
1

PDSR: A Privacy-Preserving Diversified Service
Recommendation Method on Distributed Data

Lina Wang, Huan Yang, Yiran Shen, Chao Liu, Lianyong Qi, Xiuzhen Cheng, and Feng Li

Abstract—The last decade has witnessed a tremendous growth of service computing, while efficient service recommendation
methods are desired to recommend high-quality services to users. It is well known that collaborative filtering is one of the most popular
methods for service recommendation based on QoS, and many existing proposals focus on improving recommendation accuracy, i.e.,
recommending high-quality redundant services. Nevertheless, users may have different requirements on QoS, and hence diversified
recommendation has been attracting increasing attention in recent years to fulfill users’ diverse demands and to explore potential
services. Unfortunately, the recommendation performances relies on a large volume of data (e.g., QoS data), whereas the data may be
distributed across multiple platforms. Therefore, to enable data sharing across the different platforms for diversified service
recommendation, we propose a Privacy-preserving Diversified Service Recommendation (PDSR) method. Specifically, we innovate in
leveraging the Locality-Sensitive Hashing (LSH) mechanism such that privacy-preserved data sharing across different platforms is
enabled to construct a service similarity graph. Based on the similarity graph, we propose a novel accuracy-diversity metric and design
a 2-approximation algorithm to select K services to recommend by maximizing the accuracy-diversity measure. Extensive experiments
on real datasets are conducted to verify the efficacy of our PDSR method.

Index Terms—Collaborative filtering, recommendation diversity, privacy preservation.

✦

1 INTRODUCTION

Recent years have witnessed a considerable development
of services, thanks to the emerging computing paradigms
and architectures, e.g., Software Oriented Architecture (SOA),
Internet of Services (IoS) and Cloud Computing. As a
growing variety of services are provided on the Web, it
is of considerable importance to recommend appropriate
services for a wide range of users [1].

It is well known that Collaborative Filtering (CF) has been
widely used to build service recommender systems based on
Quality of Service (QoS) [2], [3], [4]. The basic idea is to exploit
the similarity among services to predict QoS values for
particular users, while characterizing the service similarity
relies on mining a big volume of historical QoS data. Tradi-
tional recommendation methods usually aim at improving
recommendation accuracy such that they recommend only
similar services with the highest predicted QoS to target
users, whereas the users may have different requirements on
the QoS [5], [6]. Furthermore, the recommendation highly
relies on the QoS prediction; nevertheless, the prediction

• L. Wang, X. Cheng, and F. Li are with School of Computer Science and
Technology, Shandong University, Qingdao, 266237, China.
E-mail: linawang425@mail.sdu.edu.cn, {xzcheng, fli}@sdu.edu.cn.

• H. Yang is with College of Computer Science and Technology, Qingdao
University, Qingdao, 266071, China.
Email: cathy huanyang@hotmail.com.

• Y. Shen is with School of Software, Shandong University, Jinan, 250101,
China.
E-mail: yiran.shen@sdu.edu.cn.

• C. Liu with Department of Computer Science and Technology, Ocean
University of China, Qingdao, 266100, China.
E-mail: liuchao@ouc.edu.cn

• L. Qi is with College of Computer Science and Technology, China Univer-
sity of Petroleum (East China), Qingdao, 266580, China.
E-mail: 20220115@upc.edu.cn.

usually has inevitable bias. Therefore, recommendation di-
versity is extensively studied in many recent proposals [7],
[8], [9], [10], [11]. On one hand, it is able to fulfill the
users’ different QoS demands; on the other hand, it helps
to explore potential services which is underestimated by the
QoS prediction.

Unfortunately, diversifying service recommendation
usually entails a large volume of data (e.g., QoS data),
whereas the data may be distributed across different plat-
forms [12]. Despite the benefits of enabling data sharing
across the different platforms, the platforms owing the data
are usually reluctant to share their data with each other,
since private information could be inferred from the data
by untrusted third-party platforms [13], [14]. Therefore, to
enabling data sharing across different platforms, privacy
preservation is one of the main concerns. Many efforts have
been made to integrate privacy preservation techniques
with CF. For example, [15], [16] apply homomorphic en-
cryption techniques, and differential privacy mechanisms
are adopted in [17], [18] to obfuscate the original data before
sharing them with others. Nevertheless, the cryptography-
based method entails high computation overhead, while
the differential privacy mechanism usually impairs data
utility. Another choice is to utilize hashing mechanisms. For
example, Locality-Sensitive Hashing (LSH), have been utilized
in [14], [19], [20] to ensure privacy preservation based on
distributed data sources. It is usually applied to efficiently
exploit the similarity among the services or users through
light-weight computations, while the privacy preservation
can be ensured thanks to its irreversibility. Unfortunately,
how to effectively diversify the similarity relationship ob-
tained by LSH is still an open problem.

In this paper, we propose a Privacy-preserving Diversified
Service Recommendation (PDSR) method. The proposed PDSR

ar
X

iv
:2

40
8.

15
68

8v
1

 [
cs

.I
R

]
 2

8
A

ug
 2

02
4

2

method not only leverages a trade-off between recommen-
dation accuracy and diversity, but also ensures privacy
preservation for data sharing across different platforms.
In particular, LSH mechanism is adopted to construct a
graph to characterize the similarity among the services
based on distributed data from different sources. Due to the
irreversibility and the computational efficiency of the hash
functions, the construction of the similarity graph entails
light-weight computational overhead and enables privacy
preservation across the different data sources. We innovate
in designing a new diversity metric for the similarity graph,
based on which, we formulate our K-Diversified Service
Recommendation (K-DSR) problem where K services are
selected to maximize the accuracy-diversity evaluation of
the recommendation. We prove the NP-hardness of the
problem, and design a 2-approximation algorithm thanks
to its monotone submodularity.

In summary, we make the following main contributions
in our PDSR method as follows:

• We leverage the notion of LSH to efficiently construct
a weighted service similarity graph across different
data sources with their privacy preserved.

• We innovate in designing a new diversity met-
ric for the similarity graph, based on which, a 2-
approximation algorithm is proposed for diversified
recommendation.

• We finally perform extensive experiments on real
data to verify the efficacy of our proposed method
in leveraging the accuracy-diversity trade-off.

The remaining of our paper is organized as follows. We
first survey related literature and present an example to
motivate the design of our service recommendation method
in Sec. 2. We then give some preliminaries in Sec. 3. More-
over, we report the details of our proposed PDSR method in
Sec. 4. Experiment results are then given in Sec. 5. We finally
conclude this paper in Sec. 6.

2 RELATED WORK AND MOTIVATION

2.1 Diversified Service Recommendation
Some of state-of-the-art proposals mainly focus on devel-
oping innovative methods to enhance the result accuracy
[4], [21], [22], [23], [24]. For example, in [22], a covering-
based service recommendation method is proposed through
neighbor-aware matrix factorization. [23] designs a deep
learning-aided collaborative filtering framework, where
neural networks is adopted to learn binary representations
for both users and items. In [24], time correlation coefficient
and K-means clustering with cuckoo search are employed
to improve the performance of collaborative filtering by
taking into account users’ time-varying interests.

As mentioned in Sec. 1, an accurate recommendation
is not necessarily a satisfactory one. Therefore, diversified
recommendation have been attracting increasing attention
in recent years. In [8], functional relevance, QoS utility,
and diversity features of Web services are incorporated for
recommending well diversified services to users. In [25], an
acceleration algorithm is proposed to speed up the Maxi-
mum A Posteriori (MAP) inference for determinantal point
process; the algorithm can be used for recommendation

diversification. The accelerated MAP inference algorithm
is then adopted in [10]. In particular, [10], the fast MAP
inference algorithm is utilized in a combinatorial bandit
for diversified recommendation. [5] exploits the quality
correlations among different dimensions of users’ quality
preferences, to diversify recommendation results. In [26],
user exposure diversity and item concordance are exploited
to endow the collaborative filtering with recommendation
diversity. In [11], multiple recommendation lists are selected
first, from which the most diversified one can be found
according to a list diversity measure. In [7], rebalanced
neighbor discovering, category boosted negative sampling
and adversarial learning are performed on top of graph
convolutional networks, so as to realize diversity in recom-
mendation. In [9], an end-to-end dynamic diversified graph
framework is proposed to construct the user-item graph
dynamically based on the users and items embeddings,
and a quantile progressive candidate selection operator is
designed to efficiently select diverse items to recommend.

2.2 Privacy-Preserved Service Recommendation
The above studies rely on a huge volume of data, by
exploiting which recommendation results are diversified.
However, data are usually stored on different platforms,
while data sharing across the different sources may con-
siderably increases the risk of privacy leakage. Hence, one
of another main concerns in service recommendation is the
privacy issue. In [27], only a small fraction of data are
shared publicly to reduce the disclosure of sensitive data.
By this way, although privacy is preserved, but it is with a
significant sacrifice in recommendation performance. Differ-
ent from [27], [13] applies data obfuscation for the purpose
of privacy preservation. Specifically, data are obfuscated
through randomization techniques before being shared for
recommendation. Likewise, the notion of differential pri-
vacy is leveraged in [28]; the data privacy is preserved
through insert “noise” into the data before sharing them.
However, in the above two methods, data are obfuscated
or noised such that their utility is impaired. Additionally,
when the data are stored in different platforms, sharing the
obfuscated (or noised) data across different platforms still
results in considerable communication overhead.

