
1

Automated Trace Analysis of Discrete Event
System Models

Peter Kemper, Member, IEEE, and Carsten Tepper

Abstract—In this paper, we describe a novel technique that helps a modeler gain insight into the dynamic behavior of a complex
stochastic discrete event simulation model based on trace analysis. We propose algorithms to distinguish progressive from repetitive
behavior in a trace and to extract a minimal progressive fragment of a trace. The implied combinatorial optimization problem for trace
reduction is solved in linear time with dynamic programming. We present and compare several approximate and one exact solution
method. Information on the reduction operation as well as the reduced trace itself helps a modeler to recognize the presence of certain
errors and to identify their cause. We track down a subtle modeling error in a dependability model of a multi-class server system to
illustrate the effectiveness of our approach in revealing the cause of an observed effect. The proposed technique has been implemented
and integrated in Traviando, a trace analyzer to debug stochastic simulation models.

Index Terms—cycle reduction, debugging techniques, trace analysis, discrete event simulation

✦

1 INTRODUCTION

Debugging software is often the tedious task of execut-
ing a program and following a sequence of program
statements or events that change the state of a program
to see if anything happens other than what is expected.
If one logs such an execution as a sequence of states
and state changes caused by events, then this is the
notion of trace we consider in this paper. While most
algorithms perform a sequence of operations for a given
input to come up with some calculated output, certain
kinds of software iterate in a cyclic manner; examples
include reactive systems that keep running and wait for a
stimulus to start some calculations, like server software,
communication protocols, control software, be it running
with a simulated or a real environment to interact with.
In this paper, we consider traces generated from running
a simulation in a simulation framework for a given
stochastic discrete event system model, for instance for
a dependability or performance evaluation of a system.
However, we believe that the characteristics seen in
those traces, namely that certain states are repeatedly
reached and a somewhat cyclic behavior, are expected to
appear for other types of software as well. In particular,
we expect this for control software that is evaluated as
software-in-the-loop, since a controller can be seen as a
finite automaton that implements a particular rule set to
control some system.

A simulation program can be developed with any
common programming language from scratch, however,
presently it is usually derived with the help of some
modeling framework that provides a simulation library
and a modeler describes a simulation model with infor-

• P. Kemper is with the Department of Computer Science, College of William
and Mary, Williamsburg, VA, 23187, USA.E-mail: kemper@cs.wm.edu

• C. Tepper is with ITGAIN Consulting, Hanover, Germany.

Manuscript received....

mation on what constitutes the state of a model and a set
of events that may change that state. Simulation comes
with few restrictions so the real crux in simulation mod-
eling is not to obtain numbers as results but to achieve
valid results. The task of verification and validation of
a simulation model requires a modeler to check that
the implementation matches its specification as given by
the conceptual model (usually termed verification in this
context) and that the model behavior matches the behav-
ior of the system under study (usually termed validation
in that context) [19]. Sadowski [17] discusses a number of
pitfalls in simulation modeling and gives advice on how
to avoid them. In particular, she recommends to review
a model and other deliverables early and often and
recommends a structured walk-through with colleagues
and clients as ideal to discover errors in models. Krahl’s
tutorial on debugging simulation models gives further
hands-on advice from a practitioner’s point of view in
[13]. A common technique is to modify the model itself
to reveal a particular behavior, this includes reduction
or partition of the model and to analyze parts as well as
modification of rates, timings, and priorities to see cer-
tain dynamics happen. In addition, a modeler often en-
hances the model by assertions added to the simulation
code, that are checked at runtime and do not contribute
to the model itself but help to recognize the presence
of errors. Assertions are limited to safety properties that
can be checked as a particular statement in code; they
require a modeler to be aware of such properties, to be
able to express them in the input language of a simulator
and to do this in a manual way. Complementarily to
enhancements of a simulation model, simulators like
Arena [8] and Automod [1], among others, provide
support for animation to check face validity of a model
plus debugging functionality as known from software
development in general, i.e., step by step computation,
breakpoints, inspecting variables and data structures.

This is all valuable and useful and in addition one can
also document what happens in a simulation run by
writing a trace. Analysis of simulation traces is usually
described as a tedious step by step control of what a
simulator does [13, 14]. However, an automated trace
analysis takes place in many other fields. For instance in
runtime verification, monitoring software reads a trace to
diagnose problems, apply model checking, or statistical
hypothesis testing on the fly, as supported for instance
by the MaC analyzer [18]. However, in tracing a sim-
ulation model, a modeler finds himself in the situation
where it is unclear what properties to ask to be checked
by a model checker or what hypothesis to test. This is
the situation for which we want to provide support. In
modeling for performance and dependability studies, we
observed that models are often built from components
that return to states repeatedly, e.g., a work load genera-
tor typically loops between a load generation phase and
an idle phase, a server loops between different stages of
service and an idle stage, a dependable subsystem may
cycle between different levels of operation, failure and
repair stages. Given that simulation is used to feed a
statistic analysis with a set of samples, and if more than
one sample is generated from a single run, it is likely that
the model loops through a potentially large set of states
but may occasionally visit certain states again. Thus,
cyclic behavior is an expected, “good” behavior, while
certain errors may disturb that. For example, events that
make irregular changes to state variables such that there
is no inverse/reverse operation in the model, or a partial
deadlock in an open process interaction model, where
newly arriving entities create events but certain entities
never depart. So, the non-returning, progressing part of
a trace may deserve particular attention.

In this paper, we discuss how to automatically identify
and remove repetition from a simulation trace. The
resulting fragment sheds light on how a simulation
progresses. The technical contribution of this paper is
in the description and evaluation of heuristic and exact
methods to extract and remove repetitive fragments from
a trace. In particular we derive a linear time algorithm
that gives a maximal reduction and that is novel to
the best of our knowledge.We also describe two simple
approximate algorithms for trace reduction. We propose
to make use of cycle detection and reduction for the
following purposes:
1. to obtain a graph that shows how the length of the
minimal progressive fragment evolves with the length
of the trace (the prefix considered for reduction). A
visual inspection of that function often helps to recognize
irregularities and pinpoint parts of a trace that deserve
a closer look.
2. if a particular state of interest is found, a trace re-
duction helps to extract those events that are necessary
to reach that state. This information reduction can be
massive and simplifies tracking the cause of the effect
that is observed at that state of interest.
3. to detect a set of cycles and to analyze their properties

(which is not in the focus of this paper).
Obviously, a trace reduction by removing cycles pre-

serves only those erroneous events that have no inverse
counterpart. Formally, these can be seen as safety proper-
ties that once “something bad has happened” the system
(the model) cannot overcome that bad situation in its
future behavior. For this type of error, we consider our
trace reduction approach a useful addition to the existing
set of debugging techniques. The approach (cycle reduc-
tion as well as cycle visualization) is implemented in
Traviando [11], a trace analyzer that tracks performance
figures, provides statistical evaluation of timed and un-
timed traces as well as model checking functionality.

The rest of the paper is structured as follows. Section 2
gives basic definitions and states the sequence reduction
problem. Section 3 describes how to debug a dependabil-
ity model of a server with two classes and failure and
repair to motivate the subsequent effort for reduction
algorithms. Section 4 describes an exact algorithm that
yields an optimal reduction. Section 5 describes approx-
imate algorithms. Section 6 evaluates those algorithms
with the help of several examples. Section 7 details ways
to use the results of the exact algorithm - the length of the
minimal progressive fragment - to recognize and detect
errors in models. We conclude in Section 8.

2 DEFINITIONS

A trace is a sequence σ = s0e1s1 . . . ensn of states
s0, . . . , sn ∈ S and events e1, . . . , en ∈ E over some
(finite or infinite) sets S, E for an arbitrary but fixed
n ∈ IN. For elements of S, we assume an equivalence
relation denoted by “=”. The length of σ = s0e1s1 . . . sn

is defined as |σ| = n = #events. Let σi = s0e1s1 . . . si

denote the prefix of length i of a trace σ, 0 ≤ i ≤ n.
The concatenation ◦ of two sequences σ = s0e1s1 . . . sn

and σ′ = s′0e
′
1s

′
1 . . . s′m where sn = s′0 is defined as

σ ◦ σ′ = s0e1s1 . . . sne′1s
′
1 . . . s′m. For σ = s0e1s1 . . . sn we

define a projection pro(σ, {i0, . . . , im}) = si0ei1si1 . . . sim

that selects a subset of states and events from σ and
retains elements in the same order as in σ; it selects
states with index set {i0, . . . , im} ⊆ {0, . . . , n}, events
with index set {i1, . . . , im} ⊆ {0, . . . , n} and yields a
sequence. We denote the special case of a substring by
sub(σ, i, j) = pro(σ, {i, i + 1, . . . , j}) = siei+1 . . . sj . A
cycle is a substring sub(σ, l, u) with l < u and sl = su.
We use the notation [l, u] for a cycle in σ. A cycle [l, u]
is elementary if sl 6= sk for l < k < u. Let Call =
{[l, u]|0 ≤ l < u ≤ n, sl = su} be the set of all cycles
of σ, C = {[l, u]|[l, u] ∈ Call, sk 6= sl, l < k < u} be the set
of all elementary cycles. Two cycles [l1, u1] and [l2, u2]
are non-overlapping if (u1 ≤ l2) ∨ (u2 ≤ l1), i.e., they
are at most adjacent; a set of cycles is non-overlapping
if any pair of its elements is non-overlapping.

