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Abstract—The efficient management of energy communities
relies on the solution of the “prosumer problem”, i.e., the
problem of scheduling the household loads on the basis of the
user needs, the electricity prices, and the availability of local
renewable energy, with the aim of reducing costs and energy
waste. Quantum computers can offer a significant breakthrough
in treating this problem thanks to the intrinsic parallel nature of
quantum operations. The most promising approach is to devise
variational hybrid algorithms, in which quantum computation is
driven by parameters that are optimized classically, in a cycle
that aims at finding the best solution with a significant speed-
up with respect to classical approaches. This paper provides
a reformulation of the prosumer problem, allowing to address
it with a hybrid quantum algorithm, namely, Quantum Ap-
proximate Optimization Algorithm (QAOA), and with a recent
variant, the Recursive QAOA. We report on an extensive set
of experiments, on simulators and real quantum hardware, for
different problem sizes. Results are encouraging in that Recursive
QAOA is able, for problems involving up to 10 qubits, to provide
optimal and admissible solutions with good probabilities, while
the computation time is nearly independent of the system size.

Index Terms—prosumer problem, quantum computing, energy
optimization

I. INTRODUCTION

Finding and establishing energy and climate policies are
some of the greatest challenges in modern society and require,
besides the transition from fossil to renewable energy sources,
more efficient management of energy. The diffusion of energy
communities, where prosumers can exchange energy locally,
is expected to give a major contribution in this respect [1],
[2]. Efficient energy exchange can be achieved by solving the
“prosumer problem”, which consists in identifying optimal en-
ergy control strategies, and determining the most economical
combinations for the production, purchase, and sale of energy.
More specifically, within an energy community, the objective
is to schedule the prosumers’ loads and storage systems in
advance (e.g., one day ahead), by taking into account the user
needs, the trend of the energy market, and the availability of
locally produced energy. The aim is the minimization of some
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cost function, which can be either the monetary cost, the total
energy consumption, or the consumption of brown energy. To
achieve these objectives, it is crucial to maximize the energy
exchanges among the community prosumers and reduce the
purchase of energy from the external grid.

The prosumer problem is commonly expressed as a Mixed
Integer Linear Programming (MILP) problem [3], where the
objective function is a linear combination of decision variables,
some of which are discrete; the constraints, given by the
energy balance and by the prosumers requirements, are linear
as well. Several approaches have been put forward to solve
such problems [4]. Classical exact optimization algorithms,
such as cutting plane and branch-and-bound methods [5], can
become infeasible for large instances, due to the NP-hard
nature of the MILP problem. Metaheuristic algorithms [6]
(e.g., genetic algorithms, ant colony optimization, and particle
swarm optimization), and machine-learning methods [7] can
be used for large communities, when approximate solutions
are acceptable.

In the last few years, research and industrial efforts are
showing that quantum computing can offer the opportunity
to approach energy optimization problems with a completely
different paradigm [8], [9]. The main potential advantage is the
computational speed-up that can be achieved by exploiting the
quantum parallelism stemming from the superposition princi-
ple: a quantum state of an n-qubit register can be expressed
as the superposition of 2n basis states, and a quantum circuit
operates in parallel over all of the basis states. Noise and
decoherence issues of available quantum hardware hinder the
use of pure quantum algorithms, probably for the next decades,
but in the current “noisy intermediate-scale quantum” (NISQ)
era, a valid alternative is to devise variational quantum algo-
rithms (VQAs), in which the computation is hybrid: the most
intensive computation is performed on quantum hardware,
driven by a number of tunable parameters, whose values are
optimized on a classical computer [10], [11]. VQAs are seen as
the quantum analogue of highly successful machine-learning
methods, such as neural networks [12].

In this specific application domain, one potential important
advantage is that VQAs can help to tackle the uncertainty
related to the production (particularly of renewable energy),
consumption, and prices of energy [13], [14]. Indeed, if
multiple values of input data need to be considered, included
in the so-called “uncertainty sets”, VQA algorithms can be re-
executed several times, each time with different input values,
starting from the optimized parameter values of previous
executions. This process can be favored by the adiabatic
behavior of physical processes, i.e., solutions tend to remain
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close for small changes in the input data.
In this paper, following the preliminary work reported in

[15], we provide a novel approach to the prosumer prob-
lem, based on the use of one of the most renowned hybrid
quantum/classical algorithms, i.e., the Quantum Approximate
Optimization Algorithm (QAOA) [16]. The prosumer problem
is first formulated as an Integer Linear Programming (ILP),
where the objective is to minimize the energy cost while
satisfying a number of constraints related to the maximum
available energy and user requirements. The desired solution
is a binary string where each bit determines whether a load
should be turned on or off at a given time. The ILP problem
is then transformed into an Ising problem [17], where binary
variables are changed into discrete variables taking the values
{1,−1}. The Ising expression defines a Hamiltonian operator,
which is used to define (and, later, measure) the energy of
a set of qubits, each corresponding to one discrete variable
of the Ising problem. In the latter form, the problem can
be tackled by QAOA, which, using the hybrid variational
technique mentioned above, aims at finding the minimum
eigenvalue of the Hamiltonian operator and the corresponding
eigenvector. This eigenvector represents the configuration with
minimum energy – i.e., the ground state of the Hamiltonian –
and, at the same time, codifies the string of binary variables
that determines the solution to the problem.

The evolution driving the quantum register towards the
ground state is performed through a sequence of paramet-
ric quantum gates, whose parameter values are optimized
by a classical optimizer. As explained in [16], these gates
are arranged in layers – also called repetitions – and the
approximated evolution aiming at the ground state is more
and more precise as the number of repetitions increases. On
the other hand, more repetitions require more computational
time, therefore the number of repetitions is a parameter that
needs to be fine-tuned. The Recursive QAOA algorithm [18]
is also often exploited to improve the quality of the solution.
The objective of this variant is to reduce the size of the
problem by identifying, through quantum computation, the
couples of discrete variables that show maximum correlation,
and eliminating one of the two. This reduction is iterated until
the problem becomes tractable with a classical algorithm.

The main new contributions of our work are:
1) starting from the typical formulation of the prosumer

problem, we describe how it is transformed, step-by-step,
to be given as input to QAOA, and how the QAOA result
can be interpreted in terms of the prosumer problem;

2) we describe how the prosumer problem can be solved
through the Recursive QAOA algorithm, which can help
to improve the success probability of the experiments;

3) we study a simple prosumer problem, for which we report
the results of a wide set of experiments executed on both
simulator and real quantum computers provided by the
IBM Quantum Experience portal2.

