
TRANSACTION 0N SOFTWARE ENGINEERING, VOL. X, NO. X, 201X 1

An Enhanced Bailout Protocol for Mixed
Criticality Embedded Software

Iain Bate1, Alan Burns1 and Robert I. Davis1,2
1Department of Computer Science, University of York, York, UK

2INRIA, France
{iain.bate, alan.burns, rob.davis}@york.ac.uk

Abstract—To move mixed criticality research into industrial practice requires models whose run-time behaviour is acceptable to systems
engineers. Certain aspects of current models, such as abandoning lower criticality tasks when certain situations arise, do not give the
robustness required in application domains such as the automotive and aerospace industries. In this paper a new bailout protocol is
developed that still guarantees high criticality software but minimises the negative impact on lower criticality software via a timely return to
normal operation. We show how the bailout protocol can be integrated with existing techniques, utilising both offline slack and online
gain-time to further improve performance. Static analysis is provided for schedulability guarantees, while scenario-based evaluation via
simulation is used to explore the effectiveness of the protocol.

Index Terms—Real-Time Systems, Mixed Criticality, Fixed Priority Scheduling, Mode Changes.

F

Preliminary publication
This paper extends initial research into a bailout protocol for mixed
criticality systems presented at ECRTS 2015 [1]. The additional
material includes: An extended worked example illustrating, in
figures 1 and 2, the behaviour of the bailout protocol as compared
to the baseline Adaptive Mixed Criticality (AMC) scheduling policy.
Extensions to reclaim gain-time, which becomes available when
a task executes for less than its worst-case execution time budget.
Integration of this technique with the bailout protocol is described
in Section 5. An extended scenario based evaluation, in Section 6.
This examines the benefits of gain-time reclamation in conjunction
with the baseline Adaptive Mixed Criticality (AMC) scheduling
policy and with the bailout protocol. The evaluation also covers
additional metrics including the number of times that the system
has to go into a HI-criticality mode, and the amount of time spent
in that mode. It is also extended to show how a variety of different
factors impact the performance of the bailout protocol and other
scheduling policies, thus showing the broad range of circumstances
in which the protocol is effective. Finally, in Section 8 we show
how the bailout protocol can be adapted to systems with multiple
criticality levels.

1 INTRODUCTION

A N increasingly important trend in the design of real-time and
embedded software systems is the integration of components

with different levels of criticality onto a common hardware
platform. Criticality is a designation of the level of assurance
against failure needed for a system component, where the level of
assurance needed depends on both the likelihood of failure and the
consequences of that failure [2]. A mixed criticality system (MCS)
is one that has two or more distinct levels (for example safety
critical and mission critical). Perhaps up to five levels may be
identified. Most of the complex embedded systems found in, for
example, the automotive and avionics industries are evolving into

integrated rather than federated mixed criticality systems in order
to meet stringent non-functional requirements relating to cost,
space, weight, heat generation and power consumption; the latter
being of particular relevance to mobile systems.

The fundamental research question underlying these initiatives
and standards is: how, in a disciplined way, to reconcile the
conflicting requirements of partitioning for assurance and sharing
for efficient resource usage. This question gives rise to theoretical
problems in modeling and verification, and systems problems
relating to the design and implementation of the necessary
hardware and software run-time controls.

Although the formal study of mixed criticality systems is a
relatively new endeavour, starting with the paper by Vestal [3],
a standard model has emerged (see for example [4]–[9]). For
dual criticality systems (with the two levels: HI-criticality and
LO-criticality) this standard model has the following properties:
• A mixed criticality system is defined to execute in one of two

modes: a normal mode and a HI-criticality mode.
• All software is structured as concurrently executing tasks that

are scheduled by a dependable RTOS (Real-Time Operating
System) supporting fixed priority preemptive scheduling.

• Each task is characterised by its criticality level (e.g. HI- or
LO-criticality), the minimum inter-arrival time of its jobs
(period denoted by T ), deadline (relative to the release of each
job, denoted by D) and worst-case execution time (one per
criticality level up to the criticality level of the task), denoted
by C(HI) and C(LO). A key aspect of the standard MCS
model is that C(HI) ≥ C(LO) [3].

• The system starts in the normal mode, and remains in that
mode as long as all jobs execute within their LO-criticality
execution times (C(LO)).

• If any HI-criticality job executes for itsC(LO) execution time
without completing then the system immediately degrades to
the HI-criticality mode.

• If any LO-criticality job executes for its C(LO) execution

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSE.2016.2592907

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



TRANSACTION 0N SOFTWARE ENGINEERING, VOL. X, NO. X, 201X 2

time without completing then that job is immediately aborted
by a runtime monitoring mechanism.

• As the system moves to the HI-criticality mode all
LO-criticality tasks are abandoned. No further LO-criticality
jobs are executed.

• The system remains in the HI-criticality mode.
The movement from normal mode to HI-criticality mode is a form
of graceful degradation. Following a timing anomaly only the
HI-criticality tasks are guaranteed to meet their deadlines.

The motivation for the standard model having two values for
the Worst-Case Execution Time (WCET) [3], [10] is taken from
either of two situations often seen in industrial practice [11]. The
first situation involves the High WaterMark (HWM), i.e. the largest
execution time observed during testing, which is highly reliable as
testing for functional correctness is intensive (e.g. MCDC coverage).
This value would be taken as C(LO). However for the most critical
software an engineered safety margin is added to give a C(HI)
value. Values for this engineered safety margin come from industrial
practice and are based on engineering judgement and experience. A
margin of around 20% is typical in aerospace applications1 [12]. It
is considered sufficiently unlikely that this value will be exceeded2.
The second situation is when static or hybrid analysis is used to
obtain a WCET, which can be treated as C(HI). Even though
this value is considered sound [11], it is often too pessimistic, and
its use may lead to difficulties in obtaining a schedulable system.
Again the HWM may be used as C(LO). In both cases, it is
necessary that the system is schedulable when all tasks execute for
C(LO); however it is also important to gracefully degrade when
C(LO) is exceeded, i.e. HI-criticality tasks must still meet their
deadlines and as few as possible of the LO-criticality tasks miss
their deadlines.

The abstract behavioural model described above has been useful
in allowing key properties of mixed criticality systems to be derived,
but it is open to criticism from systems engineers that it does not
match their expectations [2]. In particular:
• In the HI-criticality mode LO-criticality tasks should not be

abandoned. Some level of service should be maintained if at
all possible, as LO-criticality tasks are still critical.

• It should be possible for the system to return to the normal
mode as soon as conditions are appropriate. In this mode all
functionality should be provided.

Clearly, in general, if the system is in the HI-criticality mode
and all HI-criticality tasks are executing for the maximum time
defined for such tasks then the LO-criticality tasks will not be able
to receive enough execution time to guarantee that their deadlines
are met. However, in many situations the worst-case conditions
will not be experienced and in this case LO-criticality tasks should
receive some level of service.

The main contribution of this paper is the introduction of the
Bailout Protocol in which HI-criticality tasks are not allowed to
fail (they are too important to fail) and therefore LO-criticality
tasks must sacrifice their quality of service by not starting a certain
number of jobs. The actual number of sacrificed jobs depends on
the size of the bailout and the time needed for recovery. However,
once the bailout has been serviced the LO-criticality tasks can
return to their full timely behaviour. While the bailout protocol

1. Note, we know of no theoretical support for using such a value, rather
such margins come from engineering experience.

2. In some systems, further runtime monitoring may be employed to ensure
that such overruns, however unlikely, do not lead to significant system failure.

allows LO-criticality jobs to be dropped, rather than abandon jobs
that have been released, and so waste the consumed execution time
and potentially leave them in an inconsistent state, it allows these
jobs to continue. However, it disables the release of new jobs of
LO-criticality tasks until the system is back in the normal mode
of execution whereby it can again guarantee all tasks. (Note many
forms of analysis actually reduce their complexity by assuming all
released jobs will complete). The bailout protocol aims to restore
the normal mode as soon as possible following an interval of
HI-criticality only activity, and so minimise the number of LO-
criticality jobs that miss their deadlines or are not executed. The
bailout protocol thus reduces the amount of time spent in the HI-
criticality mode. In addition, we show how the protocol can be
complemented by techniques based on gain-time reclamation [13]
and slack stealing [14], [15] to further reduce both the number of
times the system enters HI-criticality mode and the amount of time
that it spends in that mode.

To comply with the requirements of MCS, scheduling policies
and protocols must ensure that HI-criticality tasks always meet their
deadlines, and that all tasks meet their deadlines when the system
is in normal mode. Schedulability analysis provides the answers to
these questions. Beyond such compliance, the relative effectiveness
of the different protocols is judged on the basis of criteria such
as the number of times the system enters the HI-criticality mode,
the amount of time spent in that mode, and the number of LO-
criticality jobs that either miss their deadlines or are abandoned.
Scenario-based assessment using large-scale simulations provides
information about these metrics although the results obtained are
only valid for the range of scenarios explored.

The remainder of the paper is organised as follows. In Section
2, we discuss related work, introduce the formal system model
used in this paper, and recapitulate on the basic schedulability
analysis for MCS which we build upon. Approaches to degraded
service are considered in Section 3. In Section 4, we define the
bailout protocol for MCSs, and in Section 5 show how it can be
integrated with techniques that make use of spare capacity that is
either available both off-line, or becomes available at runtime, to
improve performance. A key aspect of this paper is the evaluation
of MCS protocols via scenario-based simulation; this is addressed
in Section 6. Analysis for the bailout protocol is given in Section 7.
An extension of the protocol to more than two criticality levels is
outlined in Section 8. Finally, Section 9 concludes with a summary
and a discussion of future work.

2 BACKGROUND

Background material on MCS research can be obtained from the
following sources [3]–[6], [8], [16]–[18]. An ongoing survey of
MCS research by [10] is available from the MCC (Mixed
Criticality Systems on Many-core Platforms) project website3. We
note that while mixed criticality behaviour has some similarities to
traditional mode changes, there are also significant differences [2],
[19]. These include the mode change being driven by a particular
temporal rather than functional behaviour, permitting a more
specific schedulability analysis.

2.1 System Model and Assumptions
In this paper, we are interested in the Fixed Priority Preemptive
Scheduling (FPPS) of a mixed criticality system comprising a static

3. http://www.cs.york.ac.uk/research/research-groups/rts/mcc/.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSE.2016.2592907

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



TRANSACTION 0N SOFTWARE ENGINEERING, VOL. X, NO. X, 201X 3

set of n sporadic tasks which execute on a single processor. We
assume without loss of generality that each task τi has a unique
priority, given by its index. Thus task τ1 has the highest priority
and task τn the lowest. We assume a discrete time model in which
all task parameters are given as integers. Each task, τi, is defined
by its period (or minimum arrival interval), relative deadline, worst-
case execution time, and level of criticality (defined by the system
engineer responsible for the entire system): (Ti, Di, Ci, Li). We
restrict our attention to constrained-deadline systems in which
Di ≤ Ti for all tasks. Further, we assume that the processor is the
only resource that is shared by the tasks, and that the overheads due
to the operation of the scheduler and context switch costs can be
bounded by a constant, and hence included within the worst-case
execution times attributed to each task.

In a mixed criticality system, further information is needed
in order to undertake schedulability analysis. In general a task is
defined by: (T , D, ~C , L), where ~C is a vector of values – one per
criticality level, with the constraint L1 > L2⇒ C(L1) ≥ C(L2)
for any two criticality levels L1 and L2. In this paper we are
mainly concerned with dual criticality systems, with criticality
levels LO and HI (where LO < HI). Thus each LO-criticality
task has a single worst-case execution time estimate C(LO), while
each HI-criticality task has two worst-case execution time estimates
C(LO) and C(HI) with C(HI) ≥ C(LO).

2.2 Current Scheduling Analysis and its Limitations

Although the standard model of mixed criticality system behaviour
requires an immediate change to the HI-criticality mode and the
consequential abandonment of all active LO-criticality jobs, the
analysis of this model has shown [16], [20], [21] that the mixed
criticality schedulability problem is strongly NP-hard even if there
are only two criticality levels. Hence only sufficient rather than
exact analysis is possible. One of the consequences of this
constraint is that a significant proportion of the available analyses
that have been produced for MCSs actually assume that any
LO-criticality job that has been released by the time of the mode
change will complete, rather than being aborted.

For example, the Adaptive Mixed Criticality (AMC Method 1
or AMC-rtb) approach presented at RTSS by [5] first computes
the worst-case response times for all tasks in the normal mode
(denoted by R(LO)). This is accomplished by solving, via fixed
point iteration, the following response-time equation for each task
τi:

Ri(LO) = Ci(LO) +
∑

∀j∈hp(i)

⌈
Ri(LO)

Tj

⌉
Cj(LO) (1)

where hp(i) is the set of all tasks with priority higher than that of
task τi.

During the criticality change the only concern is HI-criticality
tasks, for these tasks:

Ri(HI) = Ci(HI) +
∑

∀j∈hpH(i)

⌈
Ri(HI)

Tj

⌉
Cj(HI)

+
∑

∀k∈hpL(i)

⌈
Ri(LO)

Tk

⌉
Ck(LO) (2)

where hpH(i) is the set of HI-criticality tasks with priority higher
than that of task τi and hpL(i) is the set of LO-criticality tasks
with priority higher than that of task τi. So hp(i) is the union

of hpH(i) and hpL(i). Note Ri(HI) is only defined for HI-
criticality tasks.

