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Abstract—In recent years, deep learning (DL)-based methods have been widely used in code vulnerability detection. The DL-based
methods typically extract structural information from source code, e.g., code structure graph, and adopt neural networks such as Graph
Neural Networks (GNNs) to learn the graph representations. However, these methods fail to consider the heterogeneous relations in
the code structure graph, i.e., the heterogeneous relations mean that the different types of edges connect different types of nodes in the
graph, which may obstruct the graph representation learning. Besides, these methods are limited in capturing long-range dependencies
due to the deep levels in the code structure graph. In this paper, we propose a Meta-path based Attentional Graph learning model for
code vulNErability deTection, called MAGNET. MAGNET constructs a multi-granularity meta-path graph for each code snippet, in
which the heterogeneous relations are denoted as meta-paths to represent the structural information. A meta-path based hierarchical
attentional graph neural network is also proposed to capture the relations between distant nodes in the graph. We evaluate MAGNET
on three public datasets and the results show that MAGNET outperforms the best baseline method in terms of F1 score by 6.32%,
21.50%, and 25.40%, respectively. MAGNET also achieves the best performance among all the baseline methods in detecting Top-25
most dangerous Common Weakness Enumerations (CWEs), further demonstrating its effectiveness in vulnerability detection.

Index Terms—Software Vulnerability; Deep Learning; Graph Neural Network

✦

1 INTRODUCTION

Software vulnerabilities are generally specific flaws or
oversights in the pieces of software that allow attackers
to disrupt or damage a computer system or program [1],
leading to security risks [2], [3], [4] such as system crash
and data leakage. The ever-growing number of software
vulnerabilities poses a threat to social public security. For
instance, Bugcrowd [5], a crowdsourced security platform,
reported a 185% increase in the number of high-risk vulnera-
bilities in 2021 compared to the previous year. In December
2021, only 11 days after the Apache Log4j2’s remote code
execution vulnerability was disclosed, attackers exploited
the vulnerability to attack Belgian network systems, causing
system outages [6]. Thus, software vulnerability detection is
critical for improving the security of society.

To accurately detect software vulnerabilities, various
vulnerability detection methods based on deep-learning
(DL) techniques [7], [8], [9], which aim at learning the
patterns of vulnerable code, have been proposed in recent
years. They generally process the source code as token
sequences [10], [11], [12], [13] or code structure graphs [14],
[15], [16]. For example, VulDeePecker [17] represents the
source code into a sequence of tokens as input and uses
a bidirectional Long Short Term Memory (LSTM) model

* corresponding author.

for vulnerability detection. Recent studies [18], [19], [20]
demonstrate that the structure graph plays a nonnegligible
role in capturing vulnerable code patterns. Reveal [18] lever-
ages code property graph (CPG) [21] by parsing source code
and adopts Gated Graph Neural Network (GGNN) to build
a vulnerability detection model. The work Devign [14] pro-
poses a joint graph which incorporates four types of edges
(i.e., Abstract Syntax Tree (AST) [22], Control Flow Graph
(CFG) [23], Data Flow Graph (DFG) [24] and Natural Code
Sequence (NCS) [25]). To learn the structural information,
existing studies adopt Graph Neural Networks (GNNs),
such as GGNN, Graph Convolution Network (GCN), etc.
achieving state-of-the-art performance in vulnerability de-
tection. These GNNs aggregate nodes [26] based on the
parent-child relations [27], [28], which is beneficial for cap-
turing the adjacent-level information [29] from the source
code. Despite the promising performance of the existing
GNN-based methods, they still have the following limita-
tions:

(1) The heterogeneous relations in the code structure
graph are ignored. Previous studies [14] generally focus
on employing node values in the code structure graph for
learning the graph representations. The recent state-of-the-
art models have considered the node types [18] or edge
types [30] in the code structure graph, demonstrating the
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importance of the structural information for vulnerability
detection. However, the studies do not jointly consider
different types of nodes and edges, i.e., the heterogeneous
relations, which are helpful for capturing the patterns of
vulnerable code. For example, as shown in Fig. 1b, we
can find that nodes A and B have the same value, but
with different node types (i.e., ExpressionStatement and
AssignmentExpression, respectively). Besides, nodes in
the graph are connected by different edge types (i.e., AST
and CFG, respectively). The heterogeneous relations can en-
rich the representations of nodes, and thereby are beneficial
for venerability detection.

(2) The long-range dependencies in the graph are still
hard to be captured. Most DL-based approaches including
the state-of-the art ones [18], [19] use GNNs [26], [27] for
code vulnerability detection. However, it is well-known that
GNNs are limited in handling relationships between distant
nodes [31], [32], since GNNs mainly use neighborhood
aggregation for message passing. Due to a large number of
nodes and deep levels in AST-based graphs [33], the current
approaches still face the challenge of learning long-range
dependencies in the structure graph by directly adopting
GNNs for vulnerability detection [34], [35].

To alleviate the above limitations, in this paper, we
present MAGNET, a Meta-path based Attentional Graph
learning model for code vulNErability deTection. Specifi-
cally, MAGNET involves two main components:

(1) Multi-granularity meta-path graph construction. To
exploit the heterogeneous relations in the code structure
graph for vulnerability detection, we design a meta-path
graph which jointly involves node types and edge types.
Each meta path in the graph indicates a heterogeneous rela-
tion, denoted as a triplet, e.g., (ExpressionStatement, AST,
AssignmentExpression) for the relation between nodes A
and B in Fig. 1b. Considering the diversity of node types,
e.g., there exist 69 node types in the code structure graph of
Reveal [18], the number of heterogeneous relations tends
to increase exponentially, which would result in under-
fitting for the GNN models [36]. To mitigate the issue, we
propose to group the node types into different granularities,
including ‘Statement’, ‘Expression’, and ‘Symbol’, thereby
reducing the complexity of node types. Specifically, we con-
struct a multi-granularity meta-path graph for facilitating
vulnerability detection.

(2) Meta-path based hierarchical attentional graph
neural network. To learn the representations of the meta-
path graph, we propose a meta-path based hierarchical
attentional graph neural network, called MHAGNN. First,
a meta-path attention mechanism is proposed to learn the
representation of each meta path, i.e., local dependency, by
endowing nodes and edges with different attention weights.
Then, to capture the long-range dependency in the meta-
path graph, we propose a multi-granularity attention mech-
anism, which captures the importance of heterogeneous
relations in different granularities for the final graph rep-
resentation.

We evaluate MAGNET on three widely-studied bench-
mark datasets in software vulnerability detection, including
FFMPeg+Qemu [14], Reveal [18], and Fan et al. [37]. We com-
pare with six state-of-the-art software vulnerability detec-
tion methods. The experimental results show that the pro-

posed approach outperforms the state-of-the-art baselines.
Specifically, MAGNET achieves 6.32%, 21.50% and 25.40%
improvement comparing with the best baseline regarding
the F1 score metric, respectively. In real-world scenarios,
MAGNET detects 27.78% more vulnerabilities than the best
baseline method.

In summary, our major contributions in this paper are as
follows:

1) We propose a novel approach MAGNET, a meta-path
based attentional graph learning model for vulnera-
bility detection. MAGNET captures heterogeneous re-
lations in the code structure graph by constructing a
multi-granularity meta-path graph.

2) We propose a meta-based hierarchical attentional graph
neural network, called MHAGNN. It can learn the
representation of each meta-path and capture the long-
range dependency in the meta-path graph.