Another choice for privacy preservation is to utilize
Locality-Sensitive Hashing (LSH). In [14], the similarity re-
tention is LSH is employed such that different platforms
can share the similarity among the services (which can
be indicated by the hash values) with each other without
disclosing the original data. Furthermore, the LSH-based
method is developed by [29] by exploring mutiple dimen-
sions of QoS data. Although these proposals have made
considerable effort in combining LSH and CL for privacy-
preserved recommendation, they concentrate in pursuing
high recommendation accuracy and do not take into account
recommendation diversity. Although the LSH mechanism is
used to calculate both similarity and diversity in [30], this
proposal does not exploit the application of the LSH mech-
anism in privacy-preservation across different data sources.
Moreover, [30] calculates the diversity directly according
to the LSH values, while we exploit the service similarity
graph to define the recommendation diversity and gain
better recommendation results, as will be shown in Sec. 4.

3

2.3 Motivation
We hereby give an example to explain the application sce-
nario of our service recommendation method. As shown in
Fig. 1, we assume that there are two platforms (or data
sources), i.e., Netflix and IBM. We also suppose that there
are three users, i.e., Tom, Bob and Jack, on Netflix platform
and another two users John and Alice on IBM platform. Let
s1, s2, · · · , sM denote M different services invoked by these
users, respectively. Note that, a service may be invoked
by multiple users on different platforms. For example, s1
is invoked by Tom and Bob on Netflix platform and by
John and Alice on IBM platform, and sM is invoked by
Bob and Jack on Netflix platform and by John and Alice
on IBM platform. The corresponding QoS data are then
stored on different platforms. We suppose Netflix intends to
recommend new services to Tom. Through the CF method,
Netflix first computes the similarity (e.g., by constructing a
similarity graph) among the services according to its local
QoS data and then seeks for the services that are similar
to the historical records of Tom. Specifically, for any new
service for Tom, its QoS value can be predicted according
to the ones of the other similar services. Usually, K services
with the highest predicted QoS values are finally selected
and recommended to Tom.

As mentioned above, there are two challenging issues in
the above recommendation process. On one hand, similar
services are recommended to Tom in order to ensure recom-
mendation accuracy, while the redundancy of the services
may impair the experience of the recommendation for Tom.
On the other hand, although data sharing between Netflix
and IBM will be helpful for data-driven recommendation
diversification, enabling the data sharing across different
platforms efficiently is highly non-trivial especially due to
privacy concerns. Therefore, to tackle the above challenges,
we first leverage the notion of LSH to enable efficient data
sharing between Netflix and IBM, based on which, we can
characterize the similarity among the services more compre-
hensively. Furthermore, we propose a new diversity metric
such that Netflix can mine diversified recommendation for
Tom through the cumulative data more effectively.

Target user:
Tom Bob

Jack
John Alice

Netflix IBM

s4, s7,

s13, ..., s16

Top-K

recommendation list

Data sharing

s2

s4

sMs1

Fig. 1. Service recommendation across different data sources.

3 PRELIMINARIES

Before diving into the design and analysis of our proposed
algorithm, we first introduce some preliminaries in this

section, which will be very helpful later.

3.1 Locality-Sensitive Hashing
LSH is an efficient approximate nearest neighbor search
method [31]. Given a set of points (e.g., services which
can be represented as a high-dimensional vectors or points
in our case), the goal of traditional hashing methods is to
map the points to a set of values such that the points can
be “spread” randomly, while LSH aims at mapping the
points with the so-called “locality” guaranteed. Specifically,
by LSH, the points which are “closed” to each other in the
original data space can be hashed to the same value with a
high probability, whereas there is a high probability for the
ones “far away” from each other to be hashed to different
values. In another word, it is more likely for “similar” points
to have the same hash value.

Let Dis(s, s′) denote the “distance” between the points s
and s′. The distance between s and s′ is smaller when s and
s′ are more similar to each other. We formally define LSH in
the following Definition 1.

Definition 1 (Locality Sensitive Hashing). Given a set of
points S , let H = {h | S → Z+} be a family of hash functions
which maps the points S to a set of hash values Z+. H is said to
be a (ε1, ε2, p1, p2)-LSH if{

PrH(h(s) = h(s′)) ≥ p1, if Dis(s, s′) ≤ ε1
PrH(h(s) = h(s′)) ≤ p2, if Dis(s, s′) ≥ ε2

(1)

holds for any s, s′ ∈ S , where p1 > p2. The size of the resulting
hash table is the number of integers in Z+, and we also suppose
H is the number of functions in H. Note that the probability is
over the random choices of h ∈ H.

It is shown by the above definition that, in the LSH
mechanism, similar points are mapped to the same value
with high probability; therefore, we can figure out the
similarity among any points (i.e., the services we intend to
recommend) according to their hash values instead of their
coordinates in the original data space (i.e., the private infor-
mation of the services). In another word, for any services
which are mapped to the same value through LSH, they are
similar to each other with high probability. Furthermore, the
hash functions are irreversible such that we can observe the
similarity among the points without disclosing their “pri-
vate” coordinates. As will be shown in Sec. 4, we leverage
the notion of LSH to construct a graph to characterize the
similarity among the services by enabling privacy-preserved
data sharing across different platforms.

3.2 Expanded Set and Expansion Ratio
Let G = (M, E) denote a graph, whereM and E denote the
set of vertices and the set of edges, respectively. We define
expanded set and expansion ratio for any subsetM′ ⊆ M
as follows.

Definition 2 (Expanded set). Given a graph G = (M, E), for
any subset of verticesM′ ⊆ M, the expanded set ofM′ can be
defined as

Exp(M′) =M′
⋃
{i ∈M/M′ | ∃i′ ∈M′, (i, i′) ∈ E} (2)

4

Definition 3 (Expansion ratio). Let |Exp(M′)| denote the
number of vertices in the expanded set of M′ ⊆ M. We also
suppose M = |M| denotes the number of vertices in graph G.
The expansion ratio ofM′ can be defined by

α(M′) =
|Exp(M′)|

M
(3)

According to the above definition, the expansion radio of
a subsetM′ ⊆M actually measures its trend of expanding
outwards. If we let the size ofM′, i.e., M ′ = |M′|, be fixed,
a larger expansion ratio of M′ implies that the vertices in
M′ have more neighbors outside (i.e., inM/M′), and hence
it is less likely for the vertices in M′ to share the same
neighbors inM/M′. For example, as illustrated in Fig. 2, we
use red vertices and blue vertices to represent the selected
subset and its expanded neighbors, respectively. The subset
M′

1 (consisting of the three red vertices) in Fig. 2 (b) has an
expansion ratio α(M′

1) = 8/13 and the three vertices share
the same neighbor, while its counterpartM′

2 in Fig. 2 (c) has
an expansion ratio α(M′

2) = 10/13 and none of the three
red vertices in M′

2 share the same neighbor, even M′
1 and

M′
2 have the same number of outgoing edges.

(a) Graph G (b) α(M′
1) = 8/13 (c) α(M′

2) = 10/13

Fig. 2. An illustration of expanded set and expansion ratio.

3.3 Submodularity

The concept of submodular set function is very useful in
approximation algorithms. In the following, we present a
definition of monotone submodular set function, based on
which we can design and analyze our graph-based recom-
mendation algorithm.

Definition 4 (Monotone submodular function). Given a finite
set M, let F : 2M → R be a real valued set function. F(·) is
said to be a monotone submodular set function, if the following
conditions meet.

• Monotonicity. For any two subsetsM′
1,M′

2 ⊆ M such
thatM′

1 ⊆M′
2 ⊆M, we have F(M′

1) ≤ F(M′
2).

• Submodularity. For any two subsetsM′
1,M′

2 ⊆M such
that M′

1 ⊆ M′
2 ⊆ M and any i ∈ M/M2, we have

F(M′
1

⋃
{i})− F(M′

1) ≥ F(M′
2

⋃
{i})− F(M′

2).

Lemma 1. Given any two disjoint subsetM1 ⊆M andM2 ⊆
M such thatM1

⋂
M2 = ∅, we have∑

i∈M1

(
F({i}

⋃
M1)− F(M1)

)
≥ F(M1

⋃
M2)− F(M2)

(4)

if F(·) is a monotone submodular set function.

Proof. Supposing M1 = {i1, i2, · · · , iM1
} and M1,ℓ =

{i1, · · · , iℓ}, we have

F(M1

⋃
M2)

= F(M2) +
M1∑
ℓ=1

(F(M2

⋃
M1,ℓ)− F(M2

⋃
M1,ℓ−1)) (5)

When F(·) is a monotone submodular set fucntion, we
have F(M2

⋃
{iℓ}) ≥ F(M2

⋃
M1,ℓ) and F(M2

⋃
M1,ℓ) ≥

F(M2) for any ℓ = 1, · · · ,M1. The proof can be completed
by substituting the above inequalities into (5).