This equation takes into account the fact that LO-criticality
tasks cannot execute for the entire busy period of a HI-criticality
task in the HI-criticality mode. A change to the HI-criticality mode
must occur at or before Ri(LO) which caps the interference from
LO-criticality tasks as Ri(HI) must be greater than Ri(LO).

The cap is however at the maximum possible level. The
maximum number of LO-criticality jobs are assumed to interfere
and each of these jobs is assumed to complete – each inducing the
maximum interference of Ck(LO). Note that if, for any
HI-criticality task, Ri(HI) ≤ Di during the transition to the
HI-criticality mode then the task will remain schedulable once the
HI-criticality mode is fully established and there is no interference
from LO-criticality tasks.

This AMC approach assumes that once the system goes into
the HI-criticality mode then it will stay in that mode. As discussed
in the introduction this is not an acceptable behaviour in practice.
A simple but necessary extension to AMC is therefore to allow a
switch back to the normal mode when the system experiences an
idle instant4. This is a well-known protocol for controlling mode
changes [22]. In this paper we will refer to this extended approach
as AMC+.

In the remainder of this paper, for AMC and AMC+, we
assume that any job of a LO-criticality task that is released before
HI-criticality mode is entered may complete its execution, since this
is allowed by the analysis; however, LO-criticality jobs released
during HI-criticality mode are abandoned by these schemes.

3 DEGRADED SERVICE FOR LO-CRITICALITY
TASKS

The key properties of MCS scheduling are (i) that if all tasks
execute within their C(LO) bounds then all deadlines for all task
will be satisfied, and (ii) that HI-criticality tasks will always meet
their deadlines.

Notwithstanding these key static properties of a system, an
actual implementation must exhibit clear and effective behaviours
for all of its potential run-time characteristics. In particular, for a
dual criticality system, if at some point during its execution only
the HI-criticality jobs can be guaranteed, then what level of service
can be expected for the LO-criticality jobs? As indicated in the
introduction it is not acceptable to permanently abandon these tasks
just because they cannot be fully guaranteed.

The dual requirement (both to meet all deadlines and to have
sensible behaviour when deadlines are missed) is not a
contradiction, rather it is a necessary property of any robust system
model. MCSs have, in this regard, a number of similarities to fault
tolerance systems: faults should be avoided, but also faults should
be tolerated and result in minimum disturbance to the system [19].

Various forms of degraded service have been proposed for
LO-criticality tasks in the literature: Run all tasks, but extend
their periods and/or deadlines – sometimes called the elastic task
model [23]. Run all tasks but reduce the executions times of LO-
criticality tasks (i.e. C(HI) ≤ C(LO) for these tasks) [24] –
perhaps by switching to simpler version of the software. Drop jobs
from a specific subset of tasks [25], [26] or skip si in every mi

jobs of each task [27].

4. An idle instant is an instant in time at which there are no jobs with
execution time outstanding that were released prior to that time.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSE.2016.2592907

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



TRANSACTION 0N SOFTWARE ENGINEERING, VOL. X, NO. X, 201X 4

In comparison with the bailout protocol presented in this paper,
the above methods prescribe specific changes to the behaviour of
LO-criticality tasks either increases in their periods, decreases in
their execution times (and hence the need for different versions of
the software), or dropping specific jobs e.g. 1 job in every 3. The
bailout protocol on the other hand does not change the primary
behaviour of LO-criticality tasks, but rather focuses on re-instating
them fully as quickly as possible. This has less impact on overall
schedulability, since similar to AMC, there are no guarantees
for LO-criticality tasks in the HI-criticality / bailout mode. In
systems where transitions to HI-criticality mode are rare, and some
missed jobs of LO-criticality tasks can be tolerated, then the bailout
protocol may provide an effective solution. In systems where LO-
criticality tasks must continue to provide some level of guaranteed
service even when the system is in its degraded mode, then other
methods need to be used.

We note that the approach taken by the bailout protocol is
orthogonal to those of job dropping [26] and weakly-hard
guarantees for LO-criticality tasks proposed in [27], hence it is
possible that the different techniques could be combined; such
work is however beyond the scope of this paper.

An orthogonal approach to improving the overall service for
LO-criticality tasks was adopted by Santy et al. [7]. They
effectively scale the C(LO) values using sensitivity analysis until
the system is just schedulable. Using these values at runtime
makes the system more robust, since LO-criticality tasks can
execute for longer, and HI-criticality tasks are less likely to exceed
their larger budgeted C(LO) values, making the system less likely
to enter its HI-criticality mode. This approach was subsequently
refined by Burns and Baruah [24] using Robust Priority
Assignment techniques [28] that permit priorities to change during
the sensitivity analysis process.

A further important aspect of providing service for
LO-criticality tasks is the ability to restore the system to its normal
mode following an interval of HI-criticality behaviour. As
mentioned previously, this can be achieved by waiting for an idle
instant. Santy et al. [7] explored this approach, and also developed
a protocol for multiprocessor scheduling where there may be no
idle instant across all processors [29]. Further work by Ren et
al. [30] focused on partitioned multiprocessor scheduling. Here,
each HI-criticality task is associated with a group of LO-criticality
tasks. Thus the overrun of the HI-criticality task can only impinge
on the execution of LO-criticality tasks in the same task group.
Task groups are scheduled according to EDF, with servers used
within each group to ensure mixed criticality guarantees.

4 THE BAILOUT PROTOCOL

We now describe the Bailout Protocol assuming two levels of
criticality in the system software.

4.1 Protocol, modes, and mechanisms
At run-time, dual criticality systems are typically defined to be in
one of two modes: normal mode and HI-criticality mode; however,
these terms can be confusing. With the bailout protocol, we defined
three modes: normal mode, bailout mode and recovery mode.
Normal mode is as defined above. Bailout and recovery modes
correspond to the traditional HI-criticality mode.

The bailout protocol comprises the following modes and
mechanisms, which operate only in the mode for which they are
described.

In all modes, LO-criticality tasks are prevented from executing
for more than their C(LO) values. LO-criticality tasks dispatched
in normal mode, continue to execute in both bailout and recovery
modes. (Note, such jobs may miss their deadlines in these modes,
but continue to execute provided they do not exceed C(LO)).
Normal mode:

(i) While all jobs of HI-criticality tasks execute for no more
than their C(LO) values, then the system remains in normal mode.

(ii) If any HI-criticality job executes for its C(LO) value
without signalling completion it must take out a loan of C(HI)−
C(LO); this loan is always granted, and the system moves into
the bailout mode. The bailout fund (BF ) is initialised to BF =
C(HI)− C(LO).
Bailout mode:

(iii) If any HI-criticality job executes for its C(LO) value
without signalling completion then it must also take out a loan
of C(HI) − C(LO), adding to the bailout fund: BF = BF +
C(HI)− C(LO).

(iv) If any HI-criticality job completes with an execution time
of e, with e ≤ C(LO) then it donates its underspend (if any),
reducing the bailout fund: BF = BF − (C(LO)− e).

(v) If any LO-criticality job completes with an execution time
of e, with e ≤ C(LO) then it donates its underspend (if any) to
the bailout fund: BF = BF − (C(LO) − e). Note, such a job
would need to have been released in an earlier normal mode.

(vi) If any HI-criticality job with a loan completes with an
execution time of e, with C(LO) < e ≤ C(HI) then it donates
its loan underspend, reducing the bailout fund: BF = BF −
(C(HI)− e).

(vii) LO-criticality jobs released in bailout mode are
abandoned (not started). Further, when the scheduler would
otherwise dispatched such a job, the job’s budget of C(LO) is
donated to the bailout fund: BF = BF − C(LO).

(viii) If the bailout fund becomes zero (note BF is constrained
to never become negative), then the lowest priority HI-criticality
job with outstanding execution is recorded (let this job be Jk) and
the recovery mode is entered 5.

(ix) If during bailout mode, an idle instant occurs, then an
immediate transition is made to normal mode, and BF is reset to
zero 6.
Recovery mode:

(x) LO-criticality jobs released in recovery mode are abandoned
(not started).

(xi) If any HI-criticality job executes for its C(LO) value
without signalling completion, then the system re-enters bailout
mode – as described in (ii) above.

(xii) When the job Jk noted at the point when recovery mode
was last entered completes, then the system transitions to normal
mode.

The bailout protocol is designed to have a simple
implementation, with each operation (i) to (xii) amounting to only
a few instructions, requiring only O(1) time, and incorporated into
existing RTOS code for context switching or execution time
budget monitoring. All actions take place at the release or

5. Job Jk defines the extent of the recovery mode, which is necessary to
ensure that no HI-criticality job can be subject to more interference than
accounted for by the analysis of AMC, for further details see Theorem 7.4 in
Section 7 and the discussion that follows it.

6. It can easily happen that BF > 0 when the processor becomes idle, for
example if a HI-criticality job exceeds its C(LO) and when it completes there
are no other jobs with remaining execution.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSE.2016.2592907

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



TRANSACTION 0N SOFTWARE ENGINEERING, VOL. X, NO. X, 201X 5

completion of a job, which are well defined RTOS operations in
FPPS, or when a job executes for C(LO) without signalling
completion. In the case of a LO-criticality task, the action required
in the latter case corresponds to execution time budget
enforcement, as needed in any high integrity implementation
whether AMC or the bailout protocol were being employed or not.
Such an overrun may be detected via a timer interrupt and the job
aborted. In the case of a HI-criticality job executing for C(LO)
without signalling completion, then the action required is to
change to HI-criticality mode, preventing further releases of
LO-criticality jobs. Since the HI-criticality job continues to
execute, such a mode change may be soundly deferred until the
next scheduling point (i.e. job release or completion), and so no
timer interrupt is required; rather only execution time monitoring
is needed. (This is the case with both AMC and the bailout
protocol). We note that the bailout protocol does not change task
priorities, nor introduce any additional context switches which are
not also present under basic FPPS.

4.2 Example
We now give an example illustrating the behaviour of the bailout
protocol. This example includes five tasks: τ1, τ2, and τ5 are LO-
criticality tasks, while τ3 and τ4 are HI-criticality. Task τ1 has the
highest priority and task τ4 the lowest. The parameters of the tasks
are given in table 1 below. The tasks are schedulable according
to the AMC-rtb schedulability test with the R(LO) and R(HI)
upper bounds on the worst-case response times given in the table.

TABLE 1
Example task parameters

τi L Ci(LO) Ci(HI) Ti Di R(LO) R(HI)
τ1 LO 8 - 24 12 8 -
τ2 LO 4 - 26 12 12 -
τ3 HI 4 10 48 24 16 22
τ4 HI 8 8 32 32 24 30
τ5 LO 12 - 92 92 92 -

Figure 1 illustrates the behaviour of the bailout protocol. At
time t = 16, task τ3 has executed for C(LO) without signalling
completion, hence bailout mode is entered. As C(HI) = 10, BF
is initialised to 6 (since C(LO) = 4). Task τ3 completes its HI-
criticality execution at time t = 22; however, the system cannot
simply resume normal mode behaviour, since then the releases of
task τ1 and τ2 at t = 24 and t = 26 respectively would result in
task τ4 (HI-criticality) missing its deadline. Instead, since BF > 0,
the system remains in bailout mode. At time t = 24 the second job
of task τ1 is released; however, as the system is in bailout mode,
and the task is of LO-criticality, then the job is abandoned at the
time it would have started to execute (t = 24 in this case) repaying
the bailout fund, which now goes to zero. However, the system still
cannot resume normal mode operation, as doing so would result in
task τ4 (HI-criticality) missing its deadline due to interference from
the second job of task τ2. Instead the system enters recovery mode
and records the lowest priority HI-criticality job with outstanding
execution. This is the first job of task τ4. When this job completes
at t = 30, the system re-enters normal mode. It is interesting to
note that in this example, if task τ4 were a LO-criticality task, then
recovery mode would end immediately (i.e. at the same time as
bailout mode at t = 24), the second job of task τ2 would not be

abandoned, and task τ4 would miss its deadline. This shows that
under the bailout protocol, (in common with AMC) LO-criticality
jobs with release times and deadlines that span some HI-criticality
behaviour cannot be guaranteed to meet their deadlines, even if the
system returns to normal behaviour before they complete.

We note that without the bailout protocol, this system would
not revert to normal mode until an idle instant occurred, hence
the third jobs of both tasks τ1 and τ2 would not be executed, and
the system would not return to normal mode until time t = 54.
This is illustrated in Figure 2 which shows the schedule for the
same behaviour under AMC. This example serves to illustrate the
advantages of the bailout protocol, fewer jobs LO-criticality jobs
are dropped, and the system returns to normal mode 14 time units
after the HI-criticality behaviour is detected, rather than 38 time
units after.