3) We perform comprehensive experiments for evaluat-
ing MAGNET, which confirms the effectiveness of
MAGNET in code vulnerability detection. We publicly
release our code and experimental data for facilitat-
ing future research: https://github.com/xmwenxincheng/
MAGNET.

The rest of this paper is organized as follows. Sec-
tion 2 describes the background. Section 3 details the two
components in the proposed model of MAGNET, includ-
ing the multi-granularity meta-path constructing and meta-
path based hierarchical attentional graph neural network.
Section 4 describes the evaluation methods, including the
datasets, baselines, implementation and metrics. Section 5
presents the experimental results. Section 6 discusses some
cases and threats to validity. Section 8 concludes the paper.

2 BACKGROUND

2.1 Code Structure Graph

Code structure graphs are widely used in code vulnerability
detection. Devign [14] uses code structure graph, which
shares the same node set with AST and merges the edge
sets of AST, CFG, DFG, and natural code sequence (NCS).
Fig.1b shows a code snippet of CWE-476 [39] and the
corresponding code structure graph. As shown in Fig.1b,
besides different edge types, each input node is represented
with two attributes: Value (described in the first line) and
Type (described in the second line).

The code structure graph encompasses a wealth of
both syntactic and semantic information of the source
code. Following the previous work [14], [18], we use the
Word2Vec [40] to capture the semantic associations within
each node vector. However, the current DL-based vulner-
ability detection approaches exhibit limitations in effec-
tively exploiting syntactic information. For example, IVDe-
tect [19] primarily focuses on combining node types into
the node vector, while ignoring the heterogeneous relations,
i.e., jointly considering different types of nodes and edges.
Devign [14] treats all nodes as the same node type in the
Gated Graph Neural Network.

Compared with natural languages, the source code ex-
hibits greater regularity and logical structure [14], meaning
that alterations in specific semantic information, such as

https://github.com/xmwenxincheng/MAGNET
https://github.com/xmwenxincheng/MAGNET
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void host_lookup(char *user_supplied_addr)

{

      struct hostent *hp;

      in_addr_t *addr;

      char hostname[64];

      in_addr_t inet_addr(const char *cp);

      validate_addr_form(user_supplied_addr);

      addr = inet_addr(user_supplied_addr);

      hp = gethostbyaddr( addr, sizeof(struct 

in_addr), AF_INET);

      strcpy(hostname, hp->h_name);

}

(a) A source code snippet

AST Edge

DFG Edge

NCS Edge

addr = inet_addr( user_supplied_addr )
ExpressionStatement

hp = gethostbyaddr{...}
ExpressionStatement

inet_addr
Identifier

...

A

D E

F

H

CFG Edge

inet_addr
Callee

addr
Identifier

user_supplied_addr
ArgumentList

G

inet_addr( user_supplied_addr )
CallExpression

C

addr = inet_addr( user_supplied_addr )
AssignmentExpression B

Value
Type

... ...

(b) A partial code structure graph

Fig. 1: (a) is a source code snippet of CWE-476. (b) is a visualisation of the code structure graph of the statements highlighted
in red box in (a). Each node is represented with two attributes: Value (described in the first line) and Type (descried in the
second line). The nodes with different shades indicate different node types.

variable names and identifiers [41], do not necessarily result
in vulnerabilities. These heterogeneous relations reflect the
diverse relationships across various node and edge types,
thereby benefiting the acquisition of vulnerability patterns.
By employing the heterogeneous relations, we can gain deep
insights into the variations in node types which are impor-
tant code structural information [42]. In this paper, we aim
at exploiting the heterogeneous relations for vulnerability
detection by defining meta paths.

2.2 Graph Neural Networks
Graph Neural Networks (GNNs) have been widely used
in the software engineering tasks, such as code classifica-
tion [43], code clone detection [44], [45], [46], etc. This is due
to the inherent ability to capture the structural information
of source code [18]. GNNs generally aggregate neighbour-
ing nodes’ information and use message passing for passing
information from the current node to other nodes, finally
forming a graph representation.

Several GNN-based methods have been proposed for
vulnerability detection. For instance, Devign [14] learns the
code structure information by adopting Gated Graph Neu-
ral Network (GGNN) to process multiple edge types graphs.
Reveal [18] aims at offering a better separability between
vulnerable and non-vulnerable samples by using GGNN
and multi-layer perceptron (MLP). IVDetect [19] uses the
feature-attention GCN model to learn the source code rep-
resentation, achieving state-of-the-art performance. Despite
the good performance, the existing methods still struggle
to effectively capture long-range dependencies. Previous
studies [31], [32] have demonstrated that Graph Neural
Networks (GNNs) are limited to learning information from
neighboring nodes. In vulnerability detection datasets, the
average distance between nodes in different datasets is
approximately seven. However, certain traditional GNNs,

such as the Graph Convolutional Network, achieve optimal
performance with only two layers [32]. Consequently, these
models can only capture information from nodes with a
distance of less than two, which is inadequate for capturing
vulnerability patterns. Wang et al. [29] further highlight the
challenge of learning long-distance dependencies in code
structure graphs, which often have multiple levels and a
significant number of nodes.

To illustrate, Fig. 2 shows a portion of the code from line
5 to line 11. In Fig. 2(a), the three statements highlighted
in red boxes (lines 5, 8, and 11) are the root cause of the
vulnerability. In the corresponding code structure graph
in Fig. 2(b), the green box indicates that more than six
steps of message-passing are required in a GNN to capture
the long dependencies between vulnerability statements.
Consequently, the model faces difficulties in effectively cap-
turing vulnerability patterns from the code structure graph.

In addition, to evaluate the situation of long-range de-
pendencies, we employ Devign [14] as a case study and
examine the correlation between model performance and
the number of graph nodes. Each node in CFG represents
a node, and the average distance between nodes will grow
as the number of nodes increases [47]. Our investigation
centers on the Reveal dataset [18], and we partition into five
intervals based on the number of nodes in code structure
graphs, with results shown in Table 1. Notably, Devign
exhibits superior performance for graphs with a lower node
count, achieving an accuracy of 90.71% for graphs con-
taining no more than 50 nodes. However, its performance
declines significantly as the number of nodes increases. For
graphs with more than 200 nodes, Devign’s accuracy drops
to approximately 54.17%. In this paper, we propose a multi-
granularity attention mechanism for learning the long-range
dependencies.
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     void main (int argc, char **argv) {
char path[256];
char *input;
int i;
short s;
unsigned int sz;
i = GetUntrustedInt();
s = i;
if (s > 256) {

... }
sz = s;
printf("i=%d, s=%d, sz=%u\n", i, s, sz);
input = GetUserInput("Enter pathname:");
strncpy(path, input, s);
path[255] = '\0';printf("Path is: %s\n", path);
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

short s ;
IdentifierDeclStatement

unsigned int sz ;
IdentifierDeclStatement

i = GetUntrustedInt ( )
ExpressionStatement

s = i
ExpressionStatement

sz = s
ExpressionStatement

...

s > 256
Condition

s
IdentifierDecl

sz
IdentifierDecl

...

short
IdentifierDeclType

s
Identifier

unsigned int
IdentifierDeclType

sz
Identifier

i
Identifieri = GetUntrustedInt ( )

AssignmentExpression ...

s = i
AssignmentExpression

s
Identifier

i
Identifier

s > 256
RelationalExpression

s > 256
RelationalExpression

sz = s
AssignmentExpression

AST Edge

CFG Edge

NCS Edge

(a) A source code snippet (b) A partial code structure graph

A (-9.09E-31) B(-1.99E-30) C(0.44)

Fig. 2: (a) is a source code snippet of CWE-839 [38]. (b) is the code structure graph generated from the source code snippet.
The red box statement indicates the vulnerable statement. The orange box denotes the same node value and different
node types. The green box indicates that GNN needs to use more than six message-passing steps to capture the long
dependencies between vulnerability statements. The red font denotes the meta-path between two nodes, and the brackets
indicate the meta-path weight of the path learned in this example.