We use the notion of cycles to define a reduction oper-
ation. Let C′ = {[li, ui]|1 ≤ i ≤ k} be a set of cycles of σ,
we define a reduction red(σ, C′) = pro(σ, {0, . . . , n}\∪k

i=1

{li + 1, li + 2, . . . , ui}). If C′ is a set of non-overlapping

cycles, the length of a reduced trace is |red(σ, C′)| =

|σ|−
∑|C′|

i=1 |sub(σ, li, ui)| = |σ|−
∑|C′|

i=1 (ui−li). For a single
cycle [l, u], red(σ, {[l, u]}) = sub(σ, 0, l) ◦ sub(σ, u, n).

Problem Statement. We are interested in reducing a
given σ with the help of the reduction operation to the
shortest possible sequence σ∗, yet σ∗ should represent
a dynamic behavior that is possible. For the latter, we
assume that the state information si is sufficient to define
the subsequent behavior that is present in the trace
sub(σ, i, n). This implies that removal of a single cycle
[l, u], red(σ, {[l, u]}) = sub(σ, 0, l) ◦ sub(σ, u, n) yields a
possible trace due to the presence of sl = su in it. We
can iterate this argument to argue that red(σ, C′) yields
a possible trace if cycles in C′ are non-overlapping.

The validity of this assumption depends on the mod-
eling formalism in use and the amount of information
exported by the simulator into the trace file. It is usually
fulfilled in untimed automata if s ∈ S characterizes
the state of an automaton and also in Markov models
since the current state by definition defines the potential
future behavior in a Markov process. For Petri nets,
state information is given by the markings of all places,
possibly extended by some supplementary variables de-
pending on the kind of Petri net employed. For certain
modeling formalisms, like stochastic well-formed nets
(SWNs) and Rep/Join or graph composed stochastic ac-
tivity networks (SANs) in Möbius[4], symmetries in the
model description can be used to establish a performance
bisimulation which yields a notion of equivalence for
states. Such an equivalence can be used as “=” for the
identification of cycles as well. We point this out to note
that “=” is not necessarily limited to identity. However,
in the general case, i.e., discrete event simulation of non-
Markovian models, the state of a simulator takes the
current event list, which is not necessarily represented
in full in a trace file and is likely to show no repetitive
behavior. However, exporting a trace from a simulator
allows for abstractions. It comes with the degree of
freedom to select which parts of a state description are
considered relevant or of interest to a modeler. So we
assume for the following that the state information in
σ is chosen to be detailed enough such that a reduced
trace σ∗ is a possible outcome of a simulation, yet to be
coarse enough to allow for cycles in a simulation.

Note that events are irrelevant in the following formal
treatment, but events are important pieces of information
in a trace in order to document not only the state of
the system but also what happens. Hence, we keep
events within our considerations. We formally define our
reduction problem as follows.

Definition 1. The sequence reduction problem (SRP) is
the problem to determine a set of non-overlapping cycles
C∗ ⊆ C for σ, such that red(σ, C∗) is of minimal length.

Let SRP (σ) = C∗ denote the solution of SRP for a
particular σ and σ∗ = red(σ, C∗). Note that SRP (σ) is
not necessarily unique; multiple solutions may exist that
yield reduced traces of same length.

We restrict SRP to select only non-overlapping cycles
and we need to discuss the reason for this restriction.
Let c1 = [l1, u1], c2 = [l2, u2], c1 6= c2 be two cy-
cles in σ. If these are non-overlapping, then we can
remove both cycles from σ in any order red(σ, {c1, c2}) =
red(red(σ, {ci}), {cj}) with i, j ∈ {1, 2}, i 6= j and yield
the same reduced trace. If the cycles are overlapping and
nested, e.g. c2 is nested in c1, l1 ≤ l2 < u2 ≤ u1 then
we can only remove c2 before c1 and red(σ, {c1, c2}) =
red(red(σ, {c2}), {c1}) = red(σ, {c1}). Obviously, there is
no need for a nested cycle like c2 in C∗ if c1 ∈ C∗.
Finally, if c1 and c2 overlap, i.e., (l1 < u2) ∧ (l2 < u1),
then removing both cycles from σ would leave us with
a transition slieuj+1suj+1 in the resulting sequence (if
uj < n), where li = min(l1, l2), uj = max(u1, u2). If the
cycles are not nested, such a transition is not present in
σ and would introduce new dynamic behavior, which is
contrary to the idea that the reduction operation should
yield a reduced, yet possible trace for a given model. In
summary, selecting only non-overlapping cycles for the
solution of SRP is natural for the reduction operation we
are interested in.

We also restricted SRP to focus on elementary cycles C.
The reason for this is that for any non-elementary cycle
[l, u] in σ there exists a sequence of m > 1 elementary and
non-overlapping cycles [l1, u1]1, [l2, u2]2, . . . , [lm, um]m in
σ with l = l1, u = um and sl = sl1 = su1

= · · · =
slm = sum

= su that describes the same substring
of σ, i.e., sub(σ, l, u) = sub(σ, l1, u1) ◦ sub(σ, l2, u2) . . . ◦
sub(σ, lm, um). Consequently, restricting SRP to elemen-
tary cycles will give us the same amount of reduction
as we could obtain with non-elementary cycles for the
price of a set C∗ that may have a larger cardinality than
one with non-elementary cycles. We see two advantages
of this restriction, the one is |C| ≤ |Call|, the other is that
for any state su in σ there is at most one elementary
cycle [l, u] that ends at su. The latter will be beneficial to
develop of a recursive solution to SRP.

To measure the reduction we can achieve on σ, we
define the following function.

Definition 2. For a trace σ, we define pσ(i) =
|red(σi, SRP (σi))| as the progress of σ.

pσ(i) is well-defined since the length |red(σi, SRP (σi))|
that is achieved by a maximal reduction is unique even
if SRP (σi) has several solutions.

Table 1 illustrates the concept for an example trace
σ with S being capital letters, E = {e} and C =
{[2, 4], [3, 9], [5, 7], [8, 11]}. Column i identifies which pre-
fix σi of σ is considered, column SRP (σi) gives the
corresponding solution of SRP, column σ∗

i shows the
reduced trace and column pσ(i) gives the amount
of reduction, e.g., in line i = 4, we consider pre-
fix σ4 = A0eB1eC2eD3eC4 and remove cycle [2, 4] to
achieve the reduced prefix A0eB1eC2, which has length
pσ(i) = 2. The table also shows that SRP (σi+1) does
not necessarily contain SRP (σi), (lines for i = 8 and
10). Nevertheless, SRP (σi+1) could use a solution of

i SRP (σi) σ∗

i
pσ(i)

0 ∅ A0 0
1 ∅ A0eB1 1
2 ∅ A0eB1eC2 2
3 ∅ A0eB1eC2eD3 3
4 {[2, 4]} A0eB1eC2 2
5 {[2, 4]} A0eB1eC2eE5 3
6 {[2, 4]} A0eB1eC2eE5eF6 4
7 {[2, 4], [5, 7]} A0eB1eC2eE5 3
8 {[2, 4], [5, 7]} A0eB1eC2eE5eG8 4
9 {[3, 9]} A0eB1eC2eD3 3

10 {[3, 9]} A0eB1eC2eD3eH10 4
11 {[2, 4], [5, 7], [8, 11]} A0eB1eC2eE5eG8 4

TABLE 1
SRP (σi), σ∗

i , and pσ(i) for
σ = A0eB1eC2eD3eC4eE5eF6eE7eG8eD9eH10eG11

SRP (σi), so any reduction of σi+1 removes at least as
many states as the reduction of σi. With this observation
and Def. 2, we can state some properties of pσ(i).

