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Joint Optimization of Radio and Computational
Resources for Multicell Mobile-Edge Computing

Stefania Sardellitti, Gesualdo Scutari, and Sergio Barbarossa

Abstract—Migrating computational intensive tasks from mo-
bile devices to more resourceful cloud servers is a promising
technique to increase the computational capacity of mobile
devices while saving their battery energy. In this paper, we
consider a MIMO multicell system where multiple mobile users
(MUs) ask for computation offloading to a common cloud server.
We formulate the offloading problem as the joint optimization
of the radio resources−the transmit precoding matrices of the
MUs−and the computational resources−the CPU cycles/second
assigned by the cloud to each MU−in order to minimize the over-
all users’ energy consumption, while meeting latency constraints.
The resulting optimization problem is nonconvex (in the objective
function and constraints). Nevertheless, in the single-user case, we
are able to express the global optimal solution in closed form. In
the more challenging multiuser scenario, we propose an iterative
algorithm, based on a novel successive convex approximation
technique, converging to a local optimal solution of the original
nonconvex problem. Then, we reformulate the algorithm in a
distributed and parallel implementation across the radio access
points, requiring only a limited coordination/signaling with the
cloud. Numerical results show that the proposed schemes out-
perform disjoint optimization algorithms.

Index Terms—Mobile cloud computing, computation offload-
ing, energy minimization, resources allocation, small cells.

I. I NTRODUCTION

Mobile terminals, such as smartphones, tablets and net-
books, are increasingly penetrating into our everyday lives as
convenient tools for communication, entertainment, business,
social networking, news, etc. Current predictions foreseea
doubling of mobile data traffic every year. However such
a growth in mobile wireless traffic is not matched with
an equally fast improvement on mobile handsets’ batteries,
as testified in [3]. The limited battery lifetime is then go-
ing to represent the stumbling block to the deployment of
computation-intensive applications for mobile devices. At the
same time, in the Internet-of-Things (IoT) paradigm, a myriad
of heterogeneous devices, with a wide range of computational
capabilities, are going to be interconnected. For many of them,
the local computation resources are insufficient to run sophis-
ticated applications. In all these cases, a possible strategy to
overcome the above energy/computation bottleneck consists
in enabling resource-constrained mobile devices to offload
their most energy-consuming tasks to nearby more resourceful
servers. This strategy has a long history and is reported in
the literature under different names, such ascyber foraging
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[4], or computation offloading[5]. In recent years, cloud
computing (CC) has provided a strong impulse to computation
offloading through virtualization, which decouples the appli-
cation environment from the underlying hardware resources
and thus enables an efficient usage of available computing
resources. In particular, Mobile Cloud Computing (MCC) [6]
makes possible for mobile users to access cloud resources,
such as infrastructures, platforms, and software, on-demand.
Several works addressed mobile computation offloading, such
as [7]–[16]. Recent surveys are [6], [17], and [18]. Some
works addressed the problem of program partitioning and
offloading the most demanding program tasks, as e.g. in
[7]–[10]. Specific examples of mobile computation offloading
techniques are:MAUI [19], ThinkAir [20], andPhone2Cloud
[21]. The trade-off between the energy spent for computation
and communication was studied in [12]–[14], [22]. A dy-
namic formulation of computation offloading was proposed in
[15]. These works optimized offloading strategies, assuming a
given radio access, and concentrated on single-user scenarios.
In [23], it was proposed ajoint optimization of radio and
computational resources, for the single user case. The joint
optimization was then extended to the multiuser case in [24];
see also [25] for a recent survey on joint optimization for
computation offloading in a 5G perspective. The optimal joint
allocation of radio and computing resources in [24], [25] was
assumed to be managed in a centralized way in the cloud. A
decentralized solution, based on a game-theoretic formulation
of the problem, was recently proposed in [26], [11]. In current
cellular networks, the major obstacles limiting an effective
deployment of MCC strategies: i) the energy spent by mobile
terminals, especially cell edge users, for radio access; and ii)
the latency experienced in reaching the (remote) cloud server
through a wide area network (WAN). Indeed, in macro-cellular
systems, the transmit power necessary for cell edge users to
access a remote base station might null all potential benefits
coming from offloading. Moreover, in many real-time mobile
applications (e.g., online games, speech recognition, Facetime)
the user Quality of Experience (QoE) is strongly affected by
the system response time. Since controlling latency over a
WAN might be very difficult, in many circumstances the QoE
associated to MCC could be poor.