< �(�), �(�), �(�)>

+
Node-based attention

Meta-path attention

 �

 �
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 �

 ��

 ��

+

Multi-granularity  
attention

Edge-based attention
( ��� + ��� + ���)

Source code Code structure 
graph MHAGNN

Meta-path graph 
construction

Fig. 3: The architecture of MAGNET.

TABLE 1: The accuracy of Devign [14] and MAGNET on the
Reveal dataset [18] with different numbers of graph nodes.

Node number [0,50] (50,100] (100,150] (150,200] >200

Devign 90.71 76.86 56.67 57.50 54.17
MAGNET 96.59 98.64 94.92 94.62 90.88

2.3 Meta-path

The meta-path has been used in social networks areas [48],
which is a path consisting of a sequence of edge types in
the heterogeneous graph. The heterogeneous graph contains
multiple types of nodes or multiple types of edges with the
data structure as a directed graph, where two nodes can be
connected via different edges. In vulnerability detection, the
code structure graph is also a heterogeneous graph. For ex-
ample, the previous methods treat the paths AB and AH as
the same type path. In the heterogeneous graph, two nodes
A and B can be connected via the “ExpressionStatement-

AST-AssignmentStatement” meta-path in Fig. 1b, which is
different from the meta-path “ExpressionStatement-CFG-
ExpressionStatement” connected between nodes A and H.
Constructing the meta-path in the heterogeneous network
can capture the structure information among nodes in
the code structure graph. As shown in Figure 2(a), we
observe that Line 8 represents a vulnerability statement
of source code, as denoted by the orange box contain-
ing two nodes in Figure 2(b). These two nodes possess
distinct types even though they share the same node
value of “s=i”. Specifically, the left node corresponds to
the “ExpressionStatement” type, signifying the statement
property, while the right node pertains to the “Assign-
mentExpression” type, representing the expression prop-
erty. These nodes are connected by an AST edge, forming
a heterogeneous relation. In this paper, we construct the <
ExpressionStatement,AST,AssignmentExpression >
meta-path to exploit the structural information in the code
structure graph, which captures the heterogeneous relations
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TABLE 2: Classification of node types.

Node type Classification Type Number

Statement
Statement, SwitchStatement, DoStatement, GotoStatement, WhileStatement, BreakStatement, CompoundStatement,
ForStatement, ReturnStatement, IdentifierDeclStatement, TryStatement, ClassDefStatement, ContinueStatement,
IfStatement, ExpressionStatement, ElseStatement, DeclStatement

17

Expression

Expression, InclusiveOrExpression, MultiplicativeExpression, AssignmentExpression, UnaryOperationExpression,
SizeofExpression, OrExpression, ShiftExpression, RelationalExpression, CallExpression, CastExpression,
ConditionalExpression, OperationExpression, EqualityExpression, AdditiveExpression,
PrimaryExpression, AndExpression, ExclusiveOrExpression, BitAndExpression, UnaryExpression

20

Symbol

Symbol, File, IncDec, ForInit, SizeofOperand, PtrMemberAccess, Sizeof, IdentifierDeclType, IdentifierDecl, ClassDef,
ParameterList, Callee, Condition, ArrayIndexing, ArgumentList, Parameter, Argument, ParameterType, CastTarget,
Function, ReturnType, Label, FunctionDef, MemberAccess, InitializerList, CFGErrorNode, InfiniteForNode,
CFGExitNode, CFGEntryNode, Identifier, Decl

32

to facilitate vulnerability detection. Without considering
the heterogeneous relations which contain rich structural
information within the source code, the previous methods
tend to fail for vulnerability detection. In this paper, we
demonstrate the impact of heterogeneous relations on code
vulnerability detection. After the model is trained, it adjusts
the weights of different heterogeneous relationships, caus-
ing the model to focus its attention on specific paths.

3 PROPOSED MODEL

In this section, we introduce the overall architecture of
MAGNET. As shown in Fig. 3, the architecture includes two
main components: (1) multi-granularity meta-path graph
construction, aiming at constructing heterogeneous relations
as meta paths. (2) meta-path based hierarchical attentional
graph neural network, aiming at learning the representa-
tions of the meta-path graph.

3.1 Multi-granularity Meta-path Graph Construction

In this section, we first illustrate how to group the node
types into multiple granularities, and then describe how we
construct the meta-path graph.

3.1.1 Node Type Grouping
Directly employing the node types provided by the pars-
ing principles [21] would lead to an increasingly large
number of heterogeneous relations. For example, following
Reveal [18], each dataset can be parsed into 69 node types,
resulting in more than 10,0001 heterogeneous relations. Prior
research [36] demonstrates that GNN models tend to get un-
derfitting on complex heterogeneous relations. To mitigate
the issue, we propose to group the node types into three
different granularities, including “Statement”, “Expression”
and “Symbol”.

Specifically, according to the code parsing principles [21]
we group all node types into the following three categories:
(1) nodes at “Statement” granularity: the node represents
the whole sentence in a code snippet, e.g., node A and
node H in Fig. 1b. (2) nodes at “Expression” granularity:
the node consists of two or more operator/operands [49],

1. It contains 69 unique node types and 4 edge types, and the number
of types for heterogeneous relations are calculated as 692 ∗ 4 = 19044.

e.g, the brown-shaded node B and C in Fig. 1b. (3) nodes at
“Symbol” granularity: the remaining nodes are categorized
as “Symbol” nodes for simplicity, e.g., the nodes D, E, F and
G in Fig. 1b.

The node types at each granularity are illustrated in
Table 2, from coarse-grained Statement category to fine-
grained Symbol category. The granularity-related categories
reflect the structural information of the node value and can
facilitate the subsequent DL-based learning process.

3.1.2 Meta Path Construction
The code structure graph G is a direct graph, indicated as
G(V, E ,A,R), where V , E , A, and R represent the node
set, edge set, node type set, and edge type set, respectively.
Each node v ∈ V has its associated type with the mapping
function τ(v) : V → A. Each edge e ∈ E is associated with
a type, with the mapping function: ψ(e) : E → R. The edge
e = (s, t) denotes the path linked from source node s ∈ V
to target node t ∈ V . To capture the structural informa-
tion of heterogeneous relations between nodes at different
granularity, we propose to build meta paths. Based on the
grouped tn node types (tn = 3, i.e., Statement,Expression
and Symbol) and contained te edge types (te = 4, i.e., AST ,
CFG, DFG and NCS), we define a meta path as below.
Definition 1 (meta path). A meta path on the code structure

graph is denoted as a triplet (τ(s), ψ(e), τ(t)), indicating
a heterogeneous relation from source node s to a target
node t with a connection edge e. τ(·) denotes the type
category of the corresponding node, and ψ(e) means the
type of the edge e.