4.3 Discussion

A more general comparison can also be made between the bailout
protocol and AMC+. Recall that AMC+ relies on the simple idle-
instant protocol [22] to revert to normal mode. Since the bailout
protocol also returns to normal mode on an idle instant (operation
(ix) in bailout mode and potentially also operation (xii) in recovery
mode), but can also make earlier transitions back to normal mode,
it dominates AMC+ in terms of the time taken between entering
HI-criticality / bailout mode and returning to normal mode. Stated
otherwise, the bailout protocol takes no longer than AMC+ to
return to normal mode, assuming the same initial pattern of task
executions.

In the extreme case where all jobs take their maximum
execution time (either C(LO) or C(HI)) then the interval
needed to recover back to normal mode can still be no greater with
the bailout protocol; it may however be shorter due to the bailout
fund being reduced by the budgets of abandoned LO-criticality
jobs (operation (vii) in the protocol). In the worst-case, when there
are also no abandoned LO-criticality jobs to reduce the bailout
fund, then the interval needed to recover back to normal mode is
the same as that for AMC.

It is also interesting to consider, for a schedulable system,
the longest possible time that may elapse between entering HI-
criticality / bailout mode and the transition back to normal mode.
This is the same for both the bailout protocol and AMC+. For
a schedulable system, in the worst-case, both must wait for an
idle instant. We now derive an upper bound A on the length
of time that can elapse before such an idle instant occurs. We
pessimistically assume the worst-case possible behaviour of both
HI- and LO-criticality tasks. Each LO-criticality task may give
rise to a single job which executes during the HI-criticality mode
(such jobs must have been released just before the transition to
the HI-criticality mode). In the case of the HI-criticality tasks, we
assume (pessimistically) that at the transition each task has an
outstanding job that has been delayed from executing for as long
as possible and now requires its C(HI) execution time before
completing at its deadline. Subsequent jobs are then released as
soon as possible also requiring C(HI). This scenario is captured
by the following recurrence relation:

A =
∑
∀j∈aH

⌈
L+ (Dj − Cj(HI))

Tj

⌉
Cj(HI)+

∑
∀k∈aL

Ck(LO)

(3)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSE.2016.2592907

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



TRANSACTION 0N SOFTWARE ENGINEERING, VOL. X, NO. X, 201X 6

t = 16 bailout mode 
entered BF = 6 t = 22 completes HI-

criticality execution

Deadline met by 
virtue of recovery 

mode

τ1 (LO)

t = 24 job released and abandoned 
as system is in bailout mode

Gives 8 to BF which is now zero

t = 26 job released and 
abandoned as system is 

in recovery mode

τ2 (LO)

τ3 (HI)

τ4 (HI)

4 8 12 16 20 24 40 440 28 32 36

Normal mode Bailout mode
Recovery mode

Normal mode

τ5 (LO)

48 60 6452 56 68 72 84 8876 80 92 96

 

Fig. 1. Example showing the operation of the bailout protocol, including normal, bailout and recovery modes.

 

Fig. 2. Example showing the operation of AMC, including normal and HI-criticality modes.

where aL is the set of all LO-criticality tasks, and aH is the set of
all HI-criticality tasks. Iteration starts with an initial value of A =∑
∀j∈aH Cj(HI) +

∑
∀k∈aL Ck(LO) and ends on convergence,

which is guaranteed since the utilization of HI-criticality tasks
computed using their C(HI) values cannot exceed 1.

Note, increasing execution time budgets, as discussed in the
next section, may increase the maximum time required to return to
normal mode due to the increase in LO-criticality execution which
may take place after the transition to the HI-criticality mode. We
note that while the system is guaranteed to return to LO-criticality
mode after an interval of at most A. Such a guarantee is not
particularly useful, since further HI-criticality behaviour may force
an almost immediate return to the HI-criticality mode.

5 IMPROVEMENTS

In this section we describe two methods, one offline and the other
online, which are complementary to the bailout protocol. These
methods help to reduce the number of times that a given system
will go into bailout mode, and the amount of time that it spends in
that mode, hence reducing the number of LO-criticality jobs that
miss their deadlines or are abandoned.

5.1 Slack Time: Increasing Execution Time Budgets

The offline method was introduced by Santy et al. [7] and further
refined by Burns and Baruah [24]. It uses sensitivity analysis [31],
[32] to explore by how much execution budgets, normally set

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSE.2016.2592907

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



TRANSACTION 0N SOFTWARE ENGINEERING, VOL. X, NO. X, 201X 7

to C(LO) values, can be changed without making the system
unschedulable, effectively making use of the available slack in
the system [33]. Intuitively, this method is compatible with the
bailout protocol, since it effectively increases the execution time
budgets, normally based on C(LO) values, while ensuring that the
system remains provably schedulable. (Note, it is important here
to distinguish between the worst-case execution time estimates e.g.
C(LO) obtained for the software, and the potentially larger values
with a greater engineering margin, that can be used at runtime as
execution time budgets).

The specific method we use is as follows: First, we increase
the execution time budgets of all HI-criticality tasks as much
as possible while ensuring that the system remains schedulable
according to AMC-rtb analysis (i.e. (1) and (3)). We do this by
forming a binary search for the largest value of α such that the
system remains schedulable when all HI-criticality task’s C(LO)
values are replaced by C(BU) = min(C(HI), αC(LO)). Note
we use C(BU) rather than C(LO) to emphasize that these are no
longer the LO-criticality WCET estimates associated with those
HI-criticality tasks, but rather execution time budgets that will be
used to police normal mode behaviour at runtime. The initial lower
value of α used for the binary search is 1, since the system is
assumed to be schedulable under AMC-rtb to begin with, and the
initial upper value is given by the largest C(HI)/C(LO) for any
HI-criticality task. At each step of the binary search, Audsley’s
Optimal Priority Assignment algorithm [34] is used along with the
single task schedulability test (i.e. (1) and (3)) to determine if the
system is schedulable for that value of α.

Second, we use a similar process to further increase, if possible,
the C(BU) value for each individual task in turn, since after the
first step, some but not all of the C(BU) values may still be
increased without making the system unschedulable. (We do this
for all HI-criticality tasks in order of increasing deadlines).

At runtime, we use FPPS along with the bailout protocol,
replacing all occurrences of C(LO) for HI-criticality tasks by the
larger C(BU) values. We refer to the basic bailout protocol as
BP, and the more sophisticated approach described here as BPS
(Bailout Protocol with Sensitivity analysis). For systems that are
schedulable under classical FPPS (i.e. assuming that all jobs may
take an execution time that corresponds to their own criticality level
i.e. C(HI) for HI-criticality tasks, and C(LO) for LO-criticality
tasks), then BPS has the useful property, unlike AMC+ and BP,
that no LO-criticality jobs miss their deadlines. This is the case,
since for such systems the first step described above will result
in C(BU) = C(HI) for all HI-criticality tasks. The AMC+
approach may also take advantage of increased C(BU) values. We
refer to such an approach as AMC+S.

We note that in practice, some of the statically available slack
in the system could also be used to provide LO-criticality tasks
with additional headroom for longer than expected execution, i.e.
execution budgets larger than C(LO).

5.2 Gain Time

Gain Time refers to the difference between the execution time
actually used by a job and the execution time budget that it was
allocated. We assume that jobs have an initial execution time budget
given by c = C(BU), where C(BU) is the execution budget for
the task, either C(LO) or derived as described in section 5.1 above.
At runtime, it is likely that many jobs will complete in less than
their execution time budgets. A number of mechanisms exist that

can make this gain time available for use by other jobs [33], [35],
[36], while ensuring that schedulability is unaffected.

The method we use comes from the Extended Priority Exchange
algorithm [35] and operates in conjunction with the bailout protocol,
only in normal mode. In normal mode, whenever a job completes
in an execution time e, which is less than its budget (i.e. e < c),
then the gain time c− e is added to the execution time budget of
the next lower priority active job (i.e. the next job in the run queue).
This has no effect on schedulability, since the higher priority job
(running first) could have legitimately executed for this gain time
without any deadlines being missed. Passing gain time from one job
to another in this way makes it less likely that jobs requiring more
execution time than expected will actually exceed their execution
time budgets, in turn making the system more robust to overruns
(i.e. jobs exceeding C(LO)) and less likely to enter bailout mode.
We denote this scheme as BPG and BPGS if static slack is used as
well as gain time. We note that the gain time mechanism can be
employed with AMC+ and AMC+S, in which case (unlike with the
bailout protocol) it can operate in both normal and HI-criticality
modes, but is only beneficial in the normal mode.

The gain time mechanism has a low overhead with O(1)
budget accounting at the completion of each job. This mechanism
could potentially be improved by representing gain time in terms
of the capacity of servers running at different priorities, with tasks,
(including the idle task) first using spare capacity from the highest
priority server with available capacity. Such an approach would
better preserve any gain time generated. For example if the
processor became idle, then spare capacity would not simply be
discarded, but instead it would be gradually idled away, hence
even after an idle period, tasks could still potentially benefit from
previously generated gain time. Although theoretically superior,
such an approach would require more complex runtime support
than the standard mechanism which can be simply implemented by
passing the remaining execution time budget at completion to the
task at the head of the ready queue (the next task to run). In this
paper, we therefore explore only the standard mechanism. We also
note that in bailout mode, the gain time mechanism is not used,
since the bailout protocol effectively makes use of gain time to
hasten recovery.

6 SCENARIO-BASED EVALUATION

In this section, we present a scenario-based evaluation of the
performance of the bailout protocol using an experimental
framework / simulation. This is a commonly-used approach to
evaluating real-time systems [37]–[39] when it is not practical to
do effective ‘what-if’ analysis by other means. Scenario-based
evaluation is an essential complement to schedulability analysis as
the latter only tells us under what conditions timing requirements
are met, whereas we are also interested in the amount of time
spent outside of normal mode, and consequently how many
LO-criticality tasks either do not execute or miss their deadlines.
Our evaluation aims to provide an understanding of how the
different scheduling schemes (AMC+, AMC+S, AMC+SG, BP,
BPS, BPSG) meet the needs of mixed-criticality systems. The first
step in this process is the selection of evaluation metrics.

6.1 Evaluation Metrics

We use the following key evaluation metrics. This combination of
metrics covers the percentage of deadlines missed, broken down

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSE.2016.2592907

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



TRANSACTION 0N SOFTWARE ENGINEERING, VOL. X, NO. X, 201X 8

into HI- and LO-criticality tasks, as well as providing insight into
the operation of the bailout protocol.

1) Number of HI-criticality Deadline Misses (HDM ): These
deadline misses should not be experienced with the bailout or
AMC schemes, but may occur with standard FPPS.

2) Jobs Not Executed (JNE): The number of LO-criticality jobs
that are abandoned.

3) LO-criticality Deadline Misses (LDM ): The number of LO-
criticality jobs that are executed, but miss their deadlines.

4) Time in HI-criticality mode (TiH) - How much time is spent
in the HI-criticality mode (equates to bailout and recovery
modes for the schemes using the bailout protocol).

5) Number of times in HI-criticality mode (NiH) - How many
times the system enters the HI-criticality mode (equates to
bailout and recovery modes for the schemes using the bailout
protocol).

The most important metric is HDM , since any valid protocol
must ensure first that there are no HI-criticality deadline misses.
Given that, then the next metric to optimise is the proportion of LO-
criticality jobs that fail to meet their deadlines, either by missing
their deadlines (LDM ) or not being executed (JNE). This is
the main metric that we explore via scenario based assessment.
Although the simulator computes LDM , this number is far smaller
than JNE, we therefore do not separately show LDM in the
graphs presented in subsequent sections.

6.2 Experimental Framework

The experimental framework consists of four principal
components: scheduling schemes, task set generation,
configurations, and simulation.

6.2.1 Scheduling Schemes

The scheduling schemes were implemented using a layered
approach, with FPPS used to schedule the tasks, and additional
mechanisms used to control release, dispatch and execution of jobs
according to the different approaches considered:

1) Default (FPPS) – Basic FPPS where execution time overruns
are allowed.

2) Bailout Protocol (BP) – The basic bailout protocol (section
4).

3) Bailout Protocol - Slack (BPS) – The bailout protocol
enhanced by offline increases in execution time budgets
making use of static slack (section 5.1).

4) Bailout Protocol - Slack and Gain Time (BPSG) – The bailout
protocol enhanced by both increasing execution budgets
offline, and via runtime reclamation of gain time, as
described in section 5.2.

5) Adaptive Mixed Criticality - (AMC+) – The standard AMC
scheme [5] (section 2.2), enhanced so the system resumes
LO-criticality execution after an idle instant.

6) Adaptive Mixed Criticality - Slack (AMC+S) – The AMC+
scheme, enhanced by offline increases in execution time
budgets making use of static slack (section 5.1).

7) Adaptive Mixed Criticality - Slack and Gain Time (AMC+SG)
– The AMC+ scheme enhanced by both increasing execution
budgets offline, and via runtime reclamation of gain time
(section 5.2).

6.2.2 Task Set Generation
Task sets of cardinality 20 were generated according to the
following parameters.

1) Periods and Deadlines - The period of each of the tasks was
chosen at random in one of two ways. Harmonic periods
were chosen at random from a set of harmonics of two base
frequencies (e.g. 25, 50, 100, 250, 500, 1000 and 20, 40,
80, 200, 400, 800ms) as typically found in automotive and
avionics systems [40]. Non-harmonic periods were chosen at
random according to a log-uniform distribution corresponding
to a range 10ms to 1 second (rounded to 0.1ms). In both cases,
deadlines were set equal to periods.

