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Abstract — It is generally accepted that if dynamic
electricity pricing tariffs were to be introduced, their
effectiveness in controlling domestic loads will be curtailed if
consumers were relied on to respond in their own interests.
The complexities of relating behavior to load to price are so
burdensome that at least some degree of automation would be
required to take advantage of pricing signals. However, a
major issue with home automation is fitting in with the
lifestyles of individual consumers. Truly smart appliances that
can learn the details of their routine operation may be several
years away from widespread adoption making integrated
home energy management systems unfeasible. Similarly, usage
patterns of these same appliances may be substantially
different from household to household. The contribution of
this paper is the proposal and demonstration of a set of
probabilistic models that act in a framework to reduce
appliance usage data into contextual knowledge that accounts
for variability in patterns in usage. Using sub-metered load
data from various domestic wet appliances, the proposed
technique is demonstrated learning the appliance operating
likelihood surfaces from no prior knowledge1.

Index Terms — smart home, smart grid, demand response,
energy management.

I. INTRODUCTION

As environmental awareness grows across the developed
world, energy utility companies have been motivated by
government legislation and public opinion to operate their
infrastructure with greater efficiency in order to reduce
generation requirements. A considerable source of inefficiency
is the need for spinning reserves of generation to meet
uncertain demand, in particular, overestimates to
accommodate peak loads. It has been identified that a better
understanding of loads would allow margins to be shrunk.
Despite making up a significant portion of electricity demand
[1-3] relatively little is known about domestic loads; the
absence of metering on the low voltage circuit coupled with
the traditional means of selling electricity, quarterly billing in
the UK, means that there is very little being measured. A key
technology in Smart Grids is the facility of Demand Response
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(DR). The primary motivator for DR is system efficiency –
removing the need for significant generation margins in
reserve to accommodate peaks in demand and thus preserve
continuity in supply.

However, burdening the householder with the potentially
complex task of deferring loads and checking pricing signals
will not result in a robust and sustainable DR program. [4]
deployed custom built clothes driers with demand response
control circuitry built into to the appliance to allow signaled
load shedding. This was possible with an appliance with such a
simple duty cycle, but implementing true Smart Appliance
intelligence should have the ultimate objective of operating
domestic appliances at the optimal price at the most
convenient time. If such appliances were to come to be
commonplace, then they would need some kind of adaptive
intelligence to cope with the dynamic nature of domestic
energy use. This may comprise identifying usage times and
learning the variability associated with them. Combining
operating characteristics with household preference and tariff
information could allow the deferring of appliance operation to
a cost optimal time by automation.

Although ubiquitous Smart Appliances may be several years
away, utility companies keen to avoid costly network
reinforcements through the implementation of DR programs
require these in timelier manner, a realization that may be
possible through intermediary technology and retrofits. There
have been two distinct approaches to monitoring the use of
domestic appliances: building the telemetry into the appliance
or the non-intrusive approach where the overall load profile is
disaggregated into its constituent appliance loads. The latter
approach was pioneered by [5] and has seen several
progressively sophisticated algorithms proposed for extracting
appliance loads [6-8]. These techniques are computationally
expensive compared with just metering the individual
appliance due to the large amounts of data required and
intensive signal processing used. [9] demonstrated high
resolution monitoring of white goods which was later followed
by [10] extended with illustrations of practical examples and
highlighting the need for analytics. The manufacturer centric
monitoring of [10] has longer term objectives; a shorter term
benefit of this capability is to inform a home automation
system for enabling demand response and management. [11]
cites [12] as an example of how informing users about their
energy use aids their understanding in how to reduce it –
extraction of tasks requires metered plugs as [13] and [14]



describe. Moving from the generic monitor of [11] to the
specialized monitor of [10] requires additional analytics
software to tailor required functionality from basic hardware.
In order to do this, there needs to be a self learning capability
on the part of the monitor.

This paper proposes a Machine Learning solution for online
learning of appliance usage characteristics from no prior
knowledge of their duty cycles or times of use; this allows it to
be employed with a number of types of appliances. Section II
reviews demand response technologies and the services they
can provide to future electricity distribution networks. In
Section III demand characteristics of domestic dwellings are
discussed and in particular, how certain appliance types
influence overall energy usage, Section IV describes the
methodology for simulating an active smart appliance
operation by gathering sub-metered data. The characteristics of
some high energy use appliances are included to illustrate the
challenging diversity of the problem. As potential smart
appliances of the future are going to have to be competitively
priced, computing power backing up their ‘intelligence’ is
likely to be limited, hence simple online learning of operating
behavior is proposed. The Kalman Filter realization of
Bayesian Filtering, commonly seen in Robotics owing to its
computational efficiency, is reviewed in Section V. Section VI
proposes a model for learning the probability of time and
extent of use of arbitrary appliances from metering data; the
specializations to Kalman Filtering and the accommodation of
multiple operating regimes are also detailed in Section VII.
Case studies are shown for typical wet appliances in Section
VIII. Conclusions outline the opportunities for hardware
implementation, the benefits of additional model refinements
and further applications.