For any trace σ and 0 ≤ i ≤ n,

0 ≤ pσ(i) ≤ i (1)

0 ≤ pσ(i + 1) ≤ pσ(i) + 1 ≤ i + 1 (2)

pσ(i) + c = i ⇒ pσ(j) + c ≤ j ∀i ≤ j ≤ n (3)

If we understand σ as a random walk through the state
space of a given model and assume that the reduction
operation red() results in a possible sequence of events,
then pσ(i) gives an upper bound on the minimal number
of events it takes to reach a state si from the initial state
s0. pσ() gives only an upper bound since it is based on
the limited and in general incomplete information on the
possible dynamic behavior of the considered simulation
model. A plot of pσ(i) for 0 ≤ i ≤ |σ| provides us with
an estimate on the depth of the state space, e.g., as an
average value obtained from pσ, and with some insight
if the trace has a tendency to go deeper and deeper into
a state space of unknown depth or to stay within some
bounds. The latter may be caused by the limited depth of
a given state space or by the way the simulator proceeds.
In Sections 3 and 7 we discuss how a plot of pσ can be
used to debug simulation models.

Related work. SRP is related to the problem of cycle
detection in periodic functions for which linear time
algorithms with low memory requirements are long
known [16, 20]. There, the problem is to analyze a func-
tion f : D → D on some domain D and to decide if f has
a finite leader x, f1(x), f2(x), . . . , f l(x) of length l where
all values are different and a cycle of length c such that
f i(x) = f i+c(x) for all i ≥ l. The problem does not match
well with simulation traces, i.e., if si = si+c, then it is
by no means guaranteed that si+j = si+j+c will hold for
j > 0 in a simulation trace. Note that algorithms for cycle
detection address the problem to determine the starting
point l of the first cycle and the cycle length c while
SRP is a selection problem that selects a particular set
of cycles C∗ from the set of cycles C. These problems are
different by nature. So classical algorithms like [16, 20]

do not solve SRP; nevertheless it is straightforward to
adapt them to compute an approximate solution of SRP.
We demonstrate this for the algorithm of Nivasch [16] in
Section 5. The drawback is that the approximation error
is unknown. With the help of our exact algorithm we are
able to measure the approximation error of approximate
algorithms. We do so for the two approximate algorithms
we describe in Section 5 with a set of examples we
evaluate in Section 6.

There is also work on interval graphs, e.g. [7], which
considers graphs whose vertices can be mapped to dis-
tinct intervals in the real line such that the vertices in the
graph have an edge between them if and only if their
corresponding intervals overlap. However, the problems
that have been considered in that area (to the best of our
knowledge) did not match SRP, e.g., the minimum cover
problem for node-weighted interval graphs considers the
problem to find a subset of intervals (with smallest sum
of weights) from a given set of intervals with smallest
value lmin and largest value umax such that the subset
covers [lmin, umax], [7]. So, an overlap of intervals is
acceptable although not preferred (minimum sum of
weights) in that context, while in SRP intervals need to
be non-overlapping.

At this point, we formulated the problem that we
address. We claim that in some stochastic dependability
models, such cycles are indeed present (we give evidence
of that with the help of several examples in Sections 3
and 6) and that we also observed |Call| >> |C| (we show
this effect for the example discussed in Section 3). We
present an application example to motivate our approach
before we discuss algorithmic solutions for SRP.

3 AN EXAMPLE DEPENDABILITY MODEL

We consider a dependability model of a server that is
subject to failure and repair. Let failures happen mainly
due to software failures and be handled by rebooting
the system and restarting tasks that are performed. The
model is a closed queueing model with two customer
classes A and B and corresponding finite population
N(A) and N(B). Class B is used to describe “normal”
customers that give the baseline utilization. For cus-
tomers of class A, we want to measure the probability
that their service takes place without failures and in
a timely manner to accommodate certain service level
agreements for quality of service. We do not provide
further details of the timing because we will focus on
debugging a corresponding simulation model which we
develop with Möbius [4]. We choose the Möbius’ SAN
formalism to model each aspect of our system individ-
ually and the composition operation that is based on
shared variables to join the individual atomic models
into an overall model. Figure 1 shows the compositional
structure of the model. The FullModel combines a Com-
pleteServer submodel of the server with submodels UserA
and UserB, which describe the user behavior. Users
interact with the server by changing values of variables

for the occupation of input and output buffers at the
server. Those variables are shared via the FullModel.
The CompleteServer submodel encapsulates how a ser-
vice is performed and a submodel failureAndRepair that
models availability of the server. The failure and repair
model describes a cyclic behavior and switches between
“available” and “failed” states to indicate the status of
the server. It shares its boolean state variables “avail”
and ”failed” with the server model. The server models
a queue with random scheduling and no preemption
for two customer classes. If a customer is served when
a failure occurs, its service is interrupted and it is
positioned back into the queue. Its service time is not
memorized. Customers cycle between the server and
their own class-dependent submodel that delays them
for a thinktime. A simulation run reveals measures that
in the long run deviate from what is expected. For
instance, the throughput of class B is slightly too low,
for A slightly too high. At one point, we suspect that the
model contains an error. Möbius allows us to generate
a trace where variable settings yield state information
and changes yield events. So we downscale the model,
as a first try with respect to populations N(A) = 1 and
N(B) = 1, to check what happens and generate a trace
σ. Following a simple pragmatic heuristic, we created a
trace with a few thousand states, here with n = 5473
events, with the hope to cover relevant behavior for a
model of this size and timing characteristics.

Fig. 1. Composed Model

 0

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50

N
um

be
r

of
 o

cc
ur

re
nc

es

State

Number of occurrences

 0

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50

N
um

be
r

of
 o

cc
ur

re
nc

es

State

Number of occurrences

Fig. 2. Number of occurrences of states

Cycles do exist. Before we address how to find the
error by cycle reduction, let us observe to what extent
cycles are indeed present in the trace. Figure 2 gives
the number of occurrences for certain states in σ. States

Fig. 3. Length of trace after cycle reduction as a function
of |σ| = n

Fig. 4. State right after erroneous event

are ordered by decreasing number of occurrences. For
instance, the first state in the figure occurs 339 times in
σ. The impact on the cardinality of Call is significant. If a
state occurs k times, that state alone generates k·(k−1)/2
elements of Call. The calculation reflects the number of
possible selections of two states among k states where
permutations count only once. For k = 339, that state
contributes 57291 intervals to Call, 338 to C. Note that
from a conceptual point of view the presence of cycles
is natural in dependability and performability models
with failure and repair. This model is a set of finite
submodels that communicate via shared state variables.
The behavior of each submodel is cyclic or repetitive,
and we are interested in the behavior of the composed
model with respect to the timing of certain events.

Fig. 5. Trace visualization of reduced trace σ∗ in Traviando

Searching for errors. Working with cycle reduction
has two features that we consider useful. One helps us
to recognize if a certain type of error is present in σ, the
other helps us to identify which events are used to reach
a particular state of interest. Traviando [11] is a trace
visualization and analysis tool that supports the cycle
reduction we propose. Figure 3 shows a screen shot of
pσ(i) for 0 ≤ i ≤ n. The initial part of the plot shows
that the model proceeds and returns to states in a cyclic
manner for the first 3500 events, then an event creates
a state change that does make a permanent difference,
after which the model proceeds and returns to states in
a similar cyclic manner. However that particular state
change is never taken back. Fig. 3 tells us that this
trace contains behavior that is irregular and also where
to look for it, namely around the 3514-th event where
the switch took place. Traviando provides information
on any selected state in a separate window and in a
directory-like, graphical structure as shown in Fig. 4.
In this way, we can check values of state variables of
a state si, i > 3514 and see that N(A) has increased by 1
which violates that the model has an invariant customer
population for customers of class A. To search for its
cause, we can either track back the changes looking at σ
or at σ∗. For this example, σ∗ is preferred since |σ∗| = 7.
With those few states and events and a trace analyzer
tool like Traviando, it is immediate to recognize the root
of the error. Figure 5 shows Traviando’s visualization of
σ∗ as a variant of a message sequence chart (MSC) with
one MSC process per submodel, dots on the lifeline of
a process indicate local actions, undirected horizontal
lines connecting several processes show joint actions.
With this information, we realize that the reason is an
unwanted side effect of the action that puts a customer
of type B back into the queue if the server fails while
serving a customer of class B; the resulting state has a

value of 2 for the number of customers of class A that
wait for the server (variable J1V1 AWaitsForServer for
process FullModel in Fig. 4, variables are highlighted
if they change value from the last state selected to the
one currently shown). The error was induced when we
extended the model from one customer class to two
customer classes. When we fix the error, the corrected
model creates traces that give a plot of pσ(i) as in the
initial part of the one in Fig. 3.