The maximum number of types for the meta paths is
t2n ∗ te = 36. We then analyze the distribution of hetero-
geneous relations belonging to different meta-path types.
Fig. 4 illustrate the results on the FFMPeg+Qemu dataset,
and the other datasets show a similar distribution trend.
As can be seen, the last four types of the total 36 types,
e.g., (Ex, 2, Ex), (Ex, 2, St), appear fewer than three times
in the dataset. To facilitate the representation learning of
the heterogeneous relations in the graph, we filter out the
rare types [50], [51], and employ the remaining 32 types of
meta paths for constructing the meta-path graph. For the
two nodes that have more than one meta path, we keep
the multiple meta paths, e.g., nodes A and H in Fig. 1b
have (St,DFG, St) and (St, CFG, St) meta-paths; thus,
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the structure information of the code strucure graph can be
maintained by constructing meta-path graph.

3.2 Meta-path based Hierarchical Attentional Graph
Neural Network
In this section, we illustrate the proposed meta-path
based hierarchical attentional graph neural network, named
MHAGNN. MHAGNN consists of two modules: (1) a meta-
path attention mechanism for capturing the representations
of heterogeneous relations; and (2) a multi-granularity at-
tention mechanism for capturing long-range dependency in
the meta-path graph.

3.2.1 Meta-path Attention Mechanism
To better utilize the heterogeneous relations, i.e., triplets
(τ(s), ψ(e), τ(t)), from the constructed multi-granularity
meta-paths, we devise a meta-path attention mechanism,
with detailed architecture presented in Fig. 5. The meta-path
attention consists of node-based attention and edge-based
attention, which aims at learning the importance of different
node types and different edge types in the graph structure
representation.

Node-based attention: The node-based attention score
Attlnode for the target node t in the l-th layer is defined as
follows:

Attlnode = σ
(
W l
τ(t) ·

(
Kl(s)||Ql(t)

))
(1)

Kl(s) = Linearτ(s)(h
l−1
s ) (2)

Ql(t) = Linearτ(t)(h
l−1
t ) (3)

where W l
τ(t) is a trainable weight matrix, indicating the con-

tribution of node type τ(t) to the representation of the whole
graph. The symbol || is the concatenation operation and σ
is the sigmoid activation function. Ql(t) and Kl(s) are the
linear projection of node vector hl−1

t and hl−1
s , respectively,

which are used to learn the textual information of the code.
Ql(t) and Kl(s) are the linear projection of node t and s,
respectively. In Equation (3) and (2), Linear denotes a fully
connected neural network layer. hl−1

t and hl−1
s denote the

node vectors of t and s in (l − 1)-th layer, respectively,
where h0t and h0s are initialized as 100-dimensional vector
by word2vec [40].

Edge-based attention: The edge-based attention score
Attledge for the target node t is defined as following:

Attledge =
(
Kl(s)Wψ(e)Q

l(t)T
)
· µ(ψ(e))√

d
h

(4)

where Wψ(e) and µ(ψ(e)) denote the trainable matrix and
parameter for each edge type ψ(e), representing the impor-
tance of the edge type to the source node s and the target
node t, respectively. d and h denote the vector dimension
and the number of edge-based attention heads, respectively.

Meta-path attention: Based on the computed node-
based attention and edge-based attention, we devise the
meta-path attention score Attl(τ(s),ψ(e),τ(t)) for the target
node t to model the heterogeneity of the relationship
(τ(s), ψ(e), τ(t)):

Attl(τ(s),ψ(e),τ(t)) = softmax
(
∥H1

(
Attledge +Attlnode

))
(5)

where ||H1 represents the concatenation of H attention
heads.

Finally, we sum the attention scores of all neighbor nodes
connected to the node t, which is used as the meta-path
attention score of the node t. We treat meta-path attention
score Attl(τ(s),ψ(e),τ(t)) as input and utilize message passing
from source nodes to the target nodes, which incorporates
the heterogeneous relations into l-th layer’s. To enhance
the ability of GNN to represent different nodes, we also
establish a residual connection [52] with the previous (l−1)-
th layer’s output, and get the updated node vector hlt as:

hlt = σ

 ∑
s∈Nt

Attl(τ(s),ψ(e),τ(t)) · V l(s)

+ h
(l−1)
t (6)

V l(s) = Linearτ(s)(h
l−1
s ) (7)

where Nt denotes the set of neighboring nodes of node t
and hl−1

s denotes the vector representation of the node s in
(l − 1)-th layer. V l(s) is also the linear projection of node s.

3.2.2 Multi-granularity Attention
To enhance the representations of nodes at different granu-
larities, we propose to adopt both the average-pooling layer
and the max-pooling layer simultaneously. The average-
pooling layer [53] is designed to capture the long-range
dependency in the meta-path graph; while the max-pooling
layer aims at magnifying the contribution of the key
nodes considering that only few nodes in the graph are
vulnerability-related [54]. The multi-granularity attention
score M is calculated as below:
M = σ (MLP (ω1,i ·AvgPool(Fi) + ω2,i ·MaxPool(Fi)))

(i = st, ex, sy)
(8)

where ω denotes a trainable weight for different levels
average-pooled and max-pooled features and i denotes
different levels (i.e., granularities) of nodes. Fst, Fex, Fsy
are the node type representation of “Statement”, “Expres-
sion” and “Symbol”, respectively, which are calculated as
Fi = {ht}|Vi|

q=1 , (i = st, ex, sy). |Vi| denotes the number of a
single node types in the whole graph. The single node vector
ht is concatenated by bidirectional GRU [55], calculated as
ht =

(−−−→
GRU

(
hlt
))
||
(←−−−
GRU

(
hlt
))

. Finally, we use the typical
CrossEntropy loss function [56] for vulnerability prediction.

4 EVALUATION

4.1 Research Questions
We evaluate the MAGNET with the state-of-the-art vul-
nerability methods and aim at answering the following
questions:

RQ1: How does our method MAGNET perform in vul-
nerability detection?

RQ2: What is the impact of different modules in
MHAGNN on the detection performance of MAG-
NET?

RQ3: How effective is MAGNET for detecting Top-25
Most Dangerous CWE?

RQ4: What is the influence of hyper-parameters on the
performance of MAGNET?
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TABLE 3: Statistics of the datasets.

Dataset Samples Ratio (#Vul:#Non-vul) Language

FFMPeg+Qemu [14] 22,361 1:1.2 C
Reveal [18] 18,169 1:9.9 C/C++

Fan et al. [37] 179,299 1:16 C/C++

4.2 Experiment Setup

4.2.1 Dataset

In the experiments, we conduct MAGNET on three vul-
nerability datasets, i.e., FFMPeg+Qemu [14], Reveal [18],
and Fan et al. [37]. The statistics of the three datasets are
listed in detail in Table 3. The FFMPeg+Qemu dataset was
proposed by Devign [14], which contains 10+k vulnerable
and 12+k non-vulnerable entries. It is a relatively balanced
dataset and 45.0% of the samples are vulnerable. The Reveal
and Fan et al. datasets are imbalanced, which contain +18k

samples with 9.16% vulnerable and +179k samples with
5.88% vulnerable samples. For the programming languages,
FFMPeg+Qemu only comes from open-source C projects,
and the others datasets collect open-source C/C++ projects.

4.2.2 Baseline Methods
We consider the token-based methods and graph-based
methods in vulnerability detection. We implement the base-
lines and their corresponding parameter settings based on
the original papers as much as possible. Since Devign [14]
did not publish their source code and parameter settings,
we used the repository reproduced by Reveal [18].

