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Joint Optimization of Radio and Computational

Resources for Multicell

Mobile-Edge Computing

Stefania Sardellitti, Gesualdo Scutari, and Sergio Badsa

Abstract—Migrating computational intensive tasks from mo-
bile devices to more resourceful cloud servers is a promisq
technique to increase the computational capacity of mobile
devices while saving their battery energy. In this paper, we
consider a MIMO multicell system where multiple mobile uses
(MUs) ask for computation offloading to a common cloud server
We formulate the offloading problem as thejoint optimization
of the radio resources-the transmit precoding matrices of the
MUs—and the computational resources-the CPU cycles/second
assigned by the cloud to each MU-in order to minimize the over-
all users’ energy consumption, while meeting latency consints.
The resulting optimization problem is nonconvex (in the obgctive
function and constraints). Nevertheless, in the single-@s case, we
are able to express the global optimal solution in closed fon. In
the more challenging multiuser scenario, we propose an itative
algorithm, based on a novel successive convex approximatio
technique, converging to a local optimal solution of the oginal
nonconvex problem. Then, we reformulate the algorithm in a
distributed and parallel implementation across the radio acess
points, requiring only a limited coordination/signaling with the
cloud. Numerical results show that the proposed schemes out
perform disjoint optimization algorithms.

Index Terms—Mobile cloud computing, computation offload-
ing, energy minimization, resources allocation, small cé.

I. INTRODUCTION

[4], or computation offloading5]. In recent years, cloud
computing (CC) has provided a strong impulse to computation
offloading through virtualization, which decouples the lapp
cation environment from the underlying hardware resources
and thus enables an efficient usage of available computing
resources. In particular, Mobile Cloud Computing (MCC)) [6]
makes possible for mobile users to access cloud resources,
such as infrastructures, platforms, and software, on-dema
Several works addressed mobile computation offloading) suc
as [/]-[16]. Recent surveys argl [6], [17], ard |[18]. Some
works addressed the problem of program partitioning and
offloading the most demanding program tasks, as e.g. in
[7]-[10]. Specific examples of mobile computation offloaylin
techniques areMAUI [19], ThinkAir [20], and Phone2Cloud
[21]]. The trade-off between the energy spent for computatio
and communication was studied in_[12]-]14[, [22]. A dy-
namic formulation of computation offloading was proposed in
[15]. These works optimized offloading strategies, assgrain
given radio access, and concentrated on single-user sognar
In [23], it was proposed goint optimization of radio and
computational resources, for the single user case. The join
optimization was then extended to the multiuser casé ih; [24]
see also[[25] for a recent survey on joint optimization for

Mobile terminals, such as smartphones, tablets and negmputation offloading in a 5G perspective. The optimaltjoin

books, are increasingly penetrating into our everydayslias
convenient tools for communication, entertainment, bessn

allocation of radio and computing resources(in! [24],| [25kwa
assumed to be managed in a centralized way in the cloud. A

social networking, news, etc. Current predictions foreaeedecentralized solution, based on a game-theoretic fotinnla
doubling of mobile data traffic every year. However sucbf the problem, was recently proposed[inl[26].][11]. In catre
a growth in mobile wireless traffic is not matched withcellular networks, the major obstacles limiting an effeeti
an equally fast improvement on mobile handsets’ batteriefeployment of MCC strategies: i) the energy spent by mobile
as testified in[[B]. The limited battery lifetime is then goterminals, especially cell edge users, for radio accegs;izn

ing to represent the stumbling block to the deployment
computation-intensive applications for mobile devicetilfe

@he latency experienced in reaching the (remote) cloudeserv
through a wide area network (WAN). Indeed, in macro-cetlula

same time, in the Internet-of-Things (loT) paradigm, a mgri systems, the transmit power necessary for cell edge users to
of heterogeneous devices, with a wide range of computdtioagcess a remote base station might null all potential benefit

capabilities, are going to be interconnected. For manyerfith

coming from offloading. Moreover, in many real-time mobile

the local computation resources are insufficient to run sephapplications (e.g., online games, speech recognitioretifae)

ticated applications. In all these cases, a possible girate

the user Quality of Experience (QoE) is strongly affected by

overcome the above energy/computation bottleneck cansigte system response time. Since controlling latency over a
in enabling resource-constrained mobile devices to offloggaN might be very difficult, in many circumstances the QoE
their most energy-consuming tasks to nearby more resaurcefssociated to MCC could be poor.

servers. This strategy has a long history and is reported inA possible way to tackle these challenges is to btingh

the literature under different names, suchcgber foraging
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radio access and computational resources closer to MUs. Thi
idea was suggested in_[17],_[27], with the introduction of
cloudlets providing proximity radio access to fixed servers
through Wi-Fi. However, the lack of available fixed servers
could limit the applicability of cloudlets. The Europearjarct
TROPIC [28] suggested to endow small cell LTE base stations
with, albeit limited, cloud functionalities. In this way,ne

can exploit the potential dense deployment of small celebas
Stations to facilitate proximity access to computing reses
and have advantages over Wi-Fi access in terms of Quality-
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of-Service guarantee and a single technology system (nb nee [1. COMPUTATION OFFLOADING

for the MUs to switch between cellular and Wi-Fi standards).

Very recently, the European Telecommunications Standardd-et us consider a network composed 8f cells; in each

Institute (ETSI) launched a new standardization group @ell n = 1,..., N, there is one Small Cell enhanced Node

the so calledMobile-Edge ComputingMEC), whose aim B (SCeNB in LTE terminology) serving,, MUs. We denote

is to provide information technology and cloud-computingy i, the i-th user in the celln, and byZ £ {i,, : i =

capabilities within the Radio Access Network (RAN) in closé, ..., K,, n=1,..., N.} the set of all the users. Each MU

proximity to mobile subscribers in order to offer a servicé, and SCeNBn are equipped witmy, —transmit andnpg,

environment characterized by proximity, low latency, aighh receive antennas, respectively. The SCeNB’s are all caedec

rate access [29]. to a common cloud provider, able to serve multiple users
concurrently. We assume that MUs in the same cell transmit

Merging MEC with the dense deployment of (small cellyyer orthogonal channels, whereas users of different el
Base Stations (BSs), as foreseen in the 5G standardizatigR fere against each other.
roadmap, makes possible a real proximity, ultra-low la¥enc | this scenario, each MU, is willing to run an application
access to cloud flJ_nctlonahtlgEﬂZS]. However, in a densgithin a given maximum time7;, , while minimizing the
deployment scenario, offloading becomes much more cOghergy consumption at the MUs side. To offload computations
plicated because of intercell interference. The goal 0f thiy the remote cloud. the MU has to send all the needed
paper is to propose @int optimization of radio and com- information to the server. Each module to be executed is
putational resources for computation offloading in a denggaracterized by: the numbey;, of CPU cycles necessary to
deploymen_t scenarian the presence of |nter<_:ell interference rn the module itself; the numbéy, of input bits necessary
More specifically, the offloading problem is formulated ag, transfer the program execution from local to remote sides
the minimization of.the overall energy consumption, at thend the numbeb? of output bits encoding the result of the
mobile terminals’ side, under transmit power and latenqgmpytation, to be sent back from remote to local sides.  The
constraints. The optimization _varlables are t_he mobHeor_adMU can perform its computations locally or offload them to
resourcesth_e precoding (equ!valently, covariance) m_atrlceﬁzle cloud, depending on which strategy requires less energy
of the mobile MIMO transmittersand the computational e satisfying the latency constraint. In case of offloagi
resourcesthe CPU cycles/second assigned by the cloud {ge |atency incorporates the time to transmit the input taits
each MU. The latency constraint is what couples computatigfle server, the time necessary for the server to execute the
and communication optimization variables. This problem {8 ctions, and the time to send the result back to the MU.