We hope that these contributions can stimulate other re-
searchers to investigate the opportunity of adopting quantum
computation to approach energy optimization problems. In this

2https://quantum-computing.ibm.com/

paper, however, we do not provide: (i) a general introduction to
quantum computing basics, which can be found in excellent
tutorial papers [19], [20]; (ii) a complete description of the
QAOA and Recursive QAOA algorithms, which can be found
in several papers, such as [16] and [18].

At present, the size of the treatable problems is limited by
the current shortcomings of quantum hardware, in terms of
both size and noise. However, we believe that the results of
our experiments are promising. On the one hand, Recursive
QAOA provides optimal, or at least admissible solutions, with
good probabilities, in experiments with up to 10 qubits, and
appears to be almost insensitive to noise. On the other hand,
the experienced computation time does not increase with the
number of qubits.

The rest of the paper is organized as follows: Section II
gives an overview of related works in this field; Section
III describes how an Ising problem is transformed into the
problem of finding the minimum eigenvalue of an operator,
which is the goal of QAOA, and discusses the complexity of
QAOA and Recursive QAOA; Section IV describes how the
prosumer problem is transformed into an Ising problem, and
therefore can be solved with the QAOA algorithm; Section V
illustrates an example of a prosumer problem and reports on
the form of the corresponding Hamiltonian operator, which
is then given to the QAOA algorithm; Section VI reports on
a set of results obtained, with QAOA and Recursive QAOA,
using both simulators and the real quantum hardware, and, also
based on these results, discusses the potential perspectives of
quantum computation for energy scheduling problems; finally,
Section VII concludes the paper.

II. RELATED WORKS

Identifying optimal energy and climate policies are some
of the greatest challenges in modern society and a transition
is required from exhaustible energy sources, such as fossil
and nuclear, to more sustainable modes of production and
consumption. An energy transition is needed, not only in terms
of energy sources, but also towards more local, decentralized
and pervasive management of the energy. In this context, the
development of prosumer communities appears to be crucial
to involve citizens in the smarter exploitation of renewable
sources [1], [2]. Prosumers are community members that can
both produce and consume the renewable energy produced
locally, and exchange the surplus energy directly within the
community [21]. The renewable energy surplus is traded to
meet the local energy demand, thus allowing a significant
reduction of energy consumption and costs. As mentioned in
the introductory section, the goal of the prosumer problem is
to schedule the prosumer loads in order to maximize these
advantages.

In the literature, power management problems, among
which unit commitment [22] and hydrothermal system
scheduling [23], are often formulated as Mixed-Integer Non-
Linear Programming (MINLP) problems, where some decision
variables take discrete (integer or binary) values, and either the
objective function or the constraints, or both, are nonlinear
expressions. The prosumer problem can be expressed as a
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MILP problem [3], where the objective function is linear
and the constraints, given by the energy balance and by the
prosumers requirements, are also linear. Both MINLP and
MILP problems are known to be NP-hard. More specifically,
MILP problems, which are the focus of this paper, are at least
as complex as an Integer Linear Programming (ILP) problem
that, in turn, is at least as complex as a 0–1 integer program.
The last problem is convertible to the SAT optimization prob-
lem, whose time complexity is NP-hard [5]. As a consequence
of this chain, a MILP problem is also NP-hard.

Classical exact optimization algorithms, such as cutting
plane methods and branch-and-bound [5], can be used to solve
MILP problems, and the literature in this specific domain is
wide [4]. For example, in [3], the problem of coordinating a
community of prosumers that can collaboratively share elec-
tricity is modeled as a MILP with coupling constraints. The
problem is decomposed and solved using the Lagrangian dual-
ity and limited information exchange. A day-ahead scheduling
of micro-grid resources, where the objective is to minimize the
operational cost and the peak load, is presented in [24]. The
proposed MILP model is solved using the CPLEX solver in
a mathematical programming language platform. In [25], the
authors propose an optimization approach to determine the
best allocation and dispatch of distributed energy resources
for an energy community, while complying with electrical grid
operational constraints.

In [2] and [26], the authors present an optimization model
for energy management in a prosumer community, referred
to as the Unified model. The model exploits a unique MILP
problem for all the prosumers, and solves it through the Branch
and Bound algorithm, which provides the optimal solution for
sharing energy at the community level. In the Cascade model,
discussed in [27], the overall solution is obtained by iterating
a number of MILP problems, solved sequentially.

Unfortunately, exact algorithms can become impractical for
large instances [28]–[30], due to the NP-hard complexity of
the problem. To tackle the scalability issue, a Parallel approach
for large communities is proposed in [31]. Instead of solving
a single big optimization problem, the approach divides the
users into groups, and solves the optimization problems for
the different groups in parallel. The Parallel approach helps
to tackle the scalability problem, but is only able to provide
a sub-optimal solution, as a prosumer belonging to a single
group can coordinate and share energy only with the users of
the same group.

Many heuristic algorithms can be also employed to obtain
approximate solutions, based on techniques such as genetic
algorithm, tabu search, ant colony optimization, and particle
swarm optimization. These algorithms perform better than
exact approaches, from the computational point of view, but
they do not guarantee to provide the optimal solution [6]. A
recent review of nature-inspired techniques for energy man-
agement systems is provided in [32], while the work in [33]
compares and evaluates a number of self-organizing algorithms
for the implementation of residential demand response (DR)
techniques, where the goal is to schedule the usage of devices
in periods of low demand and coordinate them in order to
reduce costs and avoid peaks. More recently, data-driven and

machine-learning methods have been investigated, since they
often perform better than traditional approaches. The research
work in this area is also very rich. A systematic review of
artificial intelligence (AI) and machine learning approaches for
DR applications is provided in [7], while the authors of [34]
have reviewed the AI techniques deployed for the scheduling
control in home energy management systems, including neural
network, fuzzy logic, and adaptive neural fuzzy inference
system.

Besides guaranteeing adequate scalability and computa-
tional performance, heuristic algorithms must also be able to
address the inherent uncertainty of the actual production, con-
sumption, and prices, which often change in real-time and de-
viate from the forecasts. When the uncertainty can be modeled
probabilistically, it can be tackled with stochastic program-
ming, which handles uncertain parameters in the optimization
model [35]; otherwise, robust optimization techniques can
be exploited to consider a set of worst-case scenarios and
optimize the scheduling accordingly [36]. Further heuristic
approaches are based on reinforcement learning, which tries to
optimize energy scheduling decisions based on past experience
[37], and fuzzy logic, a mathematical framework designed to
handle uncertain, imprecise or incomplete information [38].