2) Execution Times - LO-criticality utilisation U(LO) values for
each task where determined according to the Uunifast
algorithm [41], thus ensuring an unbiased distribution of
values that sum to the target utilisation for the system
(Default 80%). LO-criticality execution times were then set to
C(LO) = U(LO).T , and HI-criticality execution times to
C(HI) = CF.C(LO) where CF is the criticality factor
(see below). Finally, best case execution times (BCET) were
chosen at random between 80% and 100% of C(LO). (This
small variation is representative of code from Safety Critical
Systems).

3) Criticality Factor (CF ) - Determines the ratio of HI-criticality
to LO-criticality execution times C(HI) = CF.C(LO). The
default value used was CF = 2.0 with CF varied from 1.25
to 2.5 in specific experiments aimed at illustrating the effect
that the ratio of HI-criticality to LO-criticality execution time
has on the performance of the various scheduling schemes.

4) Criticality Probability (CP ) - Tasks were randomly chosen
to be either HI- or LO-criticality, with a probability of CP of
being HI-criticality. The default value used was CP = 0.5
with CP varied from 0.3 to 0.7 in specific experiments aimed
at illustrating the effect that the proportion of HI-criticality
tasks has on performance.

5) Failure Probability (FP ) - In the simulation, jobs of HI-
criticality tasks had a probability of FP of exceeding their
C(LO) execution time. The default value used was FP =
10−4 with FP varied from 10−5 to 1 in specific experiments
experiments aimed at illustrating the effect that higher failure
probabilities have on performance.

We note that when CF = 2.0 and CP = 0.5, the total HI-
criticality utilisation was approximately equal to the total LO-
criticality utilisation.

6.2.3 Configurations
An important issue for this research is understanding how the
different scheduling schemes perform in different circumstances,
in terms of both typical and worst-case behaviours. We therefore
first examined in detail a baseline configuration using the default
parameter settings described above, and then conducted a series of
experiments using a variety of other configurations where each
parameter was varied over a representative range with the others
held constant. The baseline configuration used had 80%
LO-criticality utilisation, with CF = 2.0 and CP = 0.5;
meaning that many of the task sets had an overall utilisation
exceeding 100% when accounting for HI-criticality execution
times. This illustrates one of the benefits of some of the
mixed-criticality scheduling approaches in that task sets with
overall utilisation exceeding 100% are schedulable as
LO-criticality tasks do not have to be executed all of the time [5].

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSE.2016.2592907

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



TRANSACTION 0N SOFTWARE ENGINEERING, VOL. X, NO. X, 201X 9

In all of the configurations examined in our experiments, we
required that the task sets chosen had at least one task that was
unschedulable according to exact analysis of FPPS [42], but were
schedulable according to AMC-rtb [5]. Thus the configurations
represent cases where both LO- and HI- criticality jobs may miss
their deadlines under classical FPPS, but not when the AMC
or bailout schemes are employed. Further, we required that the
number of HI-criticality tasks was actually in the range CP ±10%
multiplied by the total number of tasks (recall that each individual
task had a probability of CP of being HI-criticality).

6.2.4 Simulation
Our experiments covered 100 task sets for each of the
configurations considered. For each scheduling scheme, we
simulated the runtime behaviour of each task set, starting with a
different random seed. (The same random seeds were used for
each of the scheduling schemes to ensure a precise like-for-like
comparison). The duration of each simulation run was 1011 time
units, each time unit was 0.1ms, thus this was sufficient for 105

jobs of the longest period task.
In the simulation, job releases were strictly periodic. On each

release, an actual execution time was chosen for the job as follows.
If the job was from a LO-criticality task, then this value was
chosen at random from a uniform distribution in the range
[BCET,C(LO)]. If the job was from a HI-criticality task, then a
random boolean variable with a probability of FP (default 10−4)
of returning true was used to determine if the job would exhibit
HI-criticality behaviour. If true was returned, then its execution
time was chosen at random from a uniform distribution in the
range [C(LO), C(HI)], otherwise the range was
[BCET,C(LO)]. The probability FP used to determine if
HI-criticality behaviour would be exhibited was deliberately set to
a relatively high value by default as we wanted to stress the system
behaviour (later experiments explored other values). In practice
such a high value is perhaps unlikely, but possible, for example if
the High WaterMark testing used to determine C(LO) had not
revealed the worst-case path7.

Note for the schemes making use of statically available slack,
the C(BU) parameters were computed via offline sensitivity
analysis, as described in Section 5.1, before running the simulator.
These values were then used by the simulator to determine when
the system should transition to HI-criticality or bailout mode, with
the C(LO) values used in the selection of job execution times, as
explained above. We note that the simulation did not include
scheduling overheads, while these would have some impact in
practice, all of the schemes compared have low overheads similar
to those incurred by execution time budget accounting.

6.3 Baseline Evaluation Results

Our baseline evaluation results are shown using box and whisker
plots as this helps illustrate important statistical properties. The
box itself represents the range of values between quartiles (25 and
75 percentiles). The horizontal line in the middle of the box is the
median. There are then vertical lines from the box to two horizontal
lines, above and below it. These horizontal lines show the 5 and

7. We note that functional testing, even that requiring MCDC coverage, is
not in general sufficient to determine WCETs when the hardware platform has
components that cause execution times to be dependent on the execution history
e.g. caches. Hence the need for an engineering margin to define C(HI), and a
non-zero probability that C(LO) is exceeded during operation.

95 percentiles respectively. Finally there are small circles. These
are the outlying values that are outside of the 5 to 95 percentile
range. The box and whisker plot gives a strong indication of typical
performance, the variance observed, and information about the
outliers. In each figure, each scheduling scheme is coloured coded
according to the legend in the top right, with the information
appearing in the order AMC+, AMC+S, AMC+SG, BP, BPS, and
BPSG.

Figure 3 shows the percentage of LO-criticality jobs not
executed (JNE(%)) for each of the schemes, for task sets with
harmonic periods. We observe that for our baseline configuration,
the bailout protocol (BP) is effective in reducing the percentage of
LO-criticality jobs that are not executed compared to the AMC+
scheme. Here, increasing execution time budgets (C(BU)) by
making use of static slack, leads to a roughly similar reduction in
JNE(%) as BP. Since the bailout protocol and making use of
static slack and gain time are complementary techniques, the
BPSG scheme provides significantly better performance than
AMC+SG or BP.

Figure 6 shows the results for non-harmonic task sets. Here
the bailout policy is less effective at reducing the number of LO-
criticality jobs not executed. This is because on average the busy
periods tend to be shorter with non-harmonic task sets, with major
peaks in the overall load not occurring as frequently. This means
that an idle instant typically occurs shortly after entry into HI-
criticality mode allowing both AMC+ and the bailout policy to
recover back to LO-criticality (normal) mode in a similar time,
with a similar number of LO-criticality jobs not executed.

Figures 4, 5, 7 and 8 provide further assessment of the
performance of the different schemes. These results show that the
percentage of time (TiH(%)) in HI-criticality mode (or bailout
and recovery modes) and the number of times that the system
enters HI-criticality mode as a percentage of the number of jobs of
HI-criticality tasks (NiH(%)) are largest for the AMC+ scheme
and smallest for BPSG. The bailout policy, which operates once
HI-criticality mode is entered, does not act to reduce the number
of times that the system enters HI-criticality mode, hence the
NiH(%) values are very similar for AMC+ and BP, for AMC+S
and BPS, and for BPSG and AMC+SG. As expected, both
statically increasing LO-criticality budgets using static slack and
runtime reclamation of gain time are highly effective in reducing
the number of times that the system enters HI-criticality mode
(NiH(%)) and hence also the proportion of time spent in that
mode (TiH(%)).

Figure 5 shows that the bailout protocol, the use of static
slack, and the runtime reclamation of gain time are all effective in
reducing the total time spent in HI-criticality mode in harmonic
task sets. We note that in contrast to the harmonic case, for non-
harmonic task sets (see Figure 8) the bailout policy is unable to
achieve an appreciable reduction in the time in HI-criticality mode
compared to the equivalent AMC policy. This is due to the fact that
the busy periods are on average much shorter with non-harmonic
task sets and so once HI-criticality mode is entered, an idle instant
is quickly reached allowing the system to recover to LO-criticality
(normal) mode. This is the reason why the time in HI-criticality
mode is much shorter for non-harmonic task sets.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSE.2016.2592907

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



TRANSACTION 0N SOFTWARE ENGINEERING, VOL. X, NO. X, 201X 10

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

0.
00

0.
05

0.
10

0.
15

JN
E

 (
%

)
AMC+
AMC+S
AMC+SG
BP
BPS
BPSG

Fig. 3. Results for JNE(%) - 80% LO-criticality Utilisation: Harmonic
Periods

●

●

●

●

●

●

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

N
iH

 (
%

)

AMC+
AMC+S
AMC+SG
BP
BPS
BPSG

Fig. 4. Results for NiH(%) - 80% LO-criticality Utilisation: Harmonic
Periods

●●

●
●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

T
iH

 (
%

)

AMC+
AMC+S
AMC+SG
BP
BPS
BPSG

Fig. 5. Results for T iH(%) - 80% LO-criticality Utilisation: Harmonic
Periods

●

●●

●
●

●

●●●
●

0.
00

0.
05

0.
10

0.
15

JN
E

 (
%

)

AMC+
AMC+S
AMC+SG
BP
BPS
BPSG

Fig. 6. Results for JNE(%) - 80% LO-criticality Utilisation: Non-Harmonic
Periods

●

●

●

●

●

●

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

N
iH

 (
%

)

AMC+
AMC+S
AMC+SG
BP
BPS
BPSG

Fig. 7. Results forNiH(%) - 80% LO-criticality Utilisation: Non-Harmonic
Periods

●
●
●

●●
●

●●
●
●
●
●

●
●
●

●●
●

●●
●●
●

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

T
iH

 (
%

)

AMC+
AMC+S
AMC+SG
BP
BPS
BPSG

Fig. 8. Results for T iH(%) - 80% LO-criticality Utilisation: Non-Harmonic
Periods

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSE.2016.2592907

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



TRANSACTION 0N SOFTWARE ENGINEERING, VOL. X, NO. X, 201X 11

6.4 Additional Evaluation Results: Varying Parameters
In this section, we provide additional evaluation results showing
how the performance of the different scheduling schemes changes
when specific parameters are varied. The parameters varied were
as follows:
• LO-criticality utilisation (Default 0.8).
• Criticality Factor CF (Ratio of HI-criticality to LO-criticality

execution time. Default CF = 2.0).
• Criticality Probability CP (Probability that a task is of HI-

criticality. Default CP = 0.5).
• Failure Probability FP (Probability that a job of a

HI-criticality task exceeds C(LO). Default FP = 10−4).
In each of the experiments, one parameter was varied while the

others were held constant at their default values. The results of
these experiments show the average values of the three metrics of
interest: JNE(%), NiH(%), and TiH(%). Recall that
JNE(%) is the percentage of LO-criticality jobs that are not
executed, NiH(%) is the number of times HI-criticality mode is
entered as a percentage of the maximum possible, i.e the total
number of jobs of HI-criticality tasks. Finally, TiH(%) is the
percentage of the simulation interval spent in HI-criticality mode.
The experiments were repeated for both harmonic and
non-harmonic task sets.

6.4.1 Varying LO-criticality utilisation
Figures 9 and 12 show how JNE(%) changes as the overall
LO-criticality utilisation is varied from 0.65 to 0.95. We observe
that static slack stealing for increased execution time budgets,
gain time reclamation and the bailout policy are all effective in
reducing JNE(%). At high utilisation levels, the basic AMC+
and BM policies result in substantially higher values of JNE(%)
with harmonic task sets than with non-harmonic task sets. This
is because with harmonic task sets conditions of peak load i.e.
long processor busy periods reoccur much more frequently. Since
harmonic task sets are easier to schedule8, using slack to increase
execution time budgets retains substantial effectiveness at high
levels of utilisation (e.g. 0.95). As long processor busy periods are
more frequent with harmonic task sets and become longer with
increasing utilisation, in this case the bailout policy becomes more
effective compared to AMC+ as utilisation levels increase.

Figures 10 and 13 show how NiH(%) changes as the overall
LO-criticality utilisation is varied from 0.65 to 0.95. We note that in
these experiments, both static slack stealing for increased execution
time budgets and gain time reclamation are effective in reducing
the number of times HI-criticality mode is entered. As expected;
however, the bailout policy has no noticeable effect compared to
AMC+. This is because the bailout policy only comes into effect
once HI-criticality mode has been entered.

Figures 11 and 14 show how TiH(%) changes as the overall
LO-criticality utilisation is varied from 0.65 to 0.95. Here there
are clear differences in performance between harmonic and non-
harmonic task sets. With non-harmonic task sets, there are very
few long busy periods thus when HI-criticality mode is entered
it is soon exited as an idle instant is reached. This means that
the percentage of the total time spent in the HI-criticality mode
is much less than with harmonic tasks sets, and also explain why
the bailout policy is unable to significantly reduce the time in HI-
criticality mode. This is also the case with gain time reclamation,

8. The utilisation bound is 1 for pure harmonic task sets and 0.69 for non-
harmonic task sets.

since the busy periods are too short for substantial gain time to
accumulate and prevent the transition to HI-criticality mode. Static
slack stealing for increased execution time budgets is still effective
in this case, since it reduces the number of times HI-criticality
mode is entered which impacts the total time in that mode.