II. DEMAND RESPONSE

There are a number of demand response mechanisms such
as peak clipping, valley filling which may be facilitated by
load shifting and longer term measures such as efficiency and
electrification which stem from retrofit investment. Demand
Response may be incentivized through time of use tariffs.

[15] estimated that in an urban DR trial in Norway, some
4.2% of demand peaks could be cut. [16] also noted the
effectiveness of such schemes with a reduction in demand with
5% removed from peak demand. In [15] a DR study was
conducted over a group of customers in Central Norway; this
publication also noted that electricity was a ‘low interest’
product – one which the consumer had little comprehension as
to the effect their habit driven lifestyles had on their level of
usage. Alternatives to the flat rate averaged wholesale tariff as
noted by [16, 17] include real time pricing, critical peak
pricing and time of use pricing. Since retail price will be
influenced by demand, available generation and generation
costs, the flat rate cannot reflect the true cost of electricity at
any point in time: peak will be subsidized by off-peak.
Additionally, parsimonious users will not be rewarded for their
frugality. A solution to this is a conservation rates model

which thresholds consumption into blocks; such tariffs bring
not only cost benefits to consumers but also, through reduced
load, bring operational benefits to utilities by reducing load on
plant at peak times. An additional aspect exists in the case of
islanded power systems or those with constrained generation
capacity e.g. [18]: alignment of supply and demand through
the decision to store, export or consume energy from
indigenous renewable generation is critical to security of
supply.

III. RESIDENTIAL DEMAND

Domestic energy use accounted for around 34% of the total
UK energy use in 2012 (Q2) [19], of this, typically 16-17%
can be attributed to wet appliances [1]. Figure 1 shows wet
appliance usage in context with the overall energy use of a
particular dwelling.

Fig. 1. Wet appliance operation against incomer.

Figure 1 shows a single dwelling metered at 30 minute
intervals with the wet appliances, a dishwasher, washing
machine and tumble dryer, sub-metered to indicate their
contribution to the overall household load. These can be seen
to contribute to up to 50% of a peak in load at times, offering
significant potential for demand response participation.
Although all in the same appliance category, all three
appliances are used very differently and will most likely differ
greatly again between dwellings [20] which highlights the need
for monitoring over assumptions.

IV. MONITORING APPLIANCE ENERGY USAGE

Rather than modify an existing appliance which may be
technically infeasible, Smart Appliances are simulated through
sub-metering of un-modified domestic wet appliances. The
number of occupants in the property or their times of
occupation were not recorded as this was intended capture
appliance usage rather than the relationship between behavior
routine and appliance usage. See [3] and [21] for detailed
studies of dwelling utilization in this field.

A. Metering Equipment

Figure 2 shows the sub-metering arrangement which the
appliances simply plug through which capture kWh, peak kW
and time of usage at 1 minute intervals. The overall
consumption for the property was captured using a similar



meter supplied with a current transducer clamp, which attaches
to the tail of the meter for the property. This allowed the
contributions of each appliance as well as the aggregated load
to be tracked and if necessary disaggregated to explore
hypothetical shifts in load. Sampling rates and data acquisition
were controlled over a Zigbee Mesh network which allowed
unobtrusive monitoring of appliances.

Fig. 2. Plug based appliance sub-meter in a UK domestic socket

Although 1-minute data was recorded for illustration, it is most
likely that short term advantages would be gained from 15 or
30 minute advances which can be recovered by summation
over measurements.

B. Domestic Appliances Operation

Standard domestic appliances were used in the trial; these
were of various ages and were not necessarily new.

Fig. 3. Washing machine duty cycle sampled at 1 minute intervals.

Fig 3. Shows the duty cycle for a washing machine metered
at 1 minute intervals to highlight the peaks in its energy usage.
The usage of washing machines is driven by household need
but this variability will be constrained by waking hours and
work routines. It should be noted that this was not a new
appliance and had several years of usage behind it which may
have incurred additional variability in its load.

Fig. 4. Tumble dryer duty cycle sampled at 1 minute intervals.