The quantum computing paradigm is emerging as a viable
approach, thanks to its intrinsic parallelism, stemming from
the laws of quantum mechanics. Specifically, the superposition
and linearity principles enable exploring a search space –
the “Hilbert space” – whose size is exponential with respect
to the number of qubits, yet using an amount of resources,
i.e., the quantum gates, which grows only polynomially, as
later discussed in Section III with reference to QAOA. The
exploitation of quantum computing for energy optimization
problems is a recent yet very promising research avenue.
An interesting application is reported in Ref. [8], where the
goal is to explore quantum approaches to specific energy
problems, such as location-allocation, unit commitment, and
heat exchanger. More generally, the authors of [9] discuss
how quantum computers can contribute, as the hardware
develops, to pursue renewable energy transition, by tackling
problems such as the forecasting of solar and wind production,
the scheduling and dispatch of renewable energy, and the
reliability of power systems. In [39], the authors address the
optimization of power flows as a Quadratic Unconstrained
Binary Optimization (QUBO) problem, using the quantum an-
nealing paradigm, [40], which is an alternative to the quantum
gate paradigm adopted by major IT companies and research
institutions, and was the original inspiration for the QAOA
algorithm.

Finally, in this short list of quantum-based approaches to
energy problems, we mention Ref. [41], where the micro-grid
optimal energy management problem is tackled by using a
quantum variant of Teaching Learning Based Optimization, an
artificial intelligence approach inspired by the learning process
in a classroom, and Ref. [42], which aims at improving the
security level of smart grids, by using quantum public-key
encryption and key exchange techniques that ensure mutual
authentication between smart meters and the external grid.

As mentioned in the introductory section, in the current
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NISQ era, variational quantum algorithms (VQAs) seem to
be the most promising and suitable to compensate for the
noise of quantum hardware. However, VQAs are heuristic
algorithms and do not offer performance guarantees. Among
them, the main advantage of QAOA is that it is known
to approximate the optimal solution when the number of
repetitions increases. On the other hand, the reformulation
as an Ising problem, needed by QAOA, can be performed
easily only for linear problems. When problems are non-linear,
the theoretical background of QAOA is not exploitable, but
VQAs can still be used [43]. Similarly to classical neural
networks, the objective is formulated as the minimization of
a cost function, achieved with an iterative approach and by
the use of optimization methods, such as quantum gradient
descent [44]. Today, it is impossible to perform a reliable
comparison between classical approximate and quantum vari-
ational approaches, due to the heuristic nature of both, and the
unavailability of results for large-size problems with quantum
hardware. The advantages expected with quantum computing
are related to the potential computational speed-up, and the
management of uncertainty. A discussion of these aspects is
provided at the end of Section VI, where we will also consider
the complexity analysis performed in Section III, and the
scalability evaluation provided in Section VI-C.

III. QAOA AND RECURSIVE QAOA: GOAL AND
COMPUTATIONAL COMPLEXITY

As already mentioned, we will leverage the QAOA algo-
rithm for solving the prosumer optimization problem. In order
for this paper to be as self-consistent as possible, we provide,
in this section, a short description of the algorithm, by focusing
on how it can be used to solve a problem in the Ising form,
and on its computational complexity.

The goal of the adopted approach is to define the optimiza-
tion problem in terms of a set of discrete binary variables {zi},
taking the values +1 and −1. The solution of the problem with
N variables is, then, one of the 2N possible strings of these
values, obtained by a suitable optimization procedure.

Each variable is associated with one of the qubits of a
quantum register. In particular, zi is given by the outcome of
the measurement of one of the Pauli operators, the so-called
Z observable, performed on the i-th qubit at the end of the
algorithm. According to quantum mechanics, the measurement
has, indeed, the two possible outcomes +1 and −1, which
are the two eigenvalues of Z. Correspondingly, after the
measurement, the state of each qubit collapses into one of
the two logical states, denoted (using Dirac notation) by
|0⟩ = [1, 0]T and |1⟩ = [0, 1]T . These are the eigenstates
of the Z operator, which, as a result, can expressed, in the
logical basis, as the third Pauli Matrix:

Z =

[
1 0
0 −1

]
In order to find the right {zi} values, the prosumer problem

needs to be transformed into an Ising problem of the type:

min

( N∑
i=1

hi · zi −
N∑
i=1

i∑
j=1

Jij · zi · zj
)

(1)

where hi and Jij are suitable real constants. This transfor-
mation is described in Section IV; here, we focus on a brief
explanation of how the Ising problem is tackled with QAOA.

The Ising formulation can be mapped to a diagonal operator,
the Hamiltonian, built with sums and tensor products (i.e.,
Kronecker products) of two basic one-qubit operators, the
identity I and the Pauli operator Z. For each term in (1), the
operator Zi substitutes the variable zi, and the identity operator
Ii is added for each variable zi that does not appear in the term.
Moreover, the multiplications between the z variables are sub-
stituted with the tensor products between the corresponding Z
operators. For example, with N=4 the term z2·z3 is substituted
with I1⊗Z2⊗Z3⊗ I4 or, more succinctly, I1Z2Z3I4 or, even
more briefly, Z2Z3, where the identity operators are implicit.
With these rules, the Hamiltonian operator that corresponds to
expression (1) is:

H =

N∑
i=1

hi · Zi −
N∑
i=1

i∑
j=1

Jij · Zi ⊗ Zj (2)

Now, the problem is to find the minimum eigenvalue(s) of
the operator (2), which corresponds to finding the string of
values of z variables that minimizes the Ising expression (1).
Indeed, the Hamiltonian operator, thanks to the properties of
the tensor product3, is always represented as a diagonal matrix,
and the eigenstate corresponding to the minimum eigenvalue,
i.e., the ground state, gives the solution to the problem. For
example, let us assume that our Ising problem is:

min
(
z1 + 2z3 − 4z1z2 − 2z2z3

)
and, then, that the Hamiltonian of the problem is:

H = (Z1 ⊗ I2 ⊗ I3) + 2 (I1 ⊗ I2 ⊗ Z3)

− 4 (Z1 ⊗ Z2 ⊗ I3)− 2 (I1 ⊗ Z2 ⊗ Z3) (3)

The matrix representation of H is:

H =



−3 0 0 0 0 0 0 0
0 −3 0 0 0 0 0 0
0 0 9 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 3 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −9


The Hamiltonian shows 2N eigenvalues, i.e., the diagonal

elements of the matrix, where N is the number of qubits. Each
basis state is an eigenvector that corresponds to a possible
assignment of the discrete variables {zi}, associated with the
qubits, and the corresponding eigenvalue gives the value of
the cost function. In this case, the minimum eigenvalue is
−9, obtained for the eigenstate [0, 0, 0, 0, 0, 0, 0, 1]T , which,
in turn, corresponds to the basis state |111⟩ = |1⟩ ⊗ |1⟩ ⊗ |1⟩
= [0, 1]T ⊗ [0, 1]T ⊗ [0, 1]T = [0, 0, 0, 0, 0, 0, 0, 1]T , and, thus,
to the solution z1 = −1, z2 = −1, and z3 = −1.

