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An lterative On—Line Mechanism for
Demand-Side Aggregation
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Abstract—This paper considers a demand-side aggregation highly competitive environment, or that its prices/maggyare
scheme specifically for large numbers of small loads, such regulated, so that it is only able to extract a small charge
as households and small and medium-sized businesses. W?)er kWh from its customers. In effect. this is the same as

introduce a novel auction format, called astaggered clock—proxy . .
auction (SCPA), for on—line scheduling of these loads. This is assuming that the aggregator is benevolent, and only paases

a two phase format, consisting of: a sequence of overlapping its cost of purchasing energy in the wholesale market. On th_e
iterative ascending price clock auctions one for each time-slot customer side, we assume that each user has (at least)partial

over a finite decision horizon, and; a set ofproxy auctionsthat —automation of a proportion of its interruptable and deftgab
begin at the termination of each individual clock auction, and loads by employing arenergy management syste(EMS)

which determine the final price and allocation for each time-slot. hich trol hedules devi include a hot wateas®
The overlapping design of the clock phases grant bidders the which controls or schedules devices include a hot wateageor

ability to effectively bid on inter—temporal bundles of electricity ~ System, home ventilation and air conditioning, dish washer
use, thereby focusing on the most-relevant parts of the prie- clothes washers and dryers, and so on. Indeed, the scheme

quantity space. Since electricity is a divisible good, the pxy  developed here might only be applied to selected devices,
auction uses demand-schedule bids, which the aggregatorassto which are put under the EMS’s control, and for which the

compute a uniform—price partial competitive equilibrium f or each t h ¢ dtod f th id at
time slot. We show that, under mild assumptions on the biddes ~CUSIOMernas no want or need to draw power from the grid a

utilities functions, the proxy phase implements the Vickrg— & SPecific time. .
Clarke—-Groves outcome, which makes straightforward biddig In particular, this paper investigates an auction—-based ag

in the proxy phase a Bayes—Nash equilibrium. Furthermore, & gregation scheme for scheduling energy use in a future power
demonstrate the SCPA in a scenario comprised of household gytem . |n doing so, we directly confront three major difficu
agents with three different utility function types, and shov how .~ " . . . . .
the mechanism enables efficient on—line energy use schedg ties inherent in aggregating residential loads. First, wéen
that most small users, such as households, have a demand
for electrical energy this is inherenttombinatorialandnon—
. INTRODUCTION convexin structure.Specifically, many small user’s electrical
EMAND response refers to methods for influencing thimads possesses both inter—temporal complementaritywdid s
amount of power drawn from an electrical power systestitute effects. Substitute effects primarily involveftihg the
by end-users, thereby making electrical loads a resouste ttiming that a device draws a load from the grid (e.g. actively
can be used to undertake control actions, such as loagbntrolling the recharge schedule of a hot water storage
balancing, peak load shaving, emergency load shedding aydtem or the start time of a dishwasher). An example of a
ancillary services. Demand response is employed to providemplementarity is a residential electricity user thathaged
additional capacity to the power system without costly net both wash and dry their clothes; however, washing must be
infrastructure, and to facilitate greater penetration effew- done before drying can start. In addition to complemeridzs;it
able generation, as increasingly flexible energy use is allther non—convexities arise when users’ devices haveadéscr
to better track the intermittent supply provided by mangperating points, such as heating and cooling devices that
renewable sources of energy. In this paper, we developuse compressors, or washing and cleaning devices with set
small-load demand-response aggregat{®.—DR) scheme; programsSecond, users’ preferences over energy use patterns
that is, a scheme constructed specifically for aggregatirg tare private, and are unknown to the aggregator (or any other
large numbers of small loads, such as households and smaker). As such, any SL-DR scheme needs to consider the
and medium-sized enterprises, spread across an electritifficulties of implementing an efficient allocation wheneus
distribution network. can misreport their preferencebhird, considering the large
We adopt a typical framework comprising an SL-@B- number of participants required to make an SL-DR scheme
gregator that coordinates, schedules or otherwise contrdisancially viable,any system comprising an aggregator and
part of participating electrical loadsThe aggregator may its users will face significant communication and compotati
be a retailer trying to keep energy purchasing costs dowsguirements.
by encouraging electricity use at cheaper times, or a thirdTo this end, we introduce a novel combinatorial clock—
party trading price differences on a wholesale electricifyroxy auction format[]1] tailored to the on-line electncit
market. We assume that the aggregator operates in eitharsa scheduling problem. Existing clock—proxy auction fatsn
_ _ _ _ only consider static problems, such as radio spectrumalloc
A. Chapman and G. Verbic are with the School of Electrical mfiormation . . . .
Engineering, University of Sydney, NSW, Australia, 2006. tion, and so are not directly applicable to the dynamic, on—
E-mail: archie.chapman@sydney.edu.au line environment of SL-DR. Thus, the main contribution of


http://arxiv.org/abs/1506.00694v1

this paper is to adapt the techniques of clock—proxy austion _ Observed eneray flows
to the problem of on-line scheduling of a resource with users —— . .

. ; B i W W) ---Other information flows
that have preferences defined over combinations of differen

! Appliance 2 Retail
times of resource use. @ e

In more detail, we proposestaggered clock—proxy auction
(SCPA), an iterative auction format consisting of a seqaafc
; ; A ; ig. 1. Aggregator and users interaction: control of apglés remains
overlapplng clock auctions, one for each time-slot in a dd:dmpletely under a user’s control, via the Home ECU; the eggfor observes

extending out to a suitable finite decision horizon (i.e. ON&ergy flows via the metering infrastructure (solid linesher information
day), with the final allocation and prices in an individuahé— flows are facilitated via a communications infrastructudeshed lines).

