F|| is positive definite [5, p. 452]. Since F is at least
positive semidefinite, F|| is at least positive semidefinite. We
then only require that F|| is full rank. This can be interpreted
as observability of the lifted constrained system, where the
solution of the states and landmarks is unique given the process
prior, measurements, and constraints. Unlike in UKL, the
constraints contribute to the observability of the system. That
is, F may not be full rank and is only positive semidefinite
(i.e., the unconstrained system is unobservable), but F|| is
positive definite (i.e., the constrained system is observable).
This happens when the unobservable space in F is projected
out by S||. We see this commonly in RCKL-SLAM, where the
evolution of the lifted features is ‘moved’ from the process
model to the nonlinear constraints, and the system is only
observable with the constraints in place.

Similar to the case for UKL, the observability of (R)CKL
depends on the priors, lifting functions, training data, and the
observability of the original system. In our experiments, the
rank requirement always holds empirically when the SQP is
initialized according to Section VIII-C.

Using F ’s breakdown in (58), F|| can be written as

F|| =

[
ST||,xFxS||,x ST||,xFxℓS||,ℓ
ST||,ℓF

T
xℓS||,x ST||,ℓFℓS||,ℓ

]
=

[
F||,x F||,xℓ
F T||,xℓ F||,ℓ

]
,

(71)

where, owing to the block-diagonal structure of S||, the SLAM
arrowhead sparsity structure is preserved. This is to say, F||,xx
is block-tridiagonal and F||,ℓℓ is block-diagonal. The blocks
in F|| can be computed in parallel in O(N3KV ) time. The
computation of g|| is similarly efficient, since ST|| is block-
diagonal and ST|| FS⊥ also preserves the sparsity pattern of F .
Then, we can use a Cholesky decomposition on F||, similar to
the one done on F in (59), to efficiently solve for c|| in (70d).
Again, the complexity is O(N3(V 3 + V 2K)) when the lower
Cholesky decomposition is used when there are more timesteps
than landmarks, but the upper Cholesky decomposition can be
used for the other case. Finally, we use c⊥ and c|| to form t⊥
and t||, and then form the full update variable, t, with (66),
all in linear time.

To solve for the Lagrange multiplier update, v, we premul-
tiply the first equation of (63) by ST⊥:

ST⊥(Ft− STv) = ST⊥(g + STλ), (72a)

⇒ (SS⊥)
Tv = ST⊥(Ft− g − STλ), (72b)

where we can solve for v in linear time since the square
matrix SS⊥ is full rank and block-diagonal. With this, we
have efficiently solved for t and v in time O(N3(V 3+V 2K)).
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F. Proof of (R)CKL-SLAM Covariance Extraction

Below, we will show that when S||,x,k and S||,ℓ,j have the
structures shown in (67), then the batch covariance of the
original variables satisfies

Σ̂ζ = F
−1
|| = (ST|| FS||)

−1, (73)

where F|| is constructed at the solution (q⋆,λ⋆). Since F|| has
the SLAM arrowhead sparsity structure, we use a similar pro-
cedure as for UKL-SLAM to extract the required covariances
by finding the corresponding nonzero blocks of F||.

We now show (73). After convergence, we construct the
left-hand side of the SQP in (63) once more, yielding M =[
F ST

S 0

]
. M is termed the Karush–Kuhn–Tucker (KKT)

matrix [55]. Before inverting M , note that F may not be
invertible. As discussed in Appendix E, this occurs when only
the constrained system is observable, which is most commonly
seen in RCKL-SLAM. However, as long as F|| is invertible
and S has full row rank, then M is invertible. This is because
the SQP solution, δq and δλ in (63), is unique, as seen in
Appendix E by construction. We now write the inverse of the

KKT matrix as M−1 =

[
PF P T

S

PS PZ

]
, where PF, PS, and PZ

has the same size as F , S, and the 0 in M , respectively. Then,
it is known that P̂q , the covariance of the primal variable,
satisfies P̂q = PF [34].

We cannot use the Schur complement on M to solve for PF

since F is not necessarily invertible. However, computing PF

is actually not necessary. When the constraints are satisfied at
the minimum-cost solution, any uncertainty as a result of noisy
information would only be within the constraint manifold’s
tangent space [34]. That is, we can write q⋆ = S||c

⋆, where
c⋆ is the coordinate of q⋆ in the basis of S||. The solution
distribution in the basis of S|| satisfies c ∼ N (ĉ, P̂c), where
ĉ = c⋆ and P̂q = S||P̂cS

T
|| , affirming that the covariance of

q is within the space of S||. Then, observe that Σ̂ζ = P̂c,
where Σ̂ζ is the covariance of the original state variables and
is exactly the covariance we need. This is because owing
to the structure of the bases in (67), the dimensions in c
exactly represent the dimensions of the original variables, so
the covariance ζ is equivalent to the covariance of c.