The objective of a QAOA is to find the eigenstate cor-
responding to the minimum eigenvalue of the Hamiltonian

3The tensor product of two diagonal matrices is still diagonal.
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Fig. 1. Example of a QAOA circuit. The objective is to tune the values of
the parameters β and γ and prepare, before measurement, the eigenstate that
corresponds to the minimum eigenvalue of the Hamiltonian defined in (3).

operator, without computing all the 2N diagonal elements.
This is accomplished through a hybrid iterative algorithm in
which a quantum circuit prepares an output state through a set
of parametric gates, and a classical routine is used to optimize
the parameter values until the prepared state corresponds to
the ground state of the Hamiltonian.

A full description of the details of QAOA cannot be given
here for reasons of space. Instead, we focus on the computa-
tional complexity of the algorithm, in terms of the number of
gates and the depth of the circuit. The QAOA quantum circuit
for the problem expressed in Eq. (3) is depicted in Figure
(1), which shows that there are three main groups of quantum
gates, where the last two blocks are repeated a number of times
referred to as reps. The number of gates can be computed for
the different blocks of the circuit: the first block requires N
Hadamard gates; the second block (the Rx block) requires
X-rotation gates, one for each qubit: the third block (the Rz

block) requires at most N single qubit Z-rotation gates (one
for each term Zi of the Hamiltonian) and at most N · N/2
two-qubit gates (one for each term ZiZj of the Hamiltonian),
i.e., O(N2) two-qubit gates. The second and third stages are
repeated a number of times equal to reps, and at the end of
the last repetition, a measurement is performed on the entire
qubit register.

The QAOA circuit is executed a number of times equal to
shots in order to obtain a statistically significant distribution
of measurement results. Overall, the number of needed gate
executions for a single iteration of the hybrid algorithm is
O(shots · reps · N2), i.e., still O(N2). Since the gates can
be executed in parallel on different qubits, the depth of the
circuit is O(N). This is an upper limit, obtained when the
Ising expression contains all the possible couples of discrete
variables z. In real cases, where only a subset of those couples
are present, the depth grows more slowly, or is nearly constant.

The hybrid algorithm requires a number of iterations to
converge, which is very difficult to estimate. The hope is
that the number of iterations increases at most polynomially
with respect to N . This hope stems from the observation that
the quantum gates operate on a Hilbert space whose number
of dimensions is exponential with respect to the number of
qubits. However, at present, there is no proof regarding the
expected number of iterations, neither for QAOA nor for any
other variational hybrid algorithm, which justifies the large
amount of research work that is devoted to the experimental
analysis of these algorithms.

Besides using the original QAOA algorithm, we also tested
the performance of a recent variant, namely, the Recursive
QAOA algorithm [18]. The main idea is to exploit QAOA
to find the possible correlations between pairs of discrete
variables, and reduce the size of the problem down to a
number of variables, denoted as num min var, after which
the problem is given to a classical optimizer that finds the
best solution. After the first execution of QAOA, the expected
value of each term Zi ⊗ Zj in Eq. (2) is measured, and
the term Zî ⊗ Zĵ with the largest absolute value, which
corresponds to the maximum correlation or anti-correlation,
is identified4. This gives the possibility of eliminating one of
the two variables, for example, Zĵ , by substituting it with Zî

or −Zî in (2), depending on the two variables being correlated
or anti-correlated. Then, QAOA is executed again with the new
Hamiltonian operator, and the procedure is iterated until the
number of variables is reduced to numminvar. At this point,
the problem is solved classically, and the optimal solution
hopefully is the best solution to the original problem or at
least a sub-optimal admissible solution.

The efficacy of Recursive QAOA is good if strong correla-
tions exist between pairs of variables. Since at every iteration
the strength of correlation decreases, as better correlations
were found at the previous steps, it is reasonable to expect
that more iterations can decrease the quality of the solution
found with the final classical optimization step. On the other
hand, classical optimization is not scalable; therefore, when the
number of qubits is large, the number of iterations should be
large enough to reduce the size of the problem until it can be
effectively tackled classically. The number of iterations must
be set by balancing these two contrasting considerations.

Since Recursive QAOA repeats the execution of QAOA
a number of times equal to N − num min var, the com-
plexity is

∑N−num min var
i=0 O(N − i)2 = O(N3), achieving

polynomial time complexity. It is worth noting that the same
considerations made about the number of iterations needed by
QAOA to converge still hold for the Recursive QAOA.

IV. FORMULATING THE PROSUMER PROBLEM FOR QAOA

As anticipated in the introductory section, this paper de-
scribes a general approach to transform a prosumer problem
into a problem that can be solved with the QAOA algorithm.
The prosumer problem is defined as the problem of minimizing
the energy cost incurred by the users of an energy community,
while satisfying a set of constraints, i.e., addressing the user
energy requirements and providing a feasible scheduling for
a set of schedulable interruptible loads. A schedulable load
is an electric load that can be scheduled within a time
interval, in accordance with the user preferences; moreover,
it is interruptible when it can be stopped and resumed at a
different time. In the following, we define a simple version of
the prosumer problem, involving a number of prosumers of an
energy community. The aim is to showcase the steps needed
for the problem reformulation in terms of a Hamiltonian

4If the value is close to 1, it means that the two discrete variables often
assume the same value in a solution (both 1 or both -1), while if the value is
close to -1, it means that the variables often assume opposite values.
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operator. At the end of the section, we will mention the
further specifications and constraints that can be added to the
prosumer problem, and how they can be tackled to exploit the
QAOA algorithm.