slot determined by a proxy auctiom a practical implemen-
tation, the SCPA's auction slots are expected to align with t
local energy market’s operation. For example, in the Alisina an overlapping initial phase and staggered closing phase is
National Electricity Market, supply procurement auctiarse appropriate for this setting.
run for each 30 minute period; the SCPA is constructed in suchFinally, it should be noted that by using a dynamic pricing
a way that iteration can be completed within this duratiomechanism such as the SCPA, an aggregator is able to pass
Moreover, the SCPAs operation is both: (i) oblivious to thgome price volatility risk on to the end user. This sharing of
preference models held by the users or their EMS agentisk is complemented by our assumption that users have some
and as such, it is not tied to any one particular preferenaatomated devices that can respond to dynamic pricing. A use
representation or utility model, and (iij) any monotonic tcognay also limit its exposure to varying prices by only inclugli
function can be employed by the aggregator, including thoseme devices in the scheme, e.g. to only include hot water
generated by the piece—wise linear supply functions usedriétharging and the start time of the dishwasher overnight. |
many wholesale electricity markets. This makes the SCRAis way, the customer can choose their level of exposure to
flexible and generally applicable, which stands in contragite risk inherent in time—varying prices. That said, onehef t
to many proposed aggregation mechanisms that are tiedké&y benefits of deploying schemes such as the SCPA at a large
specific utility and/or cost models (see Secfidn Il for a deta scale is that they are expected to reduce price variabdiy,
comparison). flexible loads are shifted to time—slots with lower pricesl an
SCPAs retain three important features of combinatorialvay from those with higher prices.
clock—proxy auctions for static settings: (i) anonymousi{u  |n summary, the contributions of this paper are as follows:
form) linear prices; (ii) monotonic price changes; and) (iii
activity rules for quantity changes. By preserving these fe
tures, SCPAs directly addresses the three difficultiesnéaci -~
aggregators of residential loads listed above. First, daisidan Ing, . .
in effect bid on inter-temporal bundles of electricity ubs, 2) We mclude_ costly supply into the analysis of CIO_Ck_
adjusting their bids across all time—slots according tpades proxy - auctions (.C'f' standard clock-proxy auctions
for all time—-slots, thereby matching their potentially qaex where .the seller is assumed to have no value for the
preferences for electricity use. Second, incentives fotiga goods_), . .
pants to “game” the aggregation scheme, by interactingestra 3) For th'§ more .general sgltur.]g, we prove t.h ‘T’“ straightfor-
gically rather than sincerely, are reduced through the SCPA ward bidding is an equilibrium of an individual proxy
use of well-designed price— and bid—adjustment rules in the phase of SCPAs; and N .
clock phase, and by implementing competitive equilibrium 4) We demonstrate a specn‘_lc |mplementat|on_0_f a SCPA
prices in the proxy phase. Third, the iterative nature of &P for an energy use s.chedulmg.problem comprising house-
reduces the communication and computation requirements of holds with three different _ut|I|ty rgpresentatmrvshmh
the aggregator and biddetsy focusing participants’ bids on show_s thf"‘t the method is feasible for most standard
the most relevant parts of the price-quantity space in thekcl duration time—slots for a Iarge_ numb_er Of USers, and that
phase, and using this to restrict the price interval overctvhi the SCPA can help redl_Jce price variability in wholesale
demand levels are specified in the proxy phase. This compares markets, thereby reducing total system energy costs.
favourably to direct auction mechanisms, which typicalllyr ~ The paper progresses as follows: The next section reviews
on solving centralised winner-determination and costsitivi the literature on demand response, with focus on applitgtio
problems. of online mechanism design. Section 111 introduces the rhode
Furthermore, our SCPA rolling horizon format is appropriand describes the energy use scheduling problem addréssed.
ate in the SL-DR problem, given the recurring nature of mar8ectiof I\, we define the general SCPA format, including two
households’ tasks and energy use requirements (e.g. spdifferent bid—adjustment rules, and in Sectich V, we aralys
heating and cooling, hot water storage, cleaning, and sasn)the general properties of SCPAs, prove some important equi-
these tasks do not require planning over a horizon of longédrium results for the proxy phase, and discuss the sequenc
than a day.In addition to the above, we expect that usersf prices and allocations that the SCPA produces. SeEfion VI
know only some broad energy requirements at long horizomgscribes and evaluates a specific implementation of a SCPA
and that more detailed schedules are available only as fbe an energy use scheduling problem. Finally, Secfiod VII
time of use draws near. Thus, an on—line mechanism wiammarises and lists future directions.

Home ECU

Appliance 3

1) We develop an iterative on—line auction protocol, SC-
PAs, appropriate for small-load electricity-use schedul-



1. RELATED WORK horizon. Consequently, all electrical quantities areestaas

This section contains a brief review of related approachesRIOCkS Of energy; for example a 100W appliance running for

online SL-DR problems. A general survey of non-cooperativty. Mnutes is described by a0®kWh demand block.

games applied to demand—response is presentéd in [2], and 'ghe on—line energy—use scheduling model consists of:

detailed critique can be found ifl[3]. « A divisible good, electricity, with supply level in time—
Several recent works adopt a mechanism design approach Sloth of xy € Ry _

to energy use scheduling. Bofhl [4] and [5] propose Vickrey—* A set of agents.” = {0,1,2,....1}, where 0 is the

Clarke—Groves (VCG) based mechanisms, in line with those —aggregator with:

derived in [6], [7]; and another, related approach is defive — A set of cost functions, : Ry — R4, one for each
in [8]. However, VCG is a direct mechanism, so to use it, time slot to capture varying costs of generation,
the aggregator can take one of two approaches. First, the where cp(xn) is the cost to the aggregator of sup-
aggregator could ask for valuations to be reported over a plying x, units of electrical energy in time—slof (it
complete set of demand bundles, but in this case the size of has no further intrinsic value to the aggregator);
the required preference representations grows expofigtia and each # 0 is an electricityuser agent, with:

the model becomes more fine-grained (i.e. considers shorter _ A |evel of demand for electrical energyl € R,
and more time—slots). Second, the aggregator could enforce during time-sloth € 7, such thaix, = Ziey\odﬂﬁ

a compact preference representation. For examiple, [4] use @ _ A preference function over levels of electricity use
simplified preference model in the form of a convex function in each time-sloty' : RY — R, wherevi(d',8') is
taking a small number of parameters, whilé [5] achieve the the value ta for a demand profile over time af =
same by considering only one device, a plug—in electric-vehi [di,di,q,...,dI,,,_4]T whenits private state (type) is
cle. Nonetheless, the underlying optimisation problenduse given by an information structur@.

compute VCG allocations and payments grows exponentially;, this setting, the information structug € © represents

in the number of participants and with the size of theifs gtate of a set of tasks or activities that the user em-
messages._B_o_th of these eff_ects_ have severe detnm_erﬁalseffpk)ys electrical energy to complete. As such, users' prefer
on the feasibility of communication to and computation by thgyce fynctions should accommodate both complementary and

aggregator. Thus, we consider an iterative auction design. g \hfitytion effects in power use across the different time
Several iterative mechanisms are related to our work. TBR)is These effects are the result of electricity’s use @s a

authors of [[9] consider an iterative combinatorial auction intermediate good electricity is not consumed per se, but

a collection of divisible goods. Their technique implen®nt, + 1o yse to perform tasks such as heating and cooling,
an efficient allocation by individually querying biddersoaib cooking, cleaning, lighting and entertainment. The patteof

their types and ensuring sincere responses by implemen%and for completion of these tasks — which may have
transfers that are the same as those for VCG in eXpeCtat'ﬂﬂer—temporal complementarities, order relations, oghni