Fig 4 shows a duty cycle of a Tumble Dryer. The Tumble
Dryer is unusual in that it is driven by both routine and
environmental factors (poor outdoor conditions) as well as
being potentially coupled to other appliance operation
(washing machine). The duty cycle is simpler, as it is limited
only to heating the machines contents, which permits the usage
to be interrupted, unlike washing machines and dishwashers
whose more complex operations must be atomic to preserve
correct operation. Also unlike washing machines and
dishwashers, the duty cycle is of variable duration depending
on size and composition of load. This further highlights the
need to learn the behaviors that drive appliance energy usage.
Figure 5 shows the duty cycles of a dishwasher; unlike the
washing machine, this appliance is driven entirely by routine
and one which is more consistent than laundry requirements.

Fig. 5. Dishwasher duty cycles sampled at 1 minute intervals; from top:
rinse, normal, intensive.

Fig. 6. Dishwasher usage time – 0 is midnight, 180 midday, and time
advances counter clockwise.

Dishwashers are normally operated after mealtimes and as a
result this will afford a greater degree of repeatability day on
day. An alternative perspective is gained through looking at
the times of operation over the course of a day for an
appliance. Considering the same dishwasher over a one month
period, Figure 6 shows a histogram of the times of usage and
indicates a key part of the challenge of learning appliance
operating characteristics, specifically that there are several



behavioral regimes in operation apparent from the number of
modes in the histogram: one which occurs at 6pm and is
dominant and less frequent ones at 12pm and 8am. A similar
multi-modality is exhibited in the energy usage advance
magnitude as shown in figure 7.

Fig. 7. Histogram of energy usage advances for a dishwasher.

The majority of 15 minute advances exhibit very small energy
usages but there are also significant occurrences of higher
levels of energy usage representing longer or more intense
cycles.

V. BAYESIAN FILTERING

If an offline learning approach were taken to this problem, data
storage would be required to archive exemplar data, the
amount of exemplar data required would have to be known in
advance and the form of the model would have to be specified;
as noted in the previous two sections, this model is likely to
incorporate multiple behavior regimes. Significant a-priori
knowledge is therefore a prerequisite of offline learning,
making it unfeasible: for a home automation controller to
know, ‘out of the box’, how every appliance in a particular
household works is nearly impossible given the variation in
ratings and operating regimes that are possible within a single
appliance type alone. Further variability is added through the
inherent uncertainty in human behavior. For this reason the
representation of the appliance operation must be learned and
given the anticipated hardware and operational constraints
must be learned online.

A. Bayesian Filtering

In recent years it has become more common to see uncertainty
in systems being modeled using a Bayesian approach. This
encodes all beliefs and uncertainties surrounding a process as
probability distributions. One strategy to implement online
learning of a systems state is to use Bayesian Filtering. The
amounts to a recursive estimation of the posterior distribution
of the mean with respect to past measurements [22]:

      1111  ttttttt dxxzPzzPxzP (1)

For a measurement x and state z. The integral is intractable for
most distribution forms and usually has to be approximated
numerically. However, an analytical solution can be obtained
for a Gaussian distribution which can be shown to have a
formulation equivalent to the Kalman Filter [23]. The Kalman
Filter amounts to an auto-adaptive estimator of a Gaussian
posterior, the parameters of which correspond to the state
variable z that is essentially a mean µ . The dynamics of the
underlying process are assumed to be a Markov-Gauss state
model i.e. current state is linearly related, through matrix A, to
past state:

tttt zAz  1 (2)

Added Gaussian process noise is drawn from:

 tt RN ,0~ (3)

Where R is the process noise covariance; this leads to the
following distribution being estimated:

   tttttt RzAzNzzP ,; 11   (4)

Observations are linearly related to state through matrix C as
follows:

tttt zCx  (5)

As with the process model, Gaussian observation noise is
given by:

 tt QN ,0~ (6)

Noise covariance is given by Q. This leads to the following
distribution of observation likelihood:

   tttttt QzCxNzxP ,; (7)

Assuming a first order Markov model and a fixed evolution,
the recursive estimates of the Gaussian mean µ and covariance
∑ are as follows:

1 ttt A  (8)

t
T
tttt RAA  (9)

Assuming simple temporal dynamics allows matrices A and C
to be fixed as identity matrices although these may also be



learned from observation data. An update or corrective step is
then performed as a new observation comes in:

  1
 t

T
ttt

T
ttt QCCCK (10)

 tttttt CxK   (11)

  tttt CKI  (12)

One problem with this model is that it assumes a single state
(mean) whereas the operation of appliances may have multiple
operating regimes that need to be accommodated.