A possible way to tackle these challenges is to bringboth
radio access and computational resources closer to MUs. This
idea was suggested in [17], [27], with the introduction of
cloudlets, providing proximity radio access to fixed servers
through Wi-Fi. However, the lack of available fixed servers
could limit the applicability of cloudlets. The European project
TROPIC [28] suggested to endow small cell LTE base stations
with, albeit limited, cloud functionalities. In this way, one
can exploit the potential dense deployment of small cell base
stations to facilitate proximity access to computing resources
and have advantages over Wi-Fi access in terms of Quality-
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of-Service guarantee and a single technology system (no need
for the MUs to switch between cellular and Wi-Fi standards).
Very recently, the European Telecommunications Standards
Institute (ETSI) launched a new standardization group on
the so calledMobile-Edge Computing(MEC), whose aim
is to provide information technology and cloud-computing
capabilities within the Radio Access Network (RAN) in close
proximity to mobile subscribers in order to offer a service
environment characterized by proximity, low latency, and high
rate access [29].

Merging MEC with the dense deployment of (small cell)
Base Stations (BSs), as foreseen in the 5G standardization
roadmap, makes possible a real proximity, ultra-low latency
access to cloud functionalities [25]. However, in a dense
deployment scenario, offloading becomes much more com-
plicated because of intercell interference. The goal of this
paper is to propose ajoint optimization of radio and com-
putational resources for computation offloading in a dense
deployment scenario,in the presence of intercell interference.
More specifically, the offloading problem is formulated as
the minimization of the overall energy consumption, at the
mobile terminals’ side, under transmit power and latency
constraints. The optimization variables are the mobile radio
resources−the precoding (equivalently, covariance) matrices
of the mobile MIMO transmitters−and the computational
resources−the CPU cycles/second assigned by the cloud to
each MU. The latency constraint is what couples computation
and communication optimization variables. This problem is
much more challenging than the (special) cases studied in
the literature because of the presence of intercell interference,
which introduces a coupling among the precoding matrices of
all MUs, while making the optimization problem nonconvex.
In this context, the main contributions of the paper are the
following: i) in the single-user case, we first establish the
equivalence between the original nonconvex problem and a
convex one, and then derive theclosed formof its (global
optimal) solution; ii) in the multi-cell case, hinging on recent
Successive Convex Approximation (SCA) techniques [30],
[31], we devise an iterative algorithm that is proved to con-
verge to local optimal solutions of the original nonconvex
problem; and iii) we propose alternative decomposition algo-
rithms to solve the original centralized problem in a distributed
form, requiring limited signaling among BSs and cloud; the
algorithms differ for convergence speed, computational effort,
communication overhead, and a-priori knowledge of system
parameters, but they are all convergent under a unified set
of conditions. Numerical results show that all the proposed
schemes converge quite fast to “good” solutions, yielding a
significant energy saving with respect to disjoint optimization
procedures, for applications requiring intensive computations
and limited exchange of data to enable offloading.

The rest of the paper is organized as follows. In Section
II we introduce the system model; Section III formulates
the offloading optimization problem in the single user case,
whereas Section IV focuses on the multi-cell scenario along
with the proposed SCA algorithmic framework. The decen-
tralized implementation is discussed in Section V.

II. COMPUTATION OFFLOADING

Let us consider a network composed ofNc cells; in each
cell n = 1, . . . , Nc, there is one Small Cell enhanced Node
B (SCeNB in LTE terminology) servingKn MUs. We denote
by in the i-th user in the celln, and by I , {in : i =
1, . . . ,Kn, n = 1, . . . , Nc} the set of all the users. Each MU
in and SCeNBn are equipped withnTin

transmit andnRn

receive antennas, respectively. The SCeNB’s are all connected
to a common cloud provider, able to serve multiple users
concurrently. We assume that MUs in the same cell transmit
over orthogonal channels, whereas users of different cellsmay
interfere against each other.