We write out the expression MM−1 = 1, yielding[
F ST

S 0

] [
PF P T

S

PS PZ

]
=

[
1 0
0 1

]
. (74)

We premultiply first expression of (74) by ST|| :

FPF + STPS = 1, (75a)

⇒ ST|| FS||P̂cS
T
|| + S

T
|| S

TPS = ST|| , (75b)

⇒ (ST|| FS||)P̂cS
T
|| = ST|| , (75c)

⇒ P̂c = (ST|| FS||)
−1, (75d)

where the last derivation uses the fact that S|| has full column
rank. Thus, Σ̂ζ = P̂c = (ST|| FS||)

−1.

G. (R)CKL Estimation with Orientation

Suppose the state of a 2D robot is ξk =[
ξx,k ξy,k ξθ,k

]T
, where (ξx,k, ξy,k) is its position

and ξθ,k is its orientation. Since ξθ,k is circular, simply lifting
with xk = pξ(ξk) in (31a) would not work: ξθ,k would be part
of the lifted state but we cannot enforce that ξθ,k = ξθ,k+2mπ
for m ∈ Z. Instead, we do a variable transformation on ξk as
ξ

′

k =
[
ξx,k ξy,k ξcos θ,k ξsin θ,k

]T
, where the conversion

from ξk to ξ
′

k is ξcos θ,k = cos ξθ,k, ξsin θ,k = sin ξθ,k. We
introduce the constraint hξ(ξ

′

k) = ξ2cos θ,k + ξ2sin θ,k − 1 = 0.
We then select a lifting function p̃ξ′ (ξ

′

k), and then write the

lifted state as xk =

[
ξ

′

k

p̃ξ′ (ξ
′

k)

]
=

[
ξ

′

k

x̃k

]
, where the manifold

constraint is now the lifting function constraint in addition to
the orientation constraint on ξ

′

k:

xk ∈ X ⇒ hx(xk) =

[
x̃k − p̃ξ′ (ξ

′

k)

ξ2cos θ,k + ξ2sin θ,k − 1

]
= 0. (76)

Note that the additional constraint still acts on each state
individually at each timestep, meaning that hx(x) is still
block-diagonal. Thus, the rest of the procedure for (R)CKL
estimation follows as usual. Afterwards, we get ξ̂θ,k =
atan2(ξ̂sin θ,k, ξ̂cos θ,k).

With the additional constraint, the covariance extraction
needs to be slightly modified. Σ̂ξ,k, the covariance of ξk, is
not the same as P̂c,k, the covariance of xk in the coordinates
of the constraint tangent space defined by S||,x,k. ξ′k has 4
dimensions but only 3 degree of freedom. As such, we enforce
a different structure on S||,x,k than in (67):

S||,x,k



1 0 0
0 1 0
0 0 S||,cos θ,k
0 0 S||,sin θ,k
∗ ∗ ∗
...

...
...


, (77)

where the ∗ entries are any entries so that S||,x,k = null(Sx,k)

is satisfied. Then, given P̂c,k in the form

P̂c,k =

 σ̂2
c,x,k σ̂2

c,xy,k σ̂2
c,xθ,k

σ̂2
c,xy,k σ̂2

c,y,k σ̂2
c,yθ,k

σ̂2
c,xθ,k σ̂2

c,yθ,k σ̂2
c,θ,k

 , (78)

the position covariance is still the upper-left 2× 2 block, and
the variance of ξcos θ,k and ξsin θ,k can be found with

Σ̂ξ,cos θ,k = S2
||,cos θ,kσ̂

2
c,θ,k, Σ̂ξ,sin θ,k = S2

||,sin θ,kσ̂
2
c,θ,k,

(79)

either of which can be converted to the orientation variance,
Σ̂ξ,k,θ, through a linear transformation of a Gaussian at the
mean, ξ̂θ,k. We see in our experiments that when Σ̂ξ,cos θ,k
and Σ̂ξ,sin θ,k are small, using either variance yield the same
value for Σ̂ξ,θ,k.
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