The techniques used in that paper cannot be directly apiiedye g pstituted between different times — is then manifest in
our setting with divisible goods and a large number of biddercomplicated preferences for electricity use.

but both make use of iterative ascending prices to implemenigjyen this general model, the SL-DR problem is to derive
Pareto efficient allocations. Ar_1 ascending-price methodlai 1o method by which an aggregator optimally structures its
to the SCPAs clock phase is proposed [inl[10] for energyeraction with users. That is, an SL-DR scheme defines
consumption scheduling. The proposed method is provendg,, the aggregator divides the costs it faces among its users
converge, but is not analysed with respect to the strategigy jnquces them to use electricity at the most appropriate
opportunities available to energy users. times.Let d = [d?,...,d'] be the concatenation of electricity
Finally, several auction formats currently in use are dipsese vectors over the horizon; the profile of demands for time—
related to the SCPA. The SCPAs proxy phase is reminiscefitt p, is its hih row, denotedds. In general, we can define

of the reverse supply function auctions used in wholesaigs cost division used by the aggregator as a vector function
electricity markets for procuring generation capadity][Bhd ®(ch(xn),dn), which returns a vector of costs, one for each
also auctions of US Treasury Securitiés|[12]. Electrid® 5o |n this. the aggregator calculatgs= dp- 1.

France (EDF) until recently used a clock auction format in Gjyen the users’ preferences and costs above, we can define
their generation capacity auctions [13]. Various authesit 5 utility function U (d), which takes a quasi—linear form

around the world have used combinatorial clock—proxy augiiear in prices), to combine their values and costs fongsi
tions to sell radio-frequency spectrum, e.g. the Ausma“%lectricity:

Communications and Media Authority’'s 700 MHz and 2.5 H

GHz spectrum auction§ [14]. u(d)=v(d,8) - Z @ (Cn(%n), dn), 1)
h=t
Ill. M ODEL AND PROBLEM DESCRIPTION whered (ch(xn),dn) is theit" component of the aggregator’s
Throughout, the set of real numbers is dendiedndl is an cost division function. Equatiofi(1) shows that the aggrega
all-ones vector of length given by context. We adopt a disecre and users’ actions are coupled through their dependence of
time model, where operations are divided in#y = {t,t + their utilities on the vector of total loads over”, x =
1,...,t+H—1}, consisting ofH time—slots over the decision [x,...,%+H_1]. Thus, their interaction results in a game; and



since each user’s stat@', and therefore its reward function, e Clock Phase "\ (‘Proxy Phase )
V', is private, it is a game ahcomplete information
A standard solution to these games is given by the Bayes- Bid

.. . .y djust t
Nash equilibrium condition. sejusimen

. hq tHHL
No Fix [p"'] t=t+1

Revenue
Set pt levels

deficit?

_Definition 1: A Bayes-Nash equilibrium is a set of demands
d' for the N competitive bidders such that for each bidder
d' maximises its expected utility of profit for ai ' € @1, Clack price —
The desirable properties that an auction may exhibit irelud updates price calc.
allocative efficiency, social welfare maximisation, intiea S : A >/
compatibility and budget balancedness. An allocatioeffs phases e o _ auction
cientif the goods go to the bidders with the highest valuations. restart Open t+H clock auction |~ closed

This corresponds to the notion sécial welfaremaximisation,
where an allocation is efficient if it maximises the sum of afl'%
agents’ utilities; in our setting this is given by:

z u (d*) > z u (d) vd phase, punctuated byl — 1 proxy phases for the preceding
ey ey live time—slots. All bids placed during the clock phases are
A auction mechanism is callethcentive compatiblef all considered live in the subsequent proxy auction phase.iBids
agents do their best by truthfully reporting their privatéhe clock phases are also subject to bidding and activigstul
information to the auctioneer. A mechanism can either [§@me of which are carried over into the proxy phase, thereby
either dominant strategy incentive compatiple which case bPinding bidders’ proxy-phase bids to their bids in earlierck
the best action of any bidder is to truthfully report regard2hases.
less of what others do; or it can HBayes-Nash incentive The general SCPA procedure is outlined in [Eig. 2. The next
compatible in which case truth-telling forms a Bayes-NasAVO sections provide the details of the clock and proxy phase
equilibrium, as defined above. Finally, a mechanism is dalle
(ex-post)balancedif it does not require money to be inj_egtedA' Clock Phase
or withdrawn to balance the payments between participants
(cf. some mechanisms implement efficient outcomes but at aWVithin each time—sloh, there is a sequence k> 1 clock

2. Schematic of the SCPA, showing separate clock andypobases.

risk of running a deficit). auction iterations. Each iteration consists of a price stdjent
step and a bid update step, as indicated by the while loop
IV. THE SCPA AUCTION FORMAT in the left box in Fig.[2. In this process: (i) the aggregator

Veodates prices in response to bids, depending on a measure of
révenue defici{fRD), then (ii) the buyers update their bids in
response to the new prices, according to their own prefesenc
While (iii) iterations stop when the process meets a tertiona

L L : . condition that also depends on the level of excess demand.
cost division function is defined for each slot independgntl . . . .
- . Details of these three steps are given in the sections below,
and islinear andanonymousso that each slot has one price,

o and costs are proportional to use, and as such, prices élt before beginning, we introduce some notation: at itemat

. . i . ) K ]%I’ all active time—slot auctions € .7, let p¥ be theH x 1
not depend on the identity of the buyer; thatyh, € .27 vector of prices. For each agei .7, let 'd¥ be theH x 1

¢n(cn(xn),d) = pn - dh. vector of its bids.