VI. PROBABILISTIC MODELING OF APPLIANCE USAGE

The ultimate need for such models will be to propose
particular domestic demand estimates with their associated
measure of certainty, which implies a probabilistic modeling
approach. The predicates of such approaches are probability
distributions representing the variables involved in the overall
load. Bayesian modeling of probabilism differs from its more
conventional Frequentist counterpart in its modeling of all
variables, including distribution parameters through
probability distributions. Although the basic form of the data
implies the probability distribution choice, several factors can
complicate this. Data that is said to be drawn from different
probability distributions, albeit of the same form, is said to be
non-stationary. Non-stationarity can result in multiple modes,
skewing or multi-tangentiality all potentially stemming from
distinct operating regimes. Given that human behavior is
highly dynamic, the form of these cannot possibly be known a-
priori thus necessitating a self learning system that captures a
representation of appliance operating characteristics over time.
The following section highlights the aspects of operation that
could be utilized.

A. Usage Time

Time, like direction, cannot be treated as other random
variables as it ‘wraps around’ or is periodic [24]. Adopting the
same assumptions for periodic space as real space leads to
confounding results [24]. Employing this allows usage time
hour H and minute m, to be modeled by converting the time of
day into a usage time of day angle u:

1440

60
2

mH
u


  (13)

The equivalent of the Gaussian distribution in periodic
space is the von Mises distribution:
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The von Mises distribution is parameterized by centre ω and
dispersal κ, equivalent to mean and variance respectively, in a
linear space. I0 is the zeroth order Bessel function.

B. Duration of Use

Duration of use or advance size are strictly positive real
numbers allowing a log normal distribution over load advance

l, to be assumed:
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This is parameterized with mean µ and variance σ2. These
advances are over 15 minutes for the sake of demonstrating
times of use in higher granularity – in practice the less
demanding 30 minute advance would be used.

VII. LEARNING WET APPLIANCE OPERATING

CHARACTERISTICS

A. Multiple Hypothesis Tracking

The sequential estimate of a non-stationary mean does not
permit the existence of multiple modes of operation, new
conflicting operating regime characteristics will end up being
smoothed into unrepresentative states if the basic linear
Gaussian model is adopted. The solution here is to maintain
multiple hypotheses simultaneously. If alternating occurrences
of a particular regime were encountered, this would result in
an operating state being estimated that fell between both
regimes and represented neither one adequately. What would
be required is the means of estimating not a single posterior
distribution but multiple ones. Multiple Hypothesis Tracking
(MHT) [25] techniques exist to accommodate situations such
as this in radar/target tracking applications. Since the number
of regimes cannot be known in advance, there needs to be a
means of branching the original state estimates into a second
hypothesis and another of selecting the hypothesis an observed
measurement came from and updating it accordingly. Much of
this functionality can be obtained by maintaining multiple
Kalman Filters and assuming the posterior distribution can be
approximated by a mixture of G Gaussians:.

   



G

g
tgt zPxP

1

 (16)

Where ηg is the count of the number of times hypothesis g has
been seen. In systems where there are limited computational
resources it may be necessary to lower bound this to excise
infrequent hypotheses from the model. Commonly seen in
agglomerative type clustering methods, the Salmond Distance
D [26] allows similar hypotheses to be merged:

     jii
T

ji
ji

jijiD 






 1, (17)

Statistical testing of the Salmond Distance indicates when a
new hypothesis occurs or rather the existing one is rejected.

B. Domain Transforms

For the appliance models, the state distributions are non-
Gaussian and cannot be estimated online. This shortcoming
can be overcome by maintaining observation data in its
Gaussian/Euclidean space form but then transforming the



estimated parameters into their respective distribution spaces.
The von Mises distribution can be approximated from the
parameters of the Circular Normal thus allowing usage time to
be captured recursively. In [27] it was shown that the recursive
estimates of a Gaussian posterior could be used to estimate the
directional mean ω and dispersion parameters κ of a von Mises
distribution at timestep t:
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ttttt xRC coscos 11    (20)

ttttt xRS sinsin 11    (21)

Where R is the observation noise covariance. Similarly, for
power usage l at a particular time, the distribution is non-
Gaussian as a strictly positive constraint is observed. The
updates to these Log Normal distribution parameters, mean µ
and variance σ2, can also be obtained by transforming the
Kalman Filter state estimates as follows:
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The combination of the transformed feature space, the state
estimation and the hypothesis generation/pruning allows the
time/energy likelihood surface to be tracked as it evolves.

