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Abstract—A glossary is an important part of any software requirements
document. By making explicit the technical terms in a domain and
providing definitions for them, a glossary helps mitigate imprecision and
ambiguity. A key step in building a glossary is to decide upon the terms to
include in the glossary and to find any related terms. Doing so manually
is laborious, particularly for large requirements documents.

In this article, we develop an automated approach for extracting
candidate glossary terms and their related terms from natural language
requirements documents. Our approach differs from existing work on
term extraction mainly in that it clusters the extracted terms by rele-
vance, instead of providing a flat list of terms. We provide an automated,
mathematically-based procedure for selecting the number of clusters.
This procedure makes the underlying clustering algorithm transparent
to users, thus alleviating the need for any user-specified parameters.

To evaluate our approach, we report on three industrial case studies,
as part of which we also examine the perceptions of the involved subject
matter experts about the usefulness of our approach. Our evaluation
notably suggests that: (1) Over requirements documents, our approach
is more accurate than major generic term extraction tools. Specifically,
in our case studies, our approach leads to gains of 20% or more in
terms of recall when compared to existing tools, while at the same time
either improving precision or leaving it virtually unchanged. And, (2) the
experts involved in our case studies find the clusters generated by our
approach useful as an aid for glossary construction.

Index Terms—Requirements Glossaries, Term Extraction, Natural Lan-
guage Processing, Clustering, Case Study Research.

1 INTRODUCTION
A requirements glossary makes explicit and provides defi-
nitions for the salient terms in a requirements document. A
requirements glossary may further provide information about
the synonyms, related terms, and example usages of the
salient terms. The stakeholders of a system may consult the
requirements glossary for various reasons, e.g., to familiarize
themselves with the technical terms in the system’s domain, to
learn about everyday words that may have a specific meaning
in the system, to look up abbreviations and related terms, and
to understand terminology variations.

Glossaries enhance the requirements engineering process in
a number of ways [1], [2], [3], [4]. In particular, glossaries
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(1) improve the accuracy and understandability of require-
ments, (2) mitigate vagueness and ambiguity, (3) promote
better communication between the stakeholders by estab-
lishing a common and consistent language, and (4) provide
a stepping stone for further requirements elaboration, e.g.,
through data and process modeling. The lack of a require-
ments glossary can hinder teamwork and potentially jeopardize
the success of a project [5].

In general and to maximize the benefits mentioned above,
it is recommended that a glossary should be built at the
same time as when the requirements are being specified [3],
[4]. Doing so, however, is not always feasible due to time
pressures. Too much upfront investment into the glossary may
also be an issue from a cost-effectiveness standpoint, e.g.,
when the requirements are volatile and expected to change
significantly as they are refined and prioritized.

Consequently, requirements glossaries may be built after
the fact and only when the requirements have sufficiently
stabilized. This situation is, for example, reflected in the
industrial requirements that are the subject of the case studies
in this article (Section 5). To build a glossary after the fact,
the terms to include in the glossary need to be extracted from
the underlying documents. For large documents, a manual
extraction of the terms may require a significant amount of
effort, thus leaving less human resources for more complex
tasks, e.g., writing the definitions for the glossary terms.

Our objective in this article is to automatically extract
candidate glossary terms from natural language requirements
and organize these terms into clusters of related terms. We
illustrate the process using the example of Fig. 1. In Fig. 1(a),
we show the requirements for which a glossary needs to be
built. The requirements concern a satellite software compo-
nent and represent a small fraction of a larger requirements
document. The full document is the subject of one of the
case studies in this article, as we discuss later. To protect
confidentiality, the requirements have been sanitized without
affecting their substance or structure. The abbreviations “GSI”,
“STS”, and “DB” in the requirements stand for “Ground
Station Interface”, “Surveillance and Tracking System”, and
“Database”, respectively.

Given the requirements in Fig. 1(a), we would like to first
obtain a set of candidate terms such as those in Fig. 1(b),
and then group these terms into clusters such as those in
Fig. 1(c). By bringing together the related terms, these clusters
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(c)

R1 - When a GSI component constraint is violated, STS shall deliver a warning message to the system operator.

R2 - STS shall log the availability of GSI components in the DB server.

R3 - STS shall supply the GSI monitoring information (GSI anomalies, GSI input parameters and GSI output
        parameters) to the system operator.

R4 - STS subcontractors shall track the progress of development activities in the progress report.

R5 - When the status of a GSI component is changed, STS shall update the progress report with the status.

R6 - STS shall log the GSI component status in the DB server.

• STS
• GSI
• DB server
• GSI anomaly
• progress report
• system operator

• GSI component
• warning message
• STS subcontractor
• GSI input parameter
• development activity
• GSI output parameter

• GSI component status
• status of GSI component
• GSI component constraint
• GSI monitoring information
• availability of GSI component
• progress of development activity

• GSI
• GSI anomaly
• GSI input parameter
• GSI output parameter
• GSI monitoring information

• GSI component
• GSI component status
• status of GSI component
• GSI component constraint
• availability of GSI component

  • progress report   • system operator

  • STS
  • STS subcontractor

  • warning message

• development activity
• progress of development activity

 •  DB server
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Fig. 1. (a) Example requirements from a satellite component, (b) candidate glossary terms extracted from the
requirements, (c) candidate terms organized into clusters.

can provide assistance to the analysts in a number of tasks,
including deciding about the terms to include in the glossary,
writing definitions for the glossary terms, and identifying
potential consistency issues such as the use of variant phrases
for referring to the same concept. An example of variant
phrases in Fig. 1 is “GSI component status” and “status of
GSI component”.

Our work fits most closely with existing work on term
extraction, which deals with automatic identification of the
terminology in a given text corpus [6], [7]. Many strands of
work exist on the subject, e.g., [8], [9], [10], [11], to note
a few. Despite term extraction being widely studied, existing
tools are not tailored to requirements documents.

An important limitation that we have observed in generic
term extraction tools is that these tools, when applied to
requirements documents, yield poor recall, i.e., they miss
a considerable number of glossary terms. This limitation is
partly explained by filtering heuristics that are not suited
to requirements documents. An example filtering heuristic is
the exclusion, from the candidate glossary terms, of terms
that are infrequent. While this heuristic is often necessary
for extracting terms from large heterogeneous corpora, e.g.,
collections of books or articles, the heuristic is likely to
filter important terms that, despite having a low frequency of
appearance, would warrant a precise definition when used in
a requirements document. Poor recall is in another part due to
the absence of heuristics for combining adjacent phrases under
certain conditions. For example, consider the variants “GSI
component status” and “status of GSI component”, mentioned

earlier. One would expect that these variants will be treated
the same way by a term extractor. However, the tools we
have investigated (Section 2.4) would detect only the former
because it is a single noun phrase, but not the latter, because
it is a combination of two noun phrases.

We take steps in this article to address the above limitation.
More importantly, what contrasts our work from the existing
work on term extraction is that, instead of producing a flat list
of candidate terms, our approach produces clusters of related
terms. As we argue more precisely later in the article based on
our empirical results, we believe that clusters provide a more
suitable basis than flat lists for performing the tasks related to
glossary construction.

1.1 Contributions
We propose an automated solution for extracting and clus-
tering candidate glossary terms in requirements documents.
Specifically, we make the following contributions:

(1) We develop a term extraction technique using a well-known
natural language processing (NLP) task called text chunking
[12]. In particular, we are interested in noun phrase (NP)
chunks in requirements documents. NPs correspond closely to
candidate glossary terms. We propose complementary heuris-
tics to address limitations in a naive application of chunking.

(2) We develop a technique to cluster candidate glossary terms
based on syntactic and semantic similarity measures for natural
language. An important consideration with regard to clustering
is selecting an appropriate number of clusters. To avoid the
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need for users to specify this number in an arbitrary manner,
we provide automated guidelines for estimating the optimal
number of clusters.

(3) We report on the design and execution of three industrial
case studies. Through these case studies, we tackle several re-
search questions, including how our term extraction approach
compares with the existing generic approaches, how one can
best tune clustering for grouping together related terms, and
how industry experts perceive the usefulness of the clusters
generated by our approach. Our results notably suggest that:
Firstly, our term extraction technique outperforms, by a factor
of 20% or more, all the generic term extraction tools compared
with in terms of recall, while at the same time also outperform-
ing all but one of these tools in terms of precision. Our term
extraction technique, when compared with the best generic
alternative, has lower precision in two of our case studies.
Nevertheless, the precision loss is negligible (0.9% in one case
study and 1.2% in the other) and significantly outweighed
by gains in recall. Secondly, the experts find the clusters
computed by our clustering technique useful as an aid for
defining the glossary terms, for identifying the related terms,
and for detecting potential terminological inconsistencies.

(4) We develop a tool, named REGICE, implementing our term
extraction and clustering techniques. The tool is available at
https://sites.google.com/site/svvregice/. To facilitate the repli-
cation of our empirical results using REGICE or other tools,
we provide on REGICE’s website the material for one of our
case studies, whose requirements document is public-domain.

This article extends a previous conference paper [13] pub-
lished at the 8th ACM/IEEE International Symposium on Em-
pirical Software Engineering and Measurement (ESEM’14). In
addition to improving the technical aspects of our approach
and providing a more detailed exposition of these aspects,
this article offers major extensions in the following areas:
(1) Empirical evaluation: We complement the two case studies
in our previous work with a third one (Case-C in Section 5).
We provide a more thorough comparison with existing term
extraction tools. We consider a larger set of measures for
calculating syntactic and semantic similarity. We experiment
with three alternative clustering algorithms, rather than just
one as in our prior work. And, we systematically examine
the opinions of the industry experts involved in our case
studies in order to gain insight as to whether our approach
is useful in practice. (2) Tool support: We have evolved the
implementation of our approach into a tool, which is now
publicly available. We describe our tool as part of this article.

1.2 Structure of the article

The rest of this article is structured as follows: Section 2
provides background information and compares our work with
related work. Section 3 presents our term extraction and
clustering techniques. Section 4 describes our tool. Section 5
reports on the design and execution of our case studies.
Section 6 discusses threats to validity. Section 7 concludes
the article with a summary and directions for future work.

Tokenizer

Sentence Splitter

POS Tagger

Named Entity 
Recognizer

Chunker

NL
Requirements

NL Requirements
with annotations

1

2

3

4

5

Fig. 2. NLP pipeline for text chunking.

2 BACKGROUND

This section presents background on the key technologies used
in the article. The section further reviews and compares with
related strands of work.

2.1 Text Chunking
Our approach builds upon a mature NLP task, known as
text chunking. Text chunking is the process of decomposing
a sentence into non-overlapping segments [14]. These seg-
ments include among others, noun phrases (NPs), prepositional
phrases (PPs), and verb phrases (VPs). For the purpose of this
article, we are interested only in NPs. An NP is a segment
that can be the subject or object in a sentence. According to
Justeson and Katz [15], NPs account for 99% of the terms in
technical glossaries. The remaining 1% are typically VPs. Our
term extraction technique does not return any VPs in its results,
since the benefits of doing so are significantly outweighed by
the overhead of having to manually filter undesirable VPs from
the results.

A text chunker is a pipeline of NLP modules running in
a sequence over one or more input documents. The generic
pipeline for chunking is shown in Fig. 2. The first module in
the pipeline is the Tokenizer, which breaks up the input text
into tokens. A token can be a word, a number or a symbol. The
next module, Sentence Splitter, divides the text into sentences.
Subsequently, the POS Tagger annotates each token with a
part-of-speech (POS) tag. These tags include, among others,
Pronoun, Adjective, Noun, and Verb. Next is the Name Entity
Recognizer, where an attempt is made to identify the named
entities in the text. Examples of named entities include dates,
organizations, URLs, and locations. The main and final step
is to identify and mark the text chunks. This is performed by
the Chunker module.

Fig. 3 shows the result of running the pipeline of Fig. 2 over
requirement R4 from the example in Fig. 1. Once processed
by this pipeline, an input document will have annotations for
tokens, sentences, parts-of-speech, named entities, and text
chunks. As said earlier, of the chunks, we need only the NPs.

The pipeline of Fig. 2 may be realized in many different
ways as there are alternative implementations available for
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STS subcontractors shall track the progress of
development activities in the progress report.

PPNP NP

PPNPNP VP

Fig. 3. Text chunking example.

each of the modules in the pipeline. In our previous work [16],
we evaluated 144 possible combinations of module implemen-
tations for building the text chunking pipeline. In this current
article, we do not further evaluate these combinations and
instead take one of the most accurate ones identified in our
earlier work. The choice of module implementations used is
given in Section 4.

2.2 Computing Similarities between Terms
To cluster candidate terms, we need a degree of relatedness
between term pairs. We define this degree using syntactic and
semantic similarity measures, as we describe next.

2.2.1 Syntactic Similarity Measures
Syntactic (similarity) measures calculate a score for a given
pair of terms based on the terms’ string content. These
measures are usually normalized to a value between 0 and
1, with 0 indicating no similarity at all, and 1 indicating per-
fect similarity, i.e., string equivalence. For example, syntactic
measures would normally yield a high score for the terms
“GSI component” and “GSI component status” because of the
large textual overlap between the terms. In our empirical eval-
uation (Section 5), we consider 12 syntactic measures: Block
distance [17], Cosine [17], Dice’s coefficient [17], Euclidean
distance [17], Jaccard [18], Char-Jaccard [18], Jaro [18],
Jaro-Winkler [18], Level Two (L2) Jaro-Winkler [18], Lev-
enstein [19], Monge-Elkan [20], and SoftTFIDF [18]. These
measures are described in the appendix; see Table A.1.