6.4.2 Varying the Criticality Factor (CF )
Figures 15 and 18 show how JNE(%) changes as the Criticality
Factor (CF ) is varied from 1.25 to 2.5.

We observe that with harmonic task sets, JNE(%) decreases
with increasing CF for the BM and AMC+ schemes. This is
because with small values of CF , schedulable task sets can be
generated that include low priority but HI-criticality tasks with
long periods and long execution times. The presence of such tasks
increases the time in HI-criticality mode (see Figure 17) and thus
also JNE(%). This effect is not apparent with non-harmonic task
sets since they are much harder to schedule and so do not readily
permit such tasks.

In both the harmonic and non-harmonic cases, the use of both
static slack stealing to increase execution time budgets and gain
time reclaiming are highly effective in reducing the number of
times that the system enters HI-criticality mode (NiH(%)), thus
also reducing the amount of time spent in that mode (TiH(%)) -
see Figures 16 to 20. These techniques have less effect as the value
of CF increases, since they have to mitigate the increasing effect
of longer HI-criticality execution times.

6.4.3 Varying the Criticality Probability (CP )
Figures 21 to 26 show how JNE(%), NiH(%), and TiH(%)
change as the Criticality Probability (CP ) controlling the
proportion of HI-criticality tasks varies from 0.3 to 0.7. Here the
key behaviours of the schemes remain as reported for the baseline
configurations discussed in detail in section 6.3. The predominant
effect of increasing the proportion of HI-criticality tasks is to
increase the number of times that the system enters HI-criticality
mode and thus also the proportion of LO-criticality jobs not
executed and the proportion of time spent in HI-criticality mode.
The NiH(%) value remains relatively constant since that measure
is normalised to the number of HI-criticality jobs.

6.4.4 Varying the Failure Probability (FP )
Figures 27 to 32 show how the normalized metrics
JNE(%)/FP , NiH(%)/FP , and TiH(%)/FP change as
the Failure Probability (FP ) controlling the proportion of
HI-criticality jobs that exceed their LO-criticality execution time
budget varies from 10−5 to 1. These graphs show that the metrics
JNE(%), NiH(%), and TiH(%) have an approximately linear
relationship with the Failure Probability for Failure Probabilities of
10−2 and below, taking nearly constant values for each scheduling
scheme. The figures show that the relative performance of the
various schemes is effectively independent of the likelihood of
HI-criticality tasks exhibiting HI-criticality behavior. At very high
Failure Probabilities e.g. 10−1 = 0.1 and 1, then there are
typically multiple jobs exhibiting HI-criticality behavior within
each HI-criticality mode interval. Thus the metric JNE(%)/FP
reduces, tending towards values just below 100 for FP = 1,
meaning that when every job of a HI-criticality task exhibits
HI-criticality behavior, almost 100% of the LO-criticality jobs are
not executed. The NiH(%)/FP , and TiH(%)/FP metrics
behave similarly.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSE.2016.2592907

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



TRANSACTION 0N SOFTWARE ENGINEERING, VOL. X, NO. X, 201X 12

65 70 75 80 85 90 95

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

UTIL

JN
E

 (
%

) ●

● ●

●
●

●

●● AMC+
AMC+S
AMC+SG
BP
BPS
BPSG
FPPS

Fig. 9. JNE(%) Results varying LO-criticality Utilisation: Harmonic
Periods

65 70 75 80 85 90 95

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

UTIL

N
iH

 (
%

)

● ● ● ● ● ● ●● AMC+
AMC+S
AMC+SG
BP
BPS
BPSG
FPPS

Fig. 10. NiH(%) Results varying LO-criticality Utilisation: Harmonic
Periods

65 70 75 80 85 90 95

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

UTIL

T
iH

 (
%

)

●

●
●

●

●

●

●● AMC+
AMC+S
AMC+SG
BP
BPS
BPSG
FPPS

Fig. 11. T iH(%) Results for varying LO-criticality Utilisation: Harmonic
Periods

65 70 75 80 85 90 95

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

UTIL

JN
E

 (
%

)

● ●
●

●
●

●

●

● AMC+
AMC+S
AMC+SG
BP
BPS
BPSG
FPPS

Fig. 12. JNE(%) Results varying LO-criticality Utilisation: Non-Harmonic
Periods

65 70 75 80 85 90 95

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

UTIL

N
iH

 (
%

)

● ● ● ● ● ● ●● AMC+
AMC+S
AMC+SG
BP
BPS
BPSG
FPPS

Fig. 13. NiH(%) Results varying LO-criticality Utilisation: Non-Harmonic
Periods

65 70 75 80 85 90 95

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

UTIL

T
iH

 (
%

)

● ● ●
● ●

●
●

● AMC+
AMC+S
AMC+SG
BP
BPS
BPSG
FPPS

Fig. 14. T iH(%) Results for varying LO-criticality Utilisation: Non-
Harmonic Periods

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSE.2016.2592907

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



TRANSACTION 0N SOFTWARE ENGINEERING, VOL. X, NO. X, 201X 13

1.0 1.5 2.0 2.5

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

CF

JN
E

 (
%

)
●

●

● ●
● ●

● AMC+
AMC+S
AMC+SG
BP
BPS
BPSG
FPPS

Fig. 15. JNE(%) Results varying the Criticality Factor (CF ): Harmonic
Periods

1.0 1.5 2.0 2.5

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

CF

N
iH

 (
%

)

● ● ● ● ● ●● AMC+
AMC+S
AMC+SG
BP
BPS
BPSG
FPPS

Fig. 16. NiH(%) Results varying the Criticality Factor (CF ): Harmonic
Periods

1.0 1.5 2.0 2.5

0.
00

0.
02

0.
04

0.
06

0.
08

CF

T
iH

 (
%

)

●

●

●

●
●

●

● AMC+
AMC+S
AMC+SG
BP
BPS
BPSG
FPPS

Fig. 17. T iH(%) Results for varying the Criticality Factor (CF ): Harmonic
Periods

1.0 1.5 2.0 2.5

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

CF

JN
E

 (
%

)

●
●

●
●

●
●

● AMC+
AMC+S
AMC+SG
BP
BPS
BPSG
FPPS

Fig. 18. JNE(%) Results varying the Criticality Factor (CF ): Non-
Harmonic Periods

1.0 1.5 2.0 2.5

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

CF

N
iH

 (
%

)

● ● ● ● ● ●● AMC+
AMC+S
AMC+SG
BP
BPS
BPSG
FPPS

Fig. 19. NiH(%) Results varying the Criticality Factor (CF ): Non-
Harmonic Periods

1.0 1.5 2.0 2.5

0.
00

0.
02

0.
04

0.
06

0.
08

CF

T
iH

 (
%

)

● ● ● ● ● ●

● AMC+
AMC+S
AMC+SG
BP
BPS
BPSG
FPPS

Fig. 20. T iH(%) Results for varying the Criticality Factor (CF ): Non-
Harmonic Periods

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSE.2016.2592907

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



TRANSACTION 0N SOFTWARE ENGINEERING, VOL. X, NO. X, 201X 14

0.3 0.4 0.5 0.6 0.7

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

CP

JN
E

 (
%

)

●

●

●

●

●● AMC+
AMC+S
AMC+SG
BP
BPS
BPSG
FPPS

Fig. 21. JNE(%) Results varying the Criticality Probability (CP ):
Harmonic Periods

0.3 0.4 0.5 0.6 0.7

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

CP

N
iH

 (
%

)

● ● ● ● ●● AMC+
AMC+S
AMC+SG
BP
BPS
BPSG
FPPS

Fig. 22. NiH(%) Results varying the Criticality Probability (CP ):
Harmonic Periods

0.3 0.4 0.5 0.6 0.7

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

CP

T
iH

 (
%

)

●

●

●

●

●● AMC+
AMC+S
AMC+SG
BP
BPS
BPSG
FPPS

Fig. 23. T iH(%) Results for varying the Criticality Probability (CP ):
Harmonic Periods

0.3 0.4 0.5 0.6 0.7

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

CP

JN
E

 (
%

)

●

●

●

●

●

● AMC+
AMC+S
AMC+SG
BP
BPS
BPSG
FPPS

Fig. 24. JNE(%) Results varying the Criticality Probability (CP ): Non-
Harmonic Periods

0.3 0.4 0.5 0.6 0.7

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

CP

N
iH

 (
%

)

● ● ● ● ●● AMC+
AMC+S
AMC+SG
BP
BPS
BPSG
FPPS

Fig. 25. NiH(%) Results varying the Criticality Probability (CP ): Non-
Harmonic Periods

0.3 0.4 0.5 0.6 0.7

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

CP

T
iH

 (
%

)

●

●

●

●

●

● AMC+
AMC+S
AMC+SG
BP
BPS
BPSG
FPPS

Fig. 26. T iH(%) Results for varying the Criticality Probability (CP ): Non-
Harmonic Periods

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSE.2016.2592907

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



TRANSACTION 0N SOFTWARE ENGINEERING, VOL. X, NO. X, 201X 15

1e−05 1e−03 1e−01

10
0

20
0

50
0

10
00

20
00

FP

JN
E

 (
%

)/
F

P

●

●

●

●●●

● AMC+
AMC+S
AMC+SG
BP
BPS
BPSG

Fig. 27. JNE(%) Results varying the Failure Probability (FP ): Harmonic
Periods

1e−05 1e−03 1e−01

20
50

10
0

20
0

FP

N
iH

 (
%

)/
F

P

●

●

●
●●●

● AMC+
AMC+S
AMC+SG
BP
BPS
BPSG

Fig. 28. NiH(%) Results varying the Failure Probability (FP ): Harmonic
Periods

1e−05 1e−03 1e−01

5e
+

06
1e

+
07

2e
+

07
5e

+
07

FP

T
iH

 (
%

)/
F

P

●

●

●

●
●●

● AMC+
AMC+S
AMC+SG
BP
BPS
BPSG

Fig. 29. T iH(%) Results for varying the Failure Probability (FP ):
Harmonic Periods

1e−05 1e−03 1e−01

10
0

20
0

50
0

10
00

20
00

FP

JN
E

 (
%

)/
F

P

●

●

●●●●

● AMC+
AMC+S
AMC+SG
BP
BPS
BPSG

Fig. 30. JNE(%) Results varying the Failure Probability (FP ): Non-
Harmonic Periods

1e−05 1e−03 1e−01

20
50

10
0

20
0

FP

N
iH

 (
%

)/
F

P

●

●

●●●●

● AMC+
AMC+S
AMC+SG
BP
BPS
BPSG

Fig. 31. NiH(%) Results varying the Failure Probability (FP ): Non-
Harmonic Periods

1e−05 1e−03 1e−01

5e
+

06
1e

+
07

2e
+

07
5e

+
07

FP

T
iH

 (
%

)/
F

P

●

●

●●●●

● AMC+
AMC+S
AMC+SG
BP
BPS
BPSG

Fig. 32. T iH(%) Results for varying the Failure Probability (FP ): Non-
Harmonic Periods

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSE.2016.2592907

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



TRANSACTION 0N SOFTWARE ENGINEERING, VOL. X, NO. X, 201X 16

Note lines for the FPPS policy are omitted from figures 27 to
32, since it is not possible to show zero values on graphs with a
log scale.

6.5 Summary of evaluation results

The results of our evaluation can be summarised as follows. The
scenario-based simulations showed that the bailout protocol is
highly effective in reducing the percentage of LO-criticality tasks
abandoned JNE(%) to ensure correct HI-criticality behaviour,
and also for harmonic task sets, in reducing the percentage of
time spent in the HI-criticality mode TiH(%). With non-harmonic
task sets, the short busy periods mean that after a HI-criticality
task exhibits HI-criticality behavior, on average an idle instant is
quickly reached. Thus both AMC and bailout-based policies show
similar performance in terms of the percentage of time spent in
HI-criticality mode TiH(%). Since the bailout policy acts only
once HI-criticality mode has been entered, it has very little effect
on the number of times that HI-criticality mode is entered and
thus NiH(%). Both off-line use of slack and online reclamation
of gain-time reduce both the number of times the system enters
HI-criticality mode, thus reducing NiH(%), and as a consequence
reducing the overall amount of time it spends in that mode, and so
reducing TiH(%). Both of these methods complement the bailout
protocol. For both harmonic and non-harmonic task sets, in our
baseline simulation, the BPSG scheme reduced the percentage of
LO-criticality jobs not executed JNE(%) by approximately a
factor of three compared to the AMC+ scheme.

Importantly, in all of our experiments there were no
HI-criticality deadlines misses (HDM) using the AMC, AMC+S,
AMC+SG, BP, BPS, and BPSG schemes. There were also very
few LO-criticality deadline misses, only non-executed jobs. With
basic FPPS, there were a small but highly significant number of
HI-criticality jobs that missed their deadlines. The number of
HI-criticality deadline misses depended on the particular
simulation conditions (peak loads being required), but nevertheless
represented a level of failures which may not be acceptable in a
real system.