much more challenging than the (special) cases studiedjjyre specifically, the overall latency experienced by eath M
the literature because of the presence of intercell intenfee, - i
i, can be written as

which introduces a coupling among the precoding matrices of . .
all MUs, while making the optimization problem nonconvex. A, = A+ ATE AT 1)

In thls. cor?te.xt, the main contributions of t.he paper are t%hereAg is the time necessary for the MiJ to transfer the
following: i) in the single-user case, we first establish t

. . h?‘l ut bitsnbl-n to its SCeNB;AS*¢ s the time for the server
equivalence between the original nonconvex problem and[og

_ : executew;, CPU cycles; and\!/ "% is the time necessar
convex ongand then derive thelosed formof its (global " 4 ! y

. A ; - for SCeNBn to send theb, bits to the cloud through the
optimal) solution; ii) in the multi-cell case, hinging oncent ’% "

. o . ackhaul link plus the time necessary to send back the result
Successnée .Convex_tAp?rowaatl(.)trr\] (StﬁAt)' techmqg [30 ncoded inbg’n bits) from the server to MU,,. We derive
[31], we devise an iterative aigorithm that 1S proved 10 Colfkia,t 4 explicit expression ak! and A%*¢ as a function of
verge to local optimal solutions of the original nonconve " "

] . " the radio and computational resources.
problem, and i) we propose alte_rnatlve decomposmorpalgRadio resources The optimization variables at radio level
rithms to sque the pngmgl centrallzed problem in a disited are the users’ transmit covariance matri@s2 (Q.. )s. cz,
form,. requiring limited signaling among BSs and _cloud; thgubject to power budget constraints
algorithms differ for convergence speed, computatiorfalref
communication overhead, and a-priori knowledge of systemQ; £ {Qin € C"Tin *"in 1 Q. =0, tr(Q;,) < Pin},
parameters, but they are all convergent under a unified set (2)
of conditions. Numerical results show that all the proposeuhere P; is the average transmit power of usgr We will
schemes converge quite fast to “good” solutions, yielding denote byQ the joint setQ = [, ez Qin-
significant energy saving with respect to disjoint optintiza For any given profileQ £ (Q;, )i <z, the maximum
procedures, for applications requiring intensive comfioitd achievable rate of MU,, is:

and limited exchange of data to enable offloading. " .
ri,(Q) = logy det (T+H, Ru(Q-r) 'Hi,nQs,)  (3)

The rest of the paper is organized as follows. In Sectio ore

[ we introduce the system model; Sectignl Ill formulate¥’ R "
the offloading optimization problem in the single user case, R.(Q-n) = Ru +} Z Hjpn Qg Hj, s (4)
whereas Section IV focuses on the multi-cell scenario along Jm€L,mn

: S i i i L 2
with the proposed SCA algorithmic framework. The decer® the covariance matrix of the noide, = o7, I (assumed to
tralized implementation is discussed in Secfign V. be diagonal w.l.o.g, otherwise one can always pre-whitenin



the channel matrices) plus the inter-cell interferencehat tsubject to latency and transmit power constraints, asviaiio
SCeNB n (treated as additive noiseH;, ,, is the channel min  E(Q)
matrix of the uplink: in the celln, wheread;, , is the cross- Q.f
channel matrix between the interferer Mun the cellm and st a) ¢ L Y% 1<y
the SCeNB of celh; andQ_, £ ((Q;,,)14)Ns,,_, denotes r(Q)  f X
the tuple of the covariance matrices of all users intergrin b)0 < f < fr =&
with the SCeNBn.
Given eachr;, (Q), the time Al necessary for user in r@Q<rr, Q=0

cell n to transmit the input bitd;, of durationT}, to its Where a) reflects the user latency constraint 7' [cf. @],
SCeNB can be written as ' with T capturing all the constant terms, i.8.,2 T — A/ X,

Al Al (Q) = Ci, (5) b) imposes a limit on the cloud computational resources made
in in i, (Q) available to the users; and c) is the power budget constraint
wherec;, = b;, Ty, . The energy consumption due to offloaden the radio resources.
ing is then Feasibility: Depending on the system parameters, problem
B (Qi,, Q) =tr(Q;,) - Atin (Q), (6) [Pd may pe feasible or not. In tr_\e latter case, oﬁloadiqg is
not possible and thus the MU will perform its computations
which depends also on the covariance matriQes, of the locally. It is not difficult to prove that the following contitin

users in the other cells, due to the intercell interference. s necessarandsufficientfor X to be nonempty and thus for
Computational resources The cloud provider is able to offloading to be feasible:

serve multiple users concurrently. The computationalueses c W -

made available by the cloud and shared among the users are e + = T<0 (10)
quantified in terms of number of CPU cycles/second, set to . ) . .
Fri let f; > 0 be the fraction offy assigned to each userWherer™®* is the capacity of the MIMO link of the MU, i.e.,

in. All the f;, are thus nonnegative optimization variables to e = argmax  7(Q). (11)
be determined, subject to the computational budget canstra Q-0:tr(Q)<Pr

> ez fin < fr. Given the resource assignmefiat, the time
A$*® needed to runw;, CPU cycles of uset,,’s instructions

remotely is then

(Ps)

n

The unique (closed-form) solution df_{11) is the well-known
MIMO water-filling. Note that condition[{10) has an interest
ing physical interpretation: offloading is feasible if analyoif
ASXe = A (f, Y=, /f; . @) T > 0, i.e., the delay on the wired networX ¥/ "% is less than
" " the maximum tolerable delay, and the overall latency cairstr
The expression of the overall latendy;, [cf. (@), (8), ismet (atleast) when the wireless and computational ressur
and [T)] clearly shows the interplay between radio accegge fully utilized (i.e.,7(Q) = r™, and f = fr). It is
and computational aspects, which motivatgsiat optimiza- not difficult to check that this worst-case scenario is int fac
tion of the radio resources, the transmit covariance megtricachieved when[(10) is satisfied with equality; in such a case,
Q = (Qi, )i, ez of the MUs, and the computational resourceshe (globally optimal) solution(Q*, f*) to [Py is trivially
the computational rate allocatidh= (f;, )i, cz. given by (Q*, f*) = (Q", fr), whereQ" is the waterfilling
We are now ready to formulate the offloading problersolution to [I1). Therefore in the following we will focus
rigorously. We focus first on the single-user scenario (et.S w.l.0.g. on[P, under the tacit assumption sfrict feasibility
[I); this will allow us to shed light on the special structuof [i.e., the inequality in[{10) is tight].
the optimal solution. Then, we will extend the formulatian t Solution Analysis: ProblenTP] is nonconvex due to the non-
the multiple-cells case (cf. Sdc.IV). convexity of the energy function. A major contribution ofgh
section is to i) casfPy into a convex equivalent problem,
and ii) compute its global optimal solution (and thus optima
also to[P,) in closed form. To do so, we introduce first some
In the single-user case, there is only one active MU havir§eliminary definitions.
access to the cloud. In such interference-free scenar®, thLet[Q] be the following auxiliaryconvexproblem
maximum achievable rate on the MU and energy consumption ;. tr(Q)
due to offloading reduce to [cf](3) and (6)] Q.f

IIl. THE SINGLE-USER CASE

st 8) — + 2 T <0

r(Q) = log, det (I+ HQH"R,") 8) Q) f (Q.)
and B0y — 0. Q) o b)0 < f< fr =%
W=y ©) Q< Pr. Qo0

respectively, withc = b-T;, (for notational simplicity, we omit which corresponds to minimizing the transmit power of the

the user indexQ denotes now the covariance matrix of théqU under the same latency and power constraints §Bn

MU). Also, let HYR'H = UDU¥ be the (reduced) eigenvalue
We formulate the offloading problem as the minimizatiodecomposition o 17 R 'H, with » £ rank HR'H) =

of the energy spent by the MU to run its application remotelyank i), where U € C"**" s the (semi-)unitary matrix



whose columns are the eigenvectors associated withrthevith E; (Q) defined in [[6). If some fairness has to be
positive eigenvalues oH”R_'H, and R > D £ guaranteed among the MUs, other objective functions of the
diag{(d;)7_,} is the diagonal matrix, whose diagonal entrieMUs’ energiesE; (Q) can be used, including the weighted
are the eigenvalues arranged in decreasing order. We are sonm, the (weighted) geometric mean, etc.. As a case-study, i
ready to establish the connection betwf&hand[Q] the following, we will focus on the minimization of the sum-
energyFE(Q), but the proposed algorithmic framework can be
readily applied to the alternative aforementioned funmio

Each MU, is subject to the power budget constraint (2)

Theorem 1. Given problem§Py and[QJ under strict feasibil-
ity, the following hold.