This stands in contrast to the often-used VCG mechanism 1) P”C.e Ad]ustme_nt:ln_each_ t|me—sI(_)t 3“‘3“0”' price _a_d-
: . L " Justment is monotonic, with prices beginning low and rising
which uses botmonlinearanddiscriminatory pricing

For each time—slot, the SCPA consists of two phases: (i) gﬂtﬂ the revenue deficit in that time—slot is (close to) elim

! . . : -+ Inated. For each sldt € 27, let the per-unit revenue deficit
ascending-price clock phase, which runs in parallel with tr\]/vhenxk Units of enerav are supolied be given by:
clock phases of other time—slots .i#’, and (ii) an individual h 9y PP 9 y:
proxy phase, ywtlh the closing times of these phases stagigere RDK = c(xk)/xE — pk. )
in order of their time—slot. AIH clock phases are run together,
but are paused when the next-closing time—sletproxy In this expression, the term(xf)/x is average total cost
auction is run. Thus, the procedure alternates betweench cl¢ATC), and it plays an important role in the proxy phase.
auction phase, during which bids are placed onhadl 77, In the first clock auction for time-slat+ H, prices are
and a proxy auction phase, during which bids are placed foitialised a pointpﬂ that is certain to be less the aggregator’s
allocations in the next-closing time—sldt, while the other average total cost. This can lpﬁ = 0, which is reasonable
time—slots’ prices are held fixed. The final allocation andé urbecause total energy demand is bounded, but higher willtresu
price for time—slott is determined in the proxy phase, aftein fewer clock—phase iterationgn subsequent restarts, the
which the entire procedure moves forward one time—slotaangbrice of electricity in a time-slot begins close to its ctagpi
new clock auction for time—sldt+H is opened. In total, each price in the previous clock phase. In practice, a small disto
time—slot is involved irH clock phases before its final proxyis applied to the closing prices to accommodate changes in

In this section, we describe the generic SCPA format, whi
Section Y provides analysis of the mechanism.

The SCPA is an iterative simultaneous auction, consisti
of H live slot auctions, one for each time slbtc #. The



preferences flowing from unforseen random events, i.e. Bo Proxy Phase

allow for uncertainties in energy use and generation costs. ¢ proxy phase operates only for time—stotthe next—
Wwithin a single clock auction phase, l&f be the total closing time—slot's allocation. During the proxy phase for

demand in time-sloh at iterationk, and pf be the price a|| other time—slots’ prices are fixed at their last clock ggha

inducing that level of demand. If RD 0, such that the price |evelsp . In the proxy phase, users bid their demand levels

of supplyingx§ units of energy is not covered by the auction'sor electricity over a restricted interval of prices, whitihe

revenue, then the price increases. Otherwise, the prigs stgggregator uses to compute a final price, as illustratedgiiz-i
the same in the next iteratidey- 1; that is, the price for each gnd detailed below.

slot is adjusted by: 1) Price Interval and BreakpointsThe first step in the
_ proxy phase is for the aggregator to determine a price iaterv
pletl — pﬁ+6k+1 ' RDﬁ >0, 3) and breakpoints, which are chosen to ensure that the user
n pﬁ otherwise. demand schedule generated from the users’ bids interséhts w

the supply function. Denote interval ends and breakpoipts b
whered1 is a configurable price adjustment step-size. P = [Po.P1,...,Pp|]. We do not prescribe a procedure, but it
2) Bid Updates: As in standard combinatorial clock auc-Suffices to say that relatively simple techn_ique§ can be tu;ed_
tions, bid quantity adjustments are constrained by biddingy €nSure supply crosses demand. These might include arglysin
activity rules, which demarcate the space of admissible WS in the preceding clock phases, or the history of closing
changes in response to price adjustments. The activitywale Prices in previous proxy phase for this time-slot during the
consider is based on the microeconomic principleevialed day, and estimating the slope of the aggregate demand curve
preferencesas introduced for clock—proxy auctions [A [1]. around the cle_armg prices or placmg a copfldence interval
Definition 2: Revealed-preference (RP) bid constraffr around a predicted clearing price. Breakpoints can then be

all iterationsk,l > 1, k < |, an agent’s bid across the decisior‘?pread uniformly betwgen the intervall er!ds,.or thgir SF@E‘.“
horizon must satisfy: can be scaled according to some distributional information

about where the MCE price will fall.

(pk)T'idk_ (pk)T_idl >0, (4) 2) Demand SchedulesBidders pass a vector of demand
levels to the aggregator:
and: D'(P) = [d'(Po),d'(Py),....d' (Pp))],
IS L Tdk> 0. 5) corresponding to the breakpoir®s These marginal bid levels
(p")"d —(p") " Tdk > ) ponding to the breakpoirs Th ginal bid level

are subject to the RP bid constraints. Additionally, thedig’

The two constraints above imply that buntt is preferred to demands must satisfyd'(R) > d'(Pn) for all B < Py, so

idI under pricespk, because the agent is W||||ng to pay more iﬁhat each bidder’s demand curve is Weakly downward-sloping

total for'd, and vice versa for pricgs . We require that these This reflects the typical microeconomic assumption that con

two constraints are satisfied for every bid in every iterati Sumption of each unit more of a good has decreasing benefit.

the clock phase, but that they are reset when the clock auctlp contrast to the clock phase, in time-sttt proxy phase,

is restarted after a proxy phase closes one auction. the other time—slot prices are fixed, so this assumption can
This rule deters the users from gaming the syst&or bg applied with_out having to co_nsider ﬂo_w—on effects from

example, a group of users may try to systematically oveflmultaneously increased prices in other time—slots.

bid for energy in some slots in order to drive other users The aggregator computes the aggregate demand schdule

away, then reduce demand in the clock—phase after thé&¥m the demand level§D!(P)}ic -0 by first calculating:

others have purchased more energy in earlier time—slats (th , IPI
is often called bidparking). The opportunities to profit from D= { z d'(Pk)}
this and other styles of gaming are mitigated by the RP bid I€S\0 k=0

constraints, but we emphasise that to be effective, the BP Bihd then taking the linear interpolation of valueshras the
constraints must be also applied to bids placed in the proxggregate demand curve.
phase; indeed, Equationl(4) and Equatibh (5) are the link3) Computing the Final Price and Allocatiorthe intersec-
between the clock and proxy phases. If they are not carriggn of the aggregate demand schedule and the supply functio
over, then the bidders are not bound to the prices discovetgstermines the final price for energy in a time—slot, whid th
in the clock phase. In contrast, under the price adjustmesitiders use to choose their level of demand.
and restart rules described above, the effects of the RP bidspecifically, giverD, the aggregator solves for the intersec-
constraints are carried across phases of the SCPA. tion of ATC with the line segments between the breakpoints,
3) Termination Condition:In each clock auction, priceswhich can be done numerically. This approach may appear
stop ascending if RP< 0. Note that demand for energy in unsatisfying in the cases of small numbers of users, but for
can rise when prices in other time—slots from which energy ctarge numbers, we are confident that computing prices in this
be substituted increase, so that (R&gain becomes- 0, and way will produce a valid solution, by appeal to the Shapley-
the price recommences ascending. However, the entire cldadkman theorem [15]This is because the relative effects of
phase terminates when REx O for all 7. discrete changes in electricity use (e.g. turning a devicero