The bailout and AMC-based schemes sacrifice a small
percentage of LO-criticality jobs in order to ensure that the
deadlines of HI-criticality tasks are met. Nearly all of these
LO-criticality jobs are abandoned without execution; however,
some can start but not meet their deadlines. All LO-criticality jobs
that are started under these schemes are however completed. By
comparison basic FPPS executes very nearly all jobs, but
significantly both LO- and HI-criticality jobs can miss their
deadlines. Note, we did not simulate the basic AMC scheme as
that would have a very high value for JNE(%) as all
LO-criticality jobs would be abandoned after the system first
entered HI-criticality mode.

The additional evaluation results illustrated in Figures 9 to 32
showed that the advantages of utilising the bailout policy, increasing
execution budgets using static slack stealing, and also runtime
reclamation of gain time persist across a wide range of scenario
parameters, including the mix of HI- and LO-criticality tasks, the
ratio of their execution times, and the LO-criticality utilization.
We also showed that the relative performance of the different
schemes is largely independent of the probability of HI-criticality
behavior occurring (up to very high probabilities where 10% or
more of the HI-criticality jobs exhibit HI-criticality behavior).
These results indicate that the bailout protocol combined with

increased execution budgets using static slack stealing, and also
runtime reclamation of gain time (i.e. BPSG) is likely to be effective
in a wide range of practical cases.

7 ANALYSIS OF THE BAILOUT PROTOCOL

In this section, we prove important properties of the bailout
protocol.

For systems that are deemed schedulable by AMC-rtb analysis
(see (1) and (3) in Section 2.2), we claim that if the system is
scheduled at runtime using FPPS and the bailout protocol, then:
P1. LO-criticality jobs that are released and complete in normal

mode, with no intervening start of a bailout mode, are
guaranteed to meet their deadlines.

P2. HI-criticality jobs released at any time are guaranteed to always
meet their deadlines (provided that the C(HI) execution times
are not violated).

Stated otherwise, the AMC-rtb test is a sufficient schedulability
test for MCS using FPPS and employing the bailout protocol. We
note that: (i) LO-criticality tasks that are released during bailout
or recovery modes are abandoned, and so effectively miss their
deadlines. (ii) LO-criticality tasks that are dispatched in normal
mode, but complete after the start of a bailout mode are not
guaranteed to meet their deadlines.

We now prove, via a set of Lemmas and Theorems, Properties
P1 and P2 of the bailout policy. Consider a system that is
schedulable according to AMC-rtb analysis, and is scheduled at
runtime using FPPS and the bailout protocol. Let S be some
bailout scenario, corresponding to an arbitrary but valid sequence
of job releases under which the system operates the bailout
protocol due to one or more jobs of HI-criticality tasks exceeding
their LO-criticality execution times. Let N be the alternate normal
scenario for S. The alternate normal scenario N has its job
releases at exactly the same times as scenario S; however, unlike
scenario S where jobs may take arbitrary but valid execution times
(i.e. ≤ C(LO) for LO-criticality tasks and ≤ C(HI) for
HI-criticality tasks) all jobs in scenario N require exactly their
LO-criticality execution times C(LO), hence under scenario N ,
the system is always in normal mode and all deadlines are met. We
will show that S behaves in an equivalent way to N .

For bailout scenario S, let WB(t, k) be the total pending
workload due to jobs of priority k and higher (i.e. in hep(k)) that
have execution outstanding at time t. Note that at the release of a
job, we recognise its LO-criticality execution time up to a
maximum of C(LO) as contributing to the total pending
workload; however, the additional HI-criticality execution time up
to (C(HI) − C(LO)) is only considered as contributing to the
total pending workload once the job has executed for C(LO)
without signalling completion. Let WN (t, k) be the total pending
workload at priority k and higher at time t in the alternate normal
scenario N . Further, let [ts, te) be an interval during which the
system is in bailout mode in scenario S. Thus ts is the start of a
bailout mode interval, and te the end, hence te is also the start of
recovery mode.

Lemma 7.1. For any arbitrary bailout scenario S, provided that at
the end te of each bailout mode interval [ts, te), the total pending
workload for every priority level j, is no greater than that for the
alternate normal scenario N , i.e:

∀j WB(te, j) ≤WN (te, j) (4)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSE.2016.2592907

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



TRANSACTION 0N SOFTWARE ENGINEERING, VOL. X, NO. X, 201X 17

then all jobs released and not immediately abandoned9 at or after
time te with deadlines prior to a subsequent transition to bailout
mode are guaranteed to meet their deadlines.

Proof. Consider the bailout mode interval [ts, te), and an arbitrary
job Ji released at or after time te with a deadline prior to any
subsequent transition into bailout mode. As FPPS is used, the
response time of job Ji depends only on (i) the total pending
workload for priority i at time te i.e. WB(t, i) and (ii) the higher
priority workload released at or after time te, but before the
completion of job Ji. By the Lemma, (i) is no greater than in the
alternate normal mode scenario. Further, (ii) is also no greater,
since this workload comprises only jobs released after time te, all
of which (by the Lemma) exhibit normal behaviour prior to the
deadline of job Ji. (We note that the release times of these jobs are
the same in both the bailout scenario and its alternate normal
scenario; however, some releases may be abandoned in the bailout
scenario due to the recovery mode behaviour immediately
following te. This can only reduce the amount of workload
compared to the alternate normal scenario). Hence the response
time of job Ji is no greater than it would have been if the system
had always executed in normal mode. Since job Ji is guaranteed
to meet its deadline in normal mode, it is also guaranteed to meet
its deadline in the bailout scenario with a transition into and out of
bailout mode prior to its release

We now classify the mechanisms of the bailout protocol into
three basic types of operation as follows. (Note the numbering
below e.g. (ii) and (xi) refers to the clauses in the description of
the bailout protocol given in section 4.1 above)

• BF increases: (ii), (iii) and (xi): These mechanisms increase
the bailout fund when a HI-criticality job executes for C(LO)
without signalling completion.

• BF reductions (completion): (iv), (v), and (vi): These
mechanisms involve a job at some priority k completing
execution and reducing the bailout fund by any underspend
with respect to the execution time that was previously
accounted for.

• BF reductions (abandonment): (vii): With this mechanism, a
LO-criticality job released during the bailout interval, would
have executed at some priority k, but is instead abandoned,
donating its execution time to the bailout fund.

Note we do not consider mechanism (ix) further as at an idle
instant the total pending workload at all priority levels is zero
and hence there can be no impact on subsequent jobs. Mechanism
(viii) indicates when the system exits bailout mode, which can only
occur as a result of BF reductions due to either job completion or
release.

Lemma 7.2. Consider a bailout mode interval [ts, te) of an
arbitrary bailout scenario S. Provided that at the start of the
bailout mode interval, the total pending workload for every
priority level j, is no greater for the bailout scenario (without yet
recognising the additional execution time from the HI-criticality
job that will cause the transition to bailout mode) than for its
alternate normal mode scenario i.e. ∀j WB(ts, j) ≤WN (ts, j)
then at the end te of the bailout mode interval inequality (4) holds
i.e. ∀j WB(te, j) ≤WN (te, j).

9. Recall that LO-criticality jobs released in recovery mode are immediately
abandoned.

Proof. To prove the Lemma, we divide the bailout interval [ts, te)
into a number of contiguous (non-overlapping) sub-intervals
[ts, te1), [ts2, te2) . . . [tsn, te). The end of each sub-interval is
demarked by a BF reduction, due to either a job completion or
release. We note there are no BF reduction operations within a
sub-interval.

Initial step: At the start of the bailout interval t = ts, by
the Lemma ∀j WB(ts, j) ≤ WN (ts, j) without recognising
the additional execution time from the HI-criticality job causing
the transition to bailout mode. We now recognise this additional
execution time C(HI)− C(LO). Hence we have:

∀j WB(t, j) ≤WN (t, j) +BF (5)

where the initial value of BF is C(HI)− C(LO).
First sub-interval: During the first sub-interval, HI-criticality

tasks may execute for their C(LO) without signalling completion
and add to BF via mechanism (iii). Since BF is incremented by
C(HI)− C(LO) for each such job, it follows that (5) continues
to hold. The sub-interval ends with a BF reduction operation.

Case 1: BF reduction (completion): Completion of a job at
priority k at time t implies the following (since no workload can
be pending at a higher priority than k otherwise the job at priority
k would not be executing):

∀j ∈ hp(k) WB(t, j) = 0 (6)

Further, as the job may have completed earlier than previously
accounted for, either (a) via requiring less execution time than its
C(LO) value (mechanisms (iv) and (v)), or (b) via requiring less
time for HI-criticality execution than was previously accounted for
in BF (mechanism (vi)), then BF can be decremented by any
underspend and the following holds. This is the case because (a)
WN (t, j) includes workload that would have been pending if the
job had required its full C(LO) execution time, and (b) BF had
previously been adjusted to include all of C(HI)− C(LO) and
we now know that not all of that execution time was required.

∀j ∈ lep(k) WB(t, j) ≤WN (t, j) +BF (7)

Case 2: BF reduction (abandonment): Recall that under
mechanism (vii) a job of a LO-criticality task that is released in
Bailout mode is abandoned (not started) and at the time t that this
job would otherwise have started to execute, it donates its budget
of C(LO) to the bailout fund (BF = BF − C(LO). Donation
of this budget implies (6), since the fact that the job would have
executed at time t means that there can be no pending higher
priority jobs (workload) at that time. Further, the total pending
workload at priorities lower than k is reduced by the execution
time C(LO) of the abandoned job. Hence the value of BF is
reduced according to mechanism (vii), yet (7) still holds, since
WN (t, j) includes C(LO) for the abandoned job.

Subsequent sub-intervals: All subsequent sub-intervals in the
bailout mode interval may be considered in the same way as the
first sub-interval, thus (6) and (7) continue to hold at the end of
each sub-interval, where k is the priority of the task that completes
its execution or would have started to execute but has instead been
abandoned. It follows that the bailout interval ends with some BF
reduction operation due to a task at priority k, and at that time we
have:

∀j ∈ hp(k) WB(te, j) = 0 (8)

and
∀j ∈ lep(k) WB(te, j) ≤WN (te, j) +BF (9)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSE.2016.2592907

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



TRANSACTION 0N SOFTWARE ENGINEERING, VOL. X, NO. X, 201X 18

with BF = 0. Since WN (te, j) ≥ 0, it follows that
∀j WB(te, j) ≤WN (te, j)

Theorem 7.3. All jobs that are released (and not immediately
abandoned because they are LO-criticality jobs released in recovery
mode) and have their deadlines within an interval that does not
include bailout mode (but may comprise recovery and normal mode)
are guaranteed to meet their deadlines provided that the system
is schedulable according to AMC-rtb analysis and is scheduled at
runtime using FPPS and the bailout protocol.

Proof. We consider all of the intervals in an arbitrary bailout
scenario S, which has an alternate normal scenario N that is
schedulable under FPPS. Since the system starts in normal mode,
during the first interval in S before entering bailout mode, all
jobs require at most their LO-criticality execution time C(LO)
and hence the theorem trivially holds for those jobs. Since the
system starts in normal mode, at the start of the first bailout
interval, and before recognising the additional execution time
required by the job that causes the transition to bailout mode, we
have ∀j WB(ts, j) ≤ WN (ts, j). From Lemma 2 it follows
that ∀j WB(te, j) ≤ WN (te, j) holds at the end te of the first
bailout interval. From Lemma 7.1, the Theorem therefore holds
for the second interval between bailout modes. Further, since
during this second interval, jobs only exhibit their LO-criticality
execution times, it follows that at the start of the next bailout mode
∀j WB(ts, j) ≤ WN (ts, j). again holds. Induction over all of
the bailout modes and intervals between them is sufficient to show
that all jobs that are released and have their deadlines within a
single interval between bailout modes are schedulable

Theorem 7.3 shows that all jobs released and not immediately
abandoned in recovery or normal mode with deadlines prior to
the start of the next bailout mode are guaranteed to meet their
deadlines provided that the system is schedulable according to
AMC-rtb analysis. This encompasses Property P1 – LO-criticality
jobs that are released and complete in normal mode, with no
intervening start of a bailout mode are guaranteed to meet their
deadlines under the bailout protocol.

Theorem 7.4. All jobs of HI-criticality tasks are guaranteed to
meet their deadlines provided that the system is schedulable
according to AMC-rtb analysis and is scheduled at runtime using
FPPS and the bailout protocol.

Proof. Theorem 7.3 suffices to show that any job of a HI-criticality
task that is released in a recovery or normal mode interval and has
a deadline prior to the start of the next bailout mode is schedulable.
We are therefore left with two further cases to consider.