()P and[QJ are equivalent; and, in case of offloading, to an overall latency given by

b and[P,) has a unique solutioiQ*, /*), given b Ci,, Wi, 5

(YR @ndE has & unig 0Q7 ). gven by 5. (Qf) 2 T, <00 (4)
f*=fr, and Q*=U(al-D")" U", (12) i, (Q)  fi,

The offloading problem in the multi-cell scenario is then

wherea > 0 must be chosen so that the latency ConStrai%rmulated as follows:

(@) in X, is satisfied with equality atQ*, f*), and (z)* £ ]
max (0, z) (intended component-wise). O EQ)

The water-levetr > 0 can be efficiently computed using the s.t. a) g¢; (Q, f;,) <0, Vi, € Z,
hypothesis-testing-based algorithm described in Alponitl.

Proof. See AppendiXA.

in €L
Algorithm 1 Efficient computation ofy in (12) ©) Qi, € Qi,, Vin €1, P)
Data: %ii)i_:ll >0 (ariarlged in decreasing order), = where a) represent the users’ latency constraifs < T,
ranKH"R,,"H), andL =T — w/fr > 0; with T3, £ T;, — AP/ ™%; and the constraint in b) is due to the
(S. 0): Setr. =7, limited cloud computational resources to be allocated amon
(S. 1): Repeat 1 e the MUs.
L ZIOgQ(di) Feasibility: The following conditions are sufficient fot” to
(@): Seta =2 ° € i=1 ; be nonempty and thus for offloading to be feasitflg; > 0
for all i,, € Z, and there exists & 2 (Q;, )i, ez € Q such
(o) If p;=(a—1/d;)>0,Vi=1,...,7, that
and ;% pi < Pr, T, > S v, eZ, and W <
then STOP; T, Q) zzel' T, — —ns i
elser, =r. —1; i (Q) (15)
until r, > 1. Problem? is nonconvex, due to the nonconvexity of the

objective function and the constraints a). In what follows w

Theorem 1 is the formal proof that, in the single-usesxploit the structure o and, building on some recent Suc-
case, the latency constraint has to be met with equality aggssive Convex Approximation (SCA) techniques proposed
then the offloading strategy minimizing energy consumptign [30], [31], we develop a fairly general class of efficient
coincides with the one m|n|m|Z|ng the transmit power. Notgpproximation a|gorithm5' all Converging to a local Opﬁma
also thatQ* has a water-filling-like structure: the optimalsplution of 2. The numerical results will show that the pro-
transmit “directions” are aligned with the eigenvectd’S posed algorithms converge in a few iterations to “good” liyca
of the equivalent channeH” R, 'H. However, differently optimal solutions ofP (that turn out to be quite insensitive
from the classical waterfilling solutio Q"' [cf. )], the to the initialization). The main algorithmic frameworkpaly
waterlevela is now computed to meet the latency constraintgith its convergence properties, is introduced in $ec._IV-A

with equality. This means that a transmit strategy using th@ernative distributed implementations are studied in. &
M )
full power Pr (like Q") is no longer optimal. The only caseA. Algorithmic design

in which Q* = Q" is the case where the feasibility condition
([@0) is satisfied with equality. Note also that the wateelev 10 Solve the non-convex problefh efficiently, we develop
o depends now orboth communication and computational@ SCA-based method whefe is replaced by a sequence of
parameters (the maximum tolerable delay, size of the progr&trongly convexproblems. At the basis of the proposed tech-
state, CPU cycle budget, etc.). nigue, there is a suitabnvexapproximation of the noncon-
vex objective function®(Q) and the constraints;, (Q, fi,)
IV. COMPUTATION OFFLOADING OVER MULTIPLE-CELLS  around the iterates of the algorithm, which are prelimigari

. . ) _discussed next.
In this section we consider the more general multi-cell 1) Approximant of E(Q): Let Z 2 (Q,f) and Z¥ 2

scenario described in SE¢.1l. The overall energy spent by t{qufu)' with £ 2 (f; ); ez andf” ézf_u )iocr. Let€ D X
MUs to remotely run their applications is now given by pe any closed convex set containitigsuch thatz(Q) is well-
B(Q) 2 ZEin(Q)’ (13) defined on it. Note that such a set exits. For instance, noting

= that at every (feasible)Q, f) € X, it must ber;, (Q) > 0,



fi, >0, for all i andn. Hence, conditiory; (Q, f;,) < 0in sum-energy approximatioB(Z; Z") as: givenZ” € X,
[@ can be equivalently rewritten as

E(Z;2") 2 Y Ei (Zi,;Z"). (18)
@) > g, (i) & e o, R el 3
fi, - Ti, —w;, It is not difficult to check thatF/(Z;Z") satisfies P1-P3;
Izl i
a . in particular it is strongly convex o x R} with constant
so that one can cjooseg u {(Q’f) " c¢p > ming, er(min(7;, ,cp ))>0. Note thatE(Z' Z")is also
b), c)hold, r;, (Qi,,Q—s, =0) > ;,(fi,), Vin € T} £ < n i !

separable in the users vanab@g, , which is instrumental to
Following [30], [31], our goal is to build, at each iterationyain distributed algorithms across the SCeNBs, see[Sec. V
v, an approximant, sag(Z; Z"), of the nonconvex (nonsepa-

rable) £(Q) around the current (feasible) iterd& € X that WZ) I_nnert _cotnvgxm_catlon (.)f the constramg&n(Q, fi{f):
enjoys the following key properties: e aim at introducing an inner convex approximation, say

7i,(Q, fi.; Z"), of the constrainty;, (Q, f;, ) aroundZ” €

P1: E(.; ZV) is uniformly strongly convexon &£ x R'f'; X, satisfying the following key properties (the proof is ot@it
_ S . . _ for lack of space and reported in Appendix B in the supporting
P2: Vq-E(2";2") = Vq-E(Q"), V2" € X; material) [30], [31]:

P3: Vz-E(e;e) is Lipschitz continuous o& x Rm P C1: g (e;Z¥) is uniformly convex on€ x R ;

whereVyz. E(e; ) denotes the conjugate gradient Bfwith C2: Vz-§;, (Q”, f/;Z") = Vz-9:,(Q", fI), VZ' € X;
respect toZ. Conditions P1-P2 just guarantee that the cag-3. V- G, (e;#) is continuous orf x Ry x X

didate approxmatlorE( Z") is strongly convex while pre- ~ "

serving the same first order behaviour®6fQ) at any iterate €4 9. (Q. fi.;Z") 2 9i,(Q. fi,), ¥(Q, fi,) € € x R+ and
QV; P3 is a standard continuity requirement. VZ¥ € X,