Token-based methods: VulDeePecker [17] splits source
code into program slices with control dependencies incorpo-
rated. The program slices are fed into the model built with
an LSTM and attention mechanism. Russell et al. [25] em-
bed the labeled source code into the corresponding matrix.
They detect code vulnerabilities by CNN, integrated learn-
ing, and random forest classifiers. SySeVR uses multiple
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TABLE 4: Comparison results between MAGNET and the baselines on the three datasets. “-” means that the baseline does
not apply to the dataset in this scenario. The best result for each metric is highlighted in bold. The shaded cells represent
the performance of the top-3 best methods in each metric. Darker cells represent better performance.

Metrics(%)
Dataset

FFMPeg+Qemu [14] Reveal [18] Fan et al.. [37]

Baseline Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score

VulDeePecker 49.61 46.05 32.55 38.14 76.37 21.13 13.10 16.17 81.19 38.44 12.75 19.15
Russell et al. 57.60 54.76 40.72 46.71 68.51 16.21 52.68 24.79 86.85 14.86 26.97 19.17
SySeVR 47.85 46.06 58.81 51.66 74.33 40.07 24.94 30.74 90.10 30.91 14.08 19.34
Devign 56.89 52.50 64.67 57.95 87.49 31.55 36.65 33.91 92.78 30.61 15.96 20.98
Reveal 61.07 55.50 70.70 62.19 81.77 31.55 61.14 41.62 87.14 17.22 34.04 22.87
IVDetect 57.26 52.37 57.55 54.84 - - - - - - - -

MAGNET 63.28 56.27 80.15 66.12 91.60 42.86 61.68 50.57 91.38 22.71 38.92 28.68

code features as input (i.e., code statements, program de-
pendencies, and program slices) and utilizes a bidirectional
RNN for code vulnerability detection.

Graph-based methods: Devign [14] uses the GGNN
approach on the code structure graph for vulnerability de-
tection. Reveal [18] uses Code Structure Graph (CPG) as the
input and leverages GGNN in the feature extraction step.
And it combines MLP and Triplet Loss during the training
phase. IVDetect [19] constructs the Program Dependency
Graph (PDG) and uses GCN to learn the graph representa-
tion for capturing vulnerable pattern.

4.2.3 Implementation

We implement our model MAGNET in Python 3.7 using Py-
Torch [57] and Deep Graph Library (DGL) [58]. We train our
model with the NVIDIA GeForce RTX 3090 GPU, installed
with Ubuntu 20.04 and CUDA 11.4. In the embedding layer,
the initial input dimension d is set to 100 and the hidden
state dimension is set to 64. The number of MHAGNN lay-
ers is set to 2 and the head of meta-path attention is set to h
= 4. We adopt Adam optimizer [59] to train our model with
a learning rate 5e−4. The batch sizes for FFMPeg+Qemu,
Reveal, and Fan et al. datasets are set as 512, 512 and 256,
respectively.

In addition, to ensure the fairness of the experiments,
we use the same data splitting for all baseline approaches as
MAGNET. We randomly partition the dataset into disjoint
train, valid, and test sets with the ratio of 8:1:1.

4.3 Evaluation Metrics

We use the following four widely-used evaluation metrics
to measure our model’s performance:

Precision: Precision is the percentage of true vulnerabili-
ties among the vulnerabilities retrieved. TP and FP are the
number of true positives and false positives, respectively.

Precision =
TP

TP + FP
(9)

Recall: Recall is the percentage of vulnerabilities that are
retrieved out of all vulnerable samples. TP and FN are the
number of true positives and false negatives, respectively.

Recall =
TP

TP + FN
(10)

F1 score: F1 score is the harmonic mean of precision and
recall metrics.

F1 score = 2× Precision×Recall
Precision+Recall

(11)

Accuracy: Accuracy is the percentage of correctly clas-
sified samples to all samples. TN is the number of true
negatives and TP + TN + FN + FP represents the all
samples.

Accuracy =
TP + TN

TP + TN + FN + FP
(12)

5 EXPERIMENTAL RESULT

5.1 RQ1: How does our method MAGNET perform in
vulnerability detection?
To answer this research question, we first explore the per-
formance of MAGNET and compare it with other baseline
methods. Then, we visualize the features learned by the
MAGNET to verify the validity of the learned vulnerability
patterns.

5.1.1 Effectiveness of MAGNET
Table 4 shows the overall results of all baseline models
and MAGNET on the four evaluation metrics. Overall,
MAGNET achieves better results and outperforms all of
the six referred token-based and graph-based approaches
on FFMPeg+Qemu, Reveal and Fan et al. dataset in terms
of F1 score by 6.32%, 21.50% and 25.40%, respectively.
For the four performance metrics on the three datasets,
MAGNET has the best performance in 10 out of the 12
cases. Compared with the best-performing baseline Reveal,
our method obtains an average performance improvement
of 6.84%, 23.04%, 9.53% and 17.74% on the four metrics,
respectively.

We observe that MAGNET outperforms all the baseline
methods on the three datasets in terms of F1 score and
recall metric. Compared with the best-performing base-
line method, MAGNET achieves an average absolute im-
provement of 6.23% with respect to the F1 score on the
three datasets. MAGNET also improves the recall metric
by 13.37%, 0.88% and 14.34%, respectively, over the best
baseline methods. Such improvement benefits the scenario
of vulnerability detection, since a higher recall indicates a
larger percentage of vulnerabilities that can be detected.
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MAGNET achieves the best performance on all metrics
for the FFMPeg+Qemu and Reveal datasets. However, on
the Fan et al. dataset, it performs worse than the IVDetect.
We believe that this may be due to the class imbalance
problem [18] of the Fan et al dataset. MAGNET focuses
more on vulnerabilities, which makes it higher on the Recall
metric. In addition, in Table 4, the symbol “-” indicates
that IVDetect could not converge on the Reveal and Fan
et al. datasets, and would identify all code snippets as
non-vulnerable when they use the same split setting with
MAGNET. The reason may be attributed to that IVDetect
is designed for balanced training datasets in the original
paper [19], and tends to fail for the commonly-used imbal-
anced datasets such as the Reveal and Fan et al. datasets.

Experimental results also show that three graph-based
methods Devign, Reveal and IVDetect outperform the three
token-based methods. For example, the gray cells represent
the top-3 best results in the FFMPeg+Qemu dataset appear
6 times in the graph-based methods but only twice in the
token-based methods. The reason may be attributed to that
token-based methods are more advantageous in capturing
the sequence information of codes while ignoring the struc-
tural information. In contrast, graph-based methods can bet-
ter capture code structure information, which is beneficial
for vulnerability detection.

5.1.2 Result Visualization
To further analyze the effectiveness of MAGNET, we visu-
alize the representations learnt by MAGNET via the pop-
ular t-SNE technique [60]. For comparison, we also use t-
SNE to visualize existing graph-based code vulnerability
detection methods as well. In the t-SNE space, a larger
distance between different classes (i.e., vulnerable and non-
vulnerable examples) of nodes indicates a clear and greater
separability of classes, which leads to a higher performance
of vulnerability detection. In addition, to facilitate the quan-
tification, we use centroids distanceD [61] for quantitatively
illustrating the separability between different classes.