In this scenario, each MUin is willing to run an application
within a given maximum timeTin , while minimizing the
energy consumption at the MU’s side. To offload computations
to the remote cloud, the MU has to send all the needed
information to the server. Each module to be executed is
characterized by: the numberwin of CPU cycles necessary to
run the module itself; the numberbin of input bits necessary
to transfer the program execution from local to remote sides;
and the numberboin of output bits encoding the result of the
computation, to be sent back from remote to local sides. The
MU can perform its computations locally or offload them to
the cloud, depending on which strategy requires less energy,
while satisfying the latency constraint. In case of offloading,
the latency incorporates the time to transmit the input bitsto
the server, the time necessary for the server to execute the
instructions, and the time to send the result back to the MU.
More specifically, the overall latency experienced by each MU
in can be written as

∆in = ∆t
in +∆exe

in +∆tx/rx
in

(1)

where∆t
in

is the time necessary for the MUin to transfer the
input bits bin to its SCeNB;∆exe

in
is the time for the server

to executewin CPU cycles; and∆tx/rx
in

is the time necessary
for SCeNBn to send thebin bits to the cloud through the
backhaul link plus the time necessary to send back the result
(encoded inboin bits) from the server to MUin. We derive
next an explicit expression of∆t

in
and∆exe

in
as a function of

the radio and computational resources.
Radio resources: The optimization variables at radio level
are the users’ transmit covariance matricesQ , (Qin)in∈I ,
subject to power budget constraints

Qin ,
{
Qin ∈ C

nTin
×nTin : Qin � 0, tr (Qin) ≤ Pin

}
,
(2)

wherePin is the average transmit power of userin. We will
denote byQ the joint setQ ,

∏
in∈I Qin .

For any given profileQ , (Qin)in∈I , the maximum
achievable rate of MUin is:

rin(Q) = log2 det
(
I+HH

innRn(Q−n)
−1HinnQin

)
(3)

where
Rn(Q−n) , Rw +

∑

jm∈I,m 6=n

HjmnQjmHH
jmn, (4)

is the covariance matrix of the noiseRw , σ2
wI (assumed to

be diagonal w.l.o.g, otherwise one can always pre-whitening
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the channel matrices) plus the inter-cell interference at the
SCeNB n (treated as additive noise);Hinn is the channel
matrix of the uplinki in the celln, whereasHjmn is the cross-
channel matrix between the interferer MUj in the cellm and
the SCeNB of celln; andQ−n , ((Qjm)Km

j=1)
Nc

n6=m=1 denotes
the tuple of the covariance matrices of all users interfering
with the SCeNBn.

Given eachrin(Q), the time∆t
in

necessary for useri in
cell n to transmit the input bitsbin of durationTbin to its
SCeNB can be written as

∆t
in = ∆t

in (Q) =
cin

rin(Q)
(5)

wherecin = binTbin . The energy consumption due to offload-
ing is then

Ein(Qin ,Q−n) = tr(Qin) ·∆
t
in (Q), (6)

which depends also on the covariance matricesQ−n of the
users in the other cells, due to the intercell interference.
Computational resources. The cloud provider is able to
serve multiple users concurrently. The computational resources
made available by the cloud and shared among the users are
quantified in terms of number of CPU cycles/second, set to
fT ; let fin ≥ 0 be the fraction offT assigned to each user
in. All the fin are thus nonnegative optimization variables to
be determined, subject to the computational budget constraint∑

in∈I fin ≤ fT . Given the resource assignmentfin , the time
∆exe

in
needed to runwin CPU cycles of userin’s instructions

remotely is then

∆exe
in = ∆exe

in (fin) = win/fin . (7)

The expression of the overall latency∆in [cf. (1), (5),
and (7)] clearly shows the interplay between radio access
and computational aspects, which motivates ajoint optimiza-
tion of the radio resources, the transmit covariance matrices
Q , (Qin)in∈I of the MUs, and the computational resources,
the computational rate allocationf , (fin)in∈I .