Some necessary definitions are provided in the following:
SU set of users belonging to the community;
SLu

set of schedulable loads of user u ∈ SU ;
Lu number of schedulable loads of user u ∈ SU ;
SH set of scheduling hours;
H number of scheduling hours;
δlu working time of the load l ∈ SLu , i.e., number of hours

for which the load must be switched on;
Elu power consumption of the schedulable load l ∈ SLu

for a user u ∈ SU ;
Emax,u maximum nominal power available to user u;
ph cost of the electrical energy imported by the commu-

nity (at a discounted tariff) from the grid at the hour
h ∈ SH ;

xh
lu

state of the schedulable load l ∈ SLu
at hour h ∈ SH

(1 = on; 0 = off).
The problem is to minimize the following objective func-

tion:

C =
∑
h∈SH

ph ·
( ∑

u∈SU

∑
lu∈SLu

Elu · xh
lu

)
(4)

Eq. (4) defines the daily energy cost afforded by the energy
community, which is minimized by scheduling the states (on or
off) of the loads xh

lu
. The cost is computed by multiplying the

electrical tariffs ph, granted to the community at the different
hours h, by the power consumptions Elu of active loads. The
following constraints need to be satisfied:∑

lu∈SLu

(xh
lu · Elu) ≤ Emax,u ∀h ∈ SH ,∀u ∈ SU (5)

∑
h∈SH

xh
lu = δlu ∀u ∈ SU ,∀lu ∈ SLu

(6)

Inequalities (5) force the value of the energy supplied to the
loads, for each user and at each hour, to be lower or equal than
the nominal power available at the user’s electrical system.
Equations (6) ensure that each load l of each user u is switched
on exactly for δl hours.

For this optimization problem, the number of binary vari-
ables xh

lu
is equal to H ·

∑
u∈SU

(Lu). The values of energy,
Emax,u and Elu , are expressed as integers. This is not a
limitation because, if fractional values are needed, they can be
converted to integers through multiplication by an appropriate
factor.

As discussed in Section III, the problem needs to be
transformed into an Ising problem, of the type shown in Ex-
pression (1). This transformation is described in the following.
The inequalities (5) are converted into equations, by adding
extra integer variables Eh

res,u that represent, for each user
and at each hour, the residual energy that is not used, with
0 ≤ Eh

res,u ≤ Emax,u:∑
lu∈SLu

(xh
lu ·Elu)+Eh

res,u = Emax,u ∀h ∈ SH ,∀u ∈ SU (7)

The integer values of Eh
res,u can be expressed with the use

of a number of slack binary variables equal to Mu, with Mu =
⌈log(Nres,u)⌉, where Nres,u is the number of integer values
that Eh

res,u can take, i.e., Nres,u = Emax,u + 1. By using the
slack variables, denoted with y, Eh

res,u can be expressed as:

Eh
res,u =

Mu−1∑
mu=1

(2mu−1 · yhmu
) + (Nres,u − 2Mu−1) · yhMu

∀h ∈ SH ,∀u ∈ SU (8)

and the inequalities (5) can be converted into the equations:∑
lu∈SL,U

(xh
lu · Elu)

+

Mu−1∑
mu=1

(2mu−1 ·yhmu
)+(Nres,u−2Mu−1) ·yhMu

= Emax,u

∀h ∈ SH ,∀u ∈ SU (9)

In this way, we added H ·
∑

u∈SU
(Mu) binary slack vari-

ables, and the total number N of binary variables (including
the original variables x) becomes:

N = H ·
( ∑

u∈SU

(Lu) +
∑
u∈SU

(Mu)
)

(10)

The next step is to build a function that incorporates the
original objective function of Eq. (4) and a sum of penalties,
each corresponding to a constraint. The addition of these
penalties creates an augmented objective function to be min-
imized. If the penalty terms can be driven to zero, through a
proper setting of the binary variables, the augmented objective
function becomes the original function to be minimized. That
is, the penalties equal zero for feasible solutions and equal
some positive penalty amount for infeasible solutions [45].

The prosumer problem now becomes the minimization
of a Quadratic Unconstrained Binary Optimization (QUBO)
expression5:

min

( ∑
h∈SH

ph ·
( ∑

u∈SU

∑
lu∈SLu

Elu · xh
lu

)

+A ·
{ ∑

h∈SH

∑
u∈SU

[ ∑
lu∈SL,U

(xh
lu ·Elu)+

Mu−1∑
mu=1

(2mu−1 · yhmu
)

+ (Nres,u − 2Mu−1) · yhMu
− Emax,u

]2
+

∑
u∈SU

∑
lu∈SLu

[ ∑
h∈SH

xh
lu − δlu

]2})
(11)

In Eq. (11), A is a penalty coefficient computed as in Eq.
(12), where Cup and Clow are, respectively, the upper and
lower bounds of the cost function C, defined in Eqs. (13) and
(14).

5This expression includes constant terms, which should not be present in
a QUBO expression. However, they can be ignored because they do not play
a role in the minimization.
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A = 1.0 + (Cup − Clow) (12)

Cup =
∑
h∈SH

ph ·
( ∑

u∈SU

∑
lu∈SLu

Elu · 1
)

(13)

Clow =
∑
h∈SH

ph ·
( ∑

u∈SU

∑
lu∈SLu

Elu · 0
)

(14)

The value of the non-negative constant A is sufficiently
large to ensure that the minimum of the objective function
is obtained when all the constraints are matched. This occurs
because a possible penalty, deriving from the non-satisfaction
of a constraint, cannot be compensated by the decreasing of
the original objective function that is allowed by the missed
constraint satisfaction.

Now we can transform the QUBO problem expressed in
Eq. (11) into an Ising problem, by substituting each binary
variable with a discrete variable, as follows:

xh
lu =

1− zhlu
2

, yhmu
=

1− zhmu

2
(15)

At this point, an Ising problem as in Eq. (1) has been
obtained: the values {0, 1} of a binary variable correspond
to the values {+1,−1} of the matching discrete variable6.

As discussed in Section III, the problem becomes that of
finding the minimum eigenvalue of the Hamiltonian operator
defined in (2). A register of N qubits is prepared by QAOA to
achieve with maximum probability the ground state, in which
each qubit, after measurement, collapses into one of the basis
states |0⟩ or |1⟩. The solution to the problem is obtained by
setting each binary variable to 0 (if the corresponding qubit
collapses to |0⟩, the measurement result being the eigenvalue
+1) or 1 (if the corresponding qubit collapses to |1⟩, the
measurement result being −1).

In general, the output state prepared by the quantum circuit
is a superposition of various basis states. The objective, then, is
not necessarily to prepare the ground state, but a state in which
the amplitudes of the basis states that represent the solution
are larger than the other amplitudes, so that a measurement
provides the desired solution with a large probability.