The feature visualization graphs of t-SNE for the existing
graph-based models are shown in Fig. 6a to 6c. It shows that
the positive and negative samples in Devign are thoroughly
mixed, with the central distance at only 0.0108. Compared
with Devign, both Reveal and IVDetect obtain larger central
distances, and the scatter appears more dispersed but still
lacks the separability visible to the naked eye. In Fig. 6d,
we show the separability of our MAGNET. We can observe
that the left side aggregates more vulnerability samples,
while the right side has more non-vulnerable examples.
Besides, MAGNET shows the largest central distance at
0.2901 among all the methods. The visualization further
demonstrates the effectiveness of MAGNET in distinguish-
ing vulnerable code from non-vulnerable code.

Answer to RQ1: MAGNET outperforms all baseline
methods in terms of recall and F1-score. On the F1
score, MAGNET improved by 6.32%, 21.50% and
25.40% compared with the best baseline Reveal on
the three datasets, respectively. Visualization further
demonstrates that MAGNET distinguishes code vul-
nerabilities better than the baselines.

5.2 RQ2: What is the impact of different modules of
MHAGNN?
To answer this research question, we explore the effect of
each module in MHAGNN on the performance of MAGNET
by performing ablation study on all three datasets.

We construct the following three variations of MAGNET
for comparison: (1) without edge-based attention (denoted
as w/o edge-att): we remove the edge-based attention to
validate the impact of the edge-based attention; (2) without
node-based attention (denoted as w/o node-att): we remove
the node-based attention to verify the impact of node-
based attention; (3) without the multi-granularity attention
(denoted as w/o multi-att): we obtain the graph representa-
tion through simply summing the node feature embeddings
instead of using the proposed multi-granularity attention.

The results of the different variants are shown in Table 5.
We find that the performance of all the variants is lower than
that of MAGNET, which indicates that all the modules con-
tribute to the overall performance of MAGNET. Specifically,
without the edge-based attention, the results of accuracy,
precision, recall and F1 score on the three datasets drop
by 1.18%, 2.24%, 6.65%, and 3.57% on average, respectively.
Without node-based attention, the four metrics decrease by
1.04%, 2.26%, 9.52%, and 5.02%, respectively. The node-
based attention and edge-based attention contribute greatly
to the model performance, since they capture different types
of structural information in the meta-path graph.

Among all the three parts, the multi-granularity atten-
tion layer contributes the most to the overall performance,
which improves the F1 score by 11.93%, 21.18%, and 33.54%
on the three datasets, respectively. The reason may be at-
tributed to that the multi-granularity attention facilitates the
learning process of global long-range dependency, and can
better capture the patterns of vulnerable code.

Answer to RQ2: The various components of the
MHAGNN effectively improve the MAGNET per-
formance. The multi-granularity attention layer con-
tributes the most to the overall performance.

5.3 RQ3: How effective is MAGNET for Top-25 Most
Dangerous CWE?
Common Weakness Enumeration (CWE) [62] is a list of
vulnerability weakness types, which serves as a common
language for describing and identifying vulnerabilities. The
Top-25 most dangerous CWEs list officially publishes the
most common and impactful software vulnerabilities over
the previous two calendar years based on Common Vulnera-
bilities and Exposures (CVE) data [63]. Such weaknesses are
dangerous compared to other vulnerabilities because they
are more numerous and have a higher risk factor (CVSS).
In order to explore the effectiveness of MAGNET on the
most common vulnerabilities, we validate the effectiveness
of MAGNET on the Top-25 most dangerous CWEs.

Specifically, we prepare the evaluation set by extracting
the samples belonging to the Top-25 List from the Fan et al
dataset. The evaluation set is named as Top-CWE dataset
for brevity in this paper. The Top-CWE dataset contains
8,989 code functions, and the specific type distribution is
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Fig. 6: The t-SNE [60] plot illustrates the distribution between vulnerable (pink) and non-vulnerable (dark blue) examples
in the code representations of the different approaches. D indicates the centroids distance between the centers of the
vulnerable and non-vulnerable examples.

TABLE 5: Results of ablation study.

Metrics(%)
Dataset

FFMPeg+Qemu [14] Reveal [18] Fan et al.. [37]

Metrics Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1

w/o edge-att 61.16 55.96 69.52 62.01 91.02 39.60 55.14 46.09 90.54 19.57 36.15 25.39
w/o node-att 60.97 55.97 62.70 59.15 90.89 39.62 58.88 47.37 91.27 19.47 30.62 23.80
w/o multi-att 60.94 55.77 60.92 58.23 88.41 31.22 55.14 39.86 86.27 12.92 36.31 19.06

MAGNET 63.28 56.27 80.15 66.12 91.60 42.86 61.68 50.57 91.38 22.71 38.92 28.68

shown in Table 5. In terms of quantity, CWE-119 (the Bounds
of a Memory Buffer) [64] and CWE-20 (Improper Input
Validation) [65] have the largest proportion, with 28.61%
and 23.48%, respectively.

We evaluate 12 types of vulnerabilities in the Fan et
al. [37] dataset. This is because only 12 of the 25 most
threatening types of CWE appear more than 50 times. The
remaining 13 data types appear too infrequently and are
difficult to evaluate. We build a unified model for all types
of vulnerabilities and use a softmax function for testing
based on the type of vulnerability. We compare with all
the graph-based baselines that have been trained on the
FFMPeg+Qemu model.

As shown in Table 6, our MAGNET achieves more than
70% accuracy on all vulnerabilities, with an average im-
provement of 27.78%, compared to the previous best base-
lines. It indicates that our method is able to discover differ-
ent real-world vulnerabilities more accurately. Specifically,

our method obtains the highest identification accuracy of
83.19% on CWE-287 (Improper Authentication) [66] among
all the types of vulnerabilities detected. In CWE-20 and
CWE-119, which account for a large proportion, MAGNET
has an accuracy of 75.32% and 77.07%, respectively, showing
30.13% and 26.70% improvement over previous methods,
respectively.

Answer to RQ3: MAGNET achieves more than
70% accuracy on real-world vulnerabilities, with
an improvement of 27.78% over the previous best-
performing baseline.

5.4 RQ4: What is the influence of hyper-parameters on
the performance of MAGNET?

In this section, we explore the impact of two key hyper-
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TABLE 6: The accuracy of baseline and MAGNET for the
top-25 most dangerous CWEs. Due to the small number of
partial vulnerabilities, we only show the types of vulnera-
bilities with more than 50 samples. Percentage indicates the
proportion of vulnerabilities in the samples.

CWE Type Percentage Devign Reveal IVDetect MAGNET

CWE-787 3.34% 45.37 51.71 56.60 83.19
CWE-79 1.16% 39.13 65.22 51.43 71.79
CWE-125 8.61% 47.14 52.54 61.08 72.86
CWE-20 23.48% 42.00 53.58 57.88 75.32
CWE-416 11.78% 46.67 58.13 61.05 72.97
CWE-22 0.77% 56.86 47.06 48.00 64.00
CWE-190 3.84% 44.11 52.47 59.20 76.34
CWE-287 0.72% 35.14 48.65 51.28 71.43
CWE-476 5.33% 48.00 49.41 63.22 73.54
CWE-119 28.61% 43.77 51.23 60.83 77.07
CWE-200 9.02% 44.59 51.18 56.17 76.82
CWE-732 1.64% 34.38 56.25 43.75 76.67

Average 44.38 52.26 59.24 75.70

1 2 3 4 5
Layers

62

63

64

65

66

67

68

F1
 sc

or
e

(a) Layers

1 2 4 8 16
Head number

62

63

64

65

66

67

F1
 sc

or
e

(b) Head numbers

Fig. 7: Parameter analysis of MHAGNN’s layers and head
numbers of meta-path attention on the FFMPeg+Qemu
dataset.

parameters on the performance of MAGNET, including the
number of layers of MHAGNN and the number of meta-
path attention heads.