Syntactic measures can be classified into three categories:
distance-based, token-based, and corpus-based [18]. Distance-
based measures calculate a score for a given pair of terms
by finding the best sequence of edit operations to convert
one term into the other. Levenstein is an example of such
measures. Token-based measures work by treating each term
as a bag of tokens and then matching the tokens of dif-
ferent terms. An example such measure is Cosine. Corpus-
based measures enhance either distance-based or token-based
measures by accounting for the characteristics of the corpus
from which the terms are drawn. For example, to calculate
a similarity score for a pair of terms, SoftTFIDF considers
the frequency of the terms’ constituent tokens in the cor-
pus where the terms appear. The standard implementation
of SoftTFIDF uses Jaro-Winkler (a distance-based measure)
as a similarity predicate over tokens.

2.2.2 Semantic Similarity Measures
Given a pair of words, semantic (similarity) measures calculate
a similarity score based on the meaning of the words in a
dictionary. Similar to syntactic measures, semantic measures

satellite alert

link warning

outage

0.17 0.5

0.2

0.14

0.17

interruption

0.140.1
0.2

0.11

Fig. 4. Example of semantic similarity calculation for
multi-word terms.

are often normalized. For example, most semantic measures
would produce a non-zero score for the words “communi-
cation” and “transmission” because of the semantic affinity
between these two words. In this article, we experiment with
eight semantic measures: HSO [21], JCN [22], LCH [23],
LIN [24], LESK [25], PATH [26], RES [27], and WUP [28].
These measures are described in the appendix; see Table A.2.

To generalize semantic measures from single-word terms
(i.e., tokens) to multi-word terms, one must define a strategy
for combining token-level similarity scores. To this end, we
adopt the strategy used by Nejati et al. [29]: Given a pair of
(multi-word) terms, we treat the terms as bags of tokens. We
then calculate similarity scores for all token pairs using the
semantic measure of choice. In the next step, we compute
an optimal matching of the terms’ constituent tokens. A
matching is optimal if it maximizes the sum of token-level
similarity scores. Finally, we calculate the normalized sum for
the optimal matching and take the result as the similarity score
for the given terms. More precisely, given a pair (t1, t2) of
terms, the (term-level) semantic similarity score, S (t1, t2), is:

S (t1, t2) = 2× sum of token similarity scores in optimal match

N1 +N2

where N1 and N2 denote the number of tokens in t1 and t2.
Fig. 4 illustrates the calculation of a similarity score for the

terms “satellite outage alert” and “link interruption warning”.
Here, the token-level similarity scores, shown on the lines that
connect the tokens, were calculated using the PATH measure.
The optimal matching between the tokens is shown using solid
lines. Based on this optimal matching, the similarity score for
the terms in question is: 2×(0.17+0.2+0.5)/(3+3) = 0.29.

2.3 Clustering
Clustering refers to the task of grouping related objects in a
manner that the objects in the same cluster are more similar
to one another than to the objects in other clusters [30].

To devise an accurate technique for clustering glossary
terms, we need to address two important factors. First, we
need to select a suitable clustering algorithm from the al-
ternatives available. Second, we need to define a strategy
for tuning the input parameters of the selected algorithm.
Having such a strategy is essential in order to avoid the end-
user from having to make ad-hoc decisions about the input
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parameters. In particular, virtually all clustering algorithms
require the number of clusters to be given a priori as an
input parameter. Naturally, the value of this parameter varies
from one requirements document to another, depending on
the document’s size and complexity. If a poor choice is made
about the number of clusters, the accuracy of clustering may
be severely compromised.

Below, we review the clustering algorithms examined in this
article as well as the criterion that we use for estimating the
optimal number of clusters for a given requirements document.

2.3.1 Clustering Algorithms
We experiment with three well-known clustering algorithms,
K-means, Agglomerative Hierarchical and EM, to determine
which one(s) are the most accurate in our application context.
Our choice of these algorithms is motivated by their prevalent
use for clustering of natural-language content [30]. Below, we
briefly outline these algorithms. Further details can be found
in clustering and data mining textbooks, e.g., see [30].

K-means partitions a given set of data points (in our context,
candidate terms) into K clusters, where K is an a-priori-
given number. Briefly, K-means attempts to assign each data
point to a cluster in a way that maximizes the similarity
between the individual data points in each cluster and the
center of that cluster, called a centroid. The centroids and
the cluster membership functions are iteratively improved
until convergence, i.e., when a fixpoint is reached. There are
alternative methods for initializing the centroids. In this article,
we use the baseline version of K-means, where the initial
centroids are selected randomly.

(Agglomerative) Hierarchical Clustering groups a set of data
points by building a tree-shaped structure, called a dendro-
gram. The data points constitute the dendrogram’s leaf nodes.
A dendrogram is not one set of clusters, but rather a cluster
hierarchy. Each non-leaf node in a dendrogram represents
a cluster made up of all leaf nodes (data points) that are
descendants of the non-leaf node in question. The algorithm
starts by assigning each data point to its own cluster. It then
finds the closest pair of clusters, i.e., the pair with the largest
similarity, or dually the shortest distance, and merges the
cluster pair into one cluster. This process is repeated until all
the data points have been absorbed into a single cluster, repre-
sented by the root node of the dendrogram. There are several
alternatives ways for computing the similarity, or dually, the
distance, between two clusters during hierarchical clustering.
In this article, we consider eight alternatives: average link,
centroid link, complete link, McQuitty’s link, median link,
single link, Ward.D link, and Ward.D2 link. A description of
these alternatives is provided in the appendix; see Table A.3.

Given a dendrogram, one can obtain a single set of clusters
either by cutting the dendrogram at a given height, H, or by
splitting the dendrogram into a given number, K, of clusters.
Either way, the value of the respective parameter has to be
specified by the user. We were unable to identify generalizable
guidelines to help decide the value of H in the first option
above. In this article, we therefore consider only the second
option, i.e., splitting into a prespecified number of clusters.

Expectation Maximization (EM) is a statistical clustering
algorithm. In this article, we use a common variation of EM,
where it is assumed that a set of observations –in our case, the
similarity degrees between candidate terms– is a combination
of a given number, K, of multivariate normal distributions [31].
Each distribution, characterized by its mean and covariance
matrix, represents one cluster. The EM algorithm attempts
to approximate the K individual distributions, so that their
combination best fits the observations. Here, K corresponds
to the number of clusters. Initially, the EM algorithm chooses
random values for the means and covariance matrices of the
distributions. The algorithm then iterates through the following
two steps until convergence:

– Expectation step: Given the means and covariance matri-
ces of the K distributions, estimate the membership probability
of each data point (candidate term) in each distribution.

– Maximization step: Estimate new values for the means
and covariance matrices of the K distributions, using
maximum-likelihood estimation [32].

Once the algorithm converges, each data point is assigned to
the cluster in which it has the largest membership probability.

2.3.2 Choosing the Number of Clusters

As we stated earlier, choosing an appropriate number of
clusters, denoted K in Section 2.3.1, is imperative for the
accuracy of clustering. If K is too large, closely related terms
will be scattered over different clusters rather than being
grouped together; if K is too small, we will be left with clusters
in which the terms have little or no relationship to one another.

Several metrics exist for estimating the optimal number
of clusters. Among these, Bayesian Information Criterion
(BIC) [33] is one of the most reliable [34], [30]. BIC is
computed as a byproduct of EM clustering. Nevertheless, the
metric is also commonly used for estimating K in both K-
means and hierarchical clustering [34], [30]. We use BIC as
the basis for assigning a value to K in our approach.

Briefly, BIC is a measure for comparing statistical models
with different parameterization methods, different numbers
of components, or both [31]. When developing a statistical
model to fit given data, one can improve the fit by adding
additional parameters. This may however result in overfitting.
To avoid overfitting, BIC penalizes model complexity so that it
may be maximized for simpler parameterization methods and
smaller numbers of components (clusters, in our case) [31].
The larger the BIC value is, the better the fit and consequently
the better the selected number of clusters. Adapting BIC to
our application context is the subject of one of our research
questions; see RQ3 in Section 5.6.3.

2.4 Related Work

As noted earlier, this article is an extension of a previous
conference paper [13]. In this section, we discuss and compare
with several other strands of related work in the areas of term
extraction, clustering, and NLP.
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2.4.1 Term Extraction
We organize our review of term extraction into two parts: (1)
general literature and tools, and (2) relevant research in the
subject field of this article, i.e., Requirements Engineering.

General literature and tools. Term extraction has been studied
in many domains and under numerous titles, including termi-
nology identification, terminology mining, term recognition,
term acquisition, keyword extraction, and keyphrase detec-
tion [7]. Term extraction approaches can be broadly classified
into three categories [35]: linguistic, statistical, and hybrid.

Linguistic approaches aim at specifying patterns for detect-
ing terms based on their linguistic properties, e.g., their POS
tags. For example, Bourigault [36] describes a linguistic ap-
proach for extracting terms by eliminating certain grammatical
patterns like pronouns and determiners, and then using regular
expressions based on POS tags to extract certain combinations
of NPs. Aubin and Hamon [37] use a combination of chunking
and parsing to extract both simple and complex NPs.

Statistical approaches select terms based on statistical mea-
sures such as frequency and length. For example, Jones et
al. [38] develop a statistical approach for identifying keywords
by assigning ranks to word sequences in a document in
such a way that frequently-occurring sequences which have
many frequently-occurring words receive a high rank. In a
similar vein, Matsuo and Ishizuka [39] use the co-occurrence
frequency of words and of sequences of words for identifying
keywords.

Hybrid approaches are combinations of linguistic and sta-
tistical ones. For example, Barker et al. [8] first employ
text chunking for identifying the NPs in a given text, and
subsequently filter out terms that are unlikely to be keywords
based on frequency and length.

Our approach is a linguistic one. We do not use statistical
measures because these measures primarily serve as filters.
Speaking in terms of classification accuracy metrics, filtering
improves precision, i.e., it decreases false positives. However,
improvements in precision may come at the cost of losses
in recall, i.e., increases in false negatives. For large and het-
erogeneous corpora, e.g., book and article collections, online
commentary and – in the case of software – repositories of de-
velopment artifacts, statistical measures, notably frequencies,
provide a useful indicator for the importance of terms. Over
such corpora, filtering based on statistical measures is often
essential in order to achieve reasonable precision. In require-
ments documents, however, every individual statement is ex-
pected to have a clear and non-redundant purpose. Therefore,
terms in requirements documents, regardless of their statistical
characteristics such as frequencies, have the potential to bear
important content. Consequently, using statistical filters over
requirements documents is likely to have a significant negative
impact on recall. In our work, we take a conservative approach
toward filtering. In particular, we do not filter any terms on
statistical grounds. The only filter we apply is a linguistic one
over common nouns, as we explain in Section 3.

With regard to tool support for term extraction, several
generic tools are already available, including the following:
• JATE (Java Automatic Term Extraction toolkit) [40] im-

plements several term extraction techniques developed
and used by the Information Retrieval (IR) community.

• TextRank [10] is a general text processing tool, with term
extraction being one of its constituent parts. Extraction is
performed based on POS tags, and an undirected graph
in which edges represent pairwise relationships between
terms based on their level of co-occurrence.

• TOPIA [9] is a widely-used Python library for term
extraction based on POS tags and simple statistical mea-
sures, e.g., frequencies.

• TermRaider [11] is a term extraction module imple-
mented as a plugin for the GATE NLP Workbench [41].
TermRaider uses advanced heuristics based on POS tags,
lemmatization, and statistical measures.

• TermoStat [42] is a term extraction tool based on POS
tags, regular expressions, and frequency-based measures.

All the aforementioned tools are based on hybrid techniques.
As we demonstrate in Section 5, over requirements documents,
our proposed term extraction technique yields better recall
than these tools without compromising precision. Our work
is further distinguished from these tools in that it clusters the
extracted terms based on relatedness.

Term extraction in Requirements Engineering. Term extrac-
tion has been tackled previously in Requirements Engineering.
Aguilera and Berry [43] and Goldin and Berry [44] present
frequency-based methods for identifying terms that appear
repeatedly in requirements. They refer to these terms as
“abstractions” which are likely to convey important domain
concepts. Popescu et al. [45] extract terms from restricted nat-
ural language requirements using parsing and parse relations.
Zou et al. [46] use a POS tagger for extracting single- and
double-word noun phrases, and then filter the results based on
frequency measures and certain heuristics. Kof et al. [47] use
POS tags, named-entity recognition, parsing, and heuristics
based on sentence structures for extracting domain-specific
requirements terms. Dwarakanath et al. [48] use parsing for
extracting the phrases of requirements documents and then
filter the results based on heuristics and frequency-based
statistics. And, Ménard and Ratté [49] extract domain-specific
concepts from business documents (including requirements)
using POS tag patterns and various heuristics.

In addition to the above work which concentrates on
requirements, there is work on term extraction from the
broader set of software artifacts, aimed at improving software
comprehension. For example, Sridhara et al. [50] extract
terms from code and documentation, and subsequently use
semantic similarity measures for assisting software developers
in identifying information that is relevant to a search query. In
a more specific context, Abebe and Tonella [51] and Abebe et
al. [52] use NLP parsing for supporting programmers in the
task of identifying maintenance-related terms from the names
of methods, classes, and attributes in software code.

All these existing threads of work have helped us in better
tailoring our term extraction technique to requirements. The
main technical novelties contrasting our work from earlier
work are the following: (1) We use text chunking for iden-
tifying candidate terms; text chunking is more accurate and
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generalizable than pattern-based techniques based on POS
tags, and more robust and scalable than parsing for phrase
detection [53]. And, (2) we apply clustering for grouping can-
didate terms. Furthermore, and for reasons discussed earlier,
our term extraction technique does not use statistical filters.