We are now ready to formulate the offloading problem
rigorously. We focus first on the single-user scenario (cf. Sec.
III); this will allow us to shed light on the special structure of
the optimal solution. Then, we will extend the formulation to
the multiple-cells case (cf. Sec. IV).

III. T HE SINGLE-USER CASE

In the single-user case, there is only one active MU having
access to the cloud. In such interference-free scenario, the
maximum achievable rate on the MU and energy consumption
due to offloading reduce to [cf. (3) and (6)]

r(Q) = log2 det
(
I+HQHHR−1

w

)
(8)

and
E(Q) = c ·

tr(Q)

r(Q)
, (9)

respectively, withc = b ·Tb (for notational simplicity, we omit
the user index;Q denotes now the covariance matrix of the
MU).

We formulate the offloading problem as the minimization
of the energy spent by the MU to run its application remotely,

subject to latency and transmit power constraints, as follows:

min
Q, f

E(Q)

s.t. a)
c

r(Q)
+

w

f
− T̃ ≤ 0

b)0 ≤ f ≤ fT

c)tr(Q) ≤ PT , Q � 0





, Xs

(Ps)

where a) reflects the user latency constraint∆ ≤ T [cf. (1)],
with T̃ capturing all the constant terms, i.e.,T̃ , T −∆tx/rx;
b) imposes a limit on the cloud computational resources made
available to the users; and c) is the power budget constraint
on the radio resources.
Feasibility: Depending on the system parameters, problem
Ps may be feasible or not. In the latter case, offloading is
not possible and thus the MU will perform its computations
locally. It is not difficult to prove that the following condition
is necessaryandsufficientfor Xs to be nonempty and thus for
offloading to be feasible:

c

rmax
+

w

fT
− T̃ ≤ 0 (10)

wherermax is the capacity of the MIMO link of the MU, i.e.,

rmax = argmax
Q�0 : tr(Q)≤PT

r(Q). (11)

The unique (closed-form) solution of (11) is the well-known
MIMO water-filling. Note that condition (10) has an interest-
ing physical interpretation: offloading is feasible if and only if
T̃ > 0, i.e., the delay on the wired network∆tx/rx is less than
the maximum tolerable delay, and the overall latency constraint
is met (at least) when the wireless and computational resources
are fully utilized (i.e.,r(Q) = rmax, and f = fT ). It is
not difficult to check that this worst-case scenario is in fact
achieved when (10) is satisfied with equality; in such a case,
the (globally optimal) solution(Q⋆, f⋆) to Ps is trivially
given by(Q⋆, f⋆) = (Qwf, fT ), whereQwf is the waterfilling
solution to (11). Therefore in the following we will focus
w.l.o.g. onPs under the tacit assumption ofstrict feasibility
[i.e., the inequality in (10) is tight].
Solution Analysis: ProblemPs is nonconvex due to the non-
convexity of the energy function. A major contribution of this
section is to i) castPs into a convex equivalent problem,
and ii) compute its global optimal solution (and thus optimal
also toPs) in closed form. To do so, we introduce first some
preliminary definitions.

Let Qs be the following auxiliaryconvexproblem

min
Q,f

tr(Q)

s.t. a)
c

r(Q)
+

w

f
− T̃ ≤ 0

b)0 ≤ f ≤ fT

c)tr(Q) ≤ PT , Q � 0





= Xs

(Qs)

which corresponds to minimizing the transmit power of the
MU under the same latency and power constraints as inPs.
Also, let HHR−1

w H = UDUH be the (reduced) eigenvalue
decomposition ofHHR−1

w H, with r , rank(HHR−1
w H) =

rank(H), where U ∈ CnT×r is the (semi-)unitary matrix
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whose columns are the eigenvectors associated with ther
positive eigenvalues ofHHR−1

w H, and R
r×r
++ ∋ D ,

diag{(di)ri=1} is the diagonal matrix, whose diagonal entries
are the eigenvalues arranged in decreasing order. We are now
ready to establish the connection betweenPs andQs.