4 OUR PROPOSED METHOD

In this section, we introduce the details of our PDSR
method. We consider M services and N users across
R different platforms. Let M = {1, 2, · · · ,M}, N =
{1, 2, · · · , N} and R = {1, 2, · · · , R} denote the set of ser-
vices, the set of users and the set of platforms, respectively.
Suppose Nr ⊆ N denotes the set of users on platform r,
and Nr is the cardinality of Nr , i.e., the number of users on
platform r. For each service i ∈ M, it can be invoked by
user j ∈ Nr through platform r ∈ R. The resulting QoS
data di,j,r ≥ 0 is then observed by platform r 1. Therefore,
for each service i, its QoS value over the Nr users on
platform r can be represented by a Nr-dimensional vector
d⃗i,r = (di,j,r)j∈Nr

. Without loss of generality, we assume
di,j,r = 0 if service i is never invoked by user j on platform
r; otherwise, di,j,r > 0.

Before diving into the details of our proposed method,
we first introduce its outline. As demonstrated in Sec. 4.1,
each platform, e.g., r, first calculates a LSH vector for each
of the services i ∈M and then shares the vectors with each
other. By concatenating the received vectors of any service
i ∈ M, platform r can calculate an index vi for ∀i. The
above procedure can be called repeatedly such that each
platform r can construct a similarity graph G where any
two similar services are connected by an edge, as illustrated
in Sec. 4.2. When some particular platform r† intends to
recommend services to user j†, it seeks for a subset of
K services by maximizing our accuracy-diversity measure
over the similarity graph G.

4.1 Step 1: Indexing Services Based on LSH
In this paper, we use cosine similarity to construct our LSH
mechanism [32]. Specifically, given two points (or vectors) v
and v′ in a N -dimensional space, their cosine similarity can
be defined by the cosine of the angle between them, i.e.,

cos θv,v′ =
v · v′

∥v∥∥v′∥
(6)

where θv,v′ ∈ [−π, π] denotes the angle between v and
v′. Cosine similarity cos θv,v′ ∈ [−1, 1] is a signed metric
to measure the similarity between v and v′. The larger is
cos θv,v′ , the smaller is the angle between v and v′ and thus
the more similar are v and v′.

1. We hereby deliberately assume that QoS values are represented
by a non-negative real numbers. It could be user rating, response time,
price, reliability of service, or even their combinations. As will be shown
later, our method can be readily extended to handle multi-dimensional
QoS data, e.g., by considering the similarity between matrices.

5

TABLE 1
Frequently Used Notations

M = {1, 2, · · · ,M} A set of M services
N = {1, 2, · · · , N} A set of N users
R = {1, 2, · · · , R} A set of R platforms
Nr ⊂ N A set of users on platform r
Nr = |Nr| The number of users on platform r
di,j,r ≥ 0 QoS value of service i for user j on platform r

d⃗i,r =
(
d⃗i,j,r

)
j∈N

QoS vector of service i on platform r

D =
{
d⃗i,r

}
i∈N ,r∈R

QoS dataset

Hr = {hr,1, · · · , hr,Hr} A family of Hr LSH functions on platform r

Hr

(
d⃗i,r

)
=

(
hr,1

(
d⃗i,r

)
, · · · , hr,Hr

(
d⃗i,r

))
LSH vector of service i on platform r

vi =
(
H1

(
d⃗i,1

)
, · · · ,HR

(
d⃗i,R

))
LSH index of service i

G = (M, E) Similarity graph G consisting of vertices M and edges E
j†, r† Target user j† and target platform r†

Mj† = {i ∈ M | di,j†,r† = 0} Candidate services which we can recommend to user j† on platform r†

Mi = {i′ ∈ M | (i, i′) ∈ E, di′,j†,r† ̸= 0} Services adjacent to i in graph G which have been rated by user j† on platform r†

Considering a hyperplane in the N -dimensional space
which passes the origin and has its normal vector defined by
v∗, it divides the space into two half-space, i.e., positive half-
space and negative half-space . We denote by hv∗(v) : RN →
{1, 0} an indicator function parameterized by normal vector
v∗, to specify the half-space containing point v. Specifically,

hv∗(v) =

{
1, cos θv,v∗ ≥ 0

0, otherwise
(7)

In another word, v is in the positive half-space such that
hv∗(v) = 1, if v is “similar” to v∗ with cos θv,v∗ ≥ 0 (and
thus −π

2 ≤ θv,v∗ ≤ π
2); otherwise, hv∗(v) = 0. Given a

random hyperplane defined by a random normal vector v∗

and two arbitrary points v and v′, we have

P(hv∗(v) = hv∗(v′)) = 1− |θv,v
′ |

π
(8)

Therefore, all functions {hv∗ | v∗ ∈ [−π, π]} composes a
LSH function family.

Recall that, for each service i, its quality on platform r
can be represented by a Nr-dimensional vector d⃗i,r, where
Nr is the number of users on platform r. As shown in
Algorithm 1, each platform r randomly choose Hr Nr-
dimensional (normal) vectors to construct its Hr LSH func-
tions, i.e., Hr = {hr,1, hr,2, · · · , hr,Hr

} (see Lin 2). Based
on the family of LSH functions Hr , the hash values of each
service i are calculated under each of the hash functions and
the hash values compose a Hr-dimensional binary vector

Hr

(
d⃗i,r
)
=
(
hr,1

(
d⃗i,r
)
, hr,2

(
d⃗i,r
)
, · · · , hr,Hr

(
d⃗i,r
))

as shown in Lines 3∼5. For each service i ∈ M, it is
indexed by concatenating the above vectors across different
platforms. Specifically, as demonstrated in Line 7, the index
of service i can be represented by

vi =
(
H1

(
d⃗i,1
)
,H2

(
d⃗i,2
)
, · · · ,HR

(
d⃗i,R

))
(9)

Note that vi ∈ {0, 1}
∑R

r=1 Hr for any service i.

Algorithm 1: A LSH-based algorithm for service
indexing.

Input: Platforms R, servicesM, users N , QoS data
D =

{
d⃗i,r
}
i∈M,r∈R

, the number of hash

functions Hr for any platform r ∈ R.
Output: Similarity index vi for any i ∈M.

1 for r = 1, 2, · · · , R do
2 Choose Hr random normal vectors and construct

a family of LSH functions Hr;
3 for i = 1, 2, · · · ,M do
4 Calculate a LSH vector Hr

(
d⃗i,r
)

;
5 end
6 end
7 Calculate the index vi for service i, by concatenating

the LSH vectors;

4.2 Step 2: Constructing Service Similarity Graph

In the above step, we construct a cosine similarity-based
LSH mechanism, by which each service is mapped to a
binary hash value such that it is highly likely for similar
services to have the same hash value. Therefore, we can
measure the similarity among the services according to their
hash values, so as to serve the goal of privacy preservation
as mentioned in Sec. 3.1.

In this step, we construct a graph G = (M, E) to charac-
terize the similarity among the services based on their LSH
vectors. The graph contains M as vertices and we propose
Algorithm 2 to add edges E to the graph according to the
similarity among the vertices (i.e., the services). As shown
in Line 1, E is first initialized by E ← ∅. In each iteration
t = 1, · · · , T of Algorithm 2, Algorithm 1 is called to create
a LSH table Tablet = {(i, vi)}i∈M (see Line 3). The table is
composed of M entries and each entry is a tuple of (i, vi)
. Then, for each pair of services i and i′, if (i, i′) /∈ E and
vi = vi′ (see Lines 4-8). It is demonstrated that, any two
services i and i′ is connected in the similarity graph if they
have the same LSH indices in any one of the T iterations.

As shown in Algorithm 1, for each service, its index is

6

Algorithm 2: Our method of constructing a
weighted service similarity graph.

Input: Platforms R, servicesM, users N , the
number of iterations T .

Output: Service graph G = (M, E).
1 E = ∅;
2 for t = 1, · · · , T do
3 Call Algorithm 1 to calculate the LSH table

Tablet = {(i, vi)}i∈M;
4 for (i, i′) ∈M×M do
5 if (vi = vi′)&&((i, i′) /∈ E) then
6 E ← E

⋃
(i, i′);

7 end
8 end
9 end

calculated by concatenating its LSH vectors across the differ-
ent platform. The service indexing algorithm is then called
iteratively to construct a similarity graph in Algorithm 2.
According to the definition of LSH mechanism (see Defini-
tion 1), similar services have the same LSH indices with high
probability and will be connected in the similarity graph.
In another word, each platform can construct a service
similarity graph without sharing the original data with each
other, while the privacy preservation can be ensured thanks
to the irreversibility of the hash functions. Furthermore, as
shown in Algorithm 1 and Algorithm 2, the numbers of
hash functions {Hr}r∈R and the number of hash tables T
both impact the constructions of the similarity graph. Their
effect is described in Theorem 1.

Theorem 1. Suppose θi,i′,r represents the angle between d⃗i,r and
d⃗i′,r for any service i, i′ ∈M. The probability for i and i′ to have
an edge in G can be written as

P((i, i′) ∈ E) = 1−
(
1−

R∏
r=1

(
1− |θi,i

′,r|
π

)Hr
)T

(10)

Proof. For any services i and i′ on platform r, suppose
θi,i′,r ∈

[
−π

2 ,
π
2

]
denotes the angle between d⃗i,r and d⃗i′,r .