2.4.2 Clustering

Grouping together (clustering) related terms has been studied
in the field of Information Retrieval. Existing approaches rely
on pre-defined patterns of POS tags for identifying relatedness.
Daille [54] uses the prefix POS tags of NPs for identifying ad-
jectival and prepositional modifications. For example, their ap-
proach would group the terms “package” and its adjectivally-
modified form “biodegradable package”. Similarly, Bourigault
and Jacquemin [55] group related terms based on patterns of
noun modifiers. For example, their approach would group the
terms “cylindrical cell” and “cylindrical bronchial cell”. The
main difference between our approach and the above is that,
instead of patterns, we use syntactic and semantic similarity
measures for detecting relevance. For unrestricted natural-
language content, an exhaustive enumeration of all patterns of
interest is very difficult; pattern-based approaches are therefore
prone to incompleteness. Our approach does not suffer from
this issue. Furthermore, our approach can systematically deal
with morphological and semantic relatedness, which existing
pattern-based approaches do not address sufficiently.

In the field of Requirements Engineering, clustering has
been already applied for a variety of purposes. Ferrati et
al. [56] cluster requirements statements in order to organize
them into cohesive sections within requirements documents.
Arafeen and Do [57] use requirements clustering as an enabler
for test case prioritization. Chen at. al. [58] cluster related
requirements for building product-line feature models. Duan
et al. [59] apply and empirically evaluate the usefulness of dif-
ferent clustering techniques for grouping related development
artifacts (requirements, test cases, classes, etc.) and support-
ing traceability. They further provide guidelines for selecting
the number of clusters in this application context. Finally,
Mahmoud [60] uses clustering for classifying non-functional
requirements and tracing them to functional requirements.

Our application of clustering is guided by the same prin-
ciples as in the above threads of work. Nevertheless, these
threads do not use clustering to achieve the same end goal
as ours, which is grouping together candidate glossary terms.
A critical prerequisite for applying clustering effectively is to
identify, for a specific analytical task, a suitable combination
of a clustering algorithm and similarity measures. Doing so
requires empirical studies that focus on the task at hand. To
our knowledge, an empirical study similar to the one in this
article does not exist for the task of building glossaries.

2.4.3 Natural Language Processing

In addition to term extraction, reviewed in Section 2.4.1, there
are several other Requirements Engineering tasks in which
NLP has been used for automation. These tasks include,
among others, identification of inconsistencies and ambigui-
ties [61], [62], [63], [64], [65], [66], [67], requirements tracing

[59], [68], [69], [70], [71], [72], requirements change analy-
sis [73], detection of redundancies and implicit requirements
relations [74], [75], extraction of models from requirements
[76], [77], identification of use cases [78], markup generation
for legal requirements [79], [80], enforcement of requirements
templates [16], synthesis of user opinions about features [81],
[82], and requirements identification [83].

The NLP techniques we use in this article are not new to the
Requirements Engineering community. Nevertheless, the NLP
techniques underlying our approach, notably text chunking and
semantic similarity measures, have not been systematically
studied alongside clustering before. Furthermore, empirical
studies that investigate the effectiveness of NLP over industrial
requirements remain scarce. The case studies we report on in
this article take a step toward addressing this gap.

3 APPROACH

Fig. 5 shows an overview of our approach. Given a (natural-
language) requirements document, we first construct a list
of candidate glossary terms. In the next step, we compute a
similarity matrix for the extracted terms. In the third and final
step, we cluster the terms based on their similarity. The rest
of this section elaborates each of these steps.

3.1 Extracting Candidate Glossary Terms
Using text chunking, this step extracts a set of candidate glos-
sary terms from a given requirements document. As explained
in Section 2.1, from the results of text chunking, we need
only the NPs. Following text chunking, all the extracted NPs
are processed and cleared of determiners, pre-determiners,
cardinal numbers, and possessive pronouns. For example, “the
system operator” is reduced to “system operator”. Further-
more, plural terms are transformed into singular terms using
lemmatization. For example, “GSI anomalies” is transformed
into “GSI anomaly”.

Subsequently, we refine the list of terms by applying the
heuristics listed in Table 1. The first heuristic in the table aims
at re-establishing the context that may have been lost for some
NPs. Specifically, text chunking decouples concepts from their
attributes / subparts connected by “of” or a possessive ’s. For
example, the phrase “status of GSI component” gives rise to
two NPs: “status” and “GSI component”. However, “status” is
unlikely to be useful as a term outside its context. To capture
this intuition, we add to the list phrases of the form: NP of
NP and NP’s NP.

The second heuristic adds to the list of terms: (1) any all-
capital token appearing within some NP, and (2) any con-
tinuous sequence of tokens marked as proper nouns (NNPs)
by the POS tagger within the boundary of an individual NP.
For example, the token “GSI” in “GSI component” will be
added to the list as an independent term and so will “Ground
Station Interface” if an NP such as “Ground Station Interface
component” is already on the list. This is despite the fact that
“GSI” and “Ground Station Interface” may never appear in the
document as NPs. This heuristic is targeted at ensuring that
potential abbreviations and named entities will have dedicated
entries in the list of terms.
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Fig. 5. Approach overview.

TABLE 1
Heuristics applied to the results of text chunking.

Heuristic Description Example
NP of NP / NP’s NP The combination of two NPs sepa-

rated by “of” or a possessive ’s is
added to the list of terms.

“status of GSI component”

The second NP, i.e., “GSI Component” provides the
context for the first NP, i.e., “status”.

Special tokens and se-
quences of proper nouns

Abbreviations and sequences of
proper nouns (marked as NNP by the
POS tagger) within individual NPs are
added as independent entries to the
list of terms.

“GSI component” / “Ground Station Interface component”

The abbreviation “GSI” and the sequence of proper
nouns “Ground Station Interface” are extracted and added
as independent entries to the list of terms.

Common nouns Single-word phrases that have a
meaning in an English dictionary are
filtered out.

“status”

This NP is unlikely to contribute to the glossary un-
less coming alongside its context, e.g., as in “status of GSI
component”, or is capitalized to signify a probable proper
noun.

The last heuristic in Table 1 is for filtering common nouns.
By a common noun, we mean a single-word noun, e.g.
“status”, that is found in an (English) dictionary. We use
the WordNet dictionary [84] for word lookup operations. The
rationale for filtering common nouns is that these nouns are
often generic and polysemous, and thus, outside their context,
unlikely to contribute to the glossary [55]. Single-word nouns
that are not found in a dictionary or are capitalized will be
retained in the list of terms.

Finally, we remove any duplicates from the list of terms.
Fig. 1(b) shows the list of terms derived from the requirements
of Fig. 1(a) through the process described above.

Measuring the accuracy of our term extraction technique
and comparing the accuracy to that of generic term extraction
tools is the subject of one of our research questions; see RQ1
in Section 5.6.1.

3.2 Computing Similarities between Terms
This step computes a similarity matrix to capture the degree of
relatedness between every pair of candidate terms extracted in
the previous step. To compute this matrix, we consider three
alternative strategies [73]:

1) syntactic only, where a similarity, Ssyn(t, t ′), is com-
puted for every pair (t, t ′) of terms using a syntactic
measure, e.g., SoftTFIDF;

2) semantic only, where a similarity, Ssem(t, t ′), is com-
puted for every pair (t, t ′) of terms using a semantic
measure, e.g., JCN;

3) combined syntactic and semantic, where, given a syntac-
tic measure syn and a semantic measure sem, we take,

for every pair (t, t ′) of terms, max(Ssyn(t, t ′),Ssem(t, t ′)).
Using max. is motivated by the complementary nature
of syntactic and similarity measures [29], [85].

Choosing the best strategy from the above and the specific
similarity measures to use are addressed by RQ2 and RQ4;
see Sections 5.6.2 and 5.6.4.

3.3 Clustering Terms
In this step, we cluster the candidate terms based on their
degree of relatedness. The inputs to this step are the similarity
matrix (or dually, the distance matrix in the case of hierarchical
clustering), the choice of clustering algorithm to use, and the
number of clusters, K, to generate. As the result of cluster-
ing, the terms are grouped into K partitions. For example,
Fig. 1 (c) shows a partitioning of the terms in Fig. 1 (b) with
K = 8. The clustering algorithm applied here is EM and the
similarity measure used is SoftTFIDF alone (i.e., without an
accompanying semantic measure).

In our empirical evaluation of Section 5, we investigate
all the key questions related to tuning clustering for use
in our application context. Specifically, identifying the most
accurate clustering algorithm(s) is addressed in RQ2 and RQ4.
Choosing a suitable K is tackled in RQ3; see Section 5.6.3.

4 TOOL SUPPORT
We implement our approach into a tool named REGICE
(REquirements Glossary term Identification and ClustEring
tool). The components of REGICE are shown in Fig. 7.

First, the requirements provided by the user are processed
by a text chunker in the GATE NLP Workbench [41]. GATE is
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Fig. 6. Screenshot of REGICE (implemented in GATE [41]) with two computed clusters highlighted.
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Fig. 7. Tool Overview.

an infrastructure built over a large collection of heterogeneous
NLP technologies, making it possible for these technologies
to interact and work together. Within GATE, there are sev-
eral alternatives for implementing the text chunking pipeline
discussed in Section 2.1. Among the alternatives, we use
OpenNLP [86]. This choice is based on a comparative study
in our previous work [16], where we found the OpenNLP
chunking pipeline to be one of the most accurate and robust
alternatives over requirements documents. The heuristics we
apply for refining the results of text chunking (Section 3.1)
are implemented using scripts written in GATE’s regular
expression language, JAPE (Java Annotation Patterns Engine).

We use SimPack [87] for computing syntactic similari-
ties and SEMILAR [88] for computing semantic similarities

between the extracted terms. Both libraries are Java-based.
The default syntactic measure in REGICE is SoftTFIDF. No
semantic measure is used by default, although the user has
the option to choose any of the semantic measures provided
by SEMILAR. Our default choices are based on our empirical
observations (from RQ4) in Section 5.

For clustering and computing the BIC (Section 2.3.2),
we use the R statistical toolkit [89]. The default clustering
algorithm in REGICE is EM, again based on our empirical
observations (from RQ4). The R library used for clustering
depends on the choice of the clustering algorithm. K-means
and all variants of hierarchical clustering are done using the
stats package. EM clustering and BIC computation are done
using the mclust package [31].

The number of clusters to generate is determined automat-
ically using R scripts that implement the guidelines derived
from our empirical results (RQ3). The user has the option
to override the automatic recommendation for the number of
clusters and provide a different number of clusters.

Once run on a given set of requirements, REGICE yields
two outputs: (1) a flat list of extracted terms written out
to a file, and (2) a set of term clusters. For presenting the
clusters, the tool can either store them in a file as labeled sets,
similar to what is shown in Fig. 1(c), or visually highlight the
clusters over the requirements through GATE’s user interface.
We illustrate this user interface in the screenshot of Fig. 6.
The requirements in this screenshot are from the example of
Fig. 1. As shown by the right panel of the screenshot, each
cluster is represented as an annotation type. When a cluster
(annotation type) is selected, all the terms in that cluster are
highlighted in the document. This visual representation has the
advantage that it preserves the context where each term in a
given cluster appears.
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When working with clusters, we expect that the user would
focus on one cluster at any given time. Once a cluster has been
selected for inspection, the user may first want to ensure that
there is no unknown and potentially undesirable synonymy in
the cluster. For instance, in the example of Fig. 1(c), the user
may elect to eliminate from the requirements document either
“GSI component status” or “status of GSI component” in order
to make the terminology consistent. In the next step, the user
may select from the cluster under investigation the terms that
need to be defined in the glossary, and subsequently proceed
to write definitions for the selected terms. While a cluster
may not directly contribute to writing definitions for the terms
in it, our empirical results (Section 5.6) suggest that clusters
do provide useful assistance in this task by bringing together
the related terms, e.g., domain concepts and their attributes.
Finally, the user may choose from a cluster any related terms
that need to be mentioned alongside a glossary term.

The components of REGICE have been integrated together
via glue code written in Java. REGICE, including the R and
JAPE scripts, is approximately 2000 lines of code excluding
comments and third-party libraries. The tool is available at:

https://sites.google.com/site/svvregice/

5 EMPIRICAL EVALUATION

We evaluate our term extraction and clustering techniques over
three industrial case studies. In this section, we elaborate the
research questions that motivate our evaluation and report on
the design, execution and results of the case studies.

5.1 Research Questions
Our evaluation aims to answer the following research ques-
tions (RQs):

RQ1. How accurate is our approach at extracting glossary
terms? A set of candidate terms is accurate if it neither
includes too many unwanted terms (false positives) nor misses
too many desired terms (false negatives). The aim of RQ1 is
to evaluate the accuracy of text chunking, enhanced with our
heuristics, at detecting glossary terms.

RQ2. Which similarity measure(s) and clustering algo-
rithms(s) yield the most accurate clusters? The choice of
similarity measures and clustering algorithm can have a major
impact on the quality of the generated clusters. The aim
of RQ2 is to examine alternative combinations of similarity
measures and clustering algorithms, and identify the best
alternatives in terms of accuracy.

RQ3. How can one specify the number of clusters? A
bad choice for the number of clusters can compromise the
accuracy of clustering and potentially render the resulting
clusters useless. The aim of RQ3 is to develop systematic
guidelines for choosing an appropriate number of clusters for
a specific requirements document.

RQ4. Which of the alternatives identified in RQ2 are the
most accurate when used with the guidelines from RQ3?
RQ2 uses an averaging metric for identifying the most accurate
clustering algorithms and similarity measures. This metric

is not a direct indication of accuracy at a fixed number of
clusters. From a practical standpoint, one needs to know
which combinations of clustering algorithms and similarity
measures are best when the number of clusters is set as per
the recommendation from RQ3. The aim of RQ4 is to find the
combinations that work best with the guidelines of RQ3.

RQ5. Does our approach run in practical time? One should
be able to perform candidate term extraction and clustering
reasonably quickly, even when faced with a large number of
requirements. The aim of RQ5 is to investigate whether our
approach has a practical running time.