Case 1: A HI-criticality job that is released in a recovery mode
or normal mode interval and completes in the next bailout mode
interval or the recovery mode interval that follows it. The proof of
Theorem 7.3 shows that ∀j WB(te, j) ≤WN (te, j) holds at the
end of any bailout mode interval. Hence any job that is released in
recovery mode or normal mode is subject to interference from the
time of its release to the start of the next bailout mode that is no
greater than if the system operated continually in normal mode. The
maximum possible time from the release of the job until it either
completes or the next bailout mode is entered is therefore R(LO)
(see AMC-rtb analysis, i.e. (1) and (3) in Section 2.2). This holds
since in normal mode, the job must have executed for C(LO)
by R(LO) after its release, and will hence trigger a transition
to bailout mode if it has not completed by then. The maximum

amount of interference from higher priority LO-criticality jobs is
therefore limited to at most those releases within an interval of
length R(LO), as per the AMC-rtb analysis. Further, since that
analysis assumes interference of C(HI) from all releases of higher
priority HI-criticality tasks, the response time of the job must be
bounded by the worst-case response time computed by AMC-rtb.

Case 2: A HI-criticality job that is released in a bailout mode
interval and completes in that interval or the recovery mode interval
that follows it. Such a job cannot be subject to more interference
than considered in Case 1, and so is also schedulable.

No job of a HI-criticality task that is released in a recovery
mode, normal mode, or bailout mode interval, can complete after
the end of the next recovery mode interval, since that recovery
mode would by definition extend until such completion. Hence
Cases 1 and 2 cover all further possibilities for the release and
completion of HI-criticality jobs

We note that the presence of recovery mode is necessary to
ensure that HI-criticality jobs always meet their deadlines. Without
the recovery mode, i.e. permitting LO-criticality jobs to be released
as soon as bailout mode ends, would provide scope for increased
interference from high priority LO-criticality tasks beyond that
considered by the AMC-rtb analysis. Effectively the interval of
LO-criticality interference on a high criticality task would be split
into two parts and as dae + dbe ≥ da + be this interference
may then be larger. Finally, we note that despite the workload
relationship given by (4), there is no guarantee that LO-criticality
tasks that are released in normal mode and complete in a subsequent
normal mode after a transition through bailout mode will meet their
deadlines (as illustrated in the example shown in Figure 1).

8 EXTENSION TO MULTIPLE CRITICALITY LEVELS

The bailout protocol defined in this paper can be extended to more
criticality levels in a straightforward way. We assume there are m
criticality levels L1 to Lm. Although we assume an arbitrary value
for m, in practice its is unlikely to be more than about five.

The criticality level of each task τi is denoted by Li. In general,
each task τi may have an execution time Ci(L

k) defined for each
criticality level Lk where Lk ≤ Li. The AMC policy and its
analysis have been extended to such a model [43]. In this case,
when a task of criticality higher than Lk executes for its C(Lk)
execution time without completing, then the system criticality level
is set to the higher of the current level10 and Lk+1. Once the
system is at criticality level Lk+1, then jobs of tasks with lower
criticality may complete, but all newly released jobs of those tasks
are abandoned. Thus as the system moves up through the criticality
levels, which it may do step by step, so it sheds load from tasks
of lower criticality. At any point, when an idle instant occurs, then
the system reverts back to the lowest criticality level.

While the above model is interesting in theory, in practice it is
unlikely that tasks will have more than two execution time budgets
defined [44], one for the lowest criticality level (typically obtained
via measurement taking a ”high water mark”) and one for the task’s
own criticality level (which may be obtained via a more rigourous
process in compliance with the appropriate standard, for example
involving static analysis, MCDC testing etc.). In an abuse of our
previous notation, we refer to these values as C(LO) and C(HI).
In terms of the more general model, it is therefore the case that

10. A task may still execute an incomplete job once the system criticality
level is higher than that of the task, which is why this check is needed.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSE.2016.2592907

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



TRANSACTION 0N SOFTWARE ENGINEERING, VOL. X, NO. X, 201X 19

∀k|Lk < Li, C(Lk) = C(LO), and C(Li) = C(HI). Further,
the behaviour of the AMC policy is such that if a job of task τi
executes for its C(LO) without signaling completion, then the
system criticality level is set to the higher of the current level and
the criticality level Li of the task.

We now show that the bailout protocol can be easily adapted
to the above model where there are multiple criticality levels, but
each task only has two distinct execution time budgets C(LO) and
C(HI). As well as the concepts of normal, bailout and recovery
modes introduced by the bailout protocol, we also need to record
the system criticality level corresponding to a criticality level from
L1 to Lm. In normal mode, the system criticality level is always
L1, while with this extended model, the bailout and recovery modes
cover the higher criticality levels. The system may move up through
the criticality levels while in the bailout mode. It remains at a single
criticality level while in recovery mode, and then either transitions
directly back to normal mode and the lowest criticality level, or
back to bailout mode if further high criticality behaviour occurs.
The rationale for this simple approach of returning directly to the
lowest criticality level is that transitions to high criticality levels
are expected to be rare and after such an event the aim is simply
to return the system to its normal operating behaviour as soon
as possible. The alternative would be to devise a more complex
protocol that is able to step down the criticality levels one at a
time. In our view the small gains that might be obtained by such
an approach are out-weighted by the increase in complexity of the
algorithms and accounting needed.

To support multiple criticality levels, the following minor
adaptations are needed to the bailout protocol described as a set of
rules from (i) to (xii) in Section 4.1. For ease of reference, we
repeat those rules below, with the additions shown in italic. Where
we refer to ”HI-criticality” tasks, we mean any task whose
criticality level is greater than L1, as opposed to LO-criticality
tasks whise criticality level is L1. Note that the bailout aspects of
the protocol remain precisely the same. The only differences are to
do with transitions between system criticality levels, and which
tasks can run at those levels.

Normal mode:
(i) While all jobs of HI-criticality tasks execute for no more

than their C(LO) values, then the system remains in normal mode,
and the system criticality level is L1.

(ii) If any job of a HI-criticality task (i.e. a task with Li > L1)
executes for its C(LO) value without signalling completion it
must take out a loan of C(HI) − C(LO); this loan is always
granted, and the system moves into the bailout mode. The bailout
fund (BF ) is initialised to BF = C(HI)− C(LO). The system
criticality level is set to Li, the criticality level of the task exhibiting
HI-criticality behaviour.

Bailout mode:
(iii) If any job of a HI-criticality task executes for its C(LO)

value without signalling completion then it must also take out a
loan of C(HI) − C(LO), adding to the bailout fund: BF =
BF + C(HI)− C(LO). The system criticality level is set to the
higher of the current level and Li, the criticality level of the task
exhibiting HI-criticality behaviour.

(iv) If any job of a HI-criticality task completes with an
execution time of e, with e ≤ C(LO) then it donates its
underspend (if any), reducing the bailout fund:
BF = BF − (C(LO)− e).

(v) If any job of a LO-criticality task (i.e. a task with Li = L1)
completes with an execution time of e, with e ≤ C(LO) then
it donates its underspend (if any) to the bailout fund: BF =
BF − (C(LO)− e). Note, such a job would need to have been
released in an earlier normal mode.

(vi) If any job of a HI-criticality task with a loan completes
with an execution time of e, with C(LO) < e ≤ C(HI) then
it donates its loan underspend, reducing the bailout fund: BF =
BF − (C(HI)− e).

(vii) Jobs of tasks of criticality lower than the current system
criticality level are abandoned (not started). Further, when the
scheduler would otherwise dispatch such a job, the job’s budget of
C(LO) is donated to the bailout fund: BF = BF − C(LO).

(viii) If the bailout fund becomes zero (note BF is constrained
to never become negative), then the lowest priority HI-criticality
job (i.e. of any criticality level > L1) with outstanding execution
is recorded (let this job be Jk) and the recovery mode is entered.

(ix) If during bailout mode, an idle instant occurs, then an
immediate transition is made to normal mode, and BF is set to
zero. The system criticality level is set to L1.

Recovery mode:
(x) Jobs of tasks of criticality lower than the current system

criticality level are abandoned (not started).
(xi) If any HI-criticality job executes for its C(LO) value

without signalling completion, then the system re-enters bailout
mode – as described in (ii) above. The system criticality level is set
to the higher of the current level and Li, the criticality level of the
task exhibiting HI-criticality behaviour.

(xii) When the job Jk noted at the point when recovery mode
was last entered completes, then the system transitions to normal
mode. The system criticality level is set to L1.

We now show that the bailout protocol for multiple criticality
level systems correctly schedules any task set that is schedulable
under the extended AMC policy, analysis for which is given in
[43].

The bailout protocol for systems with multiple criticality levels
reflects precisely the behaviour of the extended AMC policy up
until the point at which recovery is completed and a transition
is made back to normal mode and system criticality level L1. At
that point, the protocol ensures (as it does for the dual criticality
case), that no active job of a HI-criticality task can be subject
to more interference than it would have been had the system
simply remained in normal mode and system criticality level L1.
Limiting interference to no more than in normal mode is sufficient
to ensure that all jobs of tasks started in recovery mode or the
subsequent normal mode will meet their deadlines. Together with
behaviour that is identical to that of AMC during the bailout and
recovery modes, this means that all tasks with criticality level Lk

are guaranteed to meet their deadlines provided that the system
criticality level does not exceed Lk between their release time and
their deadline. We now formally prove that this is the case.

We first note that Lemma 7.1 and Lemma 7.2 (in section 7)
apply with minor adaptations as follows. With multiple criticality
levels, then in Case 2 of Lemma 7.2 BF reduction due to
abandonment may also occur due to jobs of HI-criticality tasks
being abandoned because the system criticality level is higher than
that of the task; however, the logic and the argument is identical to
that stated in the Lemma for LO-criticality tasks. Theorem 7.3 (in
section 7) also applies, again also considering abandonment of

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSE.2016.2592907

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



TRANSACTION 0N SOFTWARE ENGINEERING, VOL. X, NO. X, 201X 20

jobs of HI-criticality tasks that are below the system criticality
level in the same way as abandonment of LO-criticality tasks.

Theorem 7.3 (in section 7) shows that jobs of LO-criticality
tasks (criticality level L1) that are released and complete in normal
mode with no intervening start of a bailout mode (and thus system
criticality level higher than L1) are guaranteed to meet their
deadlines under the bailout policy. It remains to consider
HI-criticality tasks of an arbitrary criticality level Lk.

Theorem 8.1. All jobs of HI-criticality tasks that have their release
times and deadlines in a interval that does not include the system
operating at a criticality level higher than that of the task will meet
their deadlines, provided that the task set is schedulable according
to analysis of the extended AMC policy, and scheduled at runtime
using FPPS and the bailout protocol for systems with multiple
criticality levels.

Proof. Theorem 7.3 suffices to show that any job of a HI-criticality
task that is released in a recovery or normal mode interval and has
a deadline prior to the start of the next bailout mode is schedulable.
We are therefore left with two further cases to consider.

Case 1: Let J be an arbitrary job of an arbitrary HI-criticality
task τi that is released in a recovery mode or normal mode interval
and completes in the next bailout mode interval or the recovery
mode interval that follows it (without the system criticality level
exceeding Li). The proof of Theorem 7.3 shows that
∀j WB(te, j) ≤ WN (te, j) holds at the end of any bailout
mode interval. In other words, for each priority level j, the total
pending workload at priority level j and higher is no greater than
it would have been had the system remained in normal mode from
the start with all jobs taking their C(LO) execution times. Hence
for any job J that is released in recovery mode or normal mode
and completes in the next bailout mode interval or the recovery
mode interval that follows it, there is a valid alternative scenario
(complete set of jobs with execution times and release times)
whereby the system remains in normal mode until the release of
job J and then produces an identical schedule from that time
onwards for both the AMC policy, and FPPS with the bailout
protocol for multiple criticality levels. Since in the alternative
scenario, the extended AMC policy guarantees that the deadline of
J is met provided the system does not exceed criticality level Li

before the job completes, then so does the bailout protocol for
multiple criticality levels.

Case 2: Let J be an arbitrary job of an arbitrary HI-criticality
task τi that is released in a bailout mode interval and completes in
that interval or the recovery mode interval that follows it. Consider
the schedule from a time s that equates to the end of the previous
bailout mode interval (or the start of the system if there isn’t one).
The proof of Theorem 7.3 shows that ∀j WB(te, j) ≤WN (te, j)
holds at the end of any bailout mode interval (it also trivially
holds at system start up in normal mode). Thus the workload
condition holds at time s. It follows that there is an alternative valid
scenario (complete set of jobs with execution times and release
times) whereby the system remains in normal mode until time s
and then produces an identical schedule for the interval of time
from s to the deadline of J , for both the AMC policy, and FPPS
with the bailout protocol for multiple criticality levels. Since in the
alternative scenario, the extended AMC policy guarantees that the
deadline of J is met provided the system does not exceed criticality
level Li before the job completes, then so does the bailout protocol
for multiple criticality levels.

No job of a HI-criticality task that is released in a recovery
mode, normal mode, or bailout mode interval, can complete after
the end of the next recovery mode interval, since that recovery
mode would by definition extend until such completion. Hence
Cases 1 and 2 cover all further possibilities for the release and
completion of HI-criticality jobs.

9 CONCLUSIONS

In mixed criticality systems (MCS) most criticality levels will
require that deadlines are always met. However, it is also necessary
to design these systems so they can make effective use of the
processing resources available. This involves making realistic, as
opposed to pessimistic assumptions about execution time budgets,
and employing mechanisms that behave robustly in the rare
situations where software is behaving in an unexpected manner –
particularly if estimated executions times are exceeded. A number
of theoretical advances have been made in terms of scheduling
MCSs. In this paper we move the theory closer to industrial
application. In particular we consider how to minimise the
consequences of partial (temporal) failures, and how to restore
service for LO-criticality tasks while still guaranteeing the
HI-criticality ones.