Theorem 1. Given problemsPs andQs under strict feasibil-
ity, the following hold.
(a) Ps andQs are equivalent;

(b) Qs (andPs) has a unique solution(Q⋆, f⋆), given by

f⋆ = fT , and Q⋆ = U
(
αI−D−1

)+
UH , (12)

whereα > 0 must be chosen so that the latency constraint
(a) in Xs is satisfied with equality at(Q⋆, f⋆), and (x)+ ,

max(0,x) (intended component-wise).
The water-levelα > 0 can be efficiently computed using the

hypothesis-testing-based algorithm described in Algorithm 1.

Proof. See Appendix A.

Algorithm 1 Efficient computation ofα in (12)

Data: (di)
r
i=1 > 0 (arranged in decreasing order),r =

rank(HHR−1
w H), andL , T̃ − w/fT > 0;

(S.0): Setre = r;
(S.1): Repeat

(a): Setα = 2

c

reL
−

1

re

re∑

i=1

log2(di)

;

(b): If pi , (α− 1/di) ≥ 0, ∀i = 1, . . . , re,

and
∑re

i=1 pi ≤ PT ,
thenSTOP;

else re = re − 1;

until re ≥ 1.

Theorem 1 is the formal proof that, in the single-user
case, the latency constraint has to be met with equality and
then the offloading strategy minimizing energy consumption
coincides with the one minimizing the transmit power. Note
also thatQ⋆ has a water-filling-like structure: the optimal
transmit “directions” are aligned with the eigenvectorsU
of the equivalent channelHHR−1

w H. However, differently
from the classical waterfilling solutionQwf [cf. (11)], the
waterlevelα is now computed to meet the latency constraints
with equality. This means that a transmit strategy using the
full power PT (like Qwf) is no longer optimal. The only case
in whichQ⋆ ≡ Qwf is the case where the feasibility condition
(10) is satisfied with equality. Note also that the water-level
α depends now onboth communication and computational
parameters (the maximum tolerable delay, size of the program
state, CPU cycle budget, etc.).

IV. COMPUTATION OFFLOADING OVER MULTIPLE-CELLS

In this section we consider the more general multi-cell
scenario described in Sec.II. The overall energy spent by the
MUs to remotely run their applications is now given by

E(Q) ,
∑

in∈I

Ein(Q), (13)

with Ein(Q) defined in (6). If some fairness has to be
guaranteed among the MUs, other objective functions of the
MUs’ energiesEin(Q) can be used, including the weighted
sum, the (weighted) geometric mean, etc.. As a case-study, in
the following, we will focus on the minimization of the sum-
energyE(Q), but the proposed algorithmic framework can be
readily applied to the alternative aforementioned functions.

Each MU in is subject to the power budget constraint (2)
and, in case of offloading, to an overall latency given by

gin(Q, fin) ,
cin

rin(Q)
+

win

fin
− T̃in ≤ 0. (14)

The offloading problem in the multi-cell scenario is then
formulated as follows:

min
Q,f

E(Q)

s.t. a) gin(Q, fin) ≤ 0, ∀in ∈ I,

b)
∑

in∈I

fin ≤ fT , fin ≥ 0, ∀in ∈ I,

c)Qin ∈ Qin , ∀in ∈ I,





, X

(P)
where a) represent the users’ latency constraints∆in ≤ Tin

with T̃in , Tin−∆
tx/rx
in

; and the constraint in b) is due to the
limited cloud computational resources to be allocated among
the MUs.
Feasibility: The following conditions are sufficient forX to
be nonempty and thus for offloading to be feasible:T̃in > 0
for all in ∈ I, and there exists āQ , (Q̄in)in∈I ∈ Q such
that

T̃in >
cin

rin(Q̄)
, ∀in ∈ I, and

∑

in∈I

win

T̃in −
cin

rin(Q̄)

≤ fT .

(15)
ProblemP is nonconvex, due to the nonconvexity of the

objective function and the constraints a). In what follows we
exploit the structure ofP and, building on some recent Suc-
cessive Convex Approximation (SCA) techniques proposed
in [30], [31], we develop a fairly general class of efficient
approximation algorithms, all converging to a local optimal
solution ofP . The numerical results will show that the pro-
posed algorithms converge in a few iterations to “good” locally
optimal solutions ofP (that turn out to be quite insensitive
to the initialization). The main algorithmic framework, along
with its convergence properties, is introduced in Sec. IV-A;
alternative distributed implementations are studied in Sec. V.