RQ6. How effective is our clustering technique at grouping
related terms? Clustering can be a useful assistance to analysts
during glossary construction only if the generated clusters
are sufficiently accurate. Drawing on the clustering accuracy
results from our case studies, RQ6 argues about the overall
effectiveness of our clustering technique.

RQ7. Do practitioners find the clusters generated by our
approach useful? Ultimately, our clustering technique is
valuable only if practitioners faced with real Requirements
Engineering tasks find the generated clusters useful. RQ7 is
aimed at assessing the perceptions of the experts involved in
our case studies about the usefulness of the generated clusters.

5.2 Description of Case Studies
Table 8 provides, for each of our case studies, a short descrip-
tion, the case study domain, and the number of requirements
statements in the respective requirements document.

The first case study, hereafter Case-A, concerns a software
component developed by SES Techcom – a satellite commu-
nication company – for a satellite ground station. Case-A has
380 requirements. The second case study, hereafter Case-B,
concerns a safety evidence management system built in an EU
project, OPENCOSS (http://www.opencoss-project.eu), with
participation from 11 companies and 4 research institutes.
Case-B has 110 requirements. The third case study, hereafter
Case-C, concerns a satellite data dissemination network de-
veloped in a European Space Agency (ESA) project with par-
ticipation from several telecommunication companies. Case-C
has 138 requirements. Case-A and Case-C are proprietary;
whereas Case-B is public. To facilitate replication, we make
the material for Case-B available on our tool’s website (see
Section 4).

For each case study, we involve a subject matter expert
with in-depth knowledge about the respective case. In Case-A
and Case-B, the experts were requirements analysts who were
closely involved in drafting the requirements; and in Case-C,
the expert was the project manager.

We have used the requirement documents in Case-A and
Case-B as case study material before [16]. In both cases, the
requirements writers had made a conscious attempt to structure
the requirements sentences according to Rupp’s template [4].
Specifically, 64% of the requirements in Case-A and 89% of
the requirements in Case-B conform to Rupp’s template [16].
We are using Case-C as case study material for the first time.
No particular template was used in the requirements of Case-C.
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Case Description Domain Number of 
Requirements 

Case-A Requirements for a software component in a 
satellite ground station 

Satellites 380 

Case-B* Requirements for a safety evidence management 
system 

Safety certification of 
embedded systems 

110 

Case-C Requirements from a data dissemination network 
solution for satellites. 

Satellites 138 

 

* The material for Case-B is available on our tool’s website (see Section 4).  

Fig. 8. Description of case studies.

In Section 6, we argue why the use of a template in Case-A
and Case-B does not pose major validity threats. Except for
the elicitation of glossary terms for Case-A and Case-B (see
Section 5.4.1), all the empirical work reported in this section
was conducted as part of our current research.

5.3 Case Selection Criteria

We had the following criteria in mind when selecting our case
studies:
• We were interested in requirements documents that are

reasonably large (> 100 requirements), first, because
automated term extraction and clustering is unlikely to
provide compelling benefits over very small requirements
documents, and second, because we would not be able to
adequately evaluate the execution time of our approach
(RQ5) using small documents.

• We wanted to cover cases from different domains. In
general, conducting multiple case studies is useful for
mitigating external validity threats. In our investigation,
increasing external validity is particularly important for
RQ3, due to the impact that the choice of the number of
clusters has on the quality of the generated clusters.

• We wanted to work on cases where we could have direct
access to subject matter experts. Particularly, to evaluate
the accuracy of our approach, we need a gold standard,
covering both the ideal glossary terms and the ideal clus-
ters of related terms. Building a trustworthy gold standard
requires deep knowledge about the problem domain and a
significant level of commitment. Consequently, ensuring
the availability of experts throughout our investigation
was an important criteria.

• We were interested in requirements from recent or on-
going projects. Old requirements are unsuitable for our
evaluation, both due to the experts’ potential lack of
interest to revisit these requirements, and also due to
the high likelihood that the experts would not be able
to readily remember all the details.

The cases we have selected satisfy the above criteria.

5.4 Data Collection Procedure

Data collection was targeted at building the ideal set of
glossary terms and clusters. We elicited the ideal glossary
terms directly from the experts. As for the ideal clusters,

they were elicited indirectly and through the construction of
a domain model. Below, we detail the process for glossary
term elicitation and domain model construction. The process
for deriving ideal clusters from a domain model is discussed
as part of our analysis procedure (see Section 5.5.1). Note that
the domain model and ideal clusters are only for evaluation
purposes and not a prerequisite for applying our approach.

5.4.1 Glossary Term Elicitation
Despite the requirements in all our case studies having reached
stability, no glossary was available for the requirements yet. To
identify the glossary terms, we held walkthrough sessions with
the respective expert in each case study. In these sessions, the
expert would first read an individual requirements statement
and then identify the glossary terms in that particular state-
ment. The expert was asked to specify all the glossary terms in
a given statement, irrespective of whether the terms had been
already seen in the previous statements. When the expert was
doubtful as to whether a term belonged to the glossary, they
were instructed to include the term rather than leave it out, as
recommended by glossary construction best practices [4].

The researchers’ role in the walkthrough sessions was
limited to moderating the sessions and keeping track of the
experts’ choices about the glossary terms. Once the expert in
each case study reviewed all the requirements statements in
the case study, a duplicate-free list of the terms chosen by the
expert for the glossary was created. For Case-A and Case-B,
these lists were built as part of our previous work [16]. The
experts were allowed to revise these lists during domain model
construction (described next), which took place after glossary
term elicitation. The final lists of terms are used as the gold
standard for answering RQ1.

5.4.2 Domain Model Construction
To evaluate the accuracy of our clustering technique, we
need a set of ideal clusters. Rather than eliciting the ideal
clusters directly, we first build a domain model – a conceptual
representation of a domain – and then infer the ideal clusters
from this domain model using the procedure described later.
Intuitively, we would like each ideal cluster to bring together
some glossary term and its “related” terms. The role of a
domain model in this context is to specify what “related”
means for every glossary term.

We observe that behind every requirements document, there
is a domain model. This domain model may never be built



12

explicitly, or may be partial when it is built. Nevertheless, the
observation has useful implications in terms of evaluating our
approach. Particularly, given a domain model and a mapping
from each concept and attribute of this model onto the terms in
the requirements document, one can come up with a systematic
procedure for inferring the ideal clusters (Section 5.5.1). Such
a procedure presents two key advantages: First, it alleviates
the need for the domain experts to construct the ideal clusters
manually – a task that is very laborious for large requirements
documents such as those in our case studies. Second, although
one can never entirely remove subjectivity from how a domain
model is constructed and how relatedness is defined, by
building an explicit domain model and formulating relatedness
in a precise way, one can subject our evaluation process to
scientific experimentation.

For the purposes of our evaluation, the main property we
seek in a domain model is the following: Given a glossary
term t, the domain model should be able to give us all the
terms in the underlying requirements document that are con-
ceptually related to t. We limit conceptual relationships to spe-
cializations, aggregations and compositions. Specializations
represent is-a relationships. Aggregations and compositions
both denote containment relationships, with the difference
being that, in aggregations, the contained objects can exist
independently of the container; whereas in compositions, the
contained objects are owned by the container and thus cannot
exist independently of it. Specializations, aggregations, and
compositions constitute some of the most basic relationships
between concepts and are thus instrumental for capturing
relatedness between terms.

In Fig. 9, we show a small (and sanitized) fragment of the
domain model for Case-A. We use UML class diagrams for
expressing domain models, as is common in object-oriented
analysis [90]. In the figure, compositions are shown using
a solid diamond shape and aggregations – using a hollow
diamond shape.

We note that a domain model is not merely a structured
representation of the content of a requirements document. This
model further has to account for the tacit information that
is not reflected in the requirements but is yet essential for
properly relating the terms in the requirements. Examples of
such tacit information in the class diagram of Fig. 9 are the
composition associations from GSI to GSI Monitoring Information
and GSI Component.

We associate each element (concept or attribute) x in the
domain model with a set, Var(x), of variant terms that are con-
ceptually equivalent to x. For example, consider the availability
attribute of GSI Component in the model fragment of Fig. 9.
This attribute is referred to in the requirements document
using three variant terms: “availability” (where the link to GSI
Component is implicit), “availability of GSI Component” and
“GSI component’s availability”. To avoid clutter in the figure,
we have not shown Var(x) when this set has only one term
and that term coincides with the name label of x.

We use the notion of Var to describe how we built the
domain models. We first reviewed the requirements document
in each case study to identify all variants of the glossary terms
elicited previously from the respective expert (Section 5.4.1).

Var(status):
- status
- status of GSI component
- GSI component status

Var(availability):
- availability
- availability of GSI component
- GSI component’s availability

Var(constraints):
- constraint
- GSI component constraint

Ground Station 
Interface

(GSI) status
availability
constraints

GSI Component

GSI Monitoring 
Information

GSI 
Anomaly

GSI Output 
Parameter

GSI Input 
Parameter

DB Server

Attributes:
status; availability

Fig. 9. A fragment of the domain model for Case-A.
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LOC-A-GS LOC-C-GSLOC-B-GS

GS Communication 
Protocol

SNMPv3 TCP/IP

(a) (b)

Fig. 10. Domain model versus glossary: grayed-out
model elements have no corresponding glossary terms.

Let T be the set of glossary terms and all variants thereof,
discovered through the aforementioned review. We built our
domain model M for each case study in a way to ensure that
all the terms in T were represented by some element x in
M , i.e., to ensure that T ⊆ ⋃

x∈M Var(x). For our purposes,
we would have liked M to represent nothing but the terms
in T , i.e. to have T =

⋃
x∈M Var(x). However, we found this

constraint to be restrictive in that it could reduce the logical
completeness of the domain model. We illustrate this point
using the domain model fragments (from Case-A) that are
shown in Fig. 10.

In the model fragments of Fig. 10, the grayed-out elements,
Ground Station and TCP/IP, have no corresponding terms in the
glossary although both elements have corresponding terms
in the requirements document. In the model fragment of
Fig. 10(a), the expert decided that the specific ground stations
built at locations A, B, and C (actual locations sanitized)
would need to be defined in the glossary; whereas, the abstract
concept of ground station would not. A similar situation
applies to the model fragment of Fig. 10(b): although it is
important, for completeness reasons, to model TCP/IP as a
protocol alongside SNMPv3, the expert did not see a need to
define TCP/IP in the glossary because it is a widely-known
and standard protocol.

In general, we attempted to closely orient the domain mod-
els in our case studies around the glossary terms. Nevertheless,
in situations like those illustrated in Fig. 10, we opted to keep
the non-glossary-related elements in the domain model for
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completeness. The domain models were built collaboratively
with the involved experts. As noted in Section 5.4.1, the
experts were allowed to refine their choice of glossary terms
based on insights gained during domain model construction.

Finally, to be able to properly handle requirements about
data storage and transfer, we made a modeling decision that
we illustrate using requirements R2 and R6 of Fig. 1(a). These
requirements envisage that “DB server” shall store the status
and availability of “GSI Component”. As shown in Fig. 9, we
model the relationship between DB Server and GSI Component
as an aggregation, while keeping track of any specifically-
named attributes, here, status and availability, that participate
in the relationship. For deriving ideal clusters from such
an aggregation, as we explain in Section 5.5.1, we use the
participating attributes rather than the contained concept itself.
This strategy helps make the ideal clusters more precise and
better aligned with the requirements document.

5.4.3 Expert Interview Survey
We conducted an interview survey with the experts in our case
studies in order to assess the experts’ perceptions about the
usefulness of our approach. Specifically, we chose a subset of
the generated clusters in each case study, and asked the expert
in that case study to evaluate these clusters individually on the
basis of the three statements shown in Fig. 11. For Case-A and
Case-C, the clusters in the survey are a random selection of 20
from our tool’s output when executed with the default settings
presented in Section 4. For Case-B, the tool yields 27 clusters,
all of which are covered in the survey.

The statements in Fig. 11 address three important tasks
that analysts need to perform during the construction of a
glossary: Statement 1 concerns the identification of related
terms. Statement 2 concerns writing definitions for the glossary
terms. The rationale for including Statement 2 in our survey
is that the additional context provided by a cluster (when
compared to disparate individual terms) can help the analysts
in writing more precise definitions for the glossary terms.

Statement 3 addresses a specific type of related terms,
namely variations (synonyms). Although related terms are
already covered by Statement 1, we elected to have a dedicated
statement about variations, since variations can potentially be
undesirable: from our experience, we observe that industrial
requirements are prone to containing unintended variations,
both due to the flexibility of natural language and also
due to differences in terminology and style across different
individuals and organizations. It is important to bring such
variations to the attention of the analysts, so that they can
take appropriate action. Statement 3 specifically examines
whether the generated clusters are good means for identifying
variations, which in many cases are unintended and potentially
unknown.

The survey for each case study was conducted in a single
session. To avoid interviewee fatigue, we limited the sessions
to a maximum duration of 1 hour each. At the beginning of a
session, we introduced to the (respective) expert the statements
in Fig. 11 along with examples clarifying the motivation
behind each statement. The relationship between Statement 1
and Statement 3 was further highlighted to the expert.

In the next step, the expert was asked to review the selected
clusters in succession, and for each cluster, express their
opinion about Statements 1, 2, and 3 on a five-point Likert
scale [91]. For Statement 3, since not all clusters necessarily
contain variations, the expert had an additional choice, “Not
Relevant”, to be used when they believed that a certain cluster
did not contain any variations. The expert was reminded that,
for all three statements, the opinion should be based on the
glossary terms they saw in the cluster being reviewed. In
particular, the expert was told that, if they did not see any
glossary terms in a cluster, they should refrain from choosing
either “Strongly Agree” or “Agree”, although they may still
see some benefit in the information provided by the cluster.

To ensure that the experts had a correct understanding of
the statements in Fig. 11, we asked each expert to verbalize
their reasoning for the first five clusters that they reviewed.