We build next aE(Z;Z") satisfying P1-P3. Observe thatC5: §:,(Q", f/;Z") = ¢:,(Q", f}), VZ" € X;

i) for any givenQ_,, = Q”,,, each term&; (Q;,, Q")) = C6: g, (e:e) is Lipschitz continuous o0& x Ry x X.
tr(Qi,)- Al (Qi,,Q",,) of the sum inE(Q) [cf. @3J)] is the . ~
product of two convex functions iQ;, [cf. ()], namely: _ Conditions C1-C3 are the counterparts of P1-P3gep
tr(Q:.) and AEH(an,Qin)' and ii) the other terms of the ext_ra eondmon C_:4—C5_ guarantee that is an inner
the SUM- Zj . ;. (Qi,,Qv, . ) with Q“, . 2 approximation ofg; , implying that any(Q, f;,) satisfying

g Ztim - 3., (Q, fi.; Z¥) < 0is feasible also for the original nonconvex
QY (Q[ )vi,q#m 1., )—are not convex inQ;,. Exploit plroblemlP.

ing such a structure, a convex approximationffQ) can e o o
be obtamed for each MUi, by convexifying the term To build a g;, satisfying C1-C6, let us exploit first the
tr(Q;, ) - Al (Qi,,Q,) and linearizing the nonconvex partconcave-convex structure of the rate functiong Q) [cf. @)]:

> imezmen Ein (Qi,; QY ;). More formally, denoting 7 (Q) = 17 (Q) + 75 (Q_), (19)
Z; = (Qi,, fi,), for eachi,, let us introduce the “approxi-
mation” functionE; (Z;, ; Q"): where
a G, tr(Qy) ¢, -tr(QY) ri (Q) = log, det (Rn(Q-n) + H;,n Qi HY, ) 20)
Eln Zzn ’ ZU = . v l:/l 7 Z; -
i 20 Q) T (@) Qo) 2 — log, det (R, (Q-)
_ <sz B (Q"),Qi, — Q> with R,,(Q_,,) defined in[&). Note that;" (e) andr;(s) are
Gm ET,m#n " concave orQ and convex orQ_,, £ Hm;ﬁn Q.n, respectively.
2, fmn Using [19), and observing that at any (feasiki@) f) € X, it
+7i, Qi — Q717 + (fin = F2)? must ber; (Q) > 0 andf;, > 0 forall i andn, the constraints

(16) ¢, (Q, ;) <0in[Plcan be equivalently rewritten as
where: the first two terms on the right-hand

side are the aforementioned convexification  ofy, (Q,f;, )= —r"(Q) -7 (Q_,) + Mgo,
tr(Qi,) - Al (Qi,,QY; ); the third term comes from fin - Ti, — wi, 1)
the Iinear|zat|on of ) E;. (Qi.;QY,; i ), with . . :

Jm €L ,m#n —Im n? G sJm
(A,B) 2 Re{tr((A”B)} and Va. E;,(Q") denoting the where with a slight abuse of notation we used the same symbol

; . . i , ;) to denote the constraint in the equivalent form.
conjugate gradient of?;, (Q) with respect toQ;, evaluated g”_lgr? J;”). di ! ,I tig quw. PN
at Q”, and given by e desired inner convex approximatign (Q, fi,; Z") is

obtained fromy;, (Q, f;,) by retaining the convex part if (1)
tr(Qy A% (QY) and linearizing the concave termr, (Q_,,), resulting in:

Vaq:r Ej V) = . Hsz Rm lim -
- jm(f )(Q S [ ) 1)(H (QJ - (Q 1202~ (Q) 4 S
- m Y mmm V7 mm B inm 7 gi” ) 7‘n7 Y)= _T‘Z‘n T A
-7 7 (17) fin . En — win
the fourth term in[(T6) is a quadratic regularization terrdex —r:(Q¥,) Z< S Q).Q;, - 7m>

to makeE;, (e; Z¥) uniformly strongly convex orf x R,. =
Based on eacl;, (Z;,; Z"), we can now define the candidate (22)

in



where eacHI; (Q") is defined as practical rule satisfying[(24) that we found effective inrou
o _ experiments is[[32]:
Q)L Vaor mp(QYy), ifm#mn; vt V .
Jmom 0, otherwise Y =9"1=-an"), v €(0,1], (25)
(23) with a € (0,1/79).

and VQJ*'M m(QYn) = _annR”(QZ”) H e On the implementation of Algorithm Bince the base stations
3) Inner SCA algorithm: centralized implementatioWe are connected to the cloud throughout high speed wired, links
are now ready to introduce the proposed inner convex appr@x-gyood candidate place to run Algorithm 2 is the cloud
imation of the nonconvex problefd, which consists in replac- jiself: The cloud collects first all system parameters ndede
ing the nonconvex objective functiof(Q) and constraints to run the algorithm from the SCeNBs (MUs’ channel state
9i,(Q, fi,) < 0 in P with the approximation€’(Z; Z") and jnformation, maximum tolerable latency, etc.); then, ifth
9i,(Q, fi,; Z") < 0, respectively. More formally, given the feasibility conditions [(I5) are satisfied, the cloud solves

feasible pointZ”, we have strongly convex problem®” (using any standard nonlinear
Z(Zu) 2 argmin E(Q: Q) programming solver), and sends the solutiéhs back to the
Q.f corresponding SCeNBs; finally, each SCeNB communicates
st a) ¢.,(Q,fi;Z") <0, Vi, €T, the optimal transmit parameters to the MUs it is serving.

b) Z fo < fr, fi >0, VineT Related worksAlgorithm 2 hinges on the idea of successive
o A e = T ’ convex programming, which aims at computing stationary
, solutions of some classes of nonconvex problems by solv-
¢) Qi, €Qi,, Vin €I, . Ing a sequence of convexified subproblems. Some relevant
where we denoted bQ(Z”) N (Q(Z”) ?(Z”)) the ugiqu)e instances of this method that have attracted significaatest
’ in recent years are: i) the basic DCA (Difference-of-Convex
The proposed solution consists in solving the sequenceggg:i'ttﬁg)@“%]'é%];m')')aﬁ?:rnh;t(iijglgiiizggw'?}'ﬁ?}'é:ﬁg%
roblemsP?] starting from a feasibl&® = (QY,f°). The ' ) - o0 :
P g (Q% ) methods[[3[7]+[39]; and iv) partial linearization methoBg]

formal description of the method is given in Algorithimh 2 . . :
which is proved to converge to local optimal solutions of th@' [Iﬂ].”The aforementlo_ned methoqls |dent|_fy classes of
favorable” nonconvex functions, for which a suitable cexv

original nonconvex problen®P in Theorem[2. Note that in

Step 3 of the algorithm we include a memory in the upda[aeoproximation can be obtained anq convergence of the asso-
of the iterateZ” £ (Q, £¥). A practical termination criterion ciated sequential convex programming method can be proved.

in Step 1 is|E(Q"*) — E(Q¥)| < 6, wheres > 0 is the Howle_ver, the sum-energy fu_nctioE(b(l;z) ig (]E)ba?d the
prescribed accuracy. resulting nonconvex optimization problefdo not belong to

any of the above classes. More specifically, what makesmurre

Algorithm 2 : Inner SCA Algorithm forP algorithms not readily applicable to Problef is the lack
Initial data: Z0 2 (QV,£%) € A; (1"}, & (0,1] in the objective function£(Q) of a(n additively) separable

: n ’ T g T convex and nonconvex part [ea in is in fact
(S. 1): If Z¥ satisfies a suitable termination criterid® OP Vex vex part [eadh, (Q) in (L3) is i

. . ‘ C 0. O
(S. 2)- ComputeZ(Z”) 2 (Q(z"), £(Z")) [cf. P] the ratio of two functions, {Q;, ) andA; (Q;,,QY,,), of the

in€ZL

solution of the strongly convex optimization problem.