In what follows, we investigate algorithms for an exact
or approximate solution of SRP to support this way of
debugging stochastic models.

4 EXACT SOLUTION OF SRP
In this section, we describe an exact linear time algorithm
for SRP that is based on the following observations. An
optimal solution C∗ is a sequence of non-overlapping
cycles. Let C∗ = {[l1, u1], . . . , [lm, um]} be ordered such
that uc−1 < uc for 1 < c ≤ m (we will use c as an
index for cycles, i as an index for states in σ). Note that
uc−1 6= uc since cycles do not overlap. If we select a cycle
[lc, uc] ∈ C∗ then {[l1, u1], . . . , [lc−1, uc−1]} is an optimal
solution for s0, . . . , slc and {[lc+1, uc+1], . . . , [lm, um]} is
an optimal solution for suc

, . . . , sn. If we focus on the
former, then the optimal solution on s0, . . . , slc is a
subproblem that has an optimal solution on a set of
cycles [lj , uj] ∈ C with uj ≤ lc. This observation helps
us to sequentially solve a sequence of SRP problems1

for sequences σi for 0 ≤ i ≤ n. We obtain a recursive
procedure to solve SRP for σ and subsequently employ
a dynamic programming approach based on a Bellman
equation [3]. Note that for elementary cycles, for all
0 ≤ i ≤ n there is at most one [l, u] ∈ C with u = i.

1. We also investigated the possibility of a binary partitioning strat-
egy but did not get a better result.

Definition 3. For a given trace σ of length n, we define
function SRP (σn)

=























∅ if n = 0
SRP (σl) ∪ {[l, n]} if n > 0, [l, n] ∈ C, a ≤ b + 1

a = |red(σl, SRP (σl))|
b = |red(σn−1, SRP (σn−1))|

SRP (σn−1) otherwise

Theorem 1. SRP (σ) of Definition 3 gives a correct solu-
tion of SRP for a given trace σ.

Proof: For n = 0, C = ∅ and the result is correct. For
n > 0, we need to prove two properties: 1) SRP (σn)
yields a set of non-overlapping, elementary cycles and
2) red(σn, SRP (σn)) is of minimal length.

The first property is straightforward. We see that only
the second case adds elements to set SRP (σn) and since
[l, n] ∈ C, the resulting set contains only elementary
cycles. Furthermore, the resulting set SRP (σn) is non-
overlapping, because in the second case, the recursion
proceeds with σl so cycles added to the solution in the
recursion do not overlap with [l, n], and the third case
only applies if no cycle is added.

It remains to prove the second property (the
reduction is maximal), which we do by contradiction.
Let σ be a counterexample with smallest possible
n > 0 such that there is a set C̃ ⊆ C with
|red(σn, C̃)| < |red(σn, SRP (σn))|. Since n is the
smallest possible value, this implies SRP (σi) for
0 ≤ i < n is a correct solution of SRP for σi. We consider
the last state sn in σn and two cases: a) there exists a
cycle c = [l, n] ∈ C and b) such a cycle does not exist.
Case a)
If c exists, we distinguish four cases based on whether
c is an element of SRP (σn) and/or C̃ or not.
Case a1: c ∈ SRP (σn) and c ∈ C̃
This implies red(σn, {[l, n]}) = σl and hence
|red(σn, SRP (σl) ∪ {[l, n]})| = |red(σl, SRP (σl))|.
Since n is the smallest possible value, SRP (σl) is correct
and |red(σn, SRP (σl) ∪ {[l, n]})| = |red(σl, SRP (σl))| ≤
|red(σl, C̃\{[l, n]})| = |red(σn, C̃)| which contradicts our
assumption that C̃ yields a shorter trace.
Case a2: c ∈ SRP (σn) and c 6∈ C̃
C̃ ⊆ C, c is an elementary cycle and c is the only
elementary cycle that ends at sn. So if c 6∈ C̃,
then sn remains and must be the last state of
red(σn, C̃). So |red(σn, C̃)| = |red(σn−1, C̃)| + 1.
However, c ∈ SRP (σn), which implies
|red(σn, SRP (σl) ∪ {[l, n]})| = |red(σl, SRP (σl))|.
c is added to SRP (σn) only if a ≤ b + 1, i.e.,
|red(σl, SRP (σl))| ≤ |red(σn−1, SRP (σn−1))| + 1.
Since SRP (σn−1) is correct, |red(σn−1, SRP (σn−1))| ≤
|red(σn−1, C̃)| which if put altogether contradicts our
assumption that C̃ yields a shorter trace.
Case a3: c 6∈ SRP (σn) and c ∈ C̃
c 6∈ SRP (σn) implies that |red(σn, SRP (σn))| =
|red(σn, SRP (σn−1))| = |red(σn−1, SRP (σn−1))| + 1
and SRP (σn−1) is correctly given. However,
|red(σn, C̃)| = |red(σl, C̃\{[l, n]})| ≥ |red(σl, SRP (σl))| ≥

|red(σn−1, SRP (σn−1))| + 1, where the first inequality
is true because we assumed n is minimal and and the
second is implied by the condition for c 6∈ SRP (σn) in
Def. 3.
Case a4: c 6∈ SRP (σn) and c 6∈ C̃
Since c is the only cycle that ends at n,
c 6∈ SRP (σn) and c 6∈ C̃ , there is no other way
to remove sn from σ, so it has to remain and
|red(σn, SRP (σn))| = |red(σn−1, SRP (σn−1))| + 1 and
|red(σn, C̃)| = |red(σn−1, C̃)| + 1. But since SRP (σn−1)
is correct, we have |red(σn−1, SRP (σn−1))| + 1 ≤
|red(σn−1, C̃)| + 1 which contradicts our assumption.
Case b)
If there is no cycle [l, n], then the last state sn

cannot be removed and remains in the reduced
sequence independently on the selection of C∗. Hence
|red(σn, SRP (σn))| = |red(σn−1, SRP (σn−1))| + 1 and
|red(σn, C̃)| = |red(σn−1, C̃)| + 1. But since SRP (σn−1)
is correct, we have |red(σn−1, SRP (σn−1))| + 1 ≤
|red(σn−1, C̃)| + 1 which contradicts our assumption.
In summary, there is no way the assumed C̃ can exist.

AOPT(σ)
0 p[0] = u[0] = l[0] = w[0] = c = 0; n = |σ|;
1 h = empty hash map; C′ = ∅; σ′ = σ;
2 for i = 0 to n with stepsize 1
3 if (h contains si)
4 then // cycle identified
5 c = c + 1;
6 u[c] = i;
7 (l[c], k) = getValue(h, si);
8 if (w[c − 1] < w[k] + u[c] − l[c])
9 then // consider new cycle

10 w[c] = w[k] + u[c] − l[c];
11 p[c] = k;
12 else // ignore new cycle
13 w[c] = w[c − 1];
14 p[c] = c − 1;
15 setValue(h, si, (i, c));
16 else // no cycle yet, just add state
17 addValue(h, si, (i, c));
18 pσ(i) = i − w[c]; // optional: compute progress of σ
19 while (0 < c)
20 if (w[c] 6= w[c − 1])
21 then σ′ = red(σ′, {[l[c], u[c]]}); C′ = C′ ∪ {[l[c], u[c]]}
22 c = p[c];
23 return σ′, C′

Fig. 6. Algorithm AOPT

Fig. 6 gives a detailed pseudocode description of an
iterative algorithm AOPT that implements SRP (σn) of
Def. 3 and avoids the recursion. It computes C′ = C∗ and
σ′ = red(σ, C′). AOPT iterates through states si of σ in a
forward manner (lines 2-17) and adds si to a hash map
h (line 17) to be able to identify cycles (line 3). In order
to consider elementary cycles, the index of a state si in
h is updated to the new value i if a cycle is found that
ends in si (line 15) to prepare for the next time that state
may be seen again. So AOPT visits all cycles in C in an

ordered sequence of increasing values uc when i = uc,
and for each cycle [lc, uc] we base our decision whether
to consider it for the optimal solution of SRP for σuc

by
comparing the optimal solution for σuc−1 with the re-
duction achieved by the optimal solution for σlc plus the
contribution of [lc, uc] in line 8. We memorize the better
variant of the two as a solution of σuc

. AOPT uses four
arrays (l, u, w, p) and one hash map h as data structures.
Let C be ordered such that uc−1 < uc, then AOPT stores
the c-th elementary cycle [lc, uc] of σ in l[c] = lc, u[c] = uc.
Note that |red(σi, SRP (σi))| = i −

∑

j∈SRP (σi)
uj − lj ,

since the cycles in SRP (σi) are non-overlapping. Entry
w[c] =

∑

j∈SRP (σuc) uj − lj stores how many states can
be removed and the optional step in line 18 derives pσ(i)
with the help of w[c]. Note that the entry (l[c], k) obtained
from h in line 7 is used to make sure that we select
the corresponding cycle with index k, that is closest
to lc such that uk ≤ lc. Entries in p[] form chains of
downward references towards 0. Together with entries
of w[], they characterize elements of C∗ for the sequence
of SRP problems for sequences σi for 0 ≤ i ≤ n. Note that
values of c only increase in that loop, let cmax denote the
maximal value for c that we observe in AOPT, (c = cmax

when the for-loop in lines 2-17 finishes after i = n = |σ|).
Hashmap h stores tuples (si, (i, k)) with si being key,
(i, k) being the value where k is the index of a cycle
that si corresponds to in arrays w, l, u, p. In line 15, an
existing entry in h is updated, while in line 17 a new
entry is added to h.