We note that we conduct one interview per case study.
Ideally, one should have interviews with multiple experts in
each case to enable comparison and increase the reliability of
the results. In our work, having more than one interview for
each case study was infeasible because any respondent would
have to have full familiarity with the requirements before
they could meaningfully answer the interview questions. To
mitigate the effect of potential expert errors, our interview
covers a reasonably large number of clusters (at least 20
clusters, as discussed earlier) for each case study.

5.5 Analysis Procedure
5.5.1 Inferring Ideal Clusters
Equipped with a domain model M and a function Var(x) for
every concept and attribute x ∈M (as defined in Section 5.4),
we infer the ideal clusters as we describe next.

Ideal clusters are created around concepts, with the concept
attributes contributing to some of the clusters. For every
concept c∈M , we add to the set of ideal clusters one cluster,
I, computed as follows: Let a1, . . . ,ak denote c’s attributes, and
let c1, . . . ,cn be the set of (parent) concepts that are directly
or indirectly specialized by c (via specialization).

I =Var(c) ∪
⋃

1≤i≤kVar(ai) ∪⋃
1≤i≤nVar(ci) ∪⋃{Var(a) |a is an attribute of some ci; 1≤ i≤ n} ∪

⋃{Var(s) |s is a sibling of c via some ci; 1≤ i≤ n}.
For example, let c be the GSI Anomaly concept in Fig. 9.

We create a cluster by grouping together the following: c’s
variant terms (only, “GSI Anomaly”); variant terms for c’s
attributes (none); variant terms for c’s parents (“GSI Monitor-
ing Information”) and parents’ attributes (none); and variant
terms for c’s siblings (“GSI Input Parameter” and “GSI Output
Parameter”).

The above process captures relatedness between each
concept and its attributes as well as between each
concept and other concepts that immediately relate to
it via the domain model’s inheritance hierarchy. To
deal with compositions and aggregations, we follow a
separate process: let c1 and c2 denote the two ends of a
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Statement 1. I find this cluster helpful for identifying the related terms for a glossary term.
❑ Strongly Agree ❑ Agree Disagree Strongly DisagreeNeutral ❑ ❑❑

Statement 2. As the result of seeing this cluster, I can define a glossary term more precisely than I originally had in mind.
❑ Strongly Agree ❑ Agree Disagree Strongly DisagreeNeutral ❑ ❑❑

Not Relevant❑

Statement 3. I find this cluster helpful for identifying the variations (synonyms) of a glossary term.
❑ Strongly Agree ❑ Agree Disagree Strongly DisagreeNeutral ❑ ❑❑

Fig. 11. Statements for assessing the usefulness of a cluster.

composition or aggregation association. We add one cluster
J = Var(c1)∪Var(c2) to the set of ideal clusters for each
such association. For example, consider the two composition
associations in Fig. 9. These induce the following clusters:
{“Ground Station Interface”,“GSI Monitoring Information”}
and {“Ground Station Interface”,“GSI Component”}.

The only exception to the above are aggregations in which
explicitly-named attributes of the contained concept partici-
pate (see Section 5.4.2). For such aggregations, we bypass
the contained concept and use the named attributes directly
for the derivation of ideal clusters. For example, for the
aggregation between DB Server and GSI Component in Fig. 9,
we create one cluster for each status and availability. This
yields two ideal clusters: (1) Var(DB Server)∪Var(status), and
(2) Var(DB Server)∪Var(availability).

Our treatment of composition and aggregation associations
is motivated by the fact that while a container concept (e.g.,
Ground Station Interface) is related to each of the contained
concepts, there is a weaker or no relationship between the
contained concepts (e.g., GSI Component and GSI Monitoring
Information). Hence, putting the contained concepts together
into the same cluster, only because they happen to be contained
by the same container concept, does not seem reasonable.

After creating the ideal clusters in the manner described
above, we remove duplicates and any ideal cluster I that
is properly contained in some other ideal cluster I′ (i.e., if
I ⊂ I′). We use the resulting clusters as the gold standard for
evaluation. The ovals in Fig. 18 show the ideal clusters for the
example of Fig. 1. We discuss Fig. 18 further when addressing
RQ6 (Section 5.6.6).

5.5.2 Evaluation Procedure
There are two main evaluation procedures underlying our
empirical results: one is for assessing the accuracy of candidate
terms, and the other – for assessing the accuracy of clusters:

Accuracy of candidate terms. We use standard classification
accuracy metrics, precision and recall [19], to evaluate the
accuracy of candidate terms (step 1 of the approach in Fig. 5).
The task at hand is to determine which extracted terms belong
to the glossary and which ones do not. The extracted terms
that belong to the glossary are True Positives (TP), and the
ones that do not belong are False Positives (FP). The glossary
terms that are not extracted by our tool are False Negatives
(FN). Precision accounts for the quality of results, i.e., smaller
number of FPs, and is computed as TP / (TP+ FP). Recall
accounts for the coverage, i.e., smaller number of FNs, and
is computed as TP / (TP + FN). We use F-measure [19] to

combine precision and recall into one metric. F-measure is
computed as: 2 × Precision × Recall / (Precision + Recall).

Accuracy of clustering. The choice of metrics for evaluating
the accuracy of clustering (step 3 of the approach in Fig. 5) is
not as straightforward. A wide range of metrics exist to this
end, each with its own advantages and limitations. Clusters are
typically evaluated across two dimensions: homogeneity and
completeness [92]. Homogeneity captures the intuition that
the data points (in our case, candidate terms) in a generated
cluster should be originating from a single class (i.e., a single
ideal cluster). Completeness captures the intuition that all the
data points in a class (i.e., an ideal cluster) should be grouped
together in one generated cluster. A common limitation of sev-
eral clustering evaluation metrics, e.g., information-theoretic
measures such as entropy, is that they are not particularly
suited for situations where the clusters are overlapping [93].

In our work, meaningful handling of overlaps is essen-
tial: while our clustering approach (Section 3.3) produces
partitions, i.e., non-overlapping clusters, our ideal clusters
(Section 5.5.1) are overlapping. To evaluate the accuracy of
clustering, we use a simple set of accuracy metrics – a standard
generalization of precision, recall and F-measure for clusters
[94] – which is straightforward to interpret in the presence of
overlaps. Below, we outline the procedure for calculating these
accuracy metrics for clusters. We discuss the implications of
using partitioning clustering in RQ5; see Section 5.6.5.

Let I1, . . . , It denote the set of ideal clusters, and let
G1, . . . ,Gu denote the set of generated clusters.
• For every pair (Ii,G j) 1≤ i≤ t; 1≤ j ≤ u:

– Let ni j be the number of common data points be-
tween Ii and G j.

– Precision(Ii,G j) =
ni j
|G j | .

– Recall(Ii,G j) =
ni j
|Ii| .

– F-measure(Ii,G j) =
2×Precision(Ii,G j)×Recall(Ii,G j)

Precision(Ii,G j)+Recall(Ii,G j)
.

• For every ideal cluster Ii 1≤ i≤ t:
– Let Gr be the best match for Ii among generated

clusters, i.e., F-measure(Ii,Gr) ≥ F-measure(Ii,G j)
for any 1 ≤ j ≤ u. Let Pbest match(i) denote
Precision(Ii,Gr) and let Rbest match(i) denote
Recall(Ii,Gr).

• Let n = ∑
t
i=1 |Ii|.

• Compute overall precision and recall as weighted-
averages of the precisions and recalls of the ideal clusters:

– Precision = ∑
t
i=1
|Ii|
n ×Pbest match(i).

– Recall = ∑
t
i=1
|Ii|
n ×Rbest match(i).
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TABLE 2
Information about the case studies.

Case No. of  
glossary 

terms 

No. of elements in  
domain model 

No. of 
ideal 

clusters 

Size distribution of  
ideal clusters 

No. of generated 
clusters covered 

in interview survey 
Case-A 140 Concepts (Classes) 238 119 

 

20 
Attributes * 37 

Specializations  143 
Associations 58 

Case-B 51 Concepts (Classes) 35 29 

 

27 
Attributes * 14 

Specializations 5 
Associations 29 

Case-C 200 Concepts (Classes) 274 142 

 

20 
Attributes * 35 

Specializations 110 
Associations 123 

	
 

* The number of domain model attributes in all three case studies is proportionally small. The reason is that, in line with 
best practices, when there was uncertainty as to whether an element should be a concept (class) or an attribute, we 
modeled it as a concept.  
 

0 5 10 15

0 2 6 104 8

0 5 10 15

Overall precision and recall as defined above provide met-
rics for measuring the homogeneity and completeness of
clusters, respectively. F-measure for clustering is computed
as the harmonic mean of (overall) precision and recall. This
generalization of accuracy metrics for clusters is used in
Section 5.6 for answering RQ2, RQ4 and RQ6.

We note that our accuracy metrics for clusters are based on
establishing a mapping from the ideal clusters to the generated
ones, and not vice versa. This mapping is not necessarily
surjective, meaning that not all the generated clusters may
contribute to the calculation of the clustering accuracy mea-
sures. Our choice of metrics reflects the goal that we would
ideally like to achieve via clustering, which is to group related
terms so that an analyst can inspect the terms together rather
than in isolation. In line with this goal, our metrics attempt to
capture, for each ideal cluster, how good a match we can find
in the generated clusters. The fact that our metrics may not
account for all generated clusters does not pose a threat to the
conclusions we draw based on the metrics. This is because:
(1) the generated clusters are non-overlapping, and (2) any
generated cluster unaccounted for by the metrics would still
be composed of candidate terms and thus needs to be inspected
by an analyst.

5.6 Results and Discussion

In this section, we describe the results of our case studies and
answer the RQs stated in Section 5.1.

Table 2 provides overall statistics about the outcomes of data
collection, showing, for each case study, the number of elicited
glossary terms, the number of elements in the developed
domain model, the number and size distribution of ideal
clusters, and the number of clusters reviewed by the respective
expert in the interview survey. For Case-A, a domain model
existed beforehand. The researchers elaborated this model to
achieve the desired characteristics detailed in Section 5.4.2.

In Case-B and Case-C, no domain model existed a priori. The
researchers built a domain model in each of these two cases by
following standard practices for domain modeling [90], and in
a way as to ensure the desired characteristics. In all three case
studies, the resulting domain model was thoroughly validated
with the involved expert.

5.6.1 RQ1. How accurate is our approach at extracting
glossary terms?
Our terms extraction tool, REGICE, yielded 604 candidate
terms for Case-A, 91 terms for Case-B, and 630 terms for
Case-C. Fig. 12 shows the classification accuracy results for
our term extraction technique and compares them against
the results from five existing term extraction tools, outlined
in Section 2.4.1. We note that one of these tools, JATE,
implements several alternative term extraction techniques. The
results in the chart of Fig. 12 are for the technique by Frantzi
et al. [6], which, among the alternatives in JATE, has the best
accuracy over our case studies.

As the chart indicates, our term extraction technique has
better recall than the existing tools considered. Furthermore,
and in terms of precision, our technique yields better results
than all but TextRank in Case-A and Case-C. In both of these
cases, the precision loss compared to TextRank is small (0.9%
in Case-A and 1.2% in Case-C); whereas the gain in recall
is large (23.6% in Case-A and 29.5% in Case-C). In other
words, when compared to TextRank, our approach produces a
small number of additional unwanted terms (false positives) in
Case-A and Case-C; but, at the same time, our approach identi-
fies a large number of desirable terms that TextRank misses.

For glossary term extraction, recall is a more important
factor than precision. A low recall (i.e., a high number of
false negatives) means that the analysts will miss many of the
terms that should be included in the glossary. Low precision is
comparatively easier to address, as it entails only the removal
of undesired items (false positives) from a list of extracted



16

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

100"

Case0A" Case0A" Case0A" Case0A" Case0A" Case0A" Case0B" Case0B" Case0B" Case0B" Case0B" Case0B" Case0C" Case0C" Case0C" Case0C" Case0C" Case0C"

JATE" TextRank" TOPIA" TermRaider" TermoStat" REGICE" JATE" TextRank" TOPIA" TermRaider" TermoStat" REGICE" JATE" TextRank" TOPIA" TermRaider" TermoStat" REGICE"

Precision"

Recall"

F0Measure"

Case-A Case-B Case-C

JA
TE

Te
xtR

an
k

TO
PIA

Te
rm

Raid
er

Te
rm

oS
tat

REG
ICE 

(Our 
To

ol) JA
TE

Te
xtR

an
k

TO
PIA

Te
rm

Raid
er

Te
rm

oS
tat JA
TE

Te
xtR

an
k

TO
PIA

Te
rm

Raid
er

Te
rm

oS
tat

0

10

20

30

40

50

60

70

80

90

100

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

100"

Case0A" Case0A" Case0A" Case0A" Case0A" Case0A" Case0B" Case0B" Case0B" Case0B" Case0B" Case0B" Case0C" Case0C" Case0C" Case0C" Case0C" Case0C"

JATE" TextRank" TOPIA" TermRaider" TermoStat" REGICE" JATE" TextRank" TOPIA" TermRaider" TermoStat" REGICE" JATE" TextRank" TOPIA" TermRaider" TermoStat" REGICE"

Precision"

Recall"

F0Measure"

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

100"

Case0A" Case0A" Case0A" Case0A" Case0A" Case0A" Case0B" Case0B" Case0B" Case0B" Case0B" Case0B" Case0C" Case0C" Case0C" Case0C" Case0C" Case0C"

JATE" TextRank" TOPIA" TermRaider" TermoStat" REGICE" JATE" TextRank" TOPIA" TermRaider" TermoStat" REGICE" JATE" TextRank" TOPIA" TermRaider" TermoStat" REGICE"

Precision"

Recall"

F0Measure"

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

100"

Case0A" Case0A" Case0A" Case0A" Case0A" Case0A" Case0B" Case0B" Case0B" Case0B" Case0B" Case0B" Case0C" Case0C" Case0C" Case0C" Case0C" Case0C"

JATE" TextRank" TOPIA" TermRaider" TermoStat" REGICE" JATE" TextRank" TOPIA" TermRaider" TermoStat" REGICE" JATE" TextRank" TOPIA" TermRaider" TermoStat" REGICE"

Precision"

Recall"

F0Measure"

Precision (%) Recall (%) F-Measure (%)
REG

ICE 
(Our 

To
ol) REG

ICE 
(Our 

To
ol)

Fig. 12. Accuracy of terms extraction.

candidate terms. Given that our term extraction technique
offers recall improvements of 20% or more over existing state-
of-the-art tools, and at the same time, maintains or improves
precision, it is reasonable to conclude that our technique is
advantageous for the task of extracting glossary terms from
requirements documents.