As mentioned above, the formulation of the prosumer prob-
lem can be more complex and include more constraints, and
more terms in the objective function, to take into account,
e.g.: (i) the renewable energy produced by the prosumers,
which can be shared within the community; (ii) the presence
of different prices for buying/selling energy from/to the grid
and within the community; (iii) the presence of energy storage
systems. More complete formulations can be found in the lit-
erature [46], [47]. These further aspects are not described here
for the sake of readability; however, they can be tackled in the
same way as shown before: inequalities must be transformed
into equations, each integer variable must be converted into a
number of binary variables, the constraints must be included
in the objective function, and variable substitutions must be
performed to achieve an Ising problem formulation.

6Note that (xh
lu
)
2=xh

lu
=
1−zhlu

2
, since the square of a binary variable equals

the binary variable itself, and the same occurs with (yhmu
)
2. This is the reason

why there are no terms (zi)
2 in Eq. (1).

V. EXAMPLE OF A SPECIFIC PROSUMER PROBLEM

This section provides and illustrates an example of a
prosumer problem, which will be used for the experiments.
The example is related to one user of an energy community,
equipped with two schedulable loads, i.e., L = 2, while the
number of hours, H , ranges between two and five. The aim
is to perform experiments in order to assess the ability of the
QAOA algorithm to solve the problem both in a simulation
environment and with real quantum hardware. The constants
are set as follows:

• Working times of the loads:
δ1 = 2 [h];
δ2 = 1 [h];

• Power consumption of the loads and nominal power of
the system: E1 = 1 [kW];
E2 = 2 [kW];
Emax = 3 [kW];

• Hourly cost of the energy: p1 = 21 [e cent / kWh];
p2 = 21 [e cent / kWh];
p3 = 22 [e cent / kWh];
p4 = 23 [e cent / kWh];
p5 = 24 [e cent / kWh];

The function to minimize, whose general expression is given
in Eq. (4), here becomes:

C = E1 ·
H∑

h=1

(ph · xh
1 ) + E2 ·

H∑
h=1

(ph · xh
2 ) (16)

The constraints expressed in Eqs. (5) and (6) become:

xh
1 · E1 + xh

2 · E2 ≤ Emax, h = 1 ... H (17)
H∑

h=1

(xh
1 ) = δ1,

H∑
h=1

(xh
2 ) = δ2 (18)

As in Eq. (7), the inequality constraints are converted into
equations:

xh
1 · E1 + xh

2 · E2 + Eh
res = Emax, h = 1 ... H (19)

At this point, we convert the integer variables Eh
res into

binary variables. Since the integer variables can take only
values in the range [0;Emax], the parameters Nres,u and Mu

of Eq. (8) are equal to 4 and 2, respectively. By substituting
these values in Eq. (8), we obtain:

Eh
res = yh1 + 2 · yh2 , h = 1 ... H (20)

The constraint (17) can now be expressed in terms of the
original load variables x and the slack variables y, as follows:

xh
1 · E1 + xh

2 · E2 + yh1 + 2 · yh2 = Emax, h = 1 ... H (21)

The number of binary variables is equal to L ·H +M ·H ,
where the first term is the number of the original variables
and the second term is the number of slack variables. In this
problem, we introduced a simplification, in order to make
the problem solvable with a reduced number of qubits and
then executable with currently available quantum computers;
namely, the maximum amount of power required by the loads
never exceeds the rated power Emax. This eliminates the
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TABLE I
SOME ADMISSIBLE SOLUTIONS AND VALUES OF THE COST FUNCTION FOR

THE EXAMPLE PROSUMER PROBLEM

admissible
solution x1

1 x2
1 x3

1 x4
1 x1

2 x2
2 x3

2 x4
2

cost
[C cent]

1 1 0 0 0 1 1 0 0 84
2 0 1 0 0 1 1 0 0 84
3 1 0 0 0 1 0 1 0 85
4 0 1 0 0 1 0 1 0 85
5 1 0 0 0 0 1 1 0 85
6 0 1 0 0 0 1 1 0 85
7 0 0 1 0 1 1 0 0 86
8 1 0 0 0 1 0 0 1 86
9 0 1 0 0 1 0 0 1 86
10 1 0 0 0 0 1 0 1 86

necessity of slack variables, thus reducing the number of
binary variables — and qubits – to L ·H .

The problem is transformed into a QUBO problem, with
the procedure discussed in Section IV. As an example, when
H = 4, the function to minimize becomes:

(21 · x1
1 + 21 · x2

1 + 22 · x3
1 + 23 · x4

1) · 1
+ (21 · x1

2 + 21 · x2
2 + 22 · x3

2 + 23 · x4
2) · 2

+A · {[x1
1 + x2

1 + x3
1 + x4

1 − 2]2

+ [x1
2 + x2

2 + x3
2 + x4

2 − 1]2} (22)

where the penalty coefficient A is computed using Eq. (12):

A = 1.0+{21·1+21·1+22·1+23·1+42·1+42·1+44·1+46·1}
−{21·0+21·0+22·0+23·0+42·0+42·0+44·0+46·0} = 262

As discussed before, the Hamiltonian operator H is obtained
with the substitution x (or y) = (1 − z)/2, and by putting Z
operators in place of the z discrete variables:

H = −283 ·Z1 − 283 ·Z2 − 284 ·Z3 − 285 ·Z4 − 10.5 ·Z5

− 10.5 · Z6 − 11 · Z7 − 11.5 · Z8 + 131 · Z1Z2 + 131 · Z1Z3

+131·Z2Z3+131·Z1Z4+131·Z2Z4+131·Z3Z4+131·Z5Z6

+131·Z5Z7+131·Z6Z7+131·Z5Z8+131·Z6Z8+131·Z7Z8

(23)

The QAOA algorithm can now be executed to obtain the
ground state of H, which encodes the values of the binary
variables that minimize the QUBO function (22).

The problem with H = 4 has 24 admissible solutions.
For ten of these solutions, Table I reports the values of the
eight binary variables, and the corresponding values of the
cost function, obtained from Eq. (16). The best solutions are
the first two in the table: they are obtained when the first load,
with a power consumption of 2 kW , is activated either in the
first or in the second hour, and the second load, with a power
consumption of 1 kW , is scheduled in both the first and the
second hour. The corresponding global energy cost is 0.84 e.