For a detailed proof of the correctness of AOPT, we
refer to [12]. The worst case time complexity of AOPT
is in O(n) for |σ| = n if search, insert and change oper-
ations on a hash map are in O(1). The time complexity
follows from the observation that n states are considered,
cmax ≤ n cycles are identified. The removal of at most
cmax non-overlapping intervals in a decreasing order can
be performed in O(n) with one iteration through the
array of n states of σ, e.g. by copying all remaining
elements to a new array of length n − w[cmax] (if σ
is stored in an array), or by removing a sequence of
individual elements in decreasing order (if σ is stored in
double linked list) with a total cost of one run through
σ. The optional computation of pσ(i) in line 18 lets us
compute pσ(i) for 0 ≤ i ≤ n in O(n) as a byproduct
of performing AOPT for σ, which is better than a naive
O(n2) computation of pσ(i) for 0 ≤ i ≤ n that applies
AOPT to each prefix of σ individually.

The space complexity is n(5+size(s)) where size(s) is
the space needed to represent a single state and integer
in the hash map h and 5n reflects on the 4 integer arrays
plus one hash map that are used. We assume that pσ(i)
(line 18) does not take any additional space and values
of pσ(i) are given as output as they are computed.

Related Approaches. SRP can be encoded by a di-
rected acyclic graph with edge-weights such that the
longest path in that graph yields the solution of SRP
[15]. We only briefly sketch the concept because it is
inferior to the presented approach. Let G = (V, E) be

a directed graph with a set of nodes V = C ∪ {⊥}. C
are the elementary cycles of a given trace σ and ⊥ is an
extra artificial sink node where paths in G will end. The
set of edges E ⊆ V × V contains all tuples e = (v, v′)
with v = [l, u] and v′ = [l′, u′] where u ≤ l′ and all
tuples (v,⊥), v ∈ C. An edge e = (v, v′) has a weight
w(e) = w([l, u], v′) = u − l based on the length of the
cycle encoded by the starting node v. Note that 1) each
path in the graph gives a sequence of non-overlapping
elementary cycles and the sum of the weights of its
edges gives the amount of reduction if those cycles are
removed from σ, and 2) the longest path will end in
⊥ since all nodes have an outgoing edge to ⊥. So we
can compute the longest path in G to obtain an optimal
solution C∗ of SRP. Note that G is acyclic since for any
v = [l, u] it holds l < u and for any edge e = ([l, u], [l′, u′])
it holds u ≤ l′, so values of l along a path need to
increase and cannot repeat. Although efficient linear
time algorithms are known for the computation of the
longest path in directed acyclic edge-weighted graphs
[21], our experimental findings indicated that the size
of the graph (number of nodes and edges) makes this
approach inefficient and we could not make it scale for
long traces with a large number of cycles. The proposed
algorithm AOPT is superior to this approach.

5 APPROXIMATE SOLUTION OF SRP
Since AOPT’s time complexity is linear and one cannot
do less than reading input σ for an optimal reduction,
we only look for approximate solutions of SRP that
result in a valid reduction but not necessarily a maximal
reduction of σ and that perform with at most same time
complexity but less space.

AC(σ)
0 h = empty hash map;
1 for i = 0 to n with stepsize 1
2 if (h contains si)
3 then
4 j= getValue(h, si);
5 C′ = C′ ∪ {[j, i]};

6∗ update(h, si, i)
7 else
8 add(h, si, i);
9 return C′;

Fig. 7. Algorithm to generate C′ ⊆ C

It is fairly straightforward to come up with an al-
gorithm that detects cycles and creates a set C′ ⊆ Call.
Fig. 7 gives the pseudocode of an algorithm that iterates
through states in σ, adds tuples (si, i) to a hash map h
with si being the key, i being the value of that mapping
which is returned by getValue in line 4. The step in line 6
is optional. If it is performed, C′ will contain elementary
cycles only, due to the change of value for entry (si, i)
in h (as in AOPT). If it is skipped, C′ may contain
non-elementary cycles and in particular the largest non-
elementary cycles in Call. Due to its simplicity, we do not

formally prove termination and correctness. Based on C′,
we obtain two approximate solutions of SRP.

The first solution is a greedy strategy that removes
cycles by weight. Given C′, it sorts elements [l, u] of C′

by weight u − l, iterates through C′ in decreasing order
and successively removes cycles [l, u] from σ if possible,
i.e. σ = sub(σ, 0, l)◦sub(σ, u, n) if both states sl and su are
still present in the current σ (and none of them have been
removed in a previous reduction). The time complexity is
at least O(n) for creating C′ and O(|C′|log|C′|) for sorting
C′. Hence, we consider this approach inferior to AOPT
and do not investigate this algorithm any further.

The second strategy is a greedy strategy that selects
cycles in the order of occurrence (first come first served),
which we denote as AFCFS. It is an on-the-fly approach
that runs through σ from the beginning, creates a set
C′ and removes cycles from σ (and corresponding states
from hashmap h) as soon as a cycle is identified. So we
formally introduce σc to denote the reduced sequence.

AFCFS(σ)
0 i = c = 0; σc = σ
1 h = empty hashmap;
2 while (i ≤ |σc|)
3 i++;
4 if (h contains si)
5 then // interval identified, remove
6 c = c + 1;
7 lc = getValue(h, si);
8 for j = lc + 1 to i − 1 with stepsize 1
9 removeByValue(h, j) ;

10 σc = red(σc−1, {[lc, i]});
11 C′ = C′ ∪ {[lc, i]};
12 i = lc;
13 else
14 add(h, si, i);
15 return σc, C′;

Fig. 8. Algorithm AFCFS

Due to the simplicity of the concept, we do not for-
mally prove the approach. Compared to AOPT, AFCFS
uses the same detection mechanism for cycles, but there
is no need for arrays and we can reduce σ and hashmap
h on-the-fly. Note that AFCFS identifies cycles that are
either nested or non-overlapping. The obvious benefit is
the immediate reduction of the space for σ and h.

A third approach is based on the work of Nivasch
[16], which focuses on the detection of cyclic functions
(sequences). The main argument is that if a sequence
becomes cyclic and repeats a certain loop over and over
again, i.e. σ = s0, . . . , sn with i < j < k such that
sub(σ, i, j) = sub(σ, j, k) then it is sufficient to focus on
sm = min{sl|i ≤ l ≤ j} and there is a cycle [sm, sm+j−i].
We can define a total order on states to establish a
minimum for a set of states in the following way. If
si = (si0, . . . , sim) happens to be a vector where entries
sij have a total order, we define the following order for
states: si < sj if ∃k such that sil = sjl for 0 ≤ l < k and
sik < sjk for k ≤ m, i.e., we use a lexicographic order.