To determine whether the above observations have statistical
significance, we use the z-score test for population proportions
[95]. Here, the proportions of interest are: (1) true positives
over the total number of terms extracted and (2) true positives
over the total number of terms in the gold standard. The former
proportion captures precision and the latter captures recall.
Since there are five tools to compare with, as shown in Fig. 12,
and three case studies, we conducted a total of 15 (i.e., 5×3)
z-score tests for each of the two proportions. All tests are two-
tailed with α=0.05. Based on these tests, we conclude that our
tool yields significantly better precision than two of the tools
compared with, namely TOPIA and TermRaider. The precision
gains brought about by our tool (if any) are at best negligible
when we compare with the remaining three tools. In contrast,
the tests indicate that our tool yields significantly better recall
than all the five tools compared with.

Our technique yields 8 false negatives in Case-A, 4 false
negatives in Case-B, and 12 false negatives in Case-C. Of these
24 false negatives in total, 13 are explained by the heuristic
we apply for filtering single-word common nouns (Table 1).
From the remaining 11 false negatives, 4 are explained by
our decision not to include VPs as candidate terms. The other

7 are due to limitations in the underlying NLP technology
(i.e., mistakes made by the text chunking pipeline). Including
single-word common nouns and VPs would address 17 out
of the 24 false negatives. However, doing so would have a
substantial and non-negligible negative impact on precision
by introducing many additional false positives (precisely, 773
new false positives across the three case studies).

We further observe that VPs account for only 0.01% of the
glossary terms in our case studies. This is consistent with the
findings of Justeson and Katz [15] and their conclusion that
VPs contribute ≤ 1% of the terms in technical glossaries.

The results in the chart of Fig. 12 prompted an investigation
as to why precision for Case-A and Case-C is lower across all
techniques, including ours. To identify the cause, we asked
the experts in Case-A and Case-C to explain the rationale
in choosing the ideal glossary terms. We determined that
their choices exclusively reflected the terms for the glossary
of the specific requirements documents being analyzed. In
other words, terms that were deemed common knowledge or
were known to be already defined in the glossaries of related
documents were excluded. In general, since such contextual
factors and working assumptions are often tacit and thus
unavailable to an automated tool, large variations may be seen
in terms of precision across different projects. Nevertheless,
recall, which is the primary factor for glossary term extraction
as we argued above, will not be affected.
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Fig. 13. F-measure curves for three different cluster
computation alternatives.

5.6.2 RQ2. Which similarity measure(s) and clustering
algorithms(s) yield the most accurate clusters?

We assess the accuracy of clustering based on the F-measure
metric for clusters, defined in Section 5.5.2. As suggested
by the discussion in RQ1, the set of candidate terms in a
requirements document can be wider than the ones that are
of interest for glossary construction. However, the generated
clusters cover all candidate terms, not only those that are rele-
vant to the glossary. To determine which similarity measure(s)
and clustering algorithm(s) produce the best results relevant to
the glossary, we need to discard in our analysis of accuracy
the terms that are not relevant. Specifically, for the purpose of
F-measure calculation, we prune from the generated clusters
any term that is not in at least one of the ideal clusters.

We note that outside an evaluation setting, one cannot
distinguish terms that are relevant to the glossary from those
that are not. To preserve the realistic behavior of clustering, it
is thus paramount to compute the generated clusters for all the
candidate terms first and then prune the results for evaluation,
as opposed to narrowing the set of candidate terms to those
that are relevant and then clustering only the relevant terms.

To answer RQ2, we considered pairwise combinations of
the 12 syntactic and 8 semantic similarity measures introduced
in Section 2.2. Three semantic measures, HSO, LESK, and
LCH, were discarded during initial analysis due to scalabil-
ity issues. The total number of remaining combinations is
(12+1)× (5+1)−1 = 77. These combinations include con-
figurations where an individual syntactic or semantic measure
is applied on its own.

For clustering, we considered K-means, Hierarchical and
EM, as introduced in Section 2.3.1. We experimented with 8
variant cluster distance functions (Table A.3 in the appendix)
for hierarchical clustering. This brings the total number of
clustering algorithms to 10. We evaluated each clustering
algorithm in conjunction with all the 77 possible combinations
of similarity measures, i.e., a total of 10×77 = 770 alternative
cluster computations per case study.

For a given cluster computation alternative, i.e., combination

of a clustering algorithm and similarity measures, plotting
F-measure against the number of clusters results in curves
similar to those shown in Fig. 13.

The shape of these curves is explained as follows: When
the selected number of clusters, K, on the x-axis is small,
the size of the generated clusters is large, since the average
size of clusters is inversely related to K. These large-sized
clusters yield high recall but low precision, with an overall low
F-measure. As K increases, large clusters become smaller and
more cohesive. This brings about major increases in precision
without a significant negative impact on recall, thus increasing
F-measure. The F-measure peaks at some K value. This is
where the generated clusters are closest to the ideal ones.
Beyond this optimal K (the estimation of which is the subject
of RQ3), increases in K will reduce F-measure, as recall
begins to drop rapidly and losses in recall are no longer offset
but gains in precision.

For a set of candidate glossary terms with a cardinality of
n, increasing the value of K beyond n/2 would have little
practical meaning, as the average size of clusters would fall
below 2 terms per cluster. Generating clusters that are this
small would defeat the purpose of clustering. To use curves
similar to those in Fig. 13 as an evaluation instrument, we
therefore restrict the upper range for K to a maximum of n/2
(upper bound).

For each of the 770 alternatives in a given case study,
we plot an F-measure curve for 10 points on the x-axis at
regular intervals, ranging from 1 to n/2. Note that n is the
number of candidate terms in the case study in question. The
reason we limit ourselves to 10 observation points is that
a thorough analysis for all possible numbers of clusters is
extremely expensive computationally.1 Knowing already that
the F-measure curves follow a certain shape, as we explained
earlier, and in light of the fact that the analysis we perform
over these curves, as will become clearer over the course of
our discussion, is a preliminary step for identifying the most
promising alternatives, we deemed 10 observation points to be
sufficient for approximating the curves.

We compare the curves by taking the average of F-measures
over the entire value range for K. The rationale for averaging
is that, in lieu of knowledge about the optimal K, we would
like to favor alternatives that yield the best overall accuracy
across all K values. Naturally, an alternative fares better than
another if it has a higher average F-measure. We compute
the average F-measure for each curve by computing its Area
Under the Curve (AUC) and normalizing the result.

In Table 3, we show for each case study the top-5 alterna-
tives that yield the best average accuracy, i.e., alternatives with
the largest (normalized) AUC. As suggested by the table, there
is no alternative that is shared among all three case studies.
We therefore cannot recommend a best alternative based on
the information in this table alone.

To provide a general recommendation, we need to further
consider the effect of individual syntactic measures, semantic

1. Such an analysis would have required us to execute clustering 770×n/2
times per case study, i.e., 770× (604/2+d91/2e+630/2) = 510510 times in
total. Our approximate estimation of the execution time for such an experiment
is more than 60 days on a conventional computer.
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TABLE 3
Top-5 cluster computation alternatives.

Case Syntactic 
Measure 

Semantic 
Measure 

Clustering 
Algorithm  

Normalized 
AUC 

Case-A Levenstein JCN EM 0.485 
Levenstein PATH EM 0.484 
Levenstein LIN EM 0.482 
Levenstein PATH K-means 0.476 
Levenstein RES EM 0.476 

Case-B SoftTFIDF NONE EM 0.523 
SoftTFIDF NONE K-means 0.519 
Jaccard NONE EM 0.498 

Monge_Elkan JCN EM 0.498 
Euclidean NONE EM 0.493 

Case-C Levenstein LIN EM 0.559 
Levenstein RES EM 0.557 
Levenstein PATH EM 0.557 
Levenstein JCN EM 0.553 
SoftTFIDF LIN EM 0.547 

 

measures and clustering algorithms on accuracy across all
the alternatives. For example, a syntactic measure that is not
employed in the absolute-best alternative but performs consis-
tently well in all the alternatives where it is employed may be
advantageous over one that is employed in the absolute-best
alternative but also in some poor alternatives.

More precisely, we want to find similarity measures and
clustering algorithms that yield good (but not necessarily
the absolute-best) results, and at the same time, cause little
variation. A standard way for performing such analysis is
by building a regression tree [96]. A regression tree is a
step-wise partitioning of a set of data points with the goal
of minimizing, with respect to a certain metric, variation
within partitions. Here, the data points are the 770 (cluster
computation) alternatives and the metric of interest is the
AUC. For each case study, the regression tree identifies at
any level in the tree the most influential factor that explains
the variation between the data points. In our context, there
are three factors: (1) the syntactic measure, (2) the semantic
measure, and (3) the clustering algorithm. Once the most
influential factor is identified, the regression tree partitions the
data points into two sets in a way as to minimize variations
within the resulting sets.

Fig. 14 shows the regression trees for our case studies.
In each node of the tree, we show the count (number of
alternatives), and the mean and standard deviation for AUC.
By convention, sibling nodes in the tree are ordered from left
to right based on their mean values. That is, the node on a right
branch has a larger mean than its sibling on the left. For every
expanded (i.e., non-leaf) node, the node shows the difference
between the mean values of its right and left children. For
each case study, we iteratively expanded the regression tree
until the difference (in means) between the right and the left
nodes fell below the threshold of 0.025, which we deemed to
be the minimum difference of practical relevance. Naturally,
we expanded only the right branches, given the convention we
noted above.

As the regression trees of Fig. 14 suggest, the most influen-
tial factor in all three case studies is the choice of clustering

Case-C

Case-A

All Alternatives
Count
Mean

770
0.407

Std Dev
Difference

0.061
0.11    

Clustering 
(Hierarchical (all variants))

Count
Mean

616
0.385 0.044   Std Dev

Count
Mean

154
0.496

Clustering
(EM, K-Means)

Std Dev
Difference

0.034
0.061

Count
Mean

70
0.462

Syntactic Measure 
(NONE, Jaccard, Cosine, Euclidean, 

Dice, Block-Distance)

Std Dev 0.011 Count
Mean

84
0.523

Syntactic Measure 
(Levenstein,  L2_Jaro-Winkler

Monge-Elkan, SOFTFIDF, CharJaccard,
Jaro, Jaro-Winkler)

Std Dev 0.018

All Alternatives
Count
Mean

770
0.405

Std Dev
Difference

0.044
0.07

Clustering 
(Hierarchical 

(ward.D, ward.D2, complete, mcquitty))

Count
Mean

308
0.363 0.023   Std Dev

Count
Mean

462
0.433

Clustering
(EM, K-Means,

Hierarchical (average, median, 
centroid, single))
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Fig. 14. Regression trees for normalized AUCs.

algorithm. Only EM and K-means perform consistently well
across all our case studies, thus ruling out all variants of
hierarchical clustering. For Case-A, the choice of similarity
measures does not play a significant role. But, for Case-B and
Case-C, the choice of syntactic measure is the second most
influential factor, as shown by the regression trees of these two
case studies. Taking the overlap between the best-performing
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clustering algorithms; both curves are for Case-C and
computed using the combination of Levenstein and PATH.

syntactic measures in Case-B and Case-C, we narrow the
choices of syntactic measures to Levenstein, Monge-Elkan
and SoftTFIDF. The label NONE, appearing in the regression
trees of Case-B and Case-C, denotes stand-alone applications
of semantic measures (i.e., without a syntactic measure). We
observe that in Case-C, NONE appears on a left branch. We
thus conclude that individual semantic measures should not be
applied on their own.

Our regression tree analysis finds both EM and K-means
to be good choices for the clustering algorithm. To develop
further insights into the behavior of EM and K-means, we plot-
ted higher-resolution F-measure curves for both algorithms
when applied in combination with the best similarity measures
identified through our regression tree analysis. Specifically, we
increased the number of points on the x-axis from 10 (used
for the charts of Fig. 13) to 100.

Fig. 15 shows the higher-resolution F-measure curves for
K-means and EM. The figure also shows a third curve for
a variant of K-means, namely K-means++, which we will
discuss momentarily. The curves in this figure differ only in
the choice of the clustering algorithm. We observe from the
figure that the curve for EM is relatively smooth; whereas the
one for K-means has spikes. These spikes are most plausibly
attributable to K-means’ well-known sensitivity to the choice
of initial centroids and to the number of clusters [97]. The
sensitivity to the choice of initial centroids can sometimes be
reduced by applying K-means++ [98], which attempts to pick
the initial centroids in a way that would avoid convergence
toward local optima [99].

As shown in Fig. 15, spikes are prevalent in the F-measure
curve for K-means++, too. This trend of behavior was seen
in both K-means and K-means++ across all our case studies
and all the similarity measures considered. This observation
suggests that either the initial centroids picked by K-means++
are still not good enough to steer K-means from local optima,
or that the spikes are more likely to be due to sensitivity

to the number of clusters. Irrespective of its root cause, the
behavior seen from K-means and K-means++ is undesirable in
our context, where one can never exactly pinpoint the optimal
number of clusters and can only employ heuristic guidelines
for coming up with a reasonable estimate (RQ3). Conse-
quently, we rule out K-means and its variant K-means++. This
narrows the choice of clustering algorithm to EM.