VI. RESULTS

In this section, we present a set of experimental results
obtained through the resolution of the prosumer problem with
QAOA. The objectives of the experiments are the following:

• assess the performance of the algorithm in a simulation
environment. To this aim, we executed the algorithm
using the IBM Qasm simulator;

• investigate the impact of noise on the performance. We
performed a set of experiments in which the Qasm
simulator was configured using the noise model and the
qubit coupling of real quantum hardware, specifically,
ibmq montreal, an IBM quantum device of type Falcon
R4, equipped with 27 qubits;

• test the real quantum hardware, using the ibmq montreal
device mentioned in the previous point, and compare its
performances to those obtained with simulation;

• assess the performance of the Recursive QAOA algo-
rithm;

• analyze the scalability behavior of the quantum comput-
ing approach and compare it to a classical approach.

The performances were analyzed using the prosumer prob-
lem described in Section V when varying: (i) the size of the
problem, i.e., the number of qubits, which in our case is
equal to twice the number of hours at which the loads can
be scheduled; (ii) the number of repetitions of the QAOA
algorithm: as mentioned in the introductory section, the in-
crease in the number of repetitions leads to a more precise
solution but requires more computational time. The simulation
results were averaged over 20 runs, while the experiments on
real hardware were executed once, due to the long waiting
times experienced on real devices, as these devices are made
available to numerous users and institutions worldwide.

We evaluated the following performance indices:

• the success probability, Pbest, computed as the frequency
at which the final measurement produced the optimal
solution of the problem. The number of measurements
(shots) was set to 4096 for all the experiments. With the
Recursive QAOA algorithm, the final step is classical,
and only one solution is given as an output: therefore
this index is computed as the fraction of runs for which
the obtained solution is equal to the optimal solution;

• the probability of admissible solution, Padm, defined as
the probability that the final measurement gives an ad-
missible solution, i.e., a solution (optimal or non-optimal)
that satisfies the constraints. With Recursive QAOA, this
index is defined as the fraction of runs for which the
obtained solution is admissible;

• the computing time of the algorithm execution.

The rest of this section discusses the most interesting results
of the experiments.

A. Performance of QAOA on Simulator and Real Hardware

The first objective was to verify whether QAOA is able
to achieve the optimal solution or at least a sub-optimal but
admissible solution. Figure 2 reports the success probability,
Pbest, for the 4-qubit problem, using noiseless and noisy
simulation and the real quantum hardware. In this and in the
following figures, the results are plotted versus the number
of repetitions of the QAOA circuit, denoted as “reps”. In the
4-qubit case, there are only two admissible solutions, which
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Fig. 2. Probability Pbest with 4 qubits. It coincides with the probability
Padm, since in this case all feasible solutions are also optimal solutions.
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Fig. 3. Probability Pbest with 6 qubits.

are also optimal, therefore this index coincides with the index
Padm. We can observe that:

1) using a noiseless simulator, the success probability in-
creases with the number of repetitions and approaches 1.0
with 20 or more repetitions. This confirms the theoretical
prediction [16];

2) when using a noisy simulation, the effect of noise is
amplified by the number of repetitions. Therefore, there
is an optimal value of reps, which appears to be around
10, after which the success probability begins to decrease.
This suggests that, depending on the size of the problem
and the impact of noise, the value of repetitions must be
tuned carefully;

3) the performances on the real hardware are compatible
with those of the noisy simulation, despite some dif-
ferences, probably due to the fact that only one test
was performed on the quantum device, while simulation
results are averaged over 20 runs.

The last observation suggests that the noisy simulation is a
good approximation of the results expected on real hardware.
In the following, we will report more results obtained on a real
device, but also many results obtained on a noisy simulator,
which are statistically more significant since they are averaged
over many experiments.

In problems with more qubits, not all the admissible so-
lutions are also optimal, as it was the case with 4 qubits.
Therefore, for the 6-qubit problem, we report both the Pbest

and Padm solutions, in Figure 3 and 4, respectively. The
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Fig. 4. Probability Padm with 6 qubits.
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Fig. 5. Probability Pbest with 8 qubits.

analogous results for 8 qubits are in Figures 5 and 6. When
increasing the problem size, we see that the probabilities
decrease, but in noiseless simulations are still large enough to
be able to achieve the optimal solution on a large fraction of
the 4096 shots. For example, with 8 qubits and 50 repetitions,
about 60% of the 4096 shots provide an admissible solution
and about 8% provide the best solution. However, the impact
of noise is heavier and prevents using an adequate number of
repetitions, which would be required to obtain results of good
quality. Figure 7 gives a direct comparison among the values
of Padm obtained, with noiseless and noisy simulations, with
the number of qubits ranging between 4 and 10.

It is expected that the in the next few years the noise of
quantum computers will be considerably reduced, and also that
more efficient noise-reduction algorithms will be available, but
it is difficult to predict if this will be sufficient when increasing
the problem size. Therefore, it is useful to investigate other
techniques that can improve performance. In the following, we
discuss the improvements achievable with Recursive QAOA.

B. Performance of Recursive QAOA

The first important result achieved with Recursive QAOA
is that this variant was always able to provide an admissible
solution, in all the scenarios considered in this paper. This
means that the problem size reduction, made in the first
stage of the algorithm, does not exclude at least some of
the admissible solutions, which are then returned by the final
classical step. Therefore, the probability Padm is always equal
to 1.0. The performances of Recursive QAOA in terms of
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Fig. 6. Probability Padm with 8 qubits.
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Fig. 7. Probability Padm for different numbers of qubits, with noiseless and
noisy simulations.

Pbest are also very interesting. Figure 8 compares the success
probability with 4 qubits, obtained with “regular” QAOA and
with Recursive QAOA, in noiseless and noisy simulations.
We can observe that the values of Pbest are always larger
with Recursive QAOA, and approach the value 1.0 when
increasing the number of repetitions. Moreover, we notice that
the performances are better when the value of num min var
is larger, i.e., when fewer variables are eliminated in the first
stage of the algorithm. This confirms the discussion made in
Section III. Analogous comparisons are made in Figures 9
and 10 in the scenarios with 6 and 8 qubits, respectively. In
these figures, for the sake of readability, results of Recursive
QAOA are only reported with the value of num min var equal
to the number of qubits minus 2, meaning that two variables
are eliminated before the classical optimization step. A further
interesting remark is that not only Recursive QAOA performs
better than regular QAOA, but it is also less sensitive to
noise: results obtained with and without noise are closer to
one another with Recursive QAOA than with regular QAOA.