A. Algorithmic design

To solve the non-convex problemP efficiently, we develop
a SCA-based method whereP is replaced by a sequence of
strongly convexproblems. At the basis of the proposed tech-
nique, there is a suitableconvexapproximation of the noncon-
vex objective functionE(Q) and the constraintsgin(Q, fin)
around the iterates of the algorithm, which are preliminarily
discussed next.

1) Approximant ofE(Q): Let Z , (Q, f) and Zν ,

(Qν , fν), with f , (fin)in∈I andfν , (fν
in
)in∈I . Let E ⊇ X

be any closed convex set containingX such thatE(Q) is well-
defined on it. Note that such a set exits. For instance, noting
that at every (feasible)(Q, f) ∈ X , it must berin(Q) > 0,
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fin > 0, for all i andn. Hence, conditiongin(Q, fin) ≤ 0 in
P can be equivalently rewritten as

rin(Q) ≥ αin(fin) ,
cin · fin

fin · T̃in − win

> 0,

so that one can chooseE , {(Q, f) :
b), c) hold, rin(Qin ,Q−in = 0) ≥ αin(fin), ∀in ∈ I}.

Following [30], [31], our goal is to build, at each iteration
ν, an approximant, saỹE(Z;Zν), of the nonconvex (nonsepa-
rable)E(Q) around the current (feasible) iterateZν ∈ X that
enjoys the following key properties:

P1: Ẽ(•;Zν) is uniformly strongly convexon E × R
|I|
+ ;

P2: ∇Q∗ Ẽ(Zν ;Zν) = ∇Q∗E(Qν), ∀Zν ∈ X ;

P3: ∇Z∗Ẽ(•; •) is Lipschitz continuous onE × R
|I|
+ ×X ;

where∇Z∗Ẽ(•; •) denotes the conjugate gradient ofẼ with
respect toZ. Conditions P1-P2 just guarantee that the can-
didate approximatioñE(•;Zν) is strongly convex while pre-
serving the same first order behaviour ofE(Q) at any iterate
Qν ; P3 is a standard continuity requirement.

We build next aẼ(Z;Zν) satisfying P1-P3. Observe that
i) for any givenQ−n = Qν

−n, each termEin(Qin ,Q
ν
−n) =

tr(Qin) ·∆
t
in
(Qin ,Q

ν
−n) of the sum inE(Q) [cf. (13)] is the

product of two convex functions inQin [cf. (6)], namely:
tr(Qin) and ∆t

in
(Qin ,Q

ν
−n); and ii) the other terms of

the sum−
∑

jm∈I,m 6=nEjm(Qin ,Q
ν
−in,jm

) with Qν
−in,jm

,

(Qν
jm , (Qν

lq
)∀l,q 6=m,lq 6=in)−are not convex inQin . Exploit-

ing such a structure, a convex approximation ofE(Q) can
be obtained for each MUin by convexifying the term
tr(Qin) · ∆

t
in
(Qin ,Q

ν
−n) and linearizing the nonconvex part∑

jm∈I,m 6=nEjm(Qin ;Q
ν
−in,jm). More formally, denoting

Zin , (Qin , fin), for eachin, let us introduce the “approxi-
mation” functionẼin(Zin ;Q

ν):

Ẽin(Zin ;Z
ν),

cin · tr(Qin)

rin(Q
ν
in
,Qν

−n)
+

cin · tr(Q
ν
in)

rin(Qin ,Q
ν
−n)

+
∑

jm∈I,m 6=n

〈
∇Q∗

in
Ejm(Qν),Qin −Qν

in

〉

+τin ‖Qin −Qν
in
‖2 +

cfin
2

(fin − fν
in
)2

(16)
where: the first two terms on the right-hand
side are the aforementioned convexification of
tr(Qin) · ∆

t
in
(Qin ,Q

ν
−in

); the third term comes from
the linearization of

∑
jm∈I,m 6=nEjm(Qin ;Q

ν
−in,jm), with

〈A,B〉 , Re{tr(AHB)} and ∇Q∗
in
Ejm (Qν) denoting the

conjugate gradient ofEjm(Q) with respect toQin evaluated
at Qν , and given by

∇Q∗
in
Ejm(Qν) =

tr(Qν
jm)∆t

jm(Qν)