off) are much larger for fewer users than for larger numbeitote that payoffs in the core arfficien{ by the definition
of users. In other words, the aggregate demand schedofea coalition’s worth function in Equatiori](6), and also ttha
approches a continuous curve as the number of users grows. money is in injected into or removed from the coalition
(i.e. the transfers arbalanced.
V. ANALYSIS OF SCPA It has long been known that in all Texchange economy
We now analyse the operation of SCPAs and discuss h@a@mesa.k.a. Edgeworth boxes) with convex increasing utility
they bring about an efficient allocation in on-line eledtyic functions and fixed endowments of goods, the core has pesitiv
use scheduling problems. This analysis starts with theyprosneasure[[16]. However, a DSB game with costly production
phase and works backwards to the clock phase, as would(ke. by the aggregator) needs to satisfy an additional itiond
done to analyse a finite—horizon dynamic program. that the slope of the aggregator’s cost function is less than
We begin by noting that the purpose of the clock phasdope of the sum (or aggregate) of the bidders’ utility fums
of the SCPA is to aid price-discovery and facilitate energgt zero allocation, or in microeconomic terminology, thae t
use coordination between the users, not to fix an allocatigrarket supply function is less than the demand function at
or determine final prices. The proxy phase is then used zero demand. This ensures that average total cost and demand
find an efficient allocation at “good” prices for the next time intersect at a positive price and level of supply. Assuming
slot. Thus it is the proxy phase that receives the most @etaidemand is weakly downward sloping, then this is readily
analysis, and for which we provide the strongest results. satisfied in our setting, so the DSB game has a core.
In order to give some intuition for the proxy auction,
A. Analysis of Individual Proxy Auctions Figure[3 illustrates the market generated by the proxy phase

In order to analyse the proxy phase, we now introduce soryﬂeit’ the curveD represents aggregate demand for each price
concepts from cooperative game theory. In this section, tl‘?é/8|' Not.e th"?‘t aggr_egate demand across all slots depends
time—slot indexh is dropped, because only one proxy auctiofn the prices in al! time—slots, becaus.e the users values are
is run at a time, and the private information structéteis 2ssumed to have inter-temporal couplings. Therefore,Dthe
omitted because the agents implicitly report this infoiiorat shown is actuall_y a function opy only, with all othc?rp,h .
to the aggregator in the form of their proxy bids. held constant. FlgurEII_B also shows the aggregator’'s margina

A (static) transferable utility (TU) game is a pait”, w), revenue, supply_ (margln_a_l c_ost) and average total cost JATC
where .# is a set of players, an#(S) is a characteristic curves, and various equilibria are marked (A, B, C).

function w: 2' — R, with w(0) = 0, that maps from each In Figure[3, thePareto efficientoutcomes (in which no
possible coalitiorS to theworth of S’ player can be made better off without making at least one

Call the proxy phase of the SCPA demand—schedule other worse off) of the market fall along the demand curve

bid (DSB) game. The functiow(S) defines the worth of between the pointa andC. The seller’s profit is maximised
SC .7 as the sum of all participants’ values, which is tha@t A, which is the rational monopolist's level of production
value of the electrical energy provided by the aggregagss | (i.e. a single producer facing an aggregate demand function

the aggregator’s costs (as long as the aggregator is irmud%omposed of infinitesimally small buyers), and correspdnds
otherwise no electricity is traded); that is: a production levek that equates the seller's marginal revenue

and its marginal cost. Neither seller nor any of the buyers
max Z \f(di) e z q f0cs benefits from increqsing the price above this level or retyci
w(S) = d S0 50 (6) the Iev_eI of production further. o
0 otherwise Moving down the curve, the poirs is the perfect com-
' petitive equilibrium which is used in the case of a supply
In general, gpayoff in a TU game is a vector of utilities, function given aggregated from the supply of a very large
[U)icr € R'. We continue to assume that the users utilitiesumber producers, all with infinitesimally small market gow
are quasi-linear, as in Equatidd (1). Given this, changébeo facing a similarly large number of buyers.
cost division functionp alters the payoff profile by transferring  Finally, the pointC is theminimum competitive equilibrium
utility among the market participants, but it does not alt§MCE), which corresponds to a price that equates the sellers
the coalition’s worth,as this is only given by the values andhverage total cost to the buyers’ aggregate demand function
costs of using and supplying electricity within the aggtéga so that all of the surplus from trade is captured by the buyers
scheme. In our setting, with only one seller, the MCE is the Pareto
The stable outcomes of the proxy auction are characterisgflcient outcome that minimises the aggregator’s utility:
using the concept of theore of cooperative game. o o )
Definition 3: The core of a TU gamé.Z,w) is the set max u'(d', p) :mdax[v'(d')— pT-d',O} Vie .#\0
of payoffs satisfying two conditions: (i) the payoffs must )
share the full worth of# among its members, and (ii) the 0 =
payoffs must provide no opportunity for a profitable dewati st. U(xp)=p -x—c(x)=0 (®)
to any subset of playeSC .#. Formally, these conditions arewhere in the second expressign= 1-d, which implies that
expressed as: the aggregator receives payments equal to its costs. Am poi

on D below C has the aggregator trading at a loss, in which

Sy — )i il g i
Core(.7,w) = {[u]'a’ ) iez]” =W(.5), igs” > W(S) vSC ‘ﬂ} case it is better to not prticipate in the market at all.