Given such an order, a stack of states is sufficient to
memorize the min value. Fig. 9 describes the algorithm
in pseudocode and adapted to solve SRP. Nivasch’s
approach is particularly dedicated to identify cyclic func-
tions and to determine the cycle length, e.g., for random
number generators, where it is very promising. Identi-
cal subsequences sub(σ, i, j) = sub(σ, j, k) are naturally
present in cyclic functions but this is not necessarily the
case for traces obtained from simulation models. For SRP,
ASTACK delivers a valid reduction but not necessarily
an optimal solution. The algorithm makes use of a stack q
and a total order of states. The stack contains a sequence

ASTACK(σ)
0 q = empty stack;σ′ = σ; C′ = ∅;
1 for i=0 to n with stepsize 1
2 while (si <state(top(q))
3 pop(q) ;
4 if (si == state(top(q))
5 then // interval found
6 [l, u] = [index(top(q)), i]
7 C′ = C′ ∪ {[l, u]}
8 σ′ = red(σ′, {[l, u]});
9 else

10 push(q, (si, i));
11 return σ′, C′;

Fig. 9. Algorithm ASTACK

of states in a monotonously increasing order, function
top(q) reads the top element (sj , j) from stack q but
does not remove it, push and pop are the usual stack
operations, state(sj, j) returns sj , index(sj , j) returns j.
For considerations with respect to correctness, time and
space complexity details we refer to [16]. Analogously to
the adaptation of Nivasch’s algorithm, one could adapt
the algorithm by Sedgewick et al [20] which we do not
follow here. As for AFCFS, ASTACK detects cycles that
are either nested or non-overlapping.

6 EXPERIMENTAL EVALUATION

In this section, we compare algorithms AOPT, AFCFS,
ASTACK and the combined algorithm ACOMB, which
denotes that AOPT is applied on the reduced output
trace of ASTACK. The motivation for ACOMB is to
use an approximate algorithm that is much lower in
memory requirements than AOPT to reduce most of a
trace and then apply the exact algorithm to squeeze
remaining cycles out of the resulting sequence. Since
the combination of AFCFS with AOPT did not yield
any improvement in our experiments, we report only
results for the combination of ASTACK and AOPT. All
algorithms have been integrated in Traviando, such that
we can make use of traces generated with three different
modeling frameworks, namely Möbius [4], the APNN
toolbox [5], and the ProC/B toolset [2]. Annotations in
Table 2 relate modeling tools with example models.

Selection of Examples. We selected a number of ex-
amples from the literature to see how well the reduction
applies in practice.

The Courier model refers to the Courier protocol model
by Woodside and Li [22]. It is intended for performance
analysis and generates a recurrent, finite Markov chain.
It is a stochastic Petri net whose initial marking is chosen
such that the model has a small state space and is
expected to show a lot of cyclic behavior. Production cell
denotes a large Petri net model by Heiner et al [6]. It
considers the control of a production cell which consists
of a rotating table, a robot with two arms, a press, a
crane, and two transportation belts. The Petri net has
231 places, 202 transitions and generates a state space
with more than a million states. We selected this model
since the length of the state descriptor and the size
of the state space makes it unlikely to observe many
cycles. DinPhils refers to a model of the classical dining
philosophers; it is a mere modeling exercise performed
in the ProC/B toolset. Store refers to model of a storage
area described in [10]. It is a ProC/B simulation model
based on a process interaction approach. It models the
transfer of goods into and out of a store by trucks that
are allocated to ramps and that are loaded or unloaded
with the help of forklifts that are manned with workers.
It describes an open system. The state representation that
is chosen for the trace abstracts from certain details of the
simulation model. In particular, identities of entities are
incorporated only as attributes of actions. The model has
a defect in the sense that it reaches a situation, where the
loading/unloading operations are all blocked and the
only remaining activities are arrivals of newly generated
entities, resp. trucks (since it is an open model). Its
traces give little room for reduction. Server refers to the
Möbius model of a server with failure and repair that we
discussed in Section 3. FaultyProc is a failure model of a
fault tolerant processor that is part of a set of example
models available with the Möbius distribution. Similar
to this, Conveyor refers to a model of a conveyor belt that
is described in a process algebra supported by Möbius.
Database refers to a Möbius model of a database system.

In summary, we selected a set of models with signifi-
cant variation in |S|, |E|, |σ|, the modeling formalism, the
generating simulator, the application area, and whether
an error is present or not. In this way, we try to avoid a
bias from considering specially engineered examples.

Achieved reduction. Since only AOPT gives exact
results and it is at this point unclear if ASTACK and
AFCFS yield good reductions in practice, we evaluate
the reduction capabilities of all three algorithms on a
set of traces we generated from the set of examples and
in different lengths. Note that traces of different lengths
are obtained from separate and independent simulation
runs and shorter traces of one model are not necessarily a
prefix of a longer trace of the same model. Table 2 gives
the resulting values for max

∑

[li,ui]∈C′(ui − li) for the
calculated set C′ for algorithm AOPT in column 2, AFCFS
in column 3, ASTACK in column 4, and results of the two
phases of the combined algorithm separately, namely
the reduction by ASTACK if applied first in column 4
and the reduction obtained by AOPT if applied to the

output of ASTACK in 5. Note that the sum of values
of columns 4 and 5 give the total reduction achieved by
ACOMB. For example, AOPT achieves a value of 4938 in
line 3, column 2 for model Courier with |σ| = n = 5000
that is |σ∗| = 5000 − 4938 = 62 and ASTACK gives a
reduction of 4860 such that the combination of ASTACK
and AOPT (sum of values in columns 4 and 5) gives
4926 = 4860 + 66 which almost yields the reduction
achieved by AOPT alone. Since AOPT guarantees to
achieve a maximal reduction for σ, it yields the max-
imal possible reduction values in the table. Column n
describes |σ|. Considering the reduction achieved by the
different algorithms in Table 2, we observe a substantial
reduction for all but the Store example. Store is a model
of an open system where the population grows due to an
internal deadlock for resource allocation and the absence
of cycles indicates this problem. For other models, AOPT
achieves a substantial reduction, so the cycles are indeed
present, even in models like Production cell with a large
state descriptor and a large state space. AFCFS often gets

ACOMB
n AOPT AFCFS ASTACK AOPT

APNN: Courier
(∗) 5000 4938 4938 4860 66

10000 9966 9966 9912 54
APNN: Production cell

1000 810 648 486 324
10000 9720 9720 1944 7776

160029 159894 159894 42120 117774
ProC/B: Dining Philosophers
(∗) 67744 67721 67721 66441 1260

ProC/B: Store
6140 65 65 65 0

Möbius: Server
5473 5466 5462 5252 214

(∗) 583880 583410 583186 500504 82878
1170380 1169570 1169114 1001110 168428

Möbius: Fault Tolerant Processor
4368 4352 4345 2687 1665

20961 20952 20952 16167 4785
Möbius: Conveyor System

5391 5361 5334 1874 3487
(∗) 20160 20084 20048 19805 252

Möbius: Database System
4732 4732 4732 4698 34

19974 19974 19974 19926 48

TABLE 2
Reduction achieved for examples

results that are equal or reasonably close. However, for
the production cell we can recognize that the length σ
may have an influence as well, e.g., AFCFS does well
for certain values of n but not for others. ASTACK, if
applied on its own (column 4), also yields a substantial
reduction but occasionally falls behind significantly, e.g.,
for Conveyor and n = 5391, the fault tolerant processor
and the production cell model. However, if combined
with AOPT the overall results match with the one of
AOPT for almost all cases. Symbol (∗) in rows of Table
2 indicate where the total effect of ACOMB, i.e., the
sum of values in columns 4 and 5, do not give the
maximal reduction as obtained by AOPT (column 2).

Note that those differences are in fact small. We observe
that differences vary for the same model across traces
of different lengths. In order to see if differences in the
reduction capability depend on the selection of |σ| = n
we compare solutions for any prefix of a trace. Table
3 lists the maximum and average difference in length
(rounded to two digits) between |σ∗

i | for i = 0, . . . , n as
computed by AOPT, ASTACK and AFCFS. For example,
the entry in row Courier and column AFCFS-max is
66 = max{|red(σi, C

′)| − pσ(i)|0 ≤ i ≤ n} where
C′ is the set of cycles removed from σi by algorithm
AFCFS. The minimal difference is always 0 (at σ0).
Small values indicate a good approximation. We also
measured the standard deviation, for AFCFS (ASTACK),
it ranges between 0 (2.05) for Store and 73.97 (2396.89)
for Production cell. The experimental results indicate that
AFCFS performs consistently better than ASTACK for
all examples with respect to the approximation error
measured as max, mean, and standard deviation of the
difference to the result of AOPT.

AFCFS ASTACK
Model n max avg max avg
Courier 10000 66 3.81 174 65.28
Prodcell 10000 324 44.46 7776 3890.99
DinPhils 67744 210 50.57 3060 1517.13
Store 6140 0 0.00 36 0.12
Server 5473 16 1.79 342 115.66
FaultyProc 20961 66 11.23 4956 2442.20
Conveyor 20160 198 45.89 4050 1460.97
Database 19974 2 0.00 94 46.73

TABLE 3
Approximation error

Comparison of computation times. The time com-
plexity of all considered algorithms is linear in the length
of σ, however this may imply significant differences in
practice. In this section, we report on computation times
measured on a Pentium PC running Linux with 2 CPUs
(3.4GHz), 2MB cache and 2GB main memory. All times
given are wall clock times in seconds.