Assume Xi,i′,ℓ ∈ {0, 1} be a Bernoulli random variable
indicating if i and i′ have the same hash value under the
ℓ-th hash function; we then have P(Xi,i′,ℓ = 1) = 1− |θi,i′,r|

π

and P(Xi,i′,ℓ = 0) =
|θi,i′,r|

π . Since each platform chooses
their hash functions independently, when there are Hr hash
functions on platform r, the probability of vi = vi′ can be
written as

P(vi = vi′) =
R∏

r=1

(
1− |θi,i

′,r|
π

)Hr

(11)

According to Algorithm 2, we perform the above similarity
calculation T times, and add an edge between i and i′ if we
judge they are similar to each other once. Hence, we have
(i, i′) ∈ E with probability (10)

It is implied by the above theorem that Hr and T
actually determine the “resolution” at which we make our
similarity judgement and thus impact our QoS prediction.
If we take very small values for Hr and T , some dissimilar

services (with large angles between their QoS vector) may be
thought of as similar ones with the same index; while when
the values of Hr and T are large, we may assign different
index values to those similar services. We will report some
empirical results in Sec. 5 to show the effect of Hr and T .

4.3 Step 3: Recommending with Diversity

Now we have graph G where similar vertices (i.e., services)
are connected by edges. We assume user j† ∈ N is the
one to whom we intend to recommend new services (i.e.,
the services user j† never invoked) through platform r†.
Let Mj† = {i ∈ M | di,j†,r† = 0} be the set of target
services. We first need to estimate the quality of these
services. In particular, for any service i ∈ Mj† , we define
Mi = {i′ ∈ M | (i, i′) ∈ E , di′,j†,r† ̸= 0} as the set of
services which have been invoked by user j† on platform
r† and are similar to service i. By exploiting the similarity
graph, we then predict the quality of any service i ∈ Mj†

as follows
di,j†,r† =

1

Mi

∑
i′∈Mi

di′,j†,r† (12)

where Mi = |Mi| denotes the cardinality of Mi, i.e., the
number of services inMi.

According to the predicted QoS values, one may want
to recommend the services with the highest predicted QoS
values to the target user; however, such a trivial choice may
results in a homogeneous recommendation list which may
not match the user’s interests, as mentioned in Sec. 1. There-
fore, we are now interest in seeking for a trade-off between
accuracy and diversity. In the following, we first present
our design of accuracy-diversity metric and formulate our
K-Diversified Service Recommendation (K-DSR) problem
in Sec. 4.3.1. Since the K-DSR problem is NP-hard (see
Theorem 2), we propose a greedy approximation algorithm
in Sec. 4.3.2 and prove its approximation ratio in Sec. 4.3.3.

4.3.1 Problem Formulation
Given any subsetK ⊆M, let Acc(K) and Div(K) be two real
valued set functions to measure the accuracy and diversity
of K. Our K-Diversified Service Recommendation (K-DSR)
problem then can be formulated as

max
K⊆M

j†

F(K) = Acc(K) + λDiv(K) (13)

s.t. |K| = K (14)

where K is the number of services we intend to recommend
and λ denotes a factor to make a trade-off between rec-
ommendation accuracy and diversity 2. Therein, as shown
in Eq. (15), we define set function Acc(K) to recommend
services with high estimated QoS values to the target users,
so as to ensure the recommendation accuracy.

Acc(K) =
∑
i∈K

di,j†,r† (15)

2. It is worthy to note that we hereby formulate the optimization
for non-repetitive recommendation problems where we recommend
the services which are never invoked by the target users, while our
proposed method actually can be applied to the case where a service
can be recommended repetitively.

7

As for the recommendation diversity Div : 2Mj† → R,
we take into account two types of diversity, i.e., direct
diversity and indirect diversity. For any subset K ⊆ Mj† ,
we design a metric to measure its direct diversity based on
Jaccard dissimilarity. Specifically, given two services i and i′

as well as their QoS data d⃗i,r† = (di,1,r† , · · · , di,N,r†) and
d⃗i′,r† = (di′,1,r† , · · · , di′,N,r†) which are predicted upon the
similar graph, their Jaccard dissimilarity can be calculated by

J
(
d⃗i,r† , d⃗i′,r†

)
=1−

∑N
j=1 I((di,j,r† ̸= 0) ∧ (di′,j,r† ̸= 0))

N −
∑N

j=1 I((di,j,r† = 0) ∧ (di′,j,r† = 0))
(16)

where I : {True, False} → {1, 0} is an indicator function.
The direct diversity of K then is defined as

β(K) =
∑

i,i′∈K
J
(
d⃗i,r† , d⃗i′,r†

)
(17)

The subset K is with higher direct diversity if the services
in the subset are less similar to each other. Nevertheless,
considering the direct diversity only is not sufficient, since
the direct diversity is calculated based on the estimates on
the qualities of the services, which inevitably induces bias.
Therefore, in addition to the direct diversity, we define a
notion of indirect diversity as a complement to correct the
bias. According to what we have mentioned in Sec. 3.2, it is
more likely for the services in K to share the same expanded
neighbors in graph G when K has smaller expansion ratio,
while the service may be similar to each other if they are
connected to and thus similar to the same expanded neigh-
bors in graph G. Hence, for any subset K ⊆ M, it is with
higher (indirect) diversity if it has larger expansion ratio
α(K). By combining both the direct and indirect diversities,
we define

Div(K) = α(K) + ξβ(K) (18)

where ξ > 0 is a weight factor such that we can fine tune
the trade-off between the direct and indirect diversity.

Theorem 2. Our K-DSR problem defined by (13) and (14) is
NP-hard.

Proof. The basic idea of the proof is to show the NP-harness
of the following two sub-problems

P1 : max
K⊆M

j†

α(K)

s.t. |K| = K

and

P2 : max
K⊆M

j†

β(K)

s.t. |K| = K

The first problem P1 is to find a subset K ⊆ Mj† of size
K with the maximum expansion ratio. We prove its NP-
hardness by demonstrating a reduction from the maximum
coverage problem (which is a well-known NP-hard prob-
lem). In the maximum coverage problem, we assume M′

denotes a set of M ′ elements and C = {C1, C2, · · · , CC} rep-
resent a collection of C subsets ofM′ such that

⋃
ℓ Cℓ =M′.

Given a positive integer K < C , the goal of the maximum

coverage problem is to find K out of the C subsets such that
their union has the maximum cardinality. To construct an
instance of the maximum coverage problem, for each Cℓ ∈ C
and i ∈M′, we create node aℓ and bi, respectively. If i ∈ Cℓ,
we add a directed edge from aℓ to bi and it is said that bi
(resp. element i ∈ M′) is “covered” by aℓ (resp. subset Cℓ).
Let A = {aℓ}ℓ and B = {bi}i. The edges are only from the
nodes inA to the ones in B; then, for any feasible solution to
the maximum coverage problem C̃ ⊆ C, its expansion ratio
is calculated by

∣∣BC̃∣∣ /K , where BC̃ ⊆ B denotes the subset
of the nodes in B covered by C̃, i.e., the union of the subsets
in C̃. Therefore, finding a subset of K nodes in A with the
highest expansion ratio is equivalent to finding K subsets
in C with the highest coverage, and vice versa.

As for the second optimization problem P2, it is actually
a maximum dispersion problem, since the Jaccard distance
(or dissimilarity) satisfies triangle inequality [33]. Therefore,
the NP hardness of our problem can be proved.

4.3.2 Algorithm Design
Due to the NP-hardness of the optimization problem, we
have to be content with approximation algorithms. We
propose a greedy algorithm to address the problem in
this section, as shown in Algorithm 3. Let K denote the
recommended list which is initialized as an empty set (see
Line 1). The algorithm proceeds iteratively. In each iteration,
as shown in Line 3, we first find service i† ∈ Mj† such
that the set function F′(K ∪ {i†}) can be maximized, where
F′ : 2Mj† → R is defined as

F′(K) = 1

2
(Acc(K) + λα(K)) + λξβ(K) (19)

for ∀K ⊆ Mj† . We then add i† into K and remove i† from
Mj† , as demonstrated in Line 4 and Line 5, respectively.

Algorithm 3: Top-K service recommendation algo-
rithm

Input: Service similarity graph G = (M, E), target
user j† and target platform r†, QoS data D,
the number of recommended entries K.

Output: Recommended list K ⊆M for user j† on
platform r†.

1 K = ∅;
2 while |K| < K do
3 i† = argmaxi∈M

j†
F′(K

⋃
{i});

4 K ← K ∪ {i†};
5 Mj† ←Mj†/{i†};
6 end

4.3.3 Analysis
In this section, we will analyze the performance of Algo-
rithm 3. Before showing its approximation ratio in Theo-
rem 3, we first present two lemmas as follows, which will
be very helpful in the proof of Theorem 3.

Lemma 2. For ∀K ⊆M, the following set function defined by

Φ′(K) = Acc(K) + λα(K) =
∑
i∈K

di,j†,r† +
λ|Exp(K)|

M
(20)

8

is a monotone submodular set function.

Proof. For ∀K1 ⊆ K2 ⊆ M, we have Exp(K1) ⊆ Exp(K2)
and

∑
i∈K1

di,j†,r† ≤
∑

i∈K2
di,j†,r† . Furthermore, ∀i ∈

M/K2, we have

Φ′(K1 ∪ {i})− Φ′(K1)− (Φ′(K2 ∪ {i})− Φ′(K2))

=λ
|Exp(K1 ∪ {i})| − |Exp(K1)|

M

− λ
|Exp(K2 ∪ {i})| − |Exp(K2)|

M
(21)

Therein, |Exp(K1

⋃
{i})|−|Exp(K1)| = |Exp({i})−Exp(K1)|

and |Exp(K2

⋃
{i})|−|Exp(K2)| = |Exp({i})−Exp(K2)|; we

then obtain

Φ′(K1 ∪ {i})− Φ′(K1)− (Φ′(K2 ∪ {i})− Φ′(K2))

=
λ(|Exp({i})− Exp(K1)| − |Exp({i})− Exp(K2)|)

M
≥ 0

(22)

which completes the proof according to Definition 4.