log(2)rjm(Qν)
·
[
HH

inm

(
Rm(Qν

−m)−1

−(Rm(Qν
−m) +HjmmQν

jm
HH

jmm)−1
)
Hinm

]
;
(17)

the fourth term in (16) is a quadratic regularization term added
to makeẼin(•;Z

ν) uniformly strongly convex onE × R+.
Based on each̃Ein(Zin ;Z

ν), we can now define the candidate

sum-energy approximatioñE(Z;Zν) as: givenZν ∈ X ,

Ẽ(Z;Zν ) ,
∑

in∈I

Ẽin(Zin ;Z
ν). (18)

It is not difficult to check thatẼ(Z;Zν) satisfies P1-P3;
in particular it is strongly convex onE × R

|I|
+ with constant

cẼ ≥ minin∈I(min(τin , cfin ))>0. Note thatẼ(Z;Zν) is also
separable in the users variablesZin , which is instrumental to
obtain distributed algorithms across the SCeNBs, see Sec. V.

2) Inner convexification of the constraintsgin(Q, fin):
We aim at introducing an inner convex approximation, say
g̃in(Q, fin ;Z

ν), of the constraintsgin(Q, fin) aroundZν ∈
X , satisfying the following key properties (the proof is omitted
for lack of space and reported in Appendix B in the supporting
material) [30], [31]:

C1: g̃in(•;Z
ν) is uniformly convex onE × R+;

C2: ∇Z∗ g̃in(Q
ν , fν

in
;Zν) = ∇Z∗gin(Q

ν , fν
in
), ∀Zν ∈ X ;

C3: ∇Z
∗ g̃in(•; •) is continuous onE × R+ ×X ;

C4: g̃in(Q, fin ;Z
ν) ≥ gin(Q, fin), ∀(Q, fin) ∈ E ×R+ and

∀Zν ∈ X ;

C5: g̃in(Q
ν , fν

in ;Z
ν) = gin(Q

ν , fν
in), ∀Z

ν ∈ X ;

C6: g̃in(•; •) is Lipschitz continuous onE × R+ ×X .

Conditions C1-C3 are the counterparts of P1-P3 ong̃in ;
the extra condition C4-C5 guarantee thatg̃in is an inner
approximation ofgin , implying that any(Q, fin) satisfying
g̃in(Q, fin ;Z

ν) ≤ 0 is feasible also for the original nonconvex
problemP .

To build a g̃in satisfying C1-C6, let us exploit first the
concave-convex structure of the rate functionsrin(Q) [cf. (3)]:

rin(Q) = r +
in(Q) + r -

n(Q−n), (19)

where

r +
in
(Q) , log2 det

(
Rn(Q−n) +HinnQinH

H
inn

)

r -
n(Q−n) , − log2 det (Rn(Q−n))

(20)

with Rn(Q−n) defined in (4). Note thatr +
in
(•) andr -

n(•) are
concave onQ and convex onQ−n ,

∏
m 6=nQm, respectively.

Using (19), and observing that at any (feasible)(Q, f) ∈ X , it
must berin(Q) > 0 andfin > 0 for all i andn, the constraints
gin(Q, fin) ≤ 0 in P can be equivalently rewritten as

gin(Q, fin) = −r
+
in(Q)− r -

n(Q−n) +
cin · fin

fin · T̃in − win

≤ 0,

(21)
where with a slight abuse of notation we used the same symbol
gin(Q, fin) to denote the constraint in the equivalent form.

The desired inner convex approximationg̃in(Q, fin ;Z
ν) is

obtained fromgin(Q, fin) by retaining the convex part in (21)
and linearizing the concave term−r -

n(Q−n), resulting in:

g̃in(Q, fin ;Z
ν), −r +

in
(Q) +

cin · fin
fin · T̃in − win

−r -
n(Q

ν
−n)−

∑

jm∈I

〈
Π -

jm,n(Q
ν),Qjm −Qν

jm

〉

(22)
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where eachΠ -
jm,n(Q

ν) is defined as

Π -
jm,n(Q

ν) ,

{
∇Q∗

jm
r -
n(Q

ν
−n), if m 6= n;

0, otherwise;
(23)

and∇Q∗
jm

r -
n(Q

ν
−n) = −H

H
jmnRn(Q

ν
−n)

−1Hjmn.