We assume that the main characteristics that influence
the performance are |σ|, |C| and the size of the state
descriptor. |C| influences the effort necessary to perform
calculations and reductions, so we consider two artificial
and extreme scenarios in this respect: one that has no
cycles and one that has a very regular structure with
many cycles. The size of the state description influences
the cost of memory management, instantiation of state
objects, comparisons among states, evaluations of hash
functions and so forth. The first two scenarios are ex-
tremely lightweight on state descriptors, so we consider
a third scenario with the Production cell model that is
particularly heavy with its state representation and that
also has a substantial set of cycles to make reductions
happen. Finally, we report results for the Server model
as our fourth scenario since it contains many cycles and
an error. We do not provide detailed results for the other
models of Table 2 since all other traces mainly resulted

in insignificant computation times of less than a second.
The first scenario considers traces with no cycles. We

generated a trace σ with a single state variable that is
successively incremented so si = i, 0 ≤ i ≤ n. So the
space needed to represent a state and the cost involved to
compare states or to compute a hash function is minimal.
All algorithms but ACOMP performed in less than 1 s
for traces |σ| ≤ 600, 000, ACOMP used 3.9 s for |σ| =
600, 000. Note that this is also a worst case scenario for
ASTACK, since values are increasing.

For the second scenario, we consider a trace that has
a large number of simple cycles to detect and to remove
such that σ∗ = s0. We generated σ with a single state
variable and produced an alternating sequence of values
0, 1, 2, . . . , 8, 9, 8, . . . , 2, 1, 0, 1, 2, All algorithms per-
formed within 1 s for |σ| ≤ 180, 000. For much higher
values, e.g., for |σ| = 540, 000, AFCFS performed best
with 0.95 s, ASTACK and ACOMP both with about 1.3
s, and AOPT with 3.09 s. Although AOPT was slower by
a factor of 3-4 times, we do no want to overemphasize
the effect due to the small nominal values.

Table 4 gives the wall clock time observed for the
Production cell and server examples.

n AOPT AFCFS ASTACK ACOMB
Production Cell
48070 1.39 0.86 0.47 1.14
79900 2.54 1.47 0.83 2.06

113117 4.00 2.09 1.11 3.84
160029 5.75 2.89 1.59 5.53
Server

9812 0.17 0.08 0.25 0.20
114653 0.78 0.63 1.00 1.02
583880 11.90 3.20 94.26 99.35

TABLE 4
Computation times in seconds

For the third scenario, where the state descriptor is
heavy – the Production cell model has 231 variables – the
computation times indicate that ASTACK is faster than
AFCFS and both are faster than AOPT. The combined
algorithm ACOMB does not pay off timewise.

Finally, for the Server model, we see large differences.
For n = 583880, we observe that AOPT is about four
times slower than AFCFS, however ASTACK dramat-
ically falls back. Profiling ASTACK reveals that the
on-the-fly reduction with iterators is particularly time
consuming. Furthermore, many of the cycles that are
removed are in fact nested and covered by cycles de-
tected at a later point in time. An alternative version
of ASTACK with a post reduction that generates a
new reduced trace σ′ after completely scanning σ takes
only 1.89 seconds for n = 583, 880 (9.98 seconds for
n = 1, 170, 380), which also takes advantage of the fact
that only few states need to be copied to generate σ′. We
denote this to show the strong impact of implementation
decisions that may distort conclusions.

Across all four scenarios, we recognize that all variants
of the algorithms perform in the range of a few seconds

for traces with a length in the order of 105. This is also
consistent with results observed for other members of
our set of examples.

Comparison of memory requirements. To compare
algorithms memory wise, let us recall that AOPT uses
four integer arrays of length n, a hash map that contains
as many entries as there are different states in σ and a
set with tuples to represent C′. The number of tuples
in C′ is limited to 0.5n, so given that the tuples have
length 2, the total space for C′ is in the order of n.
AFCFS mainly uses a hash map with states as entries
and a representation of C′ like AOPT. The key difference
is that the hash map contains only elements of the on-
the-fly reduced σc which can be much less than AOPT
and due to the proximity of observed results for AOPT
and AFCFS we can expect the number of elements in
the AFCFS hash map to be approximately that of pσ.
ASTACK uses C′ like the other algorithms and a stack
with states as entries. The stack height depends on the
longest subsequence of monotonously growing states in
the trace and with respect to the selected order. The com-
bined algorithm ACOMB matches with the space used
by ASTACK for its first phase but then applies AOPT
on a usually much smaller trace, so its overall space
requirements have those of ASTACK and AOPT as an
upper bound. We recognize that the number of elements
in the hash map (stack) is the interesting characteris-
tics of AOPT and AFCFS (ASTACK) computations that
deserve an experimental evaluation. The pathological
examples for scenario I with no cycles and II with many
trivial cycles perform as expected, e.g., for scenario II all
algorithms store the 10 different states that occur in the
trace. For other examples, Table 5 shows that algorithms
significantly differ. While values for AOPT grow with n,
AFCFS is able to retain much lower values and those
do not necessarily grow with n. ASTACK manages to
retain values smaller than 100 for correct models, only
models that contain an error like the Server and the Store
models enforce larger values. The combined approach
profits from the preprocessing with ASTACK only for
certain configurations.

7 WORKING WITH PLOTS OF pσ

In this section, we discuss how plots of pσ can shed
light on what happens in a trace. From experiences
with a number of examples, we recognize four distinct
patterns: oscillations, a straight line, a step function, and
convergence.

The case of continuing oscillations. Figure 10 shows
an example of this case. We observe an initial linear in-
crease followed by a phase of oscillations without a trend
to grow. A linear regression function for that sequence of
values shows a slope close to zero. We interpret this as
follows: the simulator runs through an initial, transient
warm up phase, then proceeds in a normal range of
operation and occasionally returns to previously visited
states. Note that same values of progress do not imply

n AOPT AFCFS ACOMB
ASTACK AOPT

Courier
5000 577 128 15 436

10000 763 91 18 482
Dining Philosopher

67744 1225 233 26 604
Store

6140 6095 6076 2026 6076
Faulty Proc

4368 820 82 27 531
20961 1570 82 32 588

Conveyor
5391 2099 246 70 1715

20160 3446 246 84 330
Database

4732 23 4 10 14
19974 38 4 12 15

Scenario III: Production Cell
10000 5206 680 61 4700

160029 34466 899 66 30097
Scenario IV: Server

5473 60 27 17 52
583880 10942 741 162 9292

1170380 19899 1300 252 16766

TABLE 5
Number of elements in hashtable or stack

equality of states, but only equal distance from the initial
state. Oscillations do not indicate an error, we may use
them to also check for a position of a truncation point of
the warm up phase that is usually taken into account for
steady state performance evaluations. The case of oscilla-
tions is considered to be the behavior of a correct model;
it gives an indication of the depth of the state space as it
is explored. Given that we observe only a finite prefix of
a potentially infinite behavior, the principal limit is that
we do not gain any knowledge on the possible future
behavior. For example, the considered trace may be too
short to observe any erroneous behavior.

Fig. 10. Oscillations as seen for a submodel of the
Courier protocol model

The case of a straight line. Figure 11 shows an
example of this case. We see an almost linear trend to
grow and the slope of a linear regression function is
close to one. We see that the simulator runs and assigns
values to state variables such that no cycles show up or
cycles are not sufficient to give a substantial reduction.
We observed this pattern for a variety of causes: 1) state

Fig. 11. Straight line as seen for the Store model and the
Courier protocol model with an injected fault

variables that are used to count the number of occur-
rences; i.e., state variables are used as reward variables or
act as some sort of logging mechanism to track behavior,
2) faulty irregular changes to state variables that are
not taken back and that happen frequently, 3) overload
situations in open systems, where the workload is too
high for the available resources and state variables track
growing queues of waiting jobs, 4) a partial deadlock
for resource allocation in open systems where new jobs
frequently arrive in a steady stream but the throughput
breaks down and queues increase, and 5) the straight
line that is always present in the initial phase of a plot
of pσ, so the chosen length of the observed trace requires
appropriate consideration to avoid misunderstandings.

In situations 1-4, we can apply the same concept to
individual state variables and subsets of state variables
to track down which variables cause the overall behav-
ior. This decomposition is possible because the overall
case of oscillations results from a logical AND of all
projections contributing oscillations. If one projection
does not show repetitions, the overall trace cannot do so
accordingly. For a straight line to be observed, at least
one submodel or variable will show the same pattern.