VIII. SMART APPLIANCES FOR DEMAND RESPONSE

Time of use tariffs typically price energy at an hourly or half
hourly intervals to align with the capabilities of domestic
metering equipment and the operation of market balancing
mechanisms [28]. Any interval could be used with the models
presented here, but for the purposes of illustrating the ability to
learn times of use to a greater resolution, 15 minute data is
employed. Using a three dimensional observation Kalman
Filter in the transformed space (20-23), the operating regimes
of the previously discussed wet appliances can be learned for a
given household. Given its strongly routine driven nature, the
dishwasher is considered in detail here. Running the profile
learning algorithm over online appliance data results in a
collection of von Mises/Log Normal distribution pairs which
can be aggregated linearly into a joint distribution over load
magnitude and time of usage combinations. Figure 8 shows the
von Mises distributions captured for usage time for the
dishwasher.

Fig. 8. Usage time probability distribution of dishwasher operation,
learned over 1 month of operation – notable for its multi-modality.

The distributions are associated with distinct behavior regimes
that correspond to household routine such as the operation of a
rinse cycles in the morning and mid-day and a full wash cycle
in the evening, The Log-Normal distributions of load
associated with these usage times are shown in figure 9.

Fig. 9. Energy use probability distribution of dishwasher, learned over 1
month of operation.

Taking the product of the distributions shown in Figures 8
and 9 results in a joint density like the one represented with a
heat map in figure 10 which indicates the joint probability of
load magnitude l and usage time u obtained from

     



G

g
ggggg lPuPluP

1

2,;,;,  (24)

No dependency structure is assumed between u and l.



Fig. 10. Joint likelihood surface of dishwasher operation learned after
(from top), 1, 7, 28 and 31 days (complete monitoring period) operation.
Color intensity represents increasing joint probability of observing a
particular level of usage at a particular time.

Figure 8 shows the regions of high probability density for
usage time – as expected these form several peaks or modes.
Figure 10 demonstrates how the learned likelihood surface for
a dishwasher refines progressively over a number of days,
adjusting as the observed use of the appliance changes. What

this distribution will do for a Smart Home/Smart Grid is
provide the likely usage time/load magnitude combinations for
a DR strategy to operate on – loads cannot be shed if they do
not exist, may not provide a useful demand service if operated
for too short a time, or may be unsuited to providing any kind
of service reliably given the high variability of their operation.
Even at the early stages, a clear set of behaviors emerge,
manifesting themselves as high likelihood regions, reflecting
lunch, dinner and breakfast invoked operating regimes as
shown in figure 8. As more observations are added over time,
the usage model becomes progressively less ambiguous; the
observation likelihood of the Kalman Filter, given by (7),
measures this ambiguity explicitly.

TABLE I
SAMPLE MODEL PARAMETERS LEARNED FROM DISHWASHER OPERATION

Operational regimes learned from 228 operating cycles of a domestic
dishwasher.

Table I shows these 11 operating regimes recovered by the
Kalman Filter as mixture components (i.e. G=11 in (16)) from
the single month of usage data. As can be seen from usage
times, distinct patterns have emerged here that can be
attributed to the domestic routine of the householder.

IX. CONCLUSION

This paper has proposed and demonstrated models that learn
probabilistic representations of appliance operation and use for
inclusion in future ‘Smart’ products that can aid and automate
domestic demand response. These models would be useful in
constrained grid situations such as rural feeders or islanded
power systems. Anticipating demand levels with an associated
confidence could allow a substation computer to bring on or
off loads such as EV chargers or wet appliances within the
convenience bounds of the consumers routine. Provision of
demand response at higher time resolutions, for example for
frequency response, would require more detailed
representations of appliance duty cycle. To achieve this, the
complexities of dishwasher and washing machine load
requirements over the course of their operation could be
captured using a distribution approximated using a Hidden
Markov Chain [29] which could capture both the expected
loads and the order in which these occurred. Aside from this,
additionally accurate expectations could be achieved through
consideration of more complex dependency structure than the

Mean Usage time (HH:mm) Mean Total Advance Size

9:19 0.02kWh
9:41 0.02kWh

10:40 0.021kWh
11:50 0.02kWh
12:40 0.02kWh
13:12 0.735kWh
14:26 0.768kWh
15:48 0.852kWh
17:52 0.827kWh
18:20 1.11kWh
21:18 0.02kWh



independence currently assumed. Independence means all
possible learned load expectations are possible at all expected
times of use – which could be constrained by relaxing the
independence assumption in (24). Copula statistics, usually
applied to probabilistic models in finance have shown
themselves to be applicable in other domains where non-linear
dependency relations are required [30, 31] – these work
through abstracting the dependency model away from the
marginal probabilities of the individual variables in a model;
Dynamic Bayesian Networks [29] also offer an adaptive
solution to learning this relation possibly through piecewise
approximation of complex dependency.
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