) N sameset of variables]. Therefore, the proposed approximation
(S. 3): SetZ"*! =Z" + 4~ (Z(Z”) - Zu)i function E(Z; Z"), along with the resulting SCA-algorithm,
(S.4):v+v+landgoto$. 1) i.e., Algorithm 2, are an innovative contribution of this ko

Theorem 2. Given the nonconvex problef, choosec; > 0 V. D |
and {"}, such that . DISTRIBUTED IMPLEMENTATION
To alleviate the communication overhead of a centralized
implementation (Algorithm 2), in this section we devigis-
tributed algorithms converging to local optimal solutions7f
Then every limit point of Z"} (at least one of such points Following [31], the main idea is to choose the approximation
exists) is a stationary solution gP. Furthermore, none of functions E and i, so that (on top of satisfying conditions
such points is a local maximum of the energy function  p.1-P.3 and C.1-C.6, needed for convergence) the resulting
ﬁonvexified problem$”” can be decomposed into (smaller)
subproblems solvable in parallel across the SCeNBs, with
limited signaling between the SCeNBs and the cloud.

Theoren{® offers some flexibility in the choice of the free Since the approximation functioR' introduced in [(IB) is
parameters:; and {7"}, while guaranteeing convergence ofsum) separable in the optimization variables of the MUs in
Algorithm [2. For instanceg is positive if all 7;, andcy, ~ each cell, any choice of;,’s enjoying the same decompos-
are positive (but arbitrary); in the case of full-column kanability structure leads naturally to convexified problefas
matricesH, ,,, one can also set;, = 0 (still resulting in that can be readily decomposed across the SCeNBs by using
ci > 0). Many choices are possible for the step-sige a standard primal or dual decomposition techniques.

(0,1]24” = 0,¥r >0, and » 7" =+o0. (24)

Proof. The proof is omitted for lack of space and reported i
Appendix B of the supporting material.



Of course there is more than one choicgjgf meeting the with g;, ;. (Q;,; Q") andg,, (fi,; Q") given by
above requirements; all of them leaddonvergenglgorithms ~ _ y Qv |2
that however differ for convergence speed, complexity, <:0mqﬂ'l=i"(QJ“Q ) = G | Qi = Q i |
munication overhead, and a-priori knowledge of the system —-(m; ; (Q” )+Hﬂ 2(QY),Q; —QY),
parameters. As case study, in the following, we consider two N e+ fs
representative valid approximants. The first candidateis @ (fi.; Q") = T—” -1, (QY).
obtained exploiting the Lipschitz property of the gradiefit Fin - T = Wi
the rate functions-; , whereas the second one is based dhis notdifficult to check thag;, (Q, f:,; Q”), on top of being
an equivalent reformulation oP introducing proper slack separable in the MUs’ covariance matrices, also satisfies th
variables. The first choice offers a lot of flexibility in therequired conditions C.1-C.6. Usinig, (Q, fi,; Q") instead of
design of distributed algorithmsboth primal and dual-basedd:, (Q, fi,; Q”), the convexified subproblem replacify is:
schemes can be invokedut it requires knowledge of all the givenZ” € X,
Lipschitz constants. The second choice does not need t L, v
knowledge, but it involves a higher computational cost &t th@%Z n argrfnm Z E“‘ Z:,;Z")
SCeNBs side, due to the presence of the slack variables. in€t

st A G (s Q)+, (f1,:Q7) <0

A. Per-cell distributed dual and primal decompositions JIET

The approximation functiory;, in (22) has the desired Vin € 1,
property of preserving the structure of the original comistr b)z fi. < fr. fi >0, Vi, €1,
function g;, “as much as possible” by keeping the convex
partr; (Q) of r;, (Q) unaltered. Numerical results show that
this choice leads to fast convergence schemes, see Sec. VI.
However the structure oj;, preventsP” to be decomposed
across the SCeNBs due to th@nadditivecoupling among
the variable€Q,, in rj (Q). To cope with this issue, we lower
boundrj;(Q) [and thus upper boung;, in (22)], so that we
obtain an alternative approximation ¢f that is separable
in all the Q,,’s, while still satisfying C.1-C.6. Invoking the
Lipschitz property of the (conjugate) gradlemisg r; (8) 0on
Q, with constantL ; [g|ven in (19) in AppendLX B of the 1) Per-cell optimization via dual decompositioffhe sub-

in €L
c)Q;, €9, Vi,€Z,

(P )
where with a slight abuse of notation we still uZéZ”) =
(Q(z"),f(Z")) to denote the unique solution [

ProblenfP]]is now (sum) separable in the MUs’ covariance
matrices; it can be solved in a distributed way using stathdar
primal or dual decomposition techniques. We briefly showt nex
how to customize standard dual algorithm$Rg

Jisin

supporting material], we have problemgP7] can be solved in a distributed way if the side
. . . constraintsg;, (Q, fi,; Q”) < 0 are dualized (note that there
r(Q) 27 (QQY) £ i (QY) is zero duality gap). The dual problem associated {#ghis:
l/ v v A v eU
+> (I, (QY),Q — Q%) — i, 1 Qs — QY 7)., givenZ¥ = (QV,f7) € X,
net max D (Z(A; 7°), A; Z”) (29)
for all Q,Q” € Q, where eachlI; ; (Q") andc;,;, are AZ((Nin)inez:As)20
defined respectively as WpereZ()\; zv) & (Zon(A; Zu))n ., with gachZ (s Z”) A
o o s ) Vay i (QY), i L#n or g =i, (Qu(X;2),5,(NZY)) = (Qi, (A Z¥), 5, (N Z")){, is
; ,;,(Q") = 0 otherwise (26)  the unigue minimizer of the Lagrangian function associated
' with [P7] which after reorganizing terms can be written as
Wltth* T (Qu)_HiIn( n(c‘zli )+H1n7Lan znn)_lHjln Ne
and . . Z(x:ZV)=argmin Y (Lq, (Qu. A Q")+ L, (£a, X)),
o s 2 { L i if I #mn or ji =i, (27) QeQ, fGRm n=1
Juin = i 30
0, othenwise whereQ, £ (Q;, )54, £, 2 (f,,)1%, and )

Note thatr;’ (Q; Q) is (sum) separable in the MUs’ covari-
ance matncean s. The desired approximant @fZ can be Lo, (Qn, A Q") =

then obtained just replacing” (Q) in g;, with 7" (Q; Q) X
[cf. @2)], resulting in o S B Qi 1752 + S Ml 5 (Qi Q)
i, (Q, fi,; Q") & - (Q; Q") + —&—"— =1 g€z
fin - Ti, —wi, %
- v v v . eV c A in '.fin
Q) @) Q) BN Z{ Dh - gy e S +Affin}.
(31)
= Z Gjv.in Q53 QY) + @i, (fi,: QY)

Note that, thanks to the separability structure of the

JIET :
" (28) Lagrangian function, the optimal solutiord, (X\;Z") =



Algorithm 3 : Distributed implementation of S.2in Al§l 2. ysing [33), [35), andg; (Q, f;.) written as in [2L), the
Initial data: A° >0, Z¥ = (Q",f"), {8} > 0. Setk =0, original offloading problen can be rewritten in the following
(S. 1): If A* satisfies a suitable termination criterisiOP;  equivalent form: denotind’ = (Y, );, ez,