The paper introduced a bailout protocol that allows overrun of
HI-criticality jobs to be accommodated by the non-execution of
LO-criticality jobs. The number of non-executions is however kept
to a minimum. The bailout protocol is described by analogy to the
banking system; HI-criticality tasks cannot fail, loans are taken
out by HI-criticality tasks and repaid by LO-criticality tasks. The
bailout protocol is orthogonal to two existing mechanisms, based
on off-line slack calculation and online gain time reclamation. We
showed how both of these techniques can be employed along with
the bailout protocol to further improve performance.

Our scenario-based simulations showed that the bailout protocol
is highly effective in reducing the amount of time spent in the HI-
criticality mode and thus in reducing the number of LO-criticality
tasks abandoned to ensure correct HI-criticality behaviour. Both
off-line use of slack and online reclamation of gain-time reduce
the number of times that the system actually needs to enter a HI-
criticality mode, and also the overall amount of time it spends in
that mode. Both of these methods complement the bailout protocol.
We used schedulability analysis techniques to show that the bailout
protocol has the same level of guarantee as the best previously
published approach (AMC). Finally, we showed how the bailout
protocol permits straightforward extension to multiple criticality
levels.

Acknowledgements
The research described in this paper was funded, in part, by the
ESPRC grant, MCC (EP/K011626/1) and the EU FP7 IP
PROXIMA (611085). EPSRC Research Data Management: No
new primary data was created during this study. The authors would
like to thank Frank Soboczenski for his help in producing the
graphs used in this paper.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSE.2016.2592907

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



TRANSACTION 0N SOFTWARE ENGINEERING, VOL. X, NO. X, 201X 21

REFERENCES

[1] I. Bate, A. Burns, and R.I.Davis, “A bailout protocol for mixed criticality
systems,” in Proc. of Euromicro Conference on Real-Time Systems
(ECRTS), July 2015.

[2] P. Graydon and I. Bate, “Safety assurance driven problem formulation
for mixed criticality scheduling,” in Proc. of 1st Workshop on Mixed
Criticality Systems (WMC), 2013.

[3] S. Vestal, “Preemptive scheduling of multi-criticality systems with varying
degrees of execution time assurance,” in Proc. of the IEEE Real-Time
Systems Symposium (RTSS), 2007, pp. 239–243.

[4] S. Baruah and S. Vestal, “Schedulability analysis of sporadic tasks with
multiple criticality specifications,” in Proc. of Euromicro Conference on
Real-Time Systems (ECRTS), 2008, pp. 147–155.

[5] S. Baruah, A. Burns, and R. I. Davis, “Response-time analysis for mixed
criticality systems,” in Proc. of IEEE Real-Time Systems Symposium
(RTSS), 2011, pp. 34–43.

[6] P. Ekberg and W. Yi, “Bounding and shaping the demand of mixed-
criticality sporadic sprodic tasks,” in Proc. of Euromicro Conference on
Real-Time Systems (ECRTS), 2012, pp. 135–144.

[7] F. Santy, P. Richard, M. Richard, and J. Goossens, “Relaxing mixed-
criticality scheduling strictness for task sets scheduled with FP,” in Proc.
of Euromicro Conference on Real-Time Systems (ECRTS), 2012, pp. 155–
165.

[8] N. Guan, P. Ekberg, M. Stigge, and W. Yi, “Effective and efficient
scheduling of certifiable mixed-criticality sporadic task systems,” in Proc.
of IEEE Real-Time Systems Symposium (RTSS), 2011, pp. 13–23.

[9] A. Burns and R.I.Davis, “Adaptive mixed criticality scheduling with
deferred preemption,” in Proc. of Real-Time Systems Symposium (RTSS),
Dec 2014.

[10] A. Burns and R. Davis, “Mixed criticality systems - a review,” Department
of Computer Science, University of York, Tech. Rep., 2014.

[11] P. Graydon and I. Bate, “Realistic safety cases for the timing of systems,”
The Computer Journal, vol. 57, no. 5, pp. 759–774, 2014.

[12] F. Wartel, L. Kosmidis, C. Lo, B. Triquet, E. Quinones, J. Abella,
A. Gogonel, A. Baldovin, E. Mezzetti, L. Cucu, T. Vardanega, and
F. Cazorla, “Measurement-based probabilistic timing analysis: Lessons
from an integrated-modular avionics case study,” in IEEE International
Symposium on Industrial Embedded Systems (SIES), June 2013, pp. 241–
248.

[13] N. Audsley, R. Davis, A. Burns, and A. Wellings, Appropriate mechanisms
for the support of optional processing in hard real-time systems, 1994, pp.
23–27.

[14] J. Lehoczky, “An optimal algorithm for scheduling soft-aperiodic tasks
in fixed-priority preemptive systems,” in Proc. of Real-Time Systems
Symposium (RTSS), Dec 1992, pp. 110–123.

[15] R. Davis, K. Tindell, and A. Burns, “Scheduling slack time in fixed priority
pre-emptive systems,” in Proc. of IEEE Real-Time Systems Symposium.
IEEE, 1993, pp. 222–231.

[16] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
N. Megow, and L. Stougie, “Scheduling real-time mixed-criticality jobs,”
IEEE Transactions on Computers, vol. 61, no. 8, pp. 1140–1152, 2012.

[17] F. Dorin, L. George, P. Thierry, and J. Goossens, “Schedulability and
sensitivity analysis of multiple criticality tasks with fixed-priorities,”
Journal of Real-Time Journal, vol. 46, no. 3, pp. 305–331, 2010.

[18] S. Baruah and G. Fohler, “Certification-cognizant time-triggered
scheduling of mixed-criticality systems,” in Proc. of IEEE Real-time
Systems Symposium (RTSS), December 2011, pp. 3–12.

[19] A. Burns, “System mode changes - general and criticality-based,” in Proc.
of 2nd Workshop on Mixed Criticality Systems (WMC), Dec 2014, pp.
3–8.

[20] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
N. Megow, and L. Stougie, “Scheduling real-time mixed-criticality jobs,”
in Proc. of the 35th International Symposium on the Mathematical
Foundations of Computer Science, ser. Lecture Notes in Computer Science,
P. Hlinený and A. Kucera, Eds., vol. 6281. Springer, 2010, pp. 90–101.

[21] S. Baruah, “Semantic-preserving implementation of multirate mixed
criticality synchronous programs,” in Proc. of Real-Time Networks and
Systems (RTNS), 2012.

[22] K. Tindell and A. Alonso, “A very simple protocol for mode changes in
priority preemptive systems,” Universidad Politecnica de Madrid, Tech.
Rep., 1996.

[23] H. Su and D. Zhu, “An elastic mixed-criticality task model and its
scheduling algorithm,” in Proc. of the Conference on Design Automation
and Test in Europe (DATE), 2013, pp. 147–152.

[24] A. Burns and S. Baruah, “Towards a more practical model for mixed
criticality systems,” in Proc. of 1st International Workshop on Mixed
Criticality Systems (WMC), 2013, pp. 1–6.

[25] H. Pengcheng, P. Kumar, N. Stoimenov, and L. Thiele, “Interference
constraint graph a new specification for mixed-criticality systems,” in
Proc. Emerging Technologies Factory Automation (ETFA), Sept 2013, pp.
1–8.

[26] T. Fleming and A. Burns, “Incorporating the notion of importance into
mixed criticality systems,” in Proc. of 2nd Workshop on Mixed Criticality
Systems (WMC), Dec 2014, pp. 33–38.

[27] O. Gettings, S. Quinton, and R. I. Davis, “Mixed criticality
systems with weakly-hard constraints,” in Proc. of International
Conference on Real Time and Networks Systems (RTNS). New
York, NY, USA: ACM, 2015, pp. 237–246. [Online]. Available:
http://doi.acm.org/10.1145/2834848.2834850

[28] R. Davis and A. Burns, “Robust priority assignment for fixed priority real-
time systems,” in Proc. of IEEE Real-Time Systems Symposium (RTSS),
2007, pp. 3–14.

[29] F. Santy, G. Raravi, G. Nelissen, V. Nelis, P. Kumar, J. Goossens, , and
E. Tovar, “Two protocols to reduce the criticality level of multiprocessor
mixed-criticality systems,” in Proc. of Real-Time Networks and Systems
(RTNS), 2013.

[30] J. Ren and L. T. X. Phan, “Mixed-criticality scheduling on multiprocessors
using task grouping,” in Proc. of Euromicro Conference on Real-Time
Systems (ECRTS), July 2015, pp. 25–34.

[31] S. Punnekkat, R. Davis, and A. Burns, “Sensitivity analysis of real-time
task sets,” in Proc. of the Conference of Advances in Computing Science -
ASIAN ’97. Springer, 1997, pp. 72–82.

[32] E. Bini, M. D. Natale, and G. Buttazzo, “Sensitivity analysis for fixed-
priority real-time systems,” in Proc. of Euromicro Conference on Real-
Time Systems (ECRTS), 2006, pp. 13–22.

[33] R. Davis, “On exploiting spare capacity in hard real-time systems,” Ph.D.
dissertation, University of York, UK, 1995.

[34] N. Audsley, “On priority assignment in fixed priority scheduling,”
Information Processing Letters, vol. 79, no. 1, pp. 39–44, 2001.

[35] B. Sprunt, J. Lehoczky, and L. Sha, “Exploiting unused periodic time
for aperiodic service using the extended priority exchange algorithm,” in
Proc. of IEEE Real-Time Systems Symposium (RTSS), 1988, pp. 251–258.

[36] G. Bernat, I. Broster, and A. Burns, “Rewriting history to exploit gain
time,” in Proc. of IEEE Real-Time Systems Symposium (RTSS), 2004, pp.
328–335.

[37] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar: a flexible real
time scheduling framework,” Ada Letters, vol. 24, no. 4, pp. 1–8, 2004.

[38] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, and Y. Xiong, “Taming heterogeneity - the ptolemy approach,”
in Proceedings of the IEEE, 2003, pp. 127–144.

[39] Y. Lu, T. Nolte, I. Bate, and L. Cucu-Grosjean, “A statistical response-
time analysis of real-time embedded systems,” in Proc. IEEE Real-Time
Systems Symposium (RTSS), 2012, pp. 351–362.

[40] I. Bate and A. Burns, “An integrated approach to scheduling in safety-
critical embedded control systems,” Real-Time Systems Journal, vol. 25,
no. 1, pp. 5–37, 2003.

[41] E. Bini and G. Buttazzo, “Measuring the performance of schedulability
tests,” Journal of Real-Time Systems, vol. 30, no. 1-2, pp. 129–154, 2005.

[42] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings,
“Applying new scheduling theory to static priority preemptive scheduling,”
Software Engineering Journal, vol. 8, no. 5, pp. 284–292, 1993.

[43] T. Fleming and A. Burns, “Extending mixed criticality scheduling,” in
Proc. of 1st Workshop on Mixed Criticality Systems (WMC), Dec 2013,
pp. 7–12.

[44] A. Burns, “An augmented model for mixed criticality,” in Proc. of
Dagstuhl seminar on Mixed Criticality on Multicore/Manycore Platforms,
2015.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSE.2016.2592907

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



TRANSACTION 0N SOFTWARE ENGINEERING, VOL. X, NO. X, 201X 22

Iain Bate is a senior lecturer
in Real-Time Systems at the Computer Science
Department, University of York. His research
interests include scheduling and timing analysis,
design and analysis of safety-critical systems,
and engineering of complex systems of systems
including Wireless Sensor Networks. He
is the Editor-in-Chief of the Journal of Systems
Architecture, a frequent member of programme
committees for distinguished international
conferences, and a Visiting Professor at

Mälardalen University in Sweden.

Alan Burns Alan Burns co-leads
the Real-Time Systems Research Group
at the University of York. His research interests
cover a number of aspects of real-time systems
including the assessment of languages for
use in the real-time domain, distributed operating
systems, the formal specification of scheduling
algorithms and implementation strategies,
and the design of dependable user interfaces
to real-time applications. Professor Burns has
authored/co-authored 500 papers/reports and

books. Most of these are in the real-time area. His teaching activities
include courses in Operating Systems and Real-time Systems. In 2009
Professor Burns was elected a Fellow of the Royal Academy of
Engineering. In 2012 he was elected a Fellow of the IEEE.

Robert I. Davis is a Senior Research
Fellow in the Real-Time Systems Research
Group at the University of York, UK, and
an Inria International Chair with the AOSTE team
at Inria-Paris, Paris, France. Robert received his
DPhil in Computer Science from the University
of York in 1995. Since then he has founded three
start-up companies, all of which have succeeded
in transferring real-time systems research into
commercial products. Roberts research interests
include the following aspects of real-time

systems: scheduling algorithms and analysis for single processor,
multiprocessor and networked systems; analysis of cache related
pre-emption delays, mixed criticality systems, and probabilistic hard
real-time systems.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSE.2016.2592907

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