D setting is that the proxy auction is run implicitly by asking
s for a demand schedule, which can be interpreted as a proxy—
bidder for the users, and (numerically) solving for the MCE
: prices given an aggregation of the bidders’ demand schedule
*************** First, we have already argued that the worth function
: ' satisfies eidder submodularityBSM) condition, as indicated
! : by statistical evidence.
i A e P Second, call a core outcontedder optimalfor i # O if it
: P maximisesi’s payoff over all core outcomes. BSM implies
that there is a unique bidder—optimal core outcome, that is
unanimously preferred by all bidders. Moreover, this core
Fig. 3. Demand (D, users' aggregate marginal utility), g8, aggregators Outcome corresponds to the MCE prices and allocation's [19],
marginal cost), average total cost (ATC) and marginal reeefMR) curves in - and these are sufficient to support the Vickrey—Clarke—€sov
the market generated by the SCPA proxy phase. The segmentbefvzen (VCG) allocation of the auctioan[lB], Theorem 7).
points A and C constitutes the core of the market. . . . . . .
Finally, implementing the VCG allocation in this way
brings sincere bidding into Bayes-Nash equilibriurn_{[18],
At this point, the seller’s profit is zero, and any furthefheorem 8). Thus, under a mild condition on the bidders’
reductions in price or increases in production make it ufiprautilities and assuming that the aggregator computes minima
itable for the seller to partici pate in the market. competitive equilibrium prices, straightforward biddirggan
We now wish to show some properties of the proxy auctiogquilibrium action in the proxy auction phase.
that link the rules defining the final allocation and prices to
the bidders’ behaviour, under a mild assumption on theif-pre8. The Role of the Clock Phase
erences. To begin, we require the following charactensati

L The clock phase is effectively a non-cooperative coordina-
of an auction’s outcome. _ o tion game, in which the bidders negotiate over a price vector
Next, we argue that the worth function satisfibilder  anq 4 collection of (partially) coordinated demartigo
submodularity(BSM), which is necessary and sufficient o, yimise their own utilities. The fact that the aggregasaini
subsequent results. S _ control of the price adjustments removes the ability fordeic
Definition 4: A worth function is bidder submodular if: engage in the most gratuitous gaming actions, while the RP
W(S) —w(S\ T) > ZW(S) —wW(S\i) VieT, vTC .. constraint further reduces the scope for manipulationsisTh
i& increasing the price of those time—slots that have a revenue
Intuitively, if w(S) satisfies BSM, an additional bidder isgqeg:r‘;'thzzgﬁs 2 :Iiirteséggalet:?ﬁf;gi sers ﬁflaetéf;iiiéﬁ are
more valuable when the market is small than when it S y 9 - 9P Y, P

large. The SCPA proxy phase is an auction for a single imeY the clock phase allows the costs of any inter-temporalcom

slot, with prices for substitute and complimentary timets| plementarities to be largely priced into each agent's S

partially determined in the preceding clock phase. Nowi- reéAS such, in the proxy phase, participants’ demand functions

. . L only need to be specified over a relatively small intervalegi
dential users of electricity are known to value the first jport : . . . g
. oy . . that the prices are partially determined for all other tisiets;

of their electricity use greatly, as illustrated by an estied

. 7 L effectively, the agents are able to state their margindities
own-price elasticity for electricity that are very closezero for electricity in the next time—slateteris panbus
(see, e.qg.[[17], and the survey of results therein). Altfoug y P
part of this is driven by users’ technological inflexibilitye ) )
argue that bidders’ demand for electricity in a single tislet C. The Allocation and Price Sequence
generates a worth function that satisfies B&kteris paribuﬂ In this section we argue that if the clock phases do manage to

Theorem 1:Let the coalition worthw(S) satisfy BSM, coordinate users’ energy use over the decision horizom, the
and assume that the aggregator computes minimal competitive sequence of allocations and prices generated by a SCPA is
equilibrium prices. Then the proxy phase of the SCPA impléa some sense, an efficient one. We leave this as an informal
ments the (VCG) allocation of the auction, and straightBmdv argument, because the assumption on the efficiency of the
bidding by the bidders is a Bayes-Nash equilibrium. clock phases is very strong.

Proof sketch. The proof has three steps, and largely fol- On-line problems have no true optimality conditions, and
lows the sequence of arguments put forward [18] fahe problem to which we apply the SCPA mechanism is no
ascending price proxy auctions. The main difference in odifferent. Given this, we highlight the following qualityf the

SCPA. To begin, fix the decision horizo®’. Then note that a

1 In combinatorial domains witpackage bidgbids specified over bundles one-shot clock—proxy auction. such as the one describ@ in [
of goods), it is quite possible that bidders violate this dibon: Imagine . | bidd . | ' I . . !

a bidderi with high demand for a particular item that is complementar)'lmp ements_ idder-optima c_ore allocation (assum'ng BSM
to several other bidders’ packages. Includingould drive demand for the worth functions). Therefore, if the SCPA were reduced to a
complementary goods down sufficiently far that the worth oy &oaliton  gne-shot clock—proxy auction o#’, then the same conditions
containingi is below that of those not containingHowever, the proxy phase ' .

of the SCPA is not a combinatorial domain, as only one slotéared at a on the outcome as above would be expected. Next, if the clock

time so it is difficult to construct an example violating BSM. phases do efficiently coordinate users’ energy use o¥ér



then SCPA’s allocation at time—slét+ 1 is consistent with but have three different types of value functiohsAll three
the bidder-optimal core allocation over a#’. The argument value functions are convex, but they are subject to energy us
above can be applied recursively, so the allocation foiralt+ constraints of varying complexity, which render the owveral
slots in.2Z is in the bidder-optimal core. Thus, if the SCPAproblem non—convex.
was finite and the clock auction fully informative, it would Each call for bids is associated with a new set of prices
sequentially implement a bidder-optimal core allocation. computed by the aggregator. A user’s response to these new
There is one major caveat to this result: The overall eprices (itsbidding strategy could take many different forms,
ficiency of the SCPA depends greatly on the clock phasgcluding conditioning its bid on previous levels of aggats
providing enough information to allow the households tdemand or information that it may have inferred about other
undertake efficient scheduling of their energy use over thédders’ preferences. However, the analysis provided itr Se
longer-term. Without that, the efficiency of the proxy phasdion [] shows that the bidding and price update rules of the
are of little merit. Thus, identifying conditions where ttleck SCPA remove most of the opportunities for profitable gaming.
phase is sufficiently informative is a particularly imparta As such, we assume that a user employs a straightforward or

focus of our future work. truthful bidding strategy.
A user’s straightforward bid is given by the solution to the
VI. DEMONSTRATION following problem for the corresponding price level
In this section we demonstrate the SCPA. First, we focus on  max vi(d,8)—p'-d 9)

the clock phase and show how prices are initially discovered
for the slots in a particular decision horizon. Second, we
show how the proxy phase operates given the prices froffree valuation models giving concrete specifications of
the preceding clock phase. Finally, we evaluate the long-te\i(d' ¢') are discussed below.