(S. 2): For each SCeNB:, compute in paralleQ*+* (A\*; z") min E(Q)

and 51 (AF; z) [cf. @2)); QfY
(S. 3): Update at the master nodé¢""* according to st.a) =7, (Yi,) =7,(Qup) + 22— <0, Vi, € Z,
+
~ v _ v b) f’Ln SfTa fin 207 VZHGI,
MR [Ai-: + B (Z Gjnin Qi3 Q") + i, (£ Q ))} , ZG:I
neT c) Qi, € 9., Vip € Z,
Vi, €L ) Q
do=Y; <I,(Q), Vi,eT )
+ 5 . ~ .
We denote byX the feasible set ofP. The equivalence
k+1 k k+1 ~
/\f+ = A+ B (Z fin+ —f )1 betweenP andP is stated next.
in€l
(S. 4): k + k+ 1 and go back to$. 1). Lemma 4. Given the nonconvex problen® and P, the

following hold:
(a): Every feasible point oP (or P) is regular (i.e., satisfies
(Qn()\; QV)jn()\;fV)) of 30) can be computed in parallelthe Mangasarian-Fromovits Constraint Qualificatidn [42])

across the SCeNBs, solving each SCeNBshe following (b): 7 and P are equivalent in the following sense. (), f)
strongly convex problems: givekh > 0, is a stationary solution of, then there exists & such that

Q.(A: Q) 2 argmin - {Laq, (Qu,A: Q")) (Q,f,Y) is a stationary solution of°; and viceversa. [

Kn o, . . .
QnelIl5 Qin (32) Condition (a) in the lemma guarantees the existence of
£,(X £¥) £ argmin{ L, (f., X £9)}. statipnary points_ ofP, where_as I%[)) allows us to compute
£, eRY™ (stationary) solutions of solving

The solution ofP7] can be then computed solving the dual We convexify nextz?] following the same guidelines as in
problem [29). It is not difficult to prove that the dual furmti >€¢IV [see P.1-P.3 and C.1-C.6]. Introduc!ng .
D is differentiable with Lipschitz gradient. One can thervsol g, (Q, f;.,Y:,; Q") & 7,7 (Y;,) + G i
(29) using, e.g., the gradient-based algorithm with distiirig ! fin - Ti,, — wi,
step-size described in Algorithi 3, whose convergence is _ .-;qv \ _ - v OV
stated in Theorerill3 (the proof follows standard arguments ra(Q) ijGI L, 0(Q), Qi = Q5 )
and thus is omitted, because of space limitations). (36)

Theorem 3. Given[P%} choose{s;} so thatfy > 0, B — and using t_he same approxin;a‘iitz; Z") as defined in[(16),
0, 2, Br = +o0, and 3, (Bx)? < oco. Then, the sequenceWe have: given a feasibi&v” = (2", Y"),
{Ar} generated by Algorithri]3 converges to a solution Of\fV(WV) 2 argmin B(Z: Z") + %(HY_Y,,H2

29). Therefore, the sequen¢&” (\x; Z*)}, converges to the Qf.Y
unique solution ofP7] O st a) g,(Q,, fi,,Y:; Q) <0, Vi, €Z,
B. Alternative decomposition via slack variables i el

In this section we present an alternative decompositi@t-str ¢) Qi, € i, Vin €1,

egy of problemP that does not require the knowledge of the do=<Y; <I, (Q),Vi,eZ

Lipschitz constantd j, ;. At the basis of our approach there (PY)

is an equivalent reformulation @ based on the introduction where W(W*) = (Q(W"),f(W"),Y(W")) denotes the
of proper slack variables that are instrumental to decoupleunique solution andcy is an arbitrary positive constant.

eachr; (Q) [cf. 20)] the covariance matriQ;, of useri,  The stationary solutions & (and thusP) can be computed
from those of the MUs in the other celishe interference solving the sequence of strongly convex probI@ The

term R,,(Q-,) [cf. @)]. More specifically, introducing the formal description of the scheme is still given by Algorithm

slack variablesy;,, and 2 wherein in Step 2Z(Z") is replaced byW (W"); conver-
. a . J— . e gence is guaranteed under conditions in Theorem 2.
L.(Q) = . EIZ y Hjn Qi H A Hiin Qi Hi o, (33) _The last thing left is showing how to solve each subproblem
Im sSTMZEN

in a distributed way. ProblertP”] can be decoupled
we can write _ S | i i
r(Q) =7,H(Y), (34) across th_e SCeNB'’s in the dua! domalrl (note that there is
zero duality gap). Indeed, denoting BY = (Q,f,Y), and
A2 ((N))iner, Ap) andQ £ (Q;, = 0);, 7 the multipliers
7.7(Y) £ logy det (R, +Y;,) andY,, =1, (Q). (35) associated with the constraints (a), (b), and (d), respsgfi

in

with



the (partial) Lagrangian has the followiraglditive structure:  with D(X, Q; W) defined in[(3¥). It can be show that the dual
function isC?, with Hessian Lipschitz continuous with respect

N
L(W, A, Q;QY) 2 Z {Lq, (Qu, A, YY)+ to W” on X Then, the dual probleri (#2) can be solved using
ot either first or second order methods. An instance of gradient

Ly, (Yo, A\ QW) + Lg (£, A £9)}, based schemes is given in Algorit.@ 4, whose convergence is
guaranteed under the same conditions as in the Thddrem 3. In
where . S.3, the symboJA], denotes the Euclidean projection of the
YWV I v v v square matrixA onto the convex set of positive semidefinite
£, (Qu: A W) = Z{ B, (Qu JE27) =2, mn Q) matrices (having the same size Aj.
_ Z ), Q). Q. > A faster algorithm solving the dual problem can be readily
Jm I, n in/  obtained using second order information. It is sufficient to
replace the update of the multipliers in Step 3 of Algoritiim 4
- Z <Qym s Hi,mQi,, an> with the following (convergence is still guaranteed by Titeen

Im€L

Im €L, m#n 3):
_I<< iny zanzn >}7 )\k+l _ )\k +ﬂ (5\k+1 )\k )’ \V/Zn cT
Ly, (Yo A QW) Z{ Aiorit (Yi,) + (R, Yi,) Q2 gb L@ k) vi,eT  (43)
)\k+1 _ )\k +ﬂ (Ak-‘rl _ )\k)
CY v f kA, f
+ Y5, - Y2 P } ! !
where

and L (f,, X, f%) is given by [31). The minimization of ;.1 A [k 9 ka1 k1
LW A 5 W Wil W = (@ FY) 2 (Qu b Yo)he, N & [N+ (VR DOWEL A W) (44)

. +

becomes then N . VAMD(WICH’ A, Q;WV)} :

. vy A - : . v R R R —1
DA, & W) ; (QIBlengﬁq”(Q"’A’Q’W ) vec(ﬂfjl)é [vec(ﬂfn)jt(v\z,eo(m )D(W’““,)\,Q;W”))
+ min Ly, (Y, A, QW) + min L¢ (f,, A7) ~VeC(VQrHD(Wk+1,A’Q;WV)):| 5
(Yi,=0)i ez fGR‘ | + (45)
) ) (37)

whose unique solutlonW(A QWY) £ (Qu(A,2QY), jk+1 2 P\hr (V2 D(WHHL A, @ WY))~L
Y, (A Q; YY), £,(X; 7)Y, can be computed in parallel ! B (46)

across the SCeNBs: Vi, D(WHFL X, Q;W’J)} "

Q.(\, Q") £ argmin{Lq, (Qn. A, 2 Q")} (38)
’Vle n

Algorithm 4 : Distributed dual scheme solvir@
(39) Initial data: A\° >0, Q° = 0, W” = (Q",Y",f"), {8} >

Y, (A QYY) 2 argmin {Ly, (Y., A Q2;YY)}

(Y3, 20);7 0. Setk = 0,
£, (X £) £ argmin{Ls, (£, X; £2)} . (40) (S. 1):1f A*, Q" satisfy a suitable termination criteriBTOP;
£, €REn (S.2): For each SCeNB n, compute in parallel