Lemma 3. Given the Jaccard dissimilarity J(·, ·) defined in
Eq. (16), for any two disjoint nonempty sets K1,K2 ⊆ M, we
have the following inequality:

(|K1| − 1)Γ(K1,K2) ≥ |K2|Γ(K1) (23)

where Γ(K1) =
∑

i,i′∈K1
J(di,j†,r† , di′,j†,r†) and Γ(K1,K2) =∑

i∈K1

∑
i′∈K2

J(di,j†,r† , di′,j†,r†),

Proof. For any i2 ∈ K2 and any i1, i
′
1 ∈ K1 such that i1 ̸= i′1,

we have

J(di2,j†,r† , di1,j†,r†) + J(di2,j†,r† , di′1,j†,r†)

≥ J(di1,j†,r† , di′1,j†,r†) (24)

according to the triangle inequality; we thus obtain

Γ(K1) ≤J(di1,j†,r† , di′1,j†,r†)

=(|K1| − 1)
∑

i1∈K1

J(di1,j†,r† , di2,j†,r†) (25)

for any i2 ∈ K2. The lemma can be completed by summing
the above inequality over i2 ∈ K2.

Based on the Definition 4, the problem defined in Eq.(8)
and Eq.(9) can be regarded as the max-sum diversification
problem with monotone submodular set functions satisfy-
ing a cardinality constraint. Thus, Theorem 3 is as follows.

Theorem 3. Our top-K recommendation algorithm (see Algo-
rithm 3) is a 2-approximation algorithm.

Proof. Let K∗ be the optimal solution to the problem K-
DSR. For any service i ∈ K∗, it is said to be “correct”;
otherwise, it is “incorrect”. Recall thatK† denotes the recom-
mendation list yielded by our greedy algorithm, and let K†

[t]
be the (intermediate) output in the t-th iteration. Assume
K[t] = K∗⋂K†

[t], K̃
†
[t] = K†

[t]/K[t] and K∗
[t] = K∗/K[t]. In

another word, K[t] and K̃†
[t] denote the set of correct services

and the set of incorrect ones we select till the t-th iteration,
respectively, while K∗

[t] is the set of correct services we do

not select till the t-th iteration. Since K[t]

⋃
K∗

[t] = K∗, it
follows that

Γ
(
K[t],K∗

[t]

)
+ Γ

(
K[t]

)
+ Γ

(
K∗

[t]

)
− Γ (K∗) = 0 (26)

Furthermore, according to Lemma 3, we have the following
inequalities(
|K∗

[t]| − 1
)
· Γ
(
K̃†

[t],K
∗
[t]

)
− |K̃†

[t]| · Γ
(
K∗

[t]

)
≥ 0 (27a)

(
|K∗

[t]| − 1
)
· Γ
(
K[t],K∗

[t]

)
− |K[t]| · Γ

(
K∗

[t]

)
≥ 0 (27b)

(
|K[t]| − 1

)
· Γ
(
K[t],K∗

[t]

)
− |K∗

[t]| · Γ
(
K[t]

)
≥ 0 (27c)

Before diving into the details of the proof, we first
introduce some symbols and notations. For any K ⊆ Mj

and i ∈Mj/K, suppose
∆Φ′

i(K) = Φ′ ({i}
⋃
K)− Φ′ (K)

∆βi(K) = β ({i}
⋃
K)− β (K)

∆F′
i(K) = F′ ({i}

⋃
K)− F′ (K) = 1

2∆Φ′
i(K) + λξ∆βi(K)

Case 1: We first take into account the first case where
|K∗

[t]| = 1 and thus |K†
[t]| = K − 1 and K†

[t] ⊆ K
∗ in the

t-th iteration. In another word, K − 1 out of the K correct
services are selected by our greedy algorithm till the t-th
iteration. We denote by i∗ the only element in K∗

[t]. We
assume i[t+1] is the service selected by our greedy algorithm
in the following (t+ 1)-th iteration; we then have

∆F′
i[t+1]

(
K†

[t]

)
≥∆F′

i∗

(
K†

[t]

)
=
1

2
∆Φ′

i∗

(
K†

[t]

)
+ λξ∆βi∗

(
K†

[t]

)
≥1

2

(
∆Φ′

i∗

(
K†

[t]

)
+ λξ∆βi∗

(
K†

[t]

))
=
1

2
∆Fi∗

(
K†

[t]

)
(28)

and thus

∆Fi[t+1]
(K†

[t]) =F
({

i[t+1]

}⋃
K†

[t]

)
− F

(
K†

[t]

)
=∆Φ′

i[t+1]
(K†

[t]) + λξ∆βi[t+1]
(K†

[t])

≥1

2
∆Φ′

i[t+1]
(K†

[t]) + λξ∆βi[t+1]
(K†

[t])

=∆F′
i[t+1]

(K†
[t])

≥1

2
∆Fi∗(K†

[t]) (29)

according to which, we obtain

F
(
K†
)
=F

(
K†

[t]

)
+∆Fi[t+1]

(
K†

[t]

)
≥F

(
K†

[t]

)
+

1

2
∆Fi∗(K†

[t])

≥1

2

(
F
(
K†

[t]

)
+∆Fi∗(K†

[t])
)

=
1

2

(
F
(
K†

[t]

)
+ F (K∗)− F

(
K†

[t]

))
=
1

2
F (K∗) (30)

9

Case 2: We then consider the case with |K∗
[t]| > 1. Since

|K∗
[t]| > 1, K ≥ 1 and |K∗

[t]| − |K̃
†
[t]| = K − t ≥ 0, we take

them as multipliers and calculate

1

|K∗
[t]| − 1

· (27a) +
|K∗

[t]| − |K̃
†
[t]|

K
(
|K∗

[t]| − 1
) · (27b)

+
t

K(K − 1)
· (27c) +

t|K∗
[t]|

K(K − 1)
· (26) (31)

as

γ0 · Γ
(
K[t],K∗

[t]

)
+ Γ

(
K̃†

[t],K
∗
[t]

)
+ γ1 · Γ(K∗

[t])−
k|K∗

[t]|
K(K − 1)

· Γ(K∗) ≥ 0 (32)

where

γ0 =
|K∗

[t]| − |K̃
†
[t]|

K
+

k(|K[t]|+ |K∗
[t]| − 1)

K(K − 1)
= 1 (33)

and

γ1 =
k|K∗

[t]|
K(K − 1)

−
|K[t]|(|K∗

[t]| − |K̃
†
[t]|)

K(|K∗
[t]| − 1)

−
|K̃†

[t]|
|K∗

[t]| − 1

=
k|K∗

[t]|(K − |K∗
[t]|)

K(K − 1)(|K∗
[t]| − 1)

≥ 0 (34)

as |K∗
[t]| = K − |K[t]|, |K∗

[t]| = t = |K[t]| and |K∗
[t]| − |K̃

†
[t]|+

t = K naturally hold according to the definitions of K[t],
K̃†

[t] and K∗
[t]. Hence, we now have

Γ(K∗
[t],K

†
[t]) =Γ(K[t],K∗

[t]) + Γ(K̃†
[t],K

∗
[t]) ≥

t|K∗
[t]|

K(K − 1)
Γ(K∗)

(35)

Considering Φ′(·) is a monotone submodular function, we
have

Φ′
(
K∗

[t]

⋃
K†

[t]

)
− Φ′

(
K†

[t]

)
≥ Φ′ (K∗)− Φ′

(
K†
)

(36)

since K∗ ⊆ K∗
[t]

⋃
K[t] and K†

[t] ⊆ K
†. Moreover, according

to Lemma 1, we also have∑
i∈K∗

[t]

∆Φ′
i

(
K†

[t]

)
=
∑

i∈K∗
[t]

(
Φ′
(
{i}

⋃
K†

[t]

)
− Φ′

(
K†

[t]

))
≥Φ′

(
K∗

[t]

⋃
K†

[t]

)
− Φ′

(
K†

[t]

)
≥Φ′ (K∗)− Φ′

(
K†
)

(37)

Then, we obtain∑
i∈K∗

[t]

∆F′
i

(
K†

[t]

)
=
∑

i∈K∗
[t]

(
F′
(
{i}

⋃
K†

[t]

)
− F′

(
K†

[t]

))
=
1

2

∑
i∈K∗

[t]

∆Φ′
i

(
K†

[t]

)
+ λξΓ

(
K∗

[t],K
†
[t]

)

≥1

2

(
Φ′ (K∗)− Φ′

(
K†
))

+ λξ
t|K∗

[t]|
K(K − 1)

Γ (K∗) (38)

Let i[t] denote the service selected by our greedy algorithm
in the (t+ 1)-th iteration such that ∆F′

i[t]
(K†

[t]) ≥ ∆F′
i(K

†
[t])

for any i ∈ K∗
[t]. Therefore, we have

∆F′
i[t+1]

(K†
[t])

≥ 1

|K∗
[t]|

∑
i∈K∗

[t]

∆F′
i(K

†
[t])

≥ 1

2|K∗
[t]|

(
Φ′(K∗)− Φ′(K†)

)
+ λξ

t

K(K − 1)
Γ(K∗)

≥ 1

2K

(
Φ′(K∗)− Φ′(K†)

)
+ λξ

t

2K(K − 1)
Γ(K∗) (39)

according to which, we can re-write F′(K†)

F′(K†) =
K−1∑
t=0

∆F′
i[t+1]

(K†
[t])

≥1

2

(
Φ′(K∗)− Φ′(K†)

)
+

λξ

2
Γ(K∗) (40)

Since F′(K†) = 1
2Φ

′(K†) + λξΓ(K†), we obtain

Φ′(K†) + λξΓ(K†) ≥ 1

2
Φ′(K∗) +

λξ

2
Γ(K∗) =

1

2
F(K∗) (41)

Finally,

F(K†) =Φ′(K†) + λξΓ(K†) ≥ 1

2
F(K∗) (42)

We have proved the approximation ratio of Algorithm 3,
and we then analyze its time complexity in Theorem 4.