5.4.1 Layer Number of MHAGNN

We explore the effect of different numbers of layers in
MHAGNN on the performance of MAGNET on the FFM-
Peg+Qemu and Reveal datasets. Fig. 7a and Fig. 8a show the
F1 score of MAGNET with different numbers of MHAGNN
layers. As can be seen, the F1 score of MAGNET first
shows an increasing trend and then decreases as the number
of layers increases on the FFMPeg+Qemu dataset, with a
similar trend observed on the Reveal and Fan et al. datasets.
The GNN layers are usually related to the distance between
different nodes. The larger the distance between different
nodes, the more message passing and GNN layers are
required.

We find that MAGNET generally obtains the highest F1
scores when the number of layers is set as four, i.e., 66.12%,
50.57%, and 28.68% on the FFMPeg+Qemu, Reveal and Fan
et el. dataset, respectively. We suppose that the MAGNET
can better capture the information of the neighborhood as
the layer number increases. However, as the layer number
further increases, the over-smoothing issue would reduce
the model performance.
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Fig. 8: Parameter analysis of MHAGNN’s layers and head
numbers of meta-path attention on the Reveal [18] dataset.
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Fig. 9: Parameter analysis of MHAGNN’s layers and head
numbers of meta-path attention on the Fan et al. [37] dataset.

5.4.2 Attention Head Numbers
We analyze the effect of different attention head numbers
on the performance of MAGNET, with the results shown
in Fig. 7b, Fig. 8b, and Fig. 9b. As can be seen, MAGNET
achieves the optimal F1 score when the number of attention
heads is set as four. The trends of parameter setting in head
numbers are roughly the same for all datasets. Therefore,
we empirically use four head numbers for all three datasets.

Overall, more heads show a significant improvement in
F1 score compared to a smaller number of heads, which in-
dicates that more heads are beneficial for capturing the code
structure information in the meta-path graph. However, the
performance starts to degrade after more than four heads.

Answer to RQ4:
The hyper-parameter settings can impact the perfor-
mance of MAGNET in the FFMPeg+Qemu, Reveal,
and Fan et al. datasets. The experiment results show
that both the head number and layer number are
suggested to be set as four for achieving relatively
better performance.

6 DISCUSSION

6.1 Case Study

We conduct a case study to further verify the effectiveness
of MAGNET in vulnerability detection. For analysis, we
visualize the attention weight of each statement produced
by MAGNET. Fig. 10 visualizes the heatmap of attention
weights for a vulnerable example from CWE-190. In this
example, the line 6 is the vulnerable statement, where the
sum of the three variables may exceed the maximum value
of the short int primitive type, producing a potential integer
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Fig. 10: The heatmap of attention weights for a code ex-
ample from CWE-190 (Integer Overflow or Wraparound).
The code in red indicates a vulnerable statement. The red,
orange, yellow and green-shaded statements indicate that
the corresponding statements are associated with decreasing
attention weights.

overflow. MAGNET notices the vulnerability and gives this
statement the highest level of attention (red-shaded). The
initialization statements (lines 3-5) also present higher at-
tention weights (orange-shaded and red-shaded). From the
case, we guess that MAGNET is able to capture the code
structural information and patterns of vulnerabilities, which
is helpful for detecting code vulnerabilities effectively.

6.2 Comparison with Pre-trained Models
In recent years, there are some pre-trained approaches e.g.,
CodeBERT [67], which aim at learning the general pro-
gram representations. LineVul [13] leverages the CodeBERT
model and selects vulnerability detection as the downstream
task. And we compare the performance of MAGNET with
LineVul. Specifically, we use the officially released code by
LineVul and set default hyper-parameters of their paper.

We present a experimental results comparison between
our tool (MAGNET) and LineVul, as summarized in Table 7.
The results indicate that MAGNET outperforms LineVul in
terms of both Recall and F1 metrics on the FFMPeg+Qemu
and Reveal datasets, with improvements of 53.92% and
15.02% respectively. This signifies that MAGNET is capable
of detecting a greater number of vulnerabilities on these
datasets compared to LineVul. On Fan et al. dataset, LineVul
outperforms the MAGNET, which we believe may be due
to the pre-trained model. However, LineVul uses the pre-
trained model, which has additional data and contains more
model parameters. Considering the scale of the data using
(0.16M of MAGNET and 2.3M of LineVul) and the model
parameters containing (0.65M of MAGNET and 125M of
LineVul), we believe that MAGNET achieves comparable
performance with LineVul.

6.3 Performance on the Dataset Split by Time
Following the previous work [11], [14], [17], [18], [19], we
have repeated three times of the experiment and taken the
average to ensure the stability of the results. Furthermore,
we employ a more rigorous data partition way to conduct
experiments in Fan et al. [37], i.e., splitting data by time.
Specifically, we use the “update date” of the vulnerability
data in Fan et al.’s dataset as the criterion for the data parti-
tion. Specifically, we consider data updated before January
4th, 2018, as the training set, and the data updated from

January 4th, 2018, to January 15th, 2019, as the validation set.
All samples beyond January 15th, 2019, were allocated to
the test set. We compared with the best-performing baseline
Reveal to evaluate the influence of the time factor. The
detailed experimental results are shown in Table 8.

It can be seen that based on the division of time, MAG-
NET gets three better performances out of a total of four
cases. This illustrates that MAGNET is able to obtain bet-
ter experimental results than the best-performing baseline
when taking the time factor into consideration. Specifically,
MAGNET obtained 7% and 4.42% performance improve-
ments in the Accuracy and Recall metrics, respectively.
However, the dataset also suffers from data leakage. In the
case of split by time, all four metrics degrade to different
degrees. The degradation in the recall metric is the most
severe for all methods, reaching an average of 12.96%.

6.4 Effectiveness of the Node Type Grouping Method
in MAGNET
Using the code structure graph without abstraction in MAG-
NET is cost intensive. For example, the data preprocessing
steps of the FFMPeg+Qemu [14], Reveal [18] and Fan et
al. [37] required approximately 17, 9, and 170 hours on
NVIDIA GeForce RTX 3090 GPU, respectively. The expen-
diture of resources and time is a consequence of the ex-
cessive number of meta-paths. The code structure graph
consists of 69 node types and 4 edge types, resulting in
a total of 69 × 4 × 69 = 19044 Node-Edge-Node meta-
paths. This profusion of meta-paths can lead to the out
of CUDA memory issue for model training. To validate
the effectiveness of our proposed node type grouping, we
generate the code structure graph of node types with other
abstraction methods.

Specifically, we use two methods to keep q node types:
based on the number of nodes and random selection. We use
q for 5 and 10 different node types, resulting in four node
type abstraction methods. The maximum number of node
types is set as 10, since it results in 400 meta-paths, which
is close to maximum CUDA memory capacity of the GPU.
The experiments are performed the FFMPeg+Qemu dataset
for evaluation. The preprocessing step takes approximately
three hours, three times longer than that of our MAGNET.
The results also validate the effectiveness of the node type
grouping strategy in MAGNET. As shown in Table 9, MAG-
NET outperforms all the four variant approaches, achieving
average improvements of 2.45%, 0.3%, 21.1%, and 9.10%
for the accuracy, precision, recall, and F1 score, respectively.
Furthermore, the selection strategy based on node frequency
showcases notable performance improvements compared
with the random selection strategy.