QEHL(AF @F W), YEFL(AF, @F, W) and £F L (A%, W)
Interestingly, problem[(39) admits a closed form solut|0nso|vIng [33)_@)

Lemma 5. Let U/D; U, be the eigenvalue/eigenvectolS. 3): Update at the master nodeand 2 according to

n

decomposition oéYY” —Q;,, withD;, = diag((d;, ;)[57).  \k+1 & [k Bl Rl phel N
The optimal solution of probleri{B9) is ’ Ai, [N+ Brdi, (Qi7 QI £75QY fi)] 5 Vin,
Yi = Ui” DY'Ln Uffl (41) +
k+1 A |k k+1
with Dy, = diag((y, J) M=) given by A% Af + Bk (Zezf T)]

+

2 2
A Ty _ ding % | ding Ai
yzn,y—[—(Q—zg;%J(ﬁz;; + 5

Proof. See Appendix C in the supporting material for théS- 4): k <~ k+ 1 and go back to§. 1).
proof here omitted for lack of space. O

Qi 4 [nfﬂ + By (YEH - Iin(Q’““))} _—
" +

The explicit expression of the Hessian matrices and gradi-
ents in [44){(4b) is given in Appendix D in the supporting
document and here omitted for lack of space. Numerical

. results show that using second order information signifigan
ASO, (anafo)mez D(A, W), (42)  enhances practical convergence speed.

Given W (A, Q; W), the dual problem associated witt]
is
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VI. NUMERICAL RESULTS 10°

| —a—7 =220, MIMO 2 x 2
| =—T =250, MIMO 2 x 2
—e— 7 =220, MIMO 2 x 8
—k—T = 250, MIMO 2 x 8

In this section we present some numerical results to assess
the effectiveness of the proposed joint optimization of the
communication and computational resources.

The simulated scenario is the following. We consider a =~
network composed ofV, = 2 cells, where all transceivers e
are equipped withhy = ng = 2 antennas (unless stated
otherwise). In each cell, there aré, = 4 active users, ran-
domly deployed. In all our experiments the system pararaeter
are set as (unless stated otherwisg):= 2-107, T = 0.1,

w = 10°, Ry, = NyIL,,, snr = 10dB. This choice guarantees ‘ : : ‘ ‘ ‘ : ‘
the nonemptiness of the feasible $étthe constanty in the 1 2 3 4 5 6 7 8 9 10
diminishing step-size ruld_(?4) is chosen @s= le—4, and freration tndex v

the termination accuracy is set to10~3.

Example# 1: Joint vs. disjoint optimizationWe start com-
paring the energy consumption of the proposed offloadi§iergy consumption decreases for computationally intensi
strategy with a method where communication and compugPplications, i.e., applications characterized by a hjgh

tional resources are optimized separately. The benchnsadk uExample# 2: On the convergence speetb test the conver-

to assess the relative merits of our approach is an instar@gce speed of Algorithil 2, Figl 2 shows the average energy
of Algorithm 2 wherein the computational ratefs, are not consumptionz(Q) versus the iteration index, for different
optimized but set proportional to the computational load dRlues of the maximum latency;, (assumed to be equal
each user, while meeting the computational rate constraffif all users) and different number of receive antennas. The
fr with equality, i.e.,f;, = w;, fr/Y,; .zw;, CPU cy- Curvesare averaged ovHiI0 independent channel realizations.
cles/second. We termed such a methdi$joint Resource The interesting result is that the proposed algorithm coyee
Allocation (DRA)algorithm. Note that this algorithm is still in very few iterations. Moreover, as expected, the energy
guaranteed to converge by Theorém 2. An important paramet@psumption increases as the delay constraint becomes more
useful to assess the usefulness of offloading algorithniseis tringent because more transmit energy has to be used to
ratio n;, := w;, /b;, between the computational load to respect the latency limit. Finally, it is worth noticing tigain

be transferred and the number of Hits enabling the transfer. achievable by increasing the number of receive antennas.

F|g m shows an examp|e of overall energy Consumptioﬁince the overall Optimization prOblem is non-convex, the
assuming the same ratig, := 7 for all users, obtained using proposed algorithm may fall into a local minimum. To evakuat
Algorithm 2 and DRA algorithm. In particular is varied this aspect, we ran our algorithm undef00 independent ini-
keeping a fixed work loads and changing the numbe;, ~ tializations of the initial parameter settiy = (Q°,f°) € X

of bits to be sent. The radio channels are Rayleigh fadifj Algorithm[2 and, quite interestingly, we always ended up
and the results are averages oué@d independent channel With practically the same result, meaning that the diffegzn

realizations. Fig[Jl shows a few interesting features: & tivhere within the third decimal point.
Example# 3: Distributed AlgorithmsFinally, we tested the

1500 ‘ ‘ ‘ ‘ ‘ ‘ efficiency of the distributed algorithms proposed in Sedi
1 We assumeP;, = Pr = 1000, o« = 1e—5 and the termination
accuracys is set to10~2. Fig. [3 shows the energy evolu-
:gijj’\mh’“ tion versus the iteration indes, which counts the overall
10001 ] number of (inner and outer) iterations in Algoritith 2. More
; specifically, we compared three different algorithms used t
run Step2, namely: the dual-decomposition method described
in Algorithm [3, the dual-scheme based on the reformulation
500f ] of the nonconvex probler® using slack-variables as given
in Algorithm [4, and its accelerated version based on the
Newton implementation (43). All implementations are quite
fast. As expected, using second order information enhances

1 1 1 1 ol 1
0 100 150 200 250 300 350 400 convergence Speed'

Y

Fig. 2. Convergence speed: Optimal energy vs. the iteratitex for different
values ofT".

E(Q)

VII. CONCLUSIONS

In this paper we formulated the computation offloading
joint optimization yields a considerable gain with respegiroblem in a multi-cell mobile edge-computing scenario,
to the disjoint optimization for applications having a lowwhere a dense deployment of radio access points facilitates
ratio 7, i.e., applications with a high number of bits to beroximity high bandwidth access to computational resagijrce
transferred, for a given computational load ii) the overall but increases also intercell interference. We formulatesl t

Fig. 1. Energy consumption vg.= wj,, /b;,, for Algorithm[2 and for DRA.
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where (a) follows from the definition afy in (48); (b) is due
2500 , il to the convexity of¢y on Xs; and (c) comes fronF(Q) <
—Dual-decomposition E(Y) = ¢v(Q) < ¢v(Y). Since [49) holds for any given
Slack-based decomposition
2000 ——Slack-based decomposition, Newton |4 Y e XS, m) holds true. O
5 1500 . 1 Proof of Fact 2: Let us prove the two directions separately.
= Q, = P, Let (Q* f*) be the optimal solution of
1000 ] the convex problemQ,; denote Q* £ UYQ*U. Then,
there exist multipliers\y, ux, ax, ®, such that the tuple
S00¢ 1 (Q*, f*, A5, 13, a5, By, @) satisfies the_l_<KT_ cor_1dition_s _of
Qs (note that Slater's constraint qualification is satisfied):
% 0 100 130 200 280 300 denoting#(Q*) £ log, |I + D/2Q*D'/?|, and after some
m simplifications, one gets
Fig. 3. Evolution of the global energy for the distributeg@ithms vs. the D ~ B
iteration indexrn. (a): - 2_DY3(14+DV2Q*D'/?)"'D!/?
log(2)
resource optimization problem as the joint optimization of A I-®;=0
radio and computational resources, aimed at minimizing MUs [ we

PRy

energy consumption, under latency and power budget con- (b):
straints. In the single-user case, we computed the global

optimal solution of the resulting nonconvex optimizatioolp- (c): 0<As L (PT _ tr(Q*)) >0
lem in closed form. In the more general multi-cell multi-

user scenario, we developed centralized and distribute® SC  (d): 0 < 3, _° Q) =0
based algorithms with provable convergence to local optima T - fl

solutions of the nonconvex problem. Numerical results show

. e e 0=Q* L & >
that our algorithms outperform disjoint optimization sotes. () =Q »=0

Furthermore, the results show, as expected, that offloading  (f): 0<ajp, fr=fr,

more convenient for applications with high computatioad (KKT o.)

and small number of bits to be exchanged to enable progréfiere A L B stands for(A,B) = 0, and in (d) and (f)

migration. we used the fact that; must be positive andf* = fr,
APPENDIX respectively (otherwige KKJ | cannot be satisfied). We prove

next that there exist multipliera?, ¥, o}, ®, that together

with the optimal solution(Q*, f*) of Q, satisfy the KKT
conditions ofPq, i.e.,

c:I ¢ tr(Q)DV*(I+DY/2Q*D'/?)~'D!/?