Theorem 4. The time complexity of our top-K service recommen-
dation algorithm (see Algorithm 3) is O(M2K3 +MNK4).

Proof. As demonstrated in Algorithm 3, in each iteration,
it seeks for a service i† ∈ Mj† such that F′ (K⋃{i†}) is
maximized by K

⋃
{i†}, where K is the set of services which

are already selected. The above procedure is repeated until
K services is selected in total.

Let K[t] ⊆ Mj† denote the set of selected services
in the t-th iteration and K[t] = |K[t]| = t. In the
(t + 1)-th iteration, the time complexity of calculating
F′ (K[t]

⋃
{i}
)

for i ∈ Mj†/K[t] relies on the ones of
computing Acc

(
K[t]

⋃
{i}
)
, α
(
K[t]

⋃
{i}
)

and β
(
K[t]

⋃
{i}
)
,

as illustrated by (19). According to the definition of Acc
shown in (15), the time complexity of calculating Acc is
O
(
K[t]

)
. Additionally, according to our definitions of α

and β as shown in (3) and (17), respectively, the time
complexities are O

(
MK[t]

)
and O

(
NK2

[t]

)
, respectively.

Therefore, the time complexity of calculating F′ (K[t]

⋃
{i}
)

in the the (t+1)-th iteration is O
(
MK[t] +NK2

[t]

)
and the

one of calculating i† = argmaxi∈i∈M
j†/K[t]

F′(K[t]

⋃
{i})

is thus O
((

MK[t] +NK2
[t]

) (
M j† − t

))
. Since K[t+1] =

K[t]

⋃
{i†}, the total time complexity across the K iterations

is O(M2K3 +MNK4).

Note that K is usually considered as a constant for any
target user, which is much smaller than M and N . The
actual time complexity of our algorithm can be re-written
as O(M2 +MN).

10

5 EXPERIMENT

In this section, we first present our experiment settings and
the metrics for evaluation in Sec. 5.1. We then introduce the
state-of-the-art methods in 5.2 and compare them with our
PDSR method in Sec. 5.3.

5.1 Experiment Settings and Metrics

In this paper, we conduct our experiments on both the
WS-DREAM dataset [34] and the MovieLens dataset [35]
to evaluate our PDSR method. The WS-DREAM dataset
contains real-world QoS data, e.g., response time values, col-
lected from 339 users interacting with 5, 825 web services.
To facilitate our comparison, each QoS value is normalized
into a range of [0, 1]. The MovieLens dataset is another com-
monly used dataset for studying service recommendation. It
involves the ratings given by 6, 040 users for 3, 952 movies.
We thus treat these ratings as the QoS values. For each user
j in WS-DREAM dataset and the one in MovieLens dataset,
we randomly choose Sj ⊂ Mj such that S = |Sj | = 15,
whereMj denotes the set of the services invoked by user j,
and let Sj be the test dataset. Specifically, since MovieLens
dataset is rather sparse, we take into account only the users
who have no less than 25 service usage records such that we
have sufficient historical QoS data to make recommendation
decisions for each target user by our method. We assume
there are two platforms and divide the WS-DREAM dataset
into two subsets such that the platforms have 135 users and
204 users, respectively. Likewise, the MovieLens dataset is
divided such that the two platforms have 2, 249 users and
3, 375 users, respectively. We randomly pick up 15 users on
each platform as target users, to each of which, we deliver a
recommendation list containing K = 5 services.

We use the following four metrics to evaluate our PDSR
method as well as the reference ones.

• Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE). Since service recommendation highly
rely on the predictions of the QoS values, we hereby
adopt MAE and RMSE to measure the difference be-
tween our predictions and the actual values. Specifi-
cally, given a set of target users N †

r ⊆ N on platform
r, the MAE can be defined by

MAE =
1

N†
rS

∑
j∈N †

r

∑
i∈Sj

∣∣di,j,r − d∗i,j,r
∣∣ (43)

where N†
r = |N †

r | denotes the number of the target
users on platform r, while di,j,r and d∗i,j,r denote the
predicted QoS value of service i for user j on plat-
form r and its ground truth, respectively. Similarly,
the RMSE on platform r can be calculated as

RMSE =

√√√√ 1

N†
rS

∑
j∈N †

r

∑
i∈Sj

(
di,j,r − d∗i,j,r

)2
(44)

According to the above definitions, smaller MAE and
RMSE indicate better prediction accuracy.

• Average Quality of Service (AQoS). We employ AQoS
to reflect users’ actual interests in the recommended
services. In particular, we define AQoS as

AQoS =
1

KN†
r

∑
j∈N †

r

∑
i∈K†

j

d∗i,j,r (45)

where K†
j denotes the recommendation list for user

j ∈ N †
r on platform r. Higher AQoS implies that the

diverse services we recommend to target users have
better actual quality.

• Inter-List Diversity (ILD). ILD is a commonly used
metric to measure the diversity of a recommendation
list [5]. Specifically,

ILD =
1

N†
r

∑
j∈N †

r

(∑
i,i′∈K†

j ,i̸=i′ J
∗
i,i′,r

K(K − 1)

)
(46)

where J∗i,i′,r = J
(
d⃗∗i,r, d⃗

∗
i′,r

)
, as defined in Eq. 16,

J
(
d⃗∗i,r, d⃗

∗
i′,r

)
represents the Jaccard dissimilarity be-

tween services i, i′. The higher the ILD is, the higher
the recommendation diversity is.

5.2 Reference Methods

In this section, we compare our method with the following
six state-of-the-art ones.

• BPR method [36]: The Bayesian Personalized Rank-
ing (BPR) method applies a Bayesian analysis to
the personalized ranking problem. In particular, a
maximum posterior estimator is derived to predict
a personalized ranking.

• MPR method [37]: The Multiple Pairwise Ranking
(MPR) method deeply exploits the unobserved item
feedback to perform multiple pairwise ranking.
Specifically, it divides the unobserved items into
different parts to exploit the preference difference
among multiple pairs of items, which is thus thought
of as a multiple pairwise model.

• EF method [26]: In the Entropy Fusion (EF) method
based on CF, accuracy-diversity trade-off are lever-
aged by taking into account both user exposure
diversity and item concordance.

• MF-based method [38]: The Matrix Factoring (MF)-
based method considers both the explicit and im-
plicit information during the matrix factoring pro-
cess;popularity bias with a weighting mechanism
and neighborhood information are used to diversi-
fying the recommendation results.

• DPP-based method [25] : Since DPP is a powerful
tool for modeling diversity, [25] proposes an algo-
rithm to accelerate the greedy MAP inference for
DPP, and the algorithm can be applied to the task
of diversified recommendation.

• LSH-based method [30]: In this method, the LSH
mechanism is used to calculate both similarity and
diversity. Additionally, thanks to the LSH mecha-
nism, this method can be adapted to utilize across-
platform data with privacy preserved.

11

Note that the BPR method and the MPR method only aim
at improving recommendation accuracy, while the other
four methods investigate the accuracy-diversity trade-off.
Moreover, since the first five of the above methods do not
take into account the privacy issue, we assume that they
utilize only the original data on single platforms.

5.3 Experiment Results

5.3.1 Comparison with Different Methods
We first compare our PDSR method with the six reference
ones under the metrics including MAE, RMSE, AQoS, and
ILD. We let H1 = H2 = 3, T = 9, λ = 0.1 and ξ = 0.3
for Platform 1 and H1 = H2 = 3, T = 9 and λ = ξ = 0.3
for Platform 2, when performing our experiments on the
WS-DREAM dataset. As for the MovieLens dataset, we let
H1 = H2 = 4, T = 9, λ = 0.1 and ξ = 0.3 for Platform
1 and H1 = H2 = 5, T = 9, λ = 0.1 and ξ = 0.2 for
Platform 2. For each experiment data we report, we repeat
the experiments fifty times and take an average over the
experiment results.