To summarize our discussion of RQ2, we conclude that the
following similarity measures and clustering algorithm are
good choices for further examination in RQ4:

Syntactic measures: One of the three syntactic measures:
Levenstein, Monge-Elkan or SoftTFIDF.
Semantic measures: Semantic measures do not have a
significant impact on clustering accuracy.
Clustering algorithm: EM.

Despite semantic measures not being influential in improv-
ing clustering accuracy, we do not discourage the use of these
measures. A potential reason why we did not find semantic
measures useful is that semantic synonyms are not prevalent
in our case studies. Semantic measures, when combined with
syntactic ones, may be useful if the likelihood of (semantic)
synonyms being present is high. As indicated in Section 4, our
tool already supports semantic measures.

We note that statistical significance testing would offer little
value in distinguishing between the choices recommended
above. This is because these choices were derived from
regression tree analysis. Consequently, the accuracy differ-
ence (effect size) between the different recommended choices
would invariably be small, no matter whether the difference is
statistically significant or not.

5.6.3 RQ3. How can one specify the number of
clusters?
Theoretically, the number of clusters, K, is a value between
1 and the total number of candidate terms. However, as we
argued in RQ2, considering a K value that is larger than half
the number of candidate terms is unreasonable from a practical
standpoint. If K is too small, accuracy will be low due to
large clusters with low precision. If K is too large, accuracy
will again be low but this time due to small clusters with low
recall. Obviously, one does not have access to a gold standard
outside an evaluation setting. Therefore, one cannot use the
optimal point in F-measure curves such as those in Fig. 13
for choosing K.

We use BIC, discussed in Section 3.3, to choose a value for
K. As explained in this earlier section, the intuition is that the
larger the BIC, the better is the choice for the value of K. In
other words, our goal should be to choose K in a way that
maximizes BIC. We apply an adaptation of this general idea
for choosing K, as we describe next.

For a specific cluster computation alternative, we first
plot the BIC curve over the range [1,n/2] of the number
of clusters, where n is the number of candidate terms. To
illustrate, Fig. 16 shows the BIC curves resulting from the ap-
plication of EM using similarities calculated with SoftTFIDF
for each case study.
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Fig. 16. Selecting the number of clusters using BIC.

For performance reasons, when the number of candidate
terms (and thus the number of values in the range [1,n/2]) is
large, we may elect not to compute the BIC at every value on
the x-axis. Instead, like in RQ2, we may divide the x-axis into
a certain number of points. For example, in Fig. 16, the x-
axis for Case-A and Case-B is divided in increments of 1% of

the range (100 points). For Case-B, the range is small (<100
points); therefore, all the values in the range are covered.

Let BICmax and BICmin be the maximum and minimum BIC
values, respectively; and let margin = (BICmax−BICmin)/10,
i.e., 10% of the difference between BICmax and BICmin.
Assuming that BICmax occurs over a peak, we look to the right
of the peak and choose the largest possible K whose BIC is
larger than or equal to BICmax−margin. In the (unlikely) case
where the BIC curve is monotonically-increasing, i.e., there is
no peak, we set K to be n/2. The rationale for choosing a K
with a smaller BIC than the maximum is to obtain a larger
number of clusters and hence a smaller number of terms within
individual clusters. As long as BIC remains uncompromised,
i.e., stays within a small margin from the maximum, clusters
with a smaller number of terms are more desirable because
they are more homogeneous and easier for analysts to inspect.

In the example curves of Fig. 16, BICmax for Case-A occurs
when there are 55 clusters. The BIC value nonetheless stays
within the 10% margin up to 99 clusters. Based on our
argument above, we select K = 99 for Case-A. In Case-B,
BICmax occurs at 23 clusters. BIC stays within the specified
margin up to 27 clusters, followed by a steep decline. We
therefore select K = 27 for Case-B. In Case-C, BICmax occurs
at 30 clusters but remains within the margin up to 84 clusters.
Hence, in this case, we select K = 84.

We note that our guidelines for selecting the number of
clusters are automatable and have been already implemented
into our tool support (Section 4). Therefore, the computation
of BIC and its interpretation are transparent to the end-users
of our approach.

5.6.4 RQ4. Which of the alternatives identified in RQ2
are the most accurate when used with the guidelines from
RQ3?
The analysis of RQ2 narrows cluster computation alternatives
to one clustering algorithm, namely EM, and three syntactic
measures, namely Levenstein, Monge-Elkan and SoftTFIDF.
The analysis further suggests that semantic measures do not
influence clustering accuracy in a major way. Nevertheless,
and as discussed in RQ2, we do not rule out the usefulness
of semantic measures in general. For answering RQ4, we
therefore consider all the viable semantic measures from RQ2,
namely LIN, PATH, RES, JCN and WUP.

Specifically, we answer RQ4 by investigating the 18 alter-
natives shown in Fig. 17. We leave the clustering algorithm
(EM) implicit in the figure because it is the same across all
these alternatives. We represent a pairwise combination of
a syntactic and a semantic measure by concatenating their
names separated by the “.” symbol. For example, we write
SoftTFIDF.PATH to refer to the combination of SoftTFIDF
(syntactic) and PATH (semantic). When a syntactic measure
is used on its own, we use NONE to indicate the absence of a
semantic measure. For example, SoftTFIDF, when used alone,
is denoted SoftTFIDF.NONE.

For each alternative, we first compute the BIC curve and
apply the guidelines of RQ3 to select the number of clusters
(according the BIC curve produced by that specific alter-
native). We then calculate the accuracy (F-measure) of the
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Fig. 17. Accuracy of the alternatives identified in RQ2 when the number of clusters is set using the guidelines of RQ3.

alternative at the selected number of clusters. The results are
shown in Fig. 17. For each case study, we indicate both the
best alternative and also any other alternative whose accuracy
is within 2% of the accuracy of the best alternative.

Our results suggest that applying SoftTFIDF alone for
computing similarities between terms presents the best overall
option. If the analyst elects to further use a semantic measure,
the best choice would be to combine SoftTFIDF with JCN: as
shown by Fig. 17, this combination closely follows the stand-
alone application of SoftTFIDF in terms of accuracy.

Similar to RQ2, statistical significant testing would offer lit-
tle value in RQ4, since we are simply interested in picking one
of the best alternatives, without taking into account whether
the chosen alternative performs statistically significantly better
than the other alternatives.

5.6.5 RQ5. Does our approach run in practical time?

Table 4 shows the execution times for the different steps of our
approach. All execution times were measured on a laptop with
a 2.3 GHz Intel CPU and 8GB of memory. The execution times
we report for similarity calculation in Table 4 are based on the
combined application of SoftTFIDF and JCN, i.e., the best
combination from RQ4 involving a semantic measure. This
provides a more realistic picture of execution times, should
the application of semantic measures be warranted.

The running time of our approach is dominated by the
clustering step and more specifically by the construction of
the BIC curve, outlined in Section 5.6.3. For calculating a
BIC curve, as was discussed earlier, we consider 1% intervals
on the x-axis, instead of every possible number of clusters. The
implementation we use for generating BIC curves performs,
for any point on the x-axis, 10 BIC calculations corresponding

to 10 different probabilistic models [31]. Each BIC value in
the curve is the maximum of these 10 calculations.

We believe that the overall execution times in Table 4 are
practical, noting that glossary term clustering does not need
to be repeated frequently. However, handling requirements
documents that are much larger that those in our case studies
may require a strategy to further reduce the time spent on
building BIC curves. This can be done by further limiting
the number of points on the x-axis of these curves (e.g., by
using larger intervals), or by considering only a subset of the
probabilistic model alternatives.

5.6.6 RQ6. How effective is our clustering technique at
grouping related terms?

The ideal clusters in our evaluation are overlapping. The
overlaps arise because individual candidate terms may assume
different roles in different requirements statements, and thus
relate to potentially different terms based on each role. For
example, based on the model of Fig. 9, the term “GSI
monitoring information” assumes two different roles, one as
a parent concept for “GSI anomaly”, “GSI input parameter”,
and “GSI output parameter”, and another as a constituent part
of “Ground Station Interface”. As a result, there will be two
ideal clusters containing “GSI monitoring information”: one
ideal cluster around “GSI monitoring information” and its
child concepts (terms), and another ideal cluster around the
composition relationship between “Ground Station Interface”
and “GSI monitoring information”. By allowing overlaps in
the ideal clusters, one can distinguish different roles and orient
each ideal cluster around one particular role. Having the roles
separated from one another is advantageous because it makes
the clusters highly-focused and small.

The above said, generating clusters that are overlapping can
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TABLE 4
Execution times.

Case / strategy to increment # of clusters Phase Execution
Time

Case-A Term Extraction 15s
380 requirements statements, 604 terms Similarity Calculation

(Syntactic + Semantic)
32s + 58s = 90s

# clusters incremented by 1% of # of terms Clustering 20m
Total 21m 45s

Case-B Term Extraction 72s
110 requirements statements, 91 terms Similarity Calculation

(Syntactic + Semantic)
18s + 49s = 67s

# clusters incremented by 1 unit in each run Clustering 15s
Total 1m 55s

Case-C Term Extraction 13s
138 requirements statements, 630 terms Similarity Calculation

(Syntactic + Semantic)
33s + 61s = 94s

# clusters incremented by 1% of # of terms Clustering 23m
Total 24m 47s
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Fig. 18. Clustering example: ovals represent ideal clusters and background colors represent generated clusters.

pose an overhead for end-users, because individual candidate
terms can appear multiple times in such clusters. This means
that the effort associated with manually reviewing overlapping
clusters will be, potentially by several folds, higher than the
case where the generated clusters are non-overlapping. The
clustering algorithms we considered in our work are partition-
ing algorithms. Nevertheless, we evaluated the results of these
algorithms against overlapping ideal clusters to determine how
close we can get to the (conceptually) ideal situation, without
actually making the generated clusters overlapping.

To illustrate, we show in Fig. 18 both the ideal clusters and
the generated ones (by EM and SoftTFIDF) for the example
of Fig. 1. Here, there are 12 ideal clusters, represented as
ovals, and 8 generated clusters, represented using colors. The
term “status” appears in the ideal clusters but is struck out
from the generated ones. This term, which is a variant of
“GSI Component status” is filtered due to being a single-word
common noun (see Table 1).

The clustering precision and recall for this example are

73.7% and 75%, respectively. These numbers mean that, on
average, 73.7% of the terms an analyst sees in a generated
cluster pertain to the specific aspect of relatedness they are
investigating. Further, 75% of the ideal terms for this specific
relatedness aspect have been retrieved. Despite the accuracy
not being perfect, the generated clusters provide reasonable
cues about related terms. The extent to which practitioners
find the generated clusters useful is addressed in RQ7.

Given that achieving perfect accuracy is theoretically im-
possible (unless the ideal clusters have no overlaps), we need
to find an upper bound on the maximum possible accuracy
that one can expect from partitioning clustering in our context.
This upper bound provides a reference point for evaluating the
effectiveness of clustering in our approach.

To compute such an upper bound, we follow a randomized
procedure. Specifically, we impose a random order on the
ideal clusters and prune these clusters so that the following
constraint holds for any given term t: if t appears in a cluster
C at position i in the ordering, then t cannot appear in any
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TABLE 5
(a) Upper bounds for the accuracy of partitioning clustering, (b) the actual accuracy of our approach.

(a) Best Possible (b) EM + SoftTFIDF

Case Precision Recall F-Measure Difference 
Case-A 49.4% 39.3% 43.7% 39.2% 
Case-B 57.7% 45.4% 50.8% 28% 
Case-C 62.9% 49.0% 55.1% 30.6% 
     
Case-A 46.9% 40.0% 43.1% 39.8% 
Case-B 71.5% 45.4% 55.5% 23.3% 
Case-C 63.3% 49.0% 55.2% 30.5% 
     
Case-A 57.8% 37.0% 45.1% 37.8% 
Case-B 53.3% 46.0% 49.4% 29.4% 
Case-C 67.6% 50.8% 58.2% 27.5 
     
Case-A 67.2% 36.3% 47.5% 35.4% 
Case-B 57.8% 45.4% 50.8% 28% 
Case-C 61.8% 52.7% 56.9% 28.8% 
!
Case Precision Recall F-Measure 
Case-A 90.8% 76.2% 82.9% 
Case-B 89.1% 70.7% 78.8% 
Case-C 93.5% 79.1% 85.7% 
!

Case Absolute Precision 
(Relative Precision) 

Absolute Recall 
(Relative Recall) 

Absolute F-Measure 
(Relative F-Measure) 

Case-A 66.8% (73.6%) 43.6% (57.2%) 52.8% (63.7%) 
Case-B 79.7% (89.5%) 51.9% (73.4%) 62.9% (79.8%) 
Case-C 77.4% (82.8%) 54.5% (68.9%) 64.0% (74.7%) 

	
Case Precision Recall F-Measure 
Case-A 90.8% 76.2% 82.9% 
Case-B 89.1% 70.7% 78.8% 
Case-C 93.5% 79.1% 85.7% 
	

* Relative = Absolute / Best Possible * 100

* * *
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Fig. 19. Comparison with random partitioning; the optimal number of clusters for each case study is further shown.

cluster C′ at a position i′ such that i′ > i. This procedure
derives non-overlapping clusters from the ideal clusters. The
accuracy of these non-overlapping clusters is a good indicator
for what partitioning clustering can achieve in the best case.
We applied the above procedure to 1000 random orders of
the ideal clusters in our three case studies, and computed the
average accuracy metrics.