A. Proof of Theorerhl1
(a) It is sufficient to prove the following two facts.

Fact 1: Any stationary point of the nonconvex probléhy] is

a global optimal solution of the problem. @): M _

Fact 2: Any stationary point of theonvexproblem[@] (and Q) . 7(Q*)?log(2)

thqs a globally optimal solution &), is also a stationary _LDl/z(I +QD)"'DV2 + NI — & =0
point of [P and viceversa. log(2)

Proof of Fact 1: Invoking [43, Theorem 3.39 ], it is sufficient v): frg w e —af =0

to show that the objective functioR(Q) is a pseudo-convex ' 2T —w/f*)2 °

function on the convex seY;, i.e., [43, Def. 3.1.3] -
©): 0<N L (PT - tr(Q*)) >0

VQY EX  BQ <EY) = (Vo B(Y),Q-Y) ?43') (d): 0<p; L <F(Q*) T F wl fu/f*) >0
Fix Y € X;, and introduce theonvexC! function ¢y : ) ~ N
Xs — R defined as N ©): 02Q L& ~0
x(QE(Q) r(Y) ~u(y)r(@. @y P 0setUr=/H20 (KKTp)
Then, for anyQ € X, such thatz(Q) < E(Y), the following Plugging (a) of [KKTg,) in (a) of and using the
holds: fact thaty; > 0, we obtain:
a Vao- Y s -Y * Ayx
Ve E(Y).Q-Y) © (Va %;((Y%QQ ) e el (1 +*Ap) <c~trg +u;> .
Q") Fp H(Q)?
@ ov(Q) —9v(Y) © . (50)

< < 0, *
T(Y)2 +¢2 _ i* Ctr(Q ) + * | . P
(49) 1
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which is satisfied if one se®}, A}, andy} to From (b) it must also be

L (crQ) Po_ Hpwe 57
P+ s - Y x| p* o, = = g ( )
‘T (f(Q*)? W) p ey
A el ctr(Q*) (51) It is not dlfficult_ t(_) check that the obtained tup(Q, f,
Hy = LTS - Q) Ay iy, i, @) satisfies (a), (b), (c), (e), and (f) pf KKJ}
P the only condition that needs a proof is the equality coistra
A2 0. in (d), as given next.
- - c
By (b') it must be Suppose by contradiction tha(Q*) — m >0
) prwe 52) Then, it follows from (d) that iz = 0, and (&) reduces to
ae = - ~
f*Q(T _ w/f*)2 cl B Ctr(Q*)Dl/Q (I 4 DI/QQ*D1/2)—1D1/2 Lt
Note that, to be a valid candidate solutiorf of KKJ s& must  #(Q*) log(2)7(Q*)? oY

be nonnegative [cf. (4, which by (51), is equivalent to Multiplying the above equation b@* and using the comple-

TN I
" () < 7 Q). (53) mentary cond|t|ocn (8, we get
g A= ——— ((Va-7(QY), Q") —1(QY)), (58
We show next that[{33) holds true. By multiplying both 7(Q*)? (< @T(Q), Q) —r(@Q )) (58)

sides of (a) byQ* and using the complementarity condition , . . N / SIAF AF\ — 2OV
(@, Q%) =0 [cf. ()] we get which, givenA; = 0 [cf. (€)] and {Vo-7(Q"), Q7) < T(;Q

e | [due to [55)], can be satisfied only iVq-7#(Q*), Q*

Q)= @@*’ DY/2(I+ DY/2Q*D'/2)~'DY/2) r(Q*), ie.,
Hp .
L A A log, det(I + D'/2Q*D'/?
= (Va-7(Q"), Q") <#(Q), By det(T D 1
(54) —tr (Q*D1/2(I + D1/2Q*D1/2)—1 . D1/2) . log(2)'
where in the last inequality we used the concavity of the rate R
function7(e), i.e., Denoting by (o; = Uz‘(Dl/QQ*Dl/Q))Ll > 0 the non-

. ) . negative eigenvalues @'/2Q*D/2, the above equality can
F(Y) <7(W)+(Vq-7(W),Y = W), VY, W =0 (55) pe rewritten as

evaluated a¥ = 0 andW = Q*. The desired resuly? > 0, - "o
follows readily combining[(33) and {54). Zl"g(l +oi) = Z 1+o,
1=1 =1
which can be true only if; =0 forall s =1,--- ,r, and thus

We show now that the obtained tupl®*, f*, \}, u},af, Q* = 0 (note thatD # 0). This however is in contradiction
®;) satisfied KKTp.} Indeed, (§ follows from (51); given with the fact thatQ* is an optimal solution 0fQ,.
pe = 0, () is satisfied bya? as in [52); (€) follows from  (p): |nvoking part (a) of the theorem, the solutio®*, f*) of
Pr—tr(Qr) > 0[cf. (c)] andA? = 0; (d) follows from .z > 0 [g] (and thugP;) can be computed solvifg KKJ} Denote
and the second equality in (d). Finally, it is not difficultdee Q* £ UZQ*U. Multiplying (a) of[KKTg.] by Q* and using
that ®* given by [51) satisfies (g and finally (f) is trivially (e), we get
met by o} > 0 in (B2). This completes the first part of the .
proof. I-oD'?(I+D'/2Q*D'?)7'D'/2 =0 (59

A

with o = g /log(2) (recall that one can set; = 0). By

P, = OQ,: the proof follows the same idea as 8t = P,; we solving [59) and usin@* £ UX Q*U one obtains the desired
then only sketch the main steps. LE*, f*, \, %, a*, &) expression ofQ* as in [12). Moreover, it follows from (f) that

€

be a tuple satisfyind KKE] (whose existence is guar-f* = fr. The only thing left to show is how to compute

*

anteed by the Slater's constraint qualification). We pro@nd thusyj) efficiently. Using the optimal structure dR*

next that there exist multiplier$\’, u%, a5, ®3) such that and denotingr. £ rankQ*), conditions (c) and (d) reduce

(QF, f*, A5, 113, 0, ®7) satisfied KK | Define respectively to
- 1 Te
tr(Q* £ _ = ,
Ke = Hf + = Q 2) > 0. roL T Zlogz(dz) re 1
7(Q*) a=2 i=1 and Z a—— | < Pr,
Given (d), it can be easily seen that (a) is satisfieif, A7, =1 ' (60)
and .;, are chosen as with L = T — £ Note that Slater's constraint qualification
M ) Ko N guarantees that there existandr, satisfying [60). Moreover,
¢ = p TS P and A7 =0. (56) itis not difficult to check that they can be efficiently comedt

#(Q*) using the procedure described in Algorithiin 1.
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