performance of the SCPA when it used as a receding-horizonrhe first model of user's values for electricity is taken

on—line mechanism. The SCPA is a very general model thgém [4], which use two-piece quadratic/linear functiortatal

can accommodate any upward sloping supply schedule angdiéctricity use over the horizodi =17 - d':
very general class of utility models — quasi-linear utgi

satisfying BSM. v‘(di) _ {wgp _ %(di)z, if O_g d < %,

Before describing the demonstration and presenting the (ﬁ)—(l,. if % <d,

st. constraints encoded i#i.

results, a brief discussion of this section’s significanse i i . o ] ]
warranted. The revenue deficit and price adjustment ruleg ud/herea’ ando) are idiosyncratic parameters that determine a

by the aggregator are trivial to implement for any monotonfeousehold's value. Specifically, both are generated atarand
cost function. This includes those generated by piece—wigm a normal distribution, with' ~ AC(0.1, 9-022) andw ~
linear supply function bidding, which is an bid format useg\[(O._S,_O.OZZ). In addition, energy use variables are subject
in many wholesale electricity dispatch auctions. Note tH@ Minimum and maximum constraints, which vary between
(quadratic) cost and (linear) ATC functions that are usew h® @hd 4kWh per slotin this model,8' comprises these con-
are employed for demonstration purposes only, and as sugffaints and the parametersanda. In this case, Equatiofi)(9)
are kept simple for clarity and are not intended to represeft@ COnvex optimsation problem. . o
the costs of participating in a real energy market. On therth The second mpdel use a logarithmic function of electricity
hand, most of the computation in a SCPA is carried out B{#€ in €ach slot independently:

users (or their EMS agents). Thus, assuming that the utility /(g — Z max[ai logd, 0],

models descibed below are appropriate for some portion of hEZe

electricity users, general insights can be gained reggritia
computation and communication requirements of a SL-D
scheme employing a SCPA.

herea' ~ A((3.0,0.1) is an idiosyncratic parameter (specifi-
lly, its mean value; see below), and energy use varialées a
subject to the same minimum and maximum constraints as in
the first modelLike the first model, Equatiori9) is a convex
A. Scenario Parameters optimsation problem, an@' comprises these constraints and
We assume the aggregator faces a quadratic cost fufctidhe parametea’. o
) The third model is taken from_[20] and similar to the one
Ch(Xh) = a X", formulated in[[21], in which each household agent faces & cos
wherea captures the thermal generators’ efficiency, and ta e|n|fn|sat|on appll_anc_e scheduling problem. In this, a feous
old’s value function is assumed to be constant (and large),
values of 0.002. Furthermore, we assume that the aggregator, . ) . L :
. SO that it can be ignored in the optimisation problemich
réduces the optimisation problem in Equatibh (9) to a linear

function is given by average total cosk(xn)/Xn = axn. ; ) . .
We model a system comprising 1000 users with flexib erogram. However, each appliance’s energy use is subject

: A -~ ; o different constraint for different device types, makiting
loads, which all posses quasi-linear utilities as in Eaqunafil), problem amixed integetlinear program (MILP). Specifically,

2 Linear and constant terms are dominated by the quadratic, t&o are the MILP’s c_onstr.alnts include the mlnlmum/mammum en-
ignored for simplicity. ergy constraints listed above, more complex inter—termpora



couplings, e.g. to capture devices with minimum up-timeassumption on the slopes of the total cost and aggregate
as well as binary variable constraints to model devices withility functions in Sectio_V=A is valid. Since we consider
discrete operating power points (e.g. dishwashers andimgsthrelatively large numbers of users, total cost and demand
machines)i In this model,6' is wholly comprised by these decrease smoothly with increasing price to a closing price
constraints. of about $0.4488 in 7 iterations, at which point the proxy
We also include an amount of uncontrollable load, whicauction for the first phase halted, although prices contnue
represents both energy users that are not part of the séhgdulo rise for other slots until the entire proxy phase closedraf
system, and demand that has no flexibility in its timing atO iterations. Note that the maximum step size is used until
magnitude (see the dark area in the lower panel of[Big. 5).the price reaches $0.44, at which point the smaller step size
Finally, all five components of this demonstration — thelescribed above is employed to reduce the overshoot of the
cost function, three user preference models and uncoedirolprice update step. Finally, close observation reveals tthet
load — are subject to perturbations or noise. Most of thesemand function is increasingly steep, validating ourmalaf
perturbations are shocks to parameters and constrainéssala BSM worth function in earlier analysis.
that are realised at the start of the final clock phase of tiote s Fig.[3 shows the closing prices of the 48 clock auctions run
which is at most 30 minutes prior to the slot beginning. A the first phase, and their corresponding energy alloestio
such, mean values are used to calculate bids and costs dukvitat can be most clearly seen from this is the effects of
the firstH — 1 rounds of the clock phase for each time—sloinflexible demand (the dark part of the columns) on the price.
The specific shocks are described below: The cost functidhose slots with the largest inflexible loads have the highes
parametem is perturbed my a multiplicative shock with log-prices, and conversely, a large drop in price occurs at 21:00
normal distribution IM((0,0.05%) (i.e. with a mean of 1). when the uncontrolled load decreases abruptly, even though
Similarly, the first and second valuation models have thdiexible loads move to exploit the lower prices after thisg¢im
upper and lower variable bounds perturbed by a multipleati

shock In\((0,1) (the same shock is applied to both upper and proxy Phase Demonstration

lower bounds), while the second model’'s valuation paramete The proxv phase was constructed by first. taking the final
a' is also perturbed by the same degree. The third valuatif)n proxy p y ' 9

model’s constraints are specified at the device level, aladere t\r,1vgn Célosili(n ph]% Sreb%récefofoégfh tgf ?S(Ianeevtgr?l E):Caecégter\r/iilé
to the timing of use of each device; in contrast to the oth g y-sp P

r - : . )
. Bvels across this interval, and using linear interpotatio
shocks, these “start after” and “end before” constraints ar . S 9 TP
. 0 calculate the partial equilibrium. Here, the efficacy of o

randomly shifted forward or backward by up to three slots. . L : .
rice increment rule in limiting the price overshoot is clga

(1.5 hours) at the beginning of each day, with the shift drawiy : ) )
from a discrete uniform distribution. The uncontrolled doadqemonstrated by the small size of the proxy-phase interval,

is randomly perturbed by a small amount of Gaussian noi&eThe proxy phase finds the MCE price to be $0.4483 and