Table 5(a) shows upper bounds for precision, recall, and
F-measure when the overlaps have been removed. For com-
parison, we provide in Table 5(b) the accuracy of the best
alternative from RQ4 (i.e., EM + SoftTFIDF), with the number
of clusters chosen as discussed in RQ3. In addition, Table 5(b)
shows the accuracy scores relative to the upper bounds of
Table 5(a). We believe that these results, when complemented
with the expert feedback discussed later in RQ7, provide
positive evidence for the effectiveness of our approach.

As a sanity check, we compare our best cluster computation
alternative with random partitioning. For this purpose, we use
a 10-fold random partitioning of candidate terms into equal-
sized clusters. In Fig. 19, we show the F-measure curve of
the best alternative against that of random partitioning. As
can be seen from the figure, the best alternative significantly
outperforms the random baseline.

Fig. 20 shows, for each case study, the size distribution of
the clusters computed using the best alternative. To facilitate
comparison, we show the distributions both for the situation
where we select the number of clusters based on the guidelines
of RQ3, and also for the situation where the number of clusters
is chosen in a way as to maximize F-measure. The number of
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Fig. 20. Cluster size distributions.

clusters maximizing F-measure in Case-A, Case-B and Case-C
are 134, 27 and 120, respectively, as marked on the charts
of Fig. 19. We note that these optimal numbers of clusters
are known only in an evaluation setting, i.e., when the ideal
clusters are known.

The results in Fig. 20 provide confidence that: (1) the
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generated clusters are reasonably small and thus easy for the
analysts to review; and (2) the size distributions we obtain by
following the guidelines of RQ3 are not drastically different
than those obtained from an optimal (but in a realistic setting,
unattainable) clustering.

A final remark we need to make about the distributions of
Fig. 20 is that these distributions are not directly comparable
to those of the ideal clusters, shown earlier in Fig. 2. This
is because the generated clusters cover all candidate terms;
whereas the ideal clusters are concerned with only the actual
glossary terms.

5.6.7 RQ7. Do practitioners find the clusters generated
by our approach useful?
Figs. 21 and 22 summarize the results of our survey study
for Case-A, Case-B and Case-C, obtained by following the
procedure described in Section 5.4.3. In Fig. 21, the results are
shown using barcharts for the individual case studies; whereas
in Fig. 22, the results of the three case studies are combined
and depicted as a heatmap [100]. Each region of this heatmap
corresponds to the frequency of a certain response by the
experts (Y -axis) for a given statement (X-axis). The darker
a region is in the heatmap, the higher is the frequency of a
certain response by the experts. We recall that the number
of clusters considered in our surveys for Case-A, Case-B and
Case-C are 20, 27 and 20, respectively. The heatmap is thus
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Fig. 22. Heatmap representation for the expert survey
interview results.

based on a total of 67 data points. We further note that the
“Not Relevant” response does not apply to Statements 1 and
2, as marked in the heatmap.
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With regard to Statement 1, the experts strongly agreed or
agreed in 89.6% (60/67) of the cases that the clusters were
helpful in identifying related terms. The experts were neutral
in 4.4% of the cases (3 clusters, all in Case-B), and disagreed
in 6% of the cases (4 clusters, two in Case-B and two in
Case-C).

With regard to Statement 2, in 88% (59/67) of the cases, the
experts strongly agreed or agreed that the clusters were helpful
for defining the glossary terms more precisely. In 6% of the
cases (4 clusters, all in Case-B), the experts were neutral; and
in the remaining 6% of the cases (4 clusters, two in Case-B
and two in Case-C), the experts disagreed.

Finally and with regard to Statement 3, the experts deemed
28.4% (19/67) of the clusters not relevant, meaning that
the experts did not see variants in these clusters. From the
remaining clusters, the experts either agreed or strongly agreed
in 61.2% (41/67) of the cases that the clusters where helpful
for identifying variant terms. The experts were neutral in
10.4% of the cases (one in Case-A and six in Case-B).

We compute the average of the expert responses by quanti-
fying the agreement scale from 0 for “Strongly Disagree” to 4
for “Strongly Agree”. This would give us an average of 3.40
for Statement 1, an average of 3.42 for Statement 2, and an
average of 3.15 for Statement 3, noting that we exclude for
Statement 3 the clusters that were deemed not relevant. The
average scores for all three statements are therefore between
“Agree” and “Strongly Agree”.

Overall, our survey results suggest that the experts had
a strong positive perception of the quality of the generated
clusters.

6 THREATS TO VALIDITY

In this section, we discuss threats to the validity of our
empirical results and the steps we have taken to mitigate these
threats.

Internal validity. The researchers were involved in the con-
struction of the domain models from which the ideal clusters
were derived. This raises the potential problem that the domain
models could be built in a way that would favor our clustering
results. To mitigate bias during domain model construction, we
adhered to standard guidelines for domain modeling, notably
by Larman [90]. Further, we subjected the domain models to a
thorough review and revision process with close participation
from the experts, who were familiar with domain modeling
but not with the exact analytical purpose of a domain model
in our evaluation.

A second potential threat to internal validity is that, as
we stated in Section 5.2, in two of our case studies, Case-A
and Case-B, an attempt had been made by the requirements
authors to conform to a certain template. Applying a template
often leads to simpler requirements sentences. This can in turn
potentially reduce the error rate of NLP, thus increasing the
accuracy of term extraction over template requirements when
compared to non-template requirements.

We have seen no evidence of the above phenomenon
happening in practice. As we discussed in Section 5.6.1, the
number of false negatives caused by NLP errors is very small.

Of the seven such errors across the three case studies, two
occurred in Case-A, one in Case-B, and four in Case-C. When
normalized by the total number of extracted terms in each
case study, the NLP error rate is at 0.33% (2/604) in Case-A,
1.1% (1/91) in Case-B, and 0.63% (4/630) in Case-C. These
fractions, irrespective of whether templates have or have not
been used, are too small to affect accuracy in a significant
way. We therefore do not anticipate the use of template
requirements in our evaluation to pose a major validity threat.

Construct validity. The definition of ideal clusters is a sub-
jective procedure. To mitigate construct validity threats, we
applied an explicit and systematic process for defining the
ideal clusters, building on the notion of a domain model. This
limits subjectivity in defining the ideal clusters and further
makes the process repeatable.

Conclusion validity. The choice of clustering accuracy metrics
has an impact on the conclusions drawn based on the metrics.
To minimize threats to conclusion validity, we chose the
metrics in a way as to best match the overlapping nature of the
ideal clusters in our problem. A complementary measure for
countering conclusion validity threats is the interview survey
analysis we performed in order to directly assess the usefulness
of the generated clusters from a practitioner’s perspective. As
we explained in Section 5.4.3, we surveyed one expert per
case study due to the special criteria that potential respondents
had to meet, but covered multiple clusters in each survey to
mitigate potential expert errors.

External validity. We applied our approach to three case
studies drawn from two industry sectors. The consistency seen
across the results of the case studies provides confidence about
the generalizability of our results. Further case studies are
nonetheless necessary for improving external validity.

7 CONCLUSION

We presented a tool-supported approach for extracting candi-
date glossary terms from natural language requirements and
grouping these terms into clusters based on relatedness. One
of the main advantages of our approach is that it provides
guidelines on how to tune clustering for a given requirements
document. This is important for a successful application of
our approach in industry.

We reported on the application of our approach to three
industrial case studies, in the context of which we evaluated
the accuracy and usefulness of the approach. An important
finding from our evaluation is that, over requirements doc-
uments, our term extraction technique is significantly more
accurate than generic term extraction tools. Furthermore, the
feedback we have collected from the subject matter experts in
our case studies strongly suggests that our clustering technique
offers practical benefits. Particularly, the experts found the
resulting clusters helpful for better handling of some important
tasks involved in the construction of requirements glossaries,
including writing definitions for glossary terms and identifying
the related terms.

In the future, we plan to incorporate a user feedback loop
into our tool so that user decisions about the glossary at any
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given step can be used for providing better recommendations
in the subsequent steps. Another direction for future work is
to conduct empirical studies aimed at determining whether
our approach leads to compelling quality improvements and
cost reductions in comparison with the situation where no
automated assistance is used during requirements glossary
construction. Finally, we would like to look into additional
avenues for utilizing our approach. In particular, we intend to
investigate whether our approach can be a useful decision aid
for exploring the relationships between the terminologies of
requirements documents that originate from different sources.
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[93] E. Amigó, J. Gonzalo, J. Artiles, and F. Verdejo, “A comparison of
extrinsic clustering evaluation metrics based on formal constraints,”
Information Retrieval, vol. 12, no. 4, 2009.

[94] Y. Zhao and G. Karypis, “Evaluation of hierarchical clustering algo-
rithms for document datasets,” in 11th International Conference on
Information and Knowledge Management (CIKM’02), 2002, pp. 515–
524.

[95] R. C. Sprinthall, Basic Statistical Analysis, 9th ed. Pearson Education,
2013.

[96] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and
Regression Trees, 1st ed. Wadsworth and Brooks, 1984.

[97] B. Lantz, Machine learning with R, 2nd ed. Packt Publishing Ltd,
2015.

[98] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” in 18th annual ACM-SIAM symposium on Discrete algo-
rithms, 2007, pp. 1027–1035.

[99] K. Krishna and M. N. Murty, “Genetic k-means algorithm,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
vol. 29, no. 3, 1999.

[100] G. Grinstein, M. Trutschl, and U. Cvek, “High-dimensional visualiza-
tions,” in 7th Data Mining Conference (KDD’01), 2001, pp. 7–19.



29

APPENDIX A
SUPPLEMENTARY DESCRIPTIONS

Tables A.1 and A.2 respectively describe the syntactic and semantic similarity measures that we considered in our evaluation
for computing similarity scores between terms. Some of the syntactic measures presented in Table A.1 are hybrid, i.e., they use
a secondary measure to compute similarities between individual tokens, and then combine the resulting scores into a cumulative
score. An example of a hybrid measure is SoftTFIDF, which by default uses Jaro-Winkler as a secondary measure.

The alternative criteria that we considered for computing distances between clusters in (agglomerative) hierarchical clustering
are presented in Table A.3.

TABLE A.1
Description of the syntactic similarity measures considered in our empirical evaluation.

Measure Description
Block Distance Computes similarity between terms by considering them as vectors and calculating the

traversal distance between the vectors in a two-dimensional plane represented by the
vectors.

Cosine Computes similarity between terms by transforming the terms into vectors and then
calculating the angle between the vectors.

Dice’s coefficient Computes similarity between terms by finding the tokens that are in common and then
dividing the number of common tokens by the total number of tokens in the terms.

Euclidean Computes similarity between terms by transforming the terms into vectors and calcu-
lating the normalized difference between them.

Jaccard Computes similarity between terms by finding the common tokens and dividing the
number of common tokens by the number of tokens in the union of bags of words
between the terms.

CharJaccard A variation of Jaccard similarity that works at the level of characters rather than tokens.
Jaro Computes similarity between terms using the number of common characters in each

token of the terms.
Jaro-Winkler An extension of Jaro similarity which combines the Jaro score with the length of the

common prefix between terms.
Level-Two (L2)
Jaro-Winkler

A hybrid measure that computes a normalized score for all the possible substrings (at
the token level) of two terms using a secondary measure (Jaro-Winkler).

Levenstein Computes similarity between terms based on the minimum number of character edits
(insertions, deletions, and substitutions) required to transform one term into the other.

Monge-Elkan Computes similarity between terms by matching all the individual tokens of the terms
and normalizing the similarity score based on the similarity of tokens.

SoftTFIDF Computes similarity between terms based on a secondary measure, combined with
the frequency of the single-word constituents of the terms in a corpus. We use Jaro-
Winkler as the secondary measure. In our context, the corpus is the set of all candidate
terms. The intuition is that two terms are more similar if they share several single-word
constituents with comparable frequencies.
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TABLE A.2
Description of the semantic similarity measures considered in our empirical evaluation.

Measure Description
HSO Computes similarity between words by finding a short path in the is-a (vertical) and has-part

(horizontal) relation chains (as specified in WordNet) that does not change direction too often. An
example of an is-a relation is arm “is-a” limb. An example of a has-part relation is arm “has-part”
forearm.

RES Computes similarity between words based on the information content of the least common sub-
sumer (LCS) of the words in an is-a hierarchy. Information content is the degree of specificity of
words. For example, “car” is a more specific word than “vehicle”. Therefore, “car” has a higher
information content value than “vehicle”. The LCS is the most specific concept that two words
share as an ancestor in an is-a hierarchy. For example, the LCS of “car” and “boat” is “vehicle”.

JCN Computes similarity between words by augmenting RES (above) with the individual information
content of the words.

LIN Computes similarity between words in the same manner as JCN (above) but with a slightly modi-
fied similarity formula.

LESK Computes similarity between words by quantifying the overlap between the different dictionary
meanings of the words.

PATH Computes similarity between words based on the shortest path between them in an is-a hierarchy.
LCH Computes similarity between words based on the shortest path between all the meanings of the

words.
WUP Computes similarity between words based on the depth of the words and their LCS in an is-a

hierarchy.

TABLE A.3
Description of the alternative criteria considered in our empirical evaluation for computing cluster distances when

hierarchical clustering is applied.

Measure Description
Single link Computes the distance between two clusters as the least distance between any constituent terms.
Complete link Computes the distance between two clusters as the maximum distance between any constituent

terms.
Average link Computes the distance between two clusters as the average distance between all pairs of the

constituent terms of two clusters.
Centroid link Computes the distance between two clusters as the distance between their centroids.
Median link Computes the distance between two clusters as the distance between their medians.
Ward.D link Computes the distance between two clusters as the sum of squared deviations from terms to cen-

troids.
Ward.D2 link A variant of ward.D (above).
McQuitty’s link Computes the distance between a new cluster, resulting from the merge of two existing ones, and

other clusters by averaging the distances from both parts of the new cluster. The merge will take
effect when the two parts as a pair have the least average distance to other clusters.