As shown in Table 2, on the WS-DREAM dataset, our
PDSR method has smaller MAE and RMSE than the ref-
erence ones (especially, the BPR, MRP, EF, and MF-based
methods) on both the two platforms. This implies that
our PDSR method makes QoS predictions more accurately,
thanks to the privacy-preserved data sharing across the dif-
ferent platforms. Furthermore, compared with the BRP and
MPR methods, our PDSR method takes into account rec-
ommendation diversity, and can explore potential services;
therefore, it has higher AQoS and higher ILD. Additionally,
the AQoS and ILD of our PDSR method are higher than the
EF, MF-based and DPP methods where the recommendation
diversity is also considered, since the PDSR method not
only predicts the missed QoS values more accurately but
also enables higher recommendation diversity through data
sharing. Although the LSH-based method is extended to
enable the data sharing with privacy preserved, it adopts
the LSH mechanism directly to leverage the accuracy-
diversity trade-off, while our method elaborately defines
the accuracy-diversity metric upon the similarity graph as
shown in Sec. 4.3. Hence, our method has higher AQoS and
ILD than the LSH-based one.

The advantage of our privacy-preserved data sharing
in prediction accuracy also can be revealed through the
experiment results on the MovieLens dataset. Specifically,
the MAE and RMSE of our PDSR method are smaller
than the other reference ones on both of the platforms.
Another lesson we learn from the experiment results is
that, excessively high diversity (i.e., ILD) may result in
decreased AQoS. For example, our PDSR method has higher
recommendation diversity than the MF-based methods on
Platform 1, but the AQoS of our method is slightly smaller
than the one of the MF-based method. We will discuss about
the trade-off between AQoS and ILD later in Sec. 5.3.3.

We also report the experiment results in terms of time
cost. Since the reference methods (e.g., the first five ones)
do not consider the data sharing across the two platforms,
we omit the communication overhead induced by the data
sharing for the purpose of comparability. We conduct our
experiments on a desktop equipped with 2.40 GHz CPU and

16 GB RAM. As illustrated in Table 3, our PDSR method has
much smaller time cost than the first five reference methods
on both the two datasets. As for the LSH-based method,
since it directly adopts LSH to measure both similarity and
diversity, it results in slightly less time cost. Nevertheless,
considering the advantage of our method under another
metrics (e.g., MAE, RMSE, AQoS, and ILD as shown in
Table 2), this is the price we have to pay.

5.3.2 Fine Tuning Locality-Sensitive Hashing
Recall that, in our method, we index the services using Hr

hash functions on each platform r (see Algorithm 1) and
measure the similarity among the services by calling the
subroutine of service indexing T times across the different
platforms (see Algorithm 2). We hereby reveal how Hr

(where r = 1, 2 in our case) impacts the performance of
our method in terms of QoS prediction. Specifically, let
Hr ∈ {3, 4, 5, 6} for r = 1, 2 and T ∈ {6, 7, 8, 9, 10}. The
results are shown in Fig. 3. Since we get similar results for
the two datasets on both platforms, we report only the ones
obtained with the WS-DREAM dataset on Platform 1.

According to Algorithm 1, the number of the hash
functions and the number of the hash tables determine
the “resolution” at which we characterize the similarity.
It is shown in Fig. 3 that, fixing the number of the hash
tables, i.e., T , when the number of hash functions used in
Algorithm 1, i.e., Hr , is increased, the MAE and RMSE of
our method is first decreased but then increased. When Hr

is smaller, introducing more hash functions helps us to char-
acterize the service similarity more accurately. However, we
may underestimate the service similarity when there are too
many hash functions. Specifically, it is more likely for the
services to have different hash values in this case, even they
are similar to each other. Furthermore, T actually has similar
impact on the MAE and RMSE, as shown in Theorem 1. By
and large, the actual impact of T is slighter than the one of
Hr , especially when Hr is set such that a larger prediction
error is induced (e.g., when Hr = 3, 4, 6). Nevertheless,
when Hr = 5, we are still able to subtly reduce the MAE
and RMSE of our prediction by increasing T . However,
recklessly increasing T finally results in a growth of the
prediction error.

5.3.3 An Accuracy-Diversity Trade-off
In our PDSR method, we leverage λ to make a trade-off
between accuracy and diversity. We hereby report only the
AQoS and ILD values obtained on Platform 1 using the WS-
DREAM dataset in Fig. 4, since the results with the Movie-
Lens dataset and the ones on Platform 2 are rather similar.
We let λ = 0.1, 0.2, 0.3, 0.4 and vary ξ = 0.1, 0.2, 0.3, 0.4, 0.5
to illustrate how the composition of the diversity impact the
accuracy-diversity trade-off. It is demonstrated in Fig. 4 (a)
that we obtain higher ILD by increasing λ. As mentioned in
Sec. 1, taking into account diversity help us to explore the
potential services with higher AQoS. Therefore, as shown
in Fig. 4 (b), when ξ = 0.2, we obtain higher AQoS
by increasing λ from 0.1 to 0.2. Nevertheless, pursuing
the recommendation diversity excessively may impair the
quality of our service recommendation. For example, when
ξ = 0.3, 0.4, 0.5, increasing λ leads to recommendation
results with lower AQoS.

12

TABLE 2
Comparison results in terms of MAE, RMSE, AQoS and ILD.

Dataset Methods
Platform 1 Platform 2

MAE RMSE AQoS ILD MAE RMSE AQoS ILD

WS-DREAM

BPR 0.9354 1.0565 0.8945 0.4454 0.9308 1.0028 0.9123 0.4454

MRP 1.486 1.8189 0.8952 0.4455 1.1678 1.3974 0.9142 0.4453

EF 0.0885 0.1301 0.9025 0.4454 0.0748 0.1097 0.9186 0.4454

MF-based 0.509 0.5235 0.9035 0.442 0.4893 0.506 0.9184 0.4435

DPP 0.0783 0.1158 0.9025 0.4454 0.0703 0.1038 0.9089 0.4453

LSH-based 0.0782 0.1158 0.8989 0.4471 0.0703 0.1039 0.8955 0.4477

PDSR 0.0782 0.1158 0.9042 0.462 0.0703 0.1038 0.9191 0.4603

MovieLens

BPR 1.7207 2.1401 3.944 0.3843 1.8111 2.2051 3.9676 0.3818

MPR 1.7553 2.2217 3.8969 0.3872 1.7543 2.2133 3.9298 0.3851

EF 1.1173 1.311 3.6382 0.4165 1.2378 1.3332 3.75 0.4263

MF-based 1.9795 2.1632 3.938 0.3883 2.1496 2.3298 3.9188 0.3971

DPP 0.8748 1.044 3.856 0.4256 0.8713 1.0379 3.8293 0.4215

LSH-based 0.8638 1.0565 3.8021 0.4369 0.8405 1.0422 3.7989 0.4279

PDSR 0.8443 1.0248 3.9 0.4324 0.8326 1.0189 3.9138 0.4274

TABLE 3
Time cost.

Dataset
Platform 1 Platform 2

BPR MPR EF MF-based DPP LSH-based PDSR BPR MPR EF MF-based DPP LSH-based PDSR

WS-DREAM 18.482 78.919 176.731 79.658 89.760 11.210 16.803 18.524 143.78 4 185.252 98.274 76.344 11.268 16.825

MovieLens 84.061 308.796 183.592 637.354 18.244 6.366 10.773 126.608 599.978 344.063 1007.899 25.178 6.2857 10.963

6 CONCLUSION

In this paper, we have proposed a Privacy-preserving Diver-
sified Service Recommendation (PDSR) method. The method
leverages LSH mechanism to enable data sharing among
different data sources (or platforms) with privacy preserved.
Specifically, according to the LSH values, we can construct
a graph to characterize the similarity among the services,
based on which we predict missing QoS values accurately.
Furthermore, we have designed a novel diversity metric and
proposed a 2-approximation algorithm to select K services
by maximizing the objective of accuracy-diversity trade-off.
We have performed extensive experiments on real datasets
to verify the efficacy of our PDSR method.

Whereas our PDSR method currently exploit diverse
services with diverse qualities to fulfill users’ different
demands, we are on the way of extending our definition
of diversity by taking into account more attribute of the
services. For example, we can consider the functional fea-
tures of the services such that the services with different
functional features have higher diversity measurements.
Moreover, the users may be interested in the services which
provide a combination of specific functions. In this case, to
fulfill the users’ requirement on service functions, we need
to recommend multiple sets of services such that each of the
sets can provide the specific functions but has diversified
QoS measurement.

REFERENCES

[1] S. Ghafouri, S. Hashemi, and P. Hung. A Survey on Web Ser-
vice QoS Prediction Methods. IEEE Trans. on Service Computing,

15(4):2439–2454, 2022.
[2] G. Linden, B. Smith, and J. Jeremy. Amazon. com Recommenda-

tions: Item-to-Item Collaborative Filtering. IEEE Internet Comput-
ing, 7(1):76–80, 2003.

[3] J. El Hadad, M. Manouvrier, and M. Rukoz. TQoS: Transactional
and QoS-aware Selection Algorithm for Automatic Web Service
Composition. IEEE Trans. on Services Computing, 3(1):73–85, 2010.

[4] Y. Ma, S. Wang, P. Hung, C. Hsu, Q. Sun, and F. Yang. A Highly
Accurate Prediction Algorithm for Unknown Web Service QoS
Values. IEEE Trans. on Services Computing, 9(4):511–523, 2015.

[5] Y. Zhang, L. Wu, Q. He, F. Chen, S. Deng, and Y. Yang. Diversified
Quality Centric Service Recommendation. In Proc. of IEEE ICWS,
pages 126–133, 2019.