Figure 11 offers an overview of the performances of noisy
simulations, in terms of Padm, when varying the number of
qubits. The figure highlights the ability of Recursive QAOA
of finding an admissible solution in any considered scenario,
while the performance of regular QAOA strongly depends on
the number of qubits and on the number of repetitions.
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Fig. 8. Probability Pbest with 4 qubits, with QAOA and recursive QAOA
(denoted as “rec(x)”, where x is the value of num min var), with and
without noise.
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Fig. 9. Probability Pbest with 6 qubits, with QAOA and recursive QAOA
(denoted as “rec(x)”, where x is the value of num min var), with and
without noise.
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Fig. 10. Probability Pbest with 8 qubits, with QAOA and recursive QAOA
(denoted as “rec(x)”, where x is the value of num min var), with and
without noise.

C. Scalability

So far, we have seen that the Recursive QAOA algorithm is
able to find the optimal solution, or at least an admissible
one, with a large probability, and that the noise seems to
have a limited impact on its performance. It is worth noting
that the use of a larger number of qubits is impracticable
on a simulator, due to the exponential explosion of the
required memory structures. Indeed, a quantum register with
n qubits lives in a Hilbert space with dimensionality 2n,
and the operators – both the Hamiltonian Ising operator and
the unitary operators that represent the quantum gates – are
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Fig. 11. Probability Padm for different numbers of qubits, with QAOA and
recursive QAOA, in the presence of noise.

represented as 2n x 2n matrices. Hence, the assessment of
large problems requires real quantum hardware, since the
operators are directly executed in parallel on the qubits, and
the amount of memory scales linearly – not exponentially –
with the size of the problem. In the near future, more powerful
quantum computers will be made available to the research
community, and it will be possible to assess the performances
of the algorithm for larger-size problems.

Figure 12 and Figure 13 are helpful to assess the scalability
in terms of the computing time. Specifically, Figure 12 reports,
in log-log scale, the execution time of QAOA on the real quan-
tum machine ibmq montreal versus the number of repetitions.
The time increases linearly with the number of repetitions,
as expected, since each repetition needs the execution of a
fixed number of quantum gates. More significantly, the time
is almost independent of the number of qubits, which confirms
the potential scalability of the quantum algorithm. Figure 13
compares, in a semi-log plot, the computing times needed by
QAOA vs. those experienced with the well-known classical
CPLEX solver7, for different numbers of binary variables. The
results show that the computing time obtained with CPLEX
increases exponentially with the number of binary variables,
while the quantum computing time is almost constant. Even if
the numerical values of computing time are larger than those
obtained with classical computing, the dramatic difference be-
tween the two trends confirms the hope for a significant speed-
up of quantum computing algorithms for large problems.

D. Perspective of Quantum Computing for Energy Scheduling

Also in light of the experimental results, we can now
try to make the point on the possible exploitation of vari-
ational quantum algorithms (VQAs) for the resolution of
the prosumer problem and energy scheduling problems in
general. As we have seen, linear programming problems can be
reformulated as Ising problems, thus enabling the exploitation
of QAOA. More complex and non-linear problems can be
tackled with other VQA algorithms, which, as mentioned in
the introductory section, are seen as the quantum analog of
neural networks [12], [43]: in this case, the objective is the

7Qiskit CplexOptimizer: https://qiskit.org/documentation/optimization/
stubs/qiskit optimization.algorithms.CplexOptimizer.html
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 1

 10

 100

 1000

 10000

 2  4  6  8  10  12  14  16  18  20  22  24  26

tim
e 

(s
)

binary variables

classical
quantum

Fig. 13. Execution time of the classical CPLEX solver and QAOA (with
reps = 5) vs. the number of binary variables.

minimization of a cost function, computed starting from the
results of quantum measurements, and the approach is still
hybrid and variational, with a parameterized quantum circuit
that is optimized with classical methods, e.g., gradient descent.
The advantage of QAOA is that the theory predicts that the
process converges to the optimal result (the ground state) when
increasing the number of repetitions, which is not guaranteed
in other VQAs.

The main expected benefits are the same for QAOA and
other VQAs: (i) better scalability with respect to classical
algorithms and (ii) efficient and natural management of the
uncertainty. The hope for better scalability originates from the
possibility of exploring an exponential state space and from
the use of quantum gates that operate in parallel on all of the
basis states, which are also exponential in number. The results
shown in Section VI-C are encouraging in this respect. With
regard to the management of the uncertainty, we have seen
that QAOA returns a set of results, which can be selected “a
posteriori” after some possible variations of the conditions,
and this holds also for other VQAs. Moreover, in presence of
slight changes in the input data, variational algorithms can be
re-executed setting the initial values of the parameters to the
values obtained after the previous optimizations, which can
be expected to shorten the computation. Indeed, whenever the
solution corresponds to the ground state of an Hamiltonian,
as in QAOA, it tends to follow it adiabatically, remaining
there even after small changes occur in the environmental
conditions.
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Putting the use of quantum computing methods into per-
spective, there are also important challenges to be faced.
Firstly, the noise and decoherence of available quantum hard-
ware, whose effect increases with the depth of the circuit,
are already significant, despite the fact that we addressed
small size problems. Any reliable evaluation can be done
only after more efficient and larger hardware will become
available. Secondly, while we have seen that the complexity
of the QAOA circuit is polynomial, there is no guarantee
about the number of iterations. This problem derives from
the phenomenon referred to as “barren plateaux” [48], i.e.,
the magnitude of partial derivatives tends to vanish with
the system size, which can hamper the discovery of a clear
path for the optimization of the parameter values. A further
challenge on the applications on VQA is that the number of
measurements required for the estimation of the cost function
can become excessive, thus hindering the efficiency of the
process [12]. Despite these though challenges, the potential
benefits are important, and the research work in the next few
years will determine whether quantum algorithms are a viable
alternative for the solution of energy scheduling problems.

VII. CONCLUSIONS

This paper focuses on the solution of the prosumer problem
with a hybrid classical-quantum computing approach. We have
outlined how this NP-hard problem can be transformed into
the problem of finding the ground state of a Hamiltonian
operator, which is the kind of problem that can be solved by
the QAOA and Recursive QAOA algorithms. We have tested
the performance of these algorithms in finding the best and ad-
missible solutions, by using both real and simulated resources.
Moreover, we have compared the results of QAOA to those
of Recursive QAOA [18], showing that the latter significantly
over-performs the former in addressing the prosumer problem,
both with noisy and noiseless quantum hardware. Finally,
despite performing our tests with a limited number of qubits,
we have been able to inspect the scalability of the algorithms:
we have checked that the quantum execution time does not
depend on the number of binary variables and increases almost
linearly with the requested accuracy. This suggests that, as the
problem size increases, a quantum approach is expected to be
technologically favorable in the long term.
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