(with a coefficient of variation of 0.5%), which is intendem t e corresponding predicted demand to be 185.5kWh, with
. . revenue and total cost equal at $100.47.
emulate unpredictable and uncontrollable loads in theegyst

D. Day-long Demonstration

The day-long demonstration involves restarting the clock

, phase and opening a new clock auction for $letH (=49)
The clock phase operates as follows: For slots with a 'Yrer the proxy phase closes. In order to allow users to

enue deficit, price increments are computed by first findieg t@tdjust their demands in response to random events affecting
zero of the line passing through the previous two incrementg, ., electricity demand, some flexibility is injected intioe
revenue deficits; call thigo(k,k—1). This pri_ce in_dicat_es the estarted clock phase prices, in the form of price restart di
point at which revenue exceeds demand if Kieiteration’s :o,nts These discounts are applied to the previous cloakeph
eLiclztr|C|ty_ demandy, is mall(lnlalr)ed in iteratiork+ 1. Then ¢|,qing prices to determine the opening prices in the neakclo

&, " = min[po(k,k—1) - pg, ] is computed, which limits pnase and they are a free parameter of the auction design. In
the price increment to a pre-specified maximum value. Eafls gemonstration, we choose to set this to a uniform distou

P~ is then updated by Equatiofl (3). In our test scenario, te o505 hut it is our conjecture that these discounts can be
maximum price increment is set &= $001. _ tuned to provide better convergence performance.

The operation of the clock phase for the first slot is shown Fig.[@ shows the sequence of proxy phase outcomes over
in Fig.[4. Each point plotted is the result of a price/aggtedane duration of one day. Price and demand are negatively
demand bid pair for an iteration of the clock phase, startingrejated, although not exactly, reflecting the usersfepre
from a price of $0.40, witp increasing at each iteration.  ences and constraints of the time at which they use eletrici

The upper panel of Fig.]4 shows that revenue decreasesrigse are caused by a combination of: (i) the users’ con-

the time—slot price increases, as the effect of less eb§iri giraints on electricity demand (use-time constraints éstain
sold is greater than that of the price increase, but it dse®acontrollable devices, uncontrollable loads as in Flg. §,)et
at a slower rate than total cost. This demonstrates that they (ii) users responding to different prices at differmes.

3The appliances’ daily energy consumption are obtained framgrid’s Specifically, there is high peak in pricg during the moming
appliance usage guide, available[at: www.ausgrid.cdm.au. (6:00-8:30) corresponding to a peak in uncontrolled load,

B. Initial Clock Phase Demonstration
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208.4 0.41 0.42 0.‘43 0.‘44 0.45 08:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 08:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00
Price ($/kwh) Time Time
Fig. 4. Clock-phase for slot=1: Revenue Fig 5 First {=1) clock phase closing prices and Fig. 6. Final proxy-phase prices and demand
vs. cost, and break-even supply vs. demand.  gemand levels for all 48 half-hourly slots. levels for all 48 half-hourly slots.
Time-of-use prices (SCPA final prices dashed) for that time, resulting in a large revenue deficit. More leng
g 0.48 ! ! ! ! ! ‘ ! imbalances between price/revenue and generation cogt@me s
% 0.46 LTSS VA . . through the middle of the day, where cost exceed revenue,
8ok — | and in the evening, when revenue exceed revenue. Indeed,
x : : : : : : : because the exact timing and magnitude of these imbalances
Time—of-use revenue deficit is effectively a random variable, such a spike in load wouwdd b
& 0l ‘ ‘ ‘ ‘ ‘ ‘ seen under any fixed electricity tariff. In contrast, the SCP
5 r provides a mechanism for providing energy users with timely
& -10t price information that reflects actual electricity suppbsts,
] demand levels, and system conditions.
g Time-of-use demand
€ 100 . .
g 0 The demonstration above was computed using MATIEAB
o 00:00 03:00 06:00 09:00 1200 15:00 18:00 21:00 on an InteP i7-2600 8 core CPU (3.40GHz) with 16GB of
memory, with the agent optimisation routines run in patalle
Fig. 7. ToU benchmark prices, revenue deficit and demandsleve With this setup, one day’s allocation was simulated in about

97 minutes. It took an average of 11.6 iterations per clock
phase, and with 5 price levels in each proxy phase, thistsesul
followed by a series of slightly lower peak in flexible usén ~7.3s per iteration, or an average of 0.058s per agent
through the middle of the day associated with price spikedhe aggregator’s computation is trivial). Given that alrea
In the evening (16:00-20:30) higher uncontrollable loacle deployment of the SCPA would run each agent optimisation
again drive up the price, but flexible loads are able to moveutine completely in parallel, these computation timekena
into late time—slots to avoid the consequent higher prices (an iterative auction format for on-line scheduling, at half
after 21:00). This demonstrates how the SCPA balances tHurly or shorter intervals, entirely feasible.
dynamics of users’ willingness to pay for electricity atte@n
times of the day with the cost of supply, by allowing loads to VII. CONCLUSIONS AND FUTURE WORK
be adapted to conditions in a flexible, on—line manner. This paper develops a two-phase iterative auction mectmanis
Finally, we compare the outcome of the SCPA to that dér allocating a divisible and continually produced gooli¢e
a fixed time—of-use (ToU) tariff. The prices used in the Totsicity) over time and on-line, to users that have prefeesnc
tariff are chosen heuristically to moderate the eleciricise specified over demand levels in combinations of time—slots.
customers, subject to the constraint that all costs arevezed This mechanism is for use by an aggregator of small-load
over the day (although in practice this condition is appliedemand-response resources, and in this context, its design
over a duration of months or even a year). In addition, onlyaddresses three key challenges of combinatorial prefesenc
few different prices are used, as is commonplace with exjstiprivate information and scalability.
retail ToU tariffs; in this case three price levels are ergpth ~ The main aim of our future work is to integrate the
with values of(0.445,0.460,0.468) for time—slots 22:00-6:00, SCPA technique into a load-side control system comprising a
06:00-16:30 and 20:00-22:00, and 16:30-20:00, respégtive sophisticated home energy management unit alongsideotontr
Fig.[@ shows the load profile and revenue deficits induced B{d optimisation routines for different time-scales.

this tariff. Although the load is largely levelised acrole tlay,
at certain times it fails to reflect the actual costs of supgy ACKNOWLEDGEMENT
electricity. In particular, the spike in load between 500 The authors acknowledge the financial contribution of the
drives the price of generation far above the ToU tariff pricARC and Ausgrid under the grant LP110200784.
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