6.5 Effectiveness of Meta-path
In vulnerability detection, the code structure graph is also a
heterogeneous graph. Constructing the meta-path in the het-
erogeneous network can capture the vulnerability-related
information among nodes in the code structure graph.
MAGNET can adjust the different weights of the meta-path,
causing the model to focus its attention on specific paths.

Specifically, in Fig. 2, we denote three meta-paths as-
sociated with a statement and its sub-nodes, represented
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TABLE 7: Comparison results between MAGNET and the LineVul on the three datasets.

Dataset FFMPeg+Qemu [14] Reveal [18] Fan et al. [37]

Metrics Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score

LineVul 64.75 63.98 50.51 56.45 92.43 48.86 41.35 44.79 98.82 90.68 83.31 86.84
MAGNET 63.28 56.27 80.15 66.12 91.60 42.86 61.68 50.57 91.38 22.71 38.92 28.68

TABLE 8: Comparison results between MAGNET and the
Reveal on the two settings of split in Fan et al. [37].

Metrics Accuracy Precision Recall F1 score

Reveal 77.39 12.59 25.73 16.91
MAGNET 84.39 17.01 19.34 18.10

TABLE 9: Performance comparison between four vari-
ants without node type abstraction in FFMPeg+Qemu [14]
datasets.

Node type grouping Accuracy Precision Recall F1

Random 60.77 57.73 45.69 51.015 node types Frequency 59.77 54.80 57.05 55.90

Random 60.88 55.69 61.05 58.2510 node types Frequency 61.89 55.66 72.41 62.94

MAGNET 63.28 56.27 80.15 66.12

by meta-paths A, B, and C, respectively. Traditional vul-
nerability detection methods, such as Devign and Reveal,
assign equal weights to all the paths, requiring the model
to process a large amount of information for learning.
This tends to result in inaccurate vulnerability detection. In
this case, meta-path C is the most critical in terms of the
vulnerability trigger path, as the assignment relations be-
tween nodes referred to by NCS determine the vulnerability
pattern. After model training, the weight assigned to meta-
path C is 0.44, while the weights for the other paths are
ignorable (−9.09E−31 for the meta-path A and −1.99E−30

for the meta-path B). It indicates that the model effectively
disregards the less relevant paths and focuses on the more
critical part of the vulnerability.

6.6 Threat to Validity
Dataset Partition. None of the existing baseline methods
publish their divisions of datasets, so we can not completely
reproduce the previous results. Following the data division
of previous work [14], [18], we perform a dataset division
and reproduce the experimental results based on their arti-
cles as much as possible. Reveal and IVDetect use different
preprocessing methods, which may lead to inconsistencies
in the dataset under the same division. We relied on their
source code for the preprocessing work as much as possible.
Devign [18] did not publish the source code of their im-
plementation, we reproduce Devign based on Reveal’s [18]
implementation version and try to be consistent with the
original description.

Generalizability of Other Programming Languages. Our
node classification is based on the AST node type in C/C++.
Therefore, we only conduct experiments on the C/C++

dataset and do not choose other programming languages
such as Java and python. However, the main idea of MAG-
NET can be generalized to other programming languages
because the approach does not rely on language-specific
features. We will evaluate MAGNET on more programming
languages in our future work.

7 RELATED WORK

Recently, learning-based vulnerability detection has been a
significant research problem in software engineering. De-
pending on how the source code is represented and which
type of learning model is utilised, existing technologies can
be generally divided into two different types: token-based
and graph-based methods.

The token-based methods [11], [17], [25], [68], [69] treat
the code as a sequence of tokens, which contain two phases:
feature extraction and training. In the feature extraction
phase, the token-based methods usually extract token-based
features as the model input, which include identifiers, key-
words, separators, and operators. These features are usually
specified and written by developers and can represent the
different line structure [70] of the code. For example, Russell
et al. [25] divides each code fragment at the function level
and treats them as an individual sample. It generates a lexi-
cal token sequence for each function to represent the whole
code sample feature set. Code2Seq [68] uses path-context
extracted features for each program method and splits code
tokens into subtokens. In the training phase, these methods
treat source code as sequences via utilizing various deep
neural networks. Russell et al. use CNN [71] for code
vulnerability detection, concatenating these token features
through convolution filters. SyseVR [11] uses GRU [72] to
capture the sequence information of the code. Code2Seq
uses BiLSTM [73] to encode the necessary information in
a sequence of tokens.

In recent years, the graph-based methods [14], [18], [19],
[74], [75] have achieved state-of-the-art performance on vul-
nerability detection. They capture more structural informa-
tion in the source code than token-based methods. They gen-
erally represent source code snippets as graphs generated
from static analysis. Depending on different code represen-
tations, they design various GNN models for detecting code
vulnerabilities. For example, VGDETECTOR [74] uses CFGs
to embed the execution order of a code sample and then
uses the GCN [26] to capture neighborhood information in
the graph structure. Reveal [18] first generate CPG [21] and
use Word2Vec [40] to initial the node vector representations
of the code tokens. Then they use GGNN [27] to detect code
vulnerabilities.

Li et al. [76] propose a bug detection approach that
utilizes Program Dependency Graph (PDG) and Data Flow
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Graph (DFG) as the global context, while leveraging ex-
tracted information from the Abstract Syntax Tree (AST)
as the local context. They treat the AST as a homogeneous
graph, focusing solely on the relationships between differ-
ent node vectors along paths. The difference between Li
et al.’s work and MAGNET is the targeted programming
languages. The parsing process in Li et al.’s approach is
specifically designed for the Java programming language,
which is hard to be applied to C/C++ language.

However, all these methods focus on learning the local
features of nodes and fail to capture heterogeneous rela-
tions and long-range dependencies among different types of
nodes and edges. For example, Devign [14] treats all nodes
as the same node type and only uses the node value in the
code structure graph, which leads to missing information on
the node type and ignoring heterogeneous relations in the
code structure graph. Cao et al. [15] construct the Program
Dependence Graph (PDG) instead of a code structure graph
to capture the interprocedural flow information including
data flow and control flow, which only focus on the state-
ment nodes and do not consider the other nodes. In this
paper, we propose a meta-path based attentional graph
learning model to learn the heterogeneous relations and
long-range dependencies in the code structure graph.

8 CONCLUSION

In this paper, we propose MAGNET, a meta-path based
attentional graph learning model for vulnerability detec-
tion. MAGNET consists of a multi-granularity meta-path
construction, which consider the heterogeneous relations
between the different node and edge type. We also propose
a multi-level attentional graph neural network MHAGNN
to comprehensively capture long-range dependencies and
structural information in the meta-path graph. Our ex-
perimental results on three popular datasets validate the
effectiveness of MAGNET, and the ablation studies and
visualizations further confirm the advantages of MAGNET.
Compared with state-of-the-art deep learning-based meth-
ods, MAGNET gains better performance and detects more
vulnerabilities in the real world. The implementation of
MAGNET and the experimental data are publicly available
at: https://github.com/xmwenxincheng/MAGNET.
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