The case of a step function. Figures 3 and 12 show
examples of this case for traces of the Server model.
We observe a step function with a phase of oscillations
in each step. A linear regression function may show
a marginal or significant slope which depends on the
frequency of steps in the step function. We can interpret
this as follows: the simulator runs in an operational
phase with oscillations and occasionally performs sin-
gular changes to state variables that are never taken
back to previous values in the observed simulation run
and which makes a step to the next level in the plot.
Causes that we observed for this behavior include 1) rare
events that are logged by state variables, 2) rare events
that cause erroneous behavior as in the server model,
and 3) a lengthy initial warm up phase. This pattern
suggests to check the event number or simulation time
when a switch to next step occurs and check those
events for correctness. One can truncate the trace after a
step and apply the reduction operation to evaluate the
reduced trace to check what causes the state changes.

Decomposition can be applied as well. Note that a step
function may look like a straight line if the frequency of
steps is high enough with respect to |σ|.

Fig. 12. Steps as seen for the Server model

Fig. 13. Convergence as seen for the submodel Storage
Area of the Store model

The case of convergence. This case describes a plot
where pσ converges to a constant function after an
initial phase with a straight line, a step function or
oscillations. We observed this case for models where the
simulator performs events but the state description does
not change, for example, if the reported state description
abstracts from details in a model or if the considered
state is a projection of the full state as in the decom-
position approach described below. Obviously this case
asks for a closer look why states do not change. Any
state in the constant phase and events that lead to it
are of interest here. One can truncate the trace where
the constant phase begins and perform a trace reduction
to investigate how that phase is reached. For example,
the trace of the Store model shown in Fig. 13 shows
this pattern if one projects on certain submodels like the
Storage Area. The trace reveals a partial deadlock in an
open system, where access to certain resources is blocked
and new entities frequently enter the system and keep
the simulation going.

Decomposition and projections. If the state descriptor
contains several state variables, then we can consider
projections on any subset of state variables for σ and
decompose the observed behavior. We illustrate the ap-
proach with the help of the Store model where we
consider only state variables of a submodel Storage Area.

If we take a trace σ and derive a new trace σ′ by
projecting each state si to only those values that belong
to a particular submodel like the Storage Area, then we
can compute pσ′ for σ′, which is shown in Fig. 13. Since
not all events change the state of Storage Area, we observe
stuttering steps, i.e., cycles of length 1, which makes pσ′

constant between those events that do change the state.
There are cases, where the dynamics of a submodel dies
out and the plot becomes a constant function after an
initial phase. If this is the case, then the plot for the
overall model can still be any of the cases discussed
above. For example, while the plot for pσ of Storage Area
becomes constant, the overall model shows as pattern
as in Fig. 11. If at least one submodel gives a straight
line for pσ′ then the overall plot has to do so as well,
which in turn suggests to follow a divide and conquer
approach and check the plots of submodels if the trace
of the overall model shows a straight line.

In summary, plots of pσ provide us with a simple vi-
sual technique to recognize if a trace shows an irregular
behavior and that gives guidance for where to search for
its cause.

8 CONCLUSION

We propose a technique that identifies and removes
cycles from a simulation trace. The separation of progres-
sive from cyclic and repetitive fragments of a trace helps
to identify errors in simulation models, in particular for
dependability models that are composed of submodels
that have a cyclic behavior. The proposed exact reduc-
tion algorithm has linear time and space complexity
and achieves a maximal reduction for a given trace.
Additional approximate algorithms are discussed that
save on memory requirements. All techniques have been
implemented in Traviando [11], a software tool for trace
visualization and analysis, and have been evaluated on
a range of example models.

ACKNOWLEDGMENTS

We thank W.H. Sanders, T. Courtney and M. McQuinn
for supporting us with an appropriate XML trace output
of Möbius, W. Mao who pointed out that SRP relates
to finding a longest path in directed acyclic graphs,
R. Lamprecht for her editorial assistance and numerous
reviewers for their advice.

REFERENCES

[1] J. Banks. Getting started with AutoMod. AutoSimulations, Inc., 655
Medical Drive, Bountiful, Utah 84010, 2000.

[2] F. Bause, H. Beilner, M. Fischer, P. Kemper, and M. Völker. The
ProC/B toolset for the modelling and analysis of process chains.
In T. Field et al, editor, Computer Performance Evaluation / TOOLS,
Springer LNCS 2324, pages 51–70, 2002.

[3] R. E. Bellman. Dynamic Programming. Princeton, NJ, 1957.
[4] D. D. Deavours et al. The Möbius framework and its implemen-

tation. IEEE TSE, 28(10):956–969, 2002.
[5] F. Bause et al. A toolbox for functional and quantitative analysis

of DEDS. In Computer Performance Evaluation / TOOLS, Springer
LNCS 1469, pages 356–359, 1998.

[6] M. Heiner and P. Deussen. Petri net based design and analysis of
reactive systems. In Proc. 3rd Workshop on Discrete Event Systems
(WoDES 96), pages 308–313, 1996.

[7] O.H. Ibarra, H. Wang, and Q. Zheng. Minimum cover and single
source shortest path problems for weighted interval graphs and
circular-arc graphs. In Proc. Thirtieth Annual Allerton Conference on
Communication, Control and Computing, pages 575–584. University
of Illinois, Urbana, 1992.

[8] W.D. Kelton, R. P. Sadowski, and D. A. Sadowski. Simulation with
Arena. Mc Graw Hill, 2nd edition, 2002.

[9] P. Kemper. A trace-based visual inspection technique to detect
errors in simulation models. In Proc. Winter Simulation Conference,
ACM, 2007.

[10] P. Kemper and C. Tepper. Trace based analysis of process
interaction models. In Proc. Winter Simulation Conference, ACM,
pages 427–436, 2005.

[11] P. Kemper and C. Tepper. Traviando - debugging simulation
traces with message sequence charts. In Proc. QEST, pages 135–
136. IEEE CS, 2006.

[12] P. Kemper and C. Tepper. Automated analysis of simulation traces
- separating progress from repetitive behavior. In Proc. QEST,
pages 101–110. IEEE CS, 2007.

[13] D. Krahl. Debugging simulation models. In Proc. Winter Simula-
tion Conference, ACM, pages 62–68, 2005.

[14] A. Law and W.D. Kelton. Simulation Modeling and Analysis.
McGraw-Hill, 3rd edition, 2000.

[15] W. Mao. College of William and Mary, private communications.
[16] G. Nivasch. Cycle detection using a stack. Inf. Process. Lett.,

90(3):135–140, 2004.
[17] D. A. Sadowski. Tips for successful practice of simulation. In

Proc. Winter Simulation Conference, ACM, pages 56–61, 2005.
[18] U. Sammapun, I. Lee, and O. Sokolsky. RT-MaC: Runtime mon-

itoring and checking of quantitative and probabilistic properties.
In Proc. RTCSA, IEEE CS, pages 147–153, 2005.

[19] R. G. Sargent. Verification and validation of simulation models
In Proc. Winter Simulation Conference, ACM, pages 130–143, 2005.

[20] R. Sedgewick, T. G. Szymanski, and A. C. Yao. The complexity of
finding cycles in periodic functions. SIAM Journal on Computing,
11(2):376–390, 1982.

[21] R. Sedgewick Algorithms in C++ Part 5: Graph Algorithms.
Addison Wesley, 3rd edition, 2001.

[22] C. M. Woodside and Y. Li. Performance Petri net analysis of com-
munications protocol software by delay-equivalent aggregation.
In Proc. PNPM, IEEE CS, pages 64–73, 1991.

Peter Kemper is an associate professor in the
Department of Computer Science at the College
of William and Mary (previously Universität Dort-
mund and TU Dresden, Germany). His research
interests include modeling techniques and tools
for performance and dependability analysis of
systems. He contributed to analysis techniques
for the numerical analysis of Markov chains,
model checking stochastic models, techniques
for simulation optimization. He develops Tra-
viando at the College of William and Mary.

Carsten Tepper has a Diploma degree in com-
puter science (Dipl.-Inform., Universität Dort-
mund, Germany, 2000). In 2001-07, he con-
ducted research in modeling and simulation
with P. Buchholz at the Universität Dortmund,
partially funded by SFB 559, Modeling Large
Networks in Logistics. He is interested in the
verification and validation of process-oriented
systems and the performance analysis/tuning of
database systems. He is a software engineer at
ITGAIN Consulting, Hanover, Germany.