[6] G. Kang, J. Liu, B. Cao, and Y. Xiao. Diversified QoS-Centric
Service Recommendation for Uncertain QoS Preferences. In Proc.
of IEEE SCC, pages 288–295, 2020.

[7] Y. Zheng, C. Gao, L. Chen, D. Jin, and Y. Li. DGCN: Diversified
Recommendation with Graph Convolutional Networks. In Proc. of
the 30th WWW, pages 401–412, 2021.

[8] G. Kang, M. Tang, J. Liu, X. Liu, and B. Cao. Diversifying Web
Service Recommendation Results via Exploring Service Usage
History. IEEE Trans. on Service Computing, 9(4):566–579, 2016.

[9] R. Ye, Y. Hou, T. Lei, Y. Zhang, Q. Zhang, J. Guo, H. Wu, and
H. Luo. Dynamic Graph Construction for Improving Diversity of
Recommendation. In Proc. of the 15th ACM RecSys, pages 651–655,
2021.

[10] Y. Liu, Y. Xiao, Q. Wu, C. Miao, J. Zhang, B. Zhao, and H. Tang.
Diversified Interactive Recommendation with Implicit Feedback.
In Proc. of the 34th AAAI, pages 4932–4939, 2020.

[11] S. Wu, H. Kou, C. Lv, W. Huang, L. Qi, and H. Wang. Service
Recommendation with High Accuracy and Diversity. Wireless
Communications and Mobile Computing, 2020:1–10, 2020.

[12] L. Qi, X. Zhang, W. Dou, and Q. Ni. A Distributed Locality-
Sensitive Hashing-Based Approach for Cloud Service Recommen-
dation From Multi-Source Data. IEEE Journal on Selected Areas in
Communications, 35(11):2616–2624, 2017.

[13] J. Zhu, P. He, Z. Zheng, and M. Lyu. A Privacy-Preserving QoS

13

6 7 8 9 10
T

0.0780

0.0782

0.0784

0.0786

0.0788

M
AE

H2 = 3 H1 = 3
H2 = 4 H1 = 4
H2 = 5 H1 = 5
H2 = 6 H1 = 6

(a) MAE

6 7 8 9 10
T

0.1158

0.1159

0.1160

0.1161

0.1162

0.1163

RM
SE

H2 = 3 H1 = 3
H2 = 4 H1 = 4
H2 = 5 H1 = 5
H2 = 6 H1 = 6

(b) RMSE

Fig. 3. Prediction accuracy with different values of H and T .

0.1 0.2 0.3 0.40.456

0.458

0.460

0.462

0.464

IL
D

 = 0.1
 = 0.2
 = 0.3
 = 0.4
 = 0.5

(a) ILD

0.1 0.2 0.3 0.4
0.900

0.901

0.902

0.903

0.904

AQ
oS

 = 0.1
 = 0.2
 = 0.3
 = 0.4
 = 0.5

(b) AQoS

Fig. 4. Trade-off between accuracy and diversity.

Prediction Framework for Web Service Recommendation. In Proc.
of IEEE ICWS, pages 241–248, 2015.

[14] L. Qi, H. Xiang, W. Dou, C. Yang, Y. Qin, and X. Zhang.
Privacy-Preserving Distributed Service Recommendation Based
on Locality-Sensitive Hashing. In Proc. of IEEE ICWS, pages 49–56,
2017.

[15] J. Canny. Collaborative Filtering with Privacy. In Proc of the 23rd
IEEE S&P, pages 45–57, 2002.

[16] S. Jumonji, K. Sakai, M. Sun, and W. Ku. Privacy-Preserving
Collaborative Filtering Using Fully Homomorphic Encryption. In
Proc of the 38th IEEE ICDE, pages 1551–1552, 2022.

[17] T. Zhu, G. Li, Y. Ren, W. Zhou, and P. Xiong. Differential
Privacy for Neighborhood-based Collaborative Filtering. In Proc.
of ASONAM, pages 752–759, 2013.

[18] C. Gao, C. Huang, D. Lin, D. Jin, and Y. Li. DPLCF: Differentially
Private Local Collaborative Filtering. In Proc of the 43rd ACM
SIGIR, pages 961–970, 2020.

[19] R. Chow, M. Pathak, and C. Wang. A Practical System for Privacy-
Preserving Collaborative Filtering. In Proc. of the 12th IEEE ICDM
Workshops, pages 547–554, 2012.

[20] A. Ahgasaryan, M. Bouzid, D. Kostadinov, M. Kothari, and
A. Nandi. On the Use of LSH for Privacy Preserving Personal-
ization. In Proc. of the 12th IEEE TrustCom, pages 362–371, 2013.

[21] Y. Zhong, Y. Fan, K. Huang, W. Tian, and J. Zhang. Time-Aware
Service Recommendation for Mashup Creation in an Evolving
Service Ecosystem. In Proc. of the 21st IEEE ICWS, pages 25–32,
2014.

[22] Y. Zhang, K. Wang, Q. He, F. Chen, S. Deng, Z. Zheng, and
Y. Yang. Covering-Based Web Service Quality Prediction via
Neighborhood-Aware Matrix Factorization. IEEE Trans. on Services
Computing, 14(5):1333–1344, 2019.

[23] Y. Li, S. Wang, Q. Pan, H. Peng, T. Yang, and E. Cambria. Learning
Binary Codes with Neural Collaborative Filtering for Efficient
Recommendation Systems. Knowledge-Based Systems, 172:64–75,
2019.

[24] Z. Cui, X. Xu, F. Xue, X. Cai, Y. Cao, W. Zhang, and J. Chen.
Personalized Recommendation System Based on Collaborative
Filtering for IoT Scenarios. IEEE Trans. on Services Computing,
13(4):685–695, 2020.

[25] L. Chen, G. Zhang, and E. Zhou. Fast Greedy MAP Inference
for Determinantal Point Process to Improve Recommendation
Diversity. In Proc. of the 32nd NeurIPS, pages 5627–5638, 2018.

[26] R. Latha and R. Nadarajan. Analysing Exposure Diversity in
Collaborative Recommender Systems—Entropy Fusion Approach.
Physica A: Statistical Mechanics and Its Applications, 533:122052,
2019.

[27] W. Dou, X. Zhang, J. Liu, and J. Chen. HireSome-II: Towards
Privacy-Aware Cross-Cloud Service Composition for Big Data
Applications. IEEE Trans. on Parallel and Distributed Systems,
26(2):455–466, 2013.

[28] C. Li, B. Palanisamy, and J. Joshi. Differentially Private Trajectory
Analysis for Points-of-Interest Recommendation. In Proc. of IEEE
BigData Congress, pages 49–56, 2017.

[29] W. Zhong, X. Yin, X. Zhang, S. Li, W. Dou, R. Wang, and L. Qi.
Multi-Dimensional Quality-Driven Service Recommendation with
Privacy-Preservation in Mobile Edge Environment. Computer
Communications, 157:116–123, 2020.

[30] L. Wang, X. Zhang, R. Wang, C. Yan, H. Kou, and L. Qi. Diversi-
fied Service Recommendation with High Accuracy and Efficiency.
Knowledge-Based Systems, 204:106196, 2020.

[31] A. Gionis, P. Indyk, and R. Motwani. Similarity Search in High
Dimensions via Hashing. In Proc. of the 25th VLDB, pages 518–529,
1999.

[32] M. Charikar. Similarity Estimation Techniques from Rounding
Algorithms. In Proc. of the 34th ACM STOC, pages 380–388, 2002.

[33] R. Hassin, S. Rubinstein, and A. Tamir. Approximation Algorithms
for Maximum Dispersion. Operations Research Letters, 21(3):133–
137, 1997.

[34] WS-DREAM: Towards Open Datasets and Source Code for Web
Service Research. https://wsdream.github.io/, 2017. [Online].

[35] MovieLens 25M Dataset. https://grouplens.org/datasets/
movielens/25m/, 1997. [Online].

[36] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme.
BPR: Bayesian Personalized Ranking from Implicit Feedback. In
Proc. of the 25th UAI, page 452–461, 2009.

https://wsdream.github.io/
https://grouplens.org/datasets/movielens/25m/
https://grouplens.org/datasets/movielens/25m/

14

[37] R. Yu, Y. Zhang, Y. Ye, L. Wu, C. Wang, Q. Liu, and E. Chen.
Multiple Pairwise Ranking with Implicit Feedback. In Proceedings
of the 27th ACM CIKM, pages 1727–1730, 2018.

[38] F. Wang, L. Wang, G. Li, Y. Wang, C. Lv, and L. Qi. Edge-Cloud-
Enabled Matrix Factorization for Diversified APIs Recommenda-
tion in Mashup Creation. World Wide Web, page 1809–1829, 2022.

	Introduction
	Related work and Motivation
	Diversified Service Recommendation
	Privacy-Preserved Service Recommendation
	Motivation

	Preliminaries
	Locality-Sensitive Hashing
	Expanded Set and Expansion Ratio
	Submodularity

	Our Proposed Method
	Step 1: Indexing Services Based on LSH
	Step 2: Constructing Service Similarity Graph
	Step 3: Recommending with Diversity
	Problem Formulation
	Algorithm Design
	Analysis

	Experiment
	Experiment Settings and Metrics
	Reference Methods
	Experiment Results
	Comparison with Different Methods
	Fine Tuning Locality-Sensitive Hashing
	An Accuracy-Diversity Trade-off

	Conclusion
	References