3) Inner SCA algorithm: centralized implementation:We
are now ready to introduce the proposed inner convex approx-
imation of the nonconvex problemP , which consists in replac-
ing the nonconvex objective functionE(Q) and constraints
gin(Q, fin) ≤ 0 in P with the approximations̃E(Z;Zν) and
g̃in(Q, fin ;Z

ν) ≤ 0, respectively. More formally, given the
feasible pointZν , we have

Ẑ(Zν) , argmin
Q,f

Ẽ(Q;Qν)

s.t. a) g̃in(Q, fin ;Z
ν) ≤ 0, ∀in ∈ I,

b)
∑

in∈I

fin ≤ fT , fin ≥ 0, ∀in ∈ I,

c) Qin ∈ Qin , ∀in ∈ I,
(Pν)

where we denoted bŷZ(Zν) , (Q̂(Zν), f̂(Zν)) the unique
solution of the strongly convex optimization problem.

The proposed solution consists in solving the sequence of
problemsPν , starting from a feasibleZ0 , (Q0, f0). The
formal description of the method is given in Algorithm 2,
which is proved to converge to local optimal solutions of the
original nonconvex problemP in Theorem 2. Note that in
Step 3 of the algorithm we include a memory in the update
of the iterateZν , (Qν , fν). A practical termination criterion
in Step 1 is|E(Qν+1) − E(Qν)| ≤ δ, whereδ > 0 is the
prescribed accuracy.

Algorithm 2 : Inner SCA Algorithm forP

Initial data: Z0 , (Q0, f0) ∈ X ; {γν}ν ∈ (0, 1];
(S.1): If Zν satisfies a suitable termination criterion,STOP
(S.2): ComputeẐ(Zν) , (Q̂(Zν), f̂(Zν)) [cf. Pν];

(S.3): SetZν+1 = Zν + γν
(
Ẑ(Zν)− Zν

)
;

(S.4): ν ← ν + 1 and go to (S.1).

Theorem 2. Given the nonconvex problemP , choosecẼ > 0
and {γν}ν such that

(0, 1] ∋ γν → 0, ∀ν ≥ 0, and
∑

ν

γν = +∞. (24)

Then every limit point of{Zν} (at least one of such points
exists) is a stationary solution ofP . Furthermore, none of
such points is a local maximum of the energy functionE.

Proof. The proof is omitted for lack of space and reported in
Appendix B of the supporting material.

Theorem 2 offers some flexibility in the choice of the free
parameterscẼ and{γν}ν while guaranteeing convergence of
Algorithm 2. For instance,cẼ is positive if all τin and cfin
are positive (but arbitrary); in the case of full-column rank
matricesHinn, one can also setτin = 0 (still resulting in
cẼ > 0). Many choices are possible for the step-sizeγν; a

practical rule satisfying (24) that we found effective in our
experiments is [32]:

γν+1 = γν(1− αγν), γ0 ∈ (0, 1], (25)

with α ∈
(
0, 1/γ0

)
.

On the implementation of Algorithm 2:Since the base stations
are connected to the cloud throughout high speed wired links,
a good candidate place to run Algorithm 2 is the cloud
itself: The cloud collects first all system parameters needed
to run the algorithm from the SCeNBs (MUs’ channel state
information, maximum tolerable latency, etc.); then, if the
feasibility conditions (15) are satisfied, the cloud solvesthe
strongly convex problemsPν (using any standard nonlinear
programming solver), and sends the solutionsQn back to the
corresponding SCeNBs; finally, each SCeNB communicates
the optimal transmit parameters to the MUs it is serving.

Related works:Algorithm 2 hinges on the idea of successive
convex programming, which aims at computing stationary
solutions of some classes of nonconvex problems by solv-
ing a sequence of convexified subproblems. Some relevant
instances of this method that have attracted significant interest
in recent years are: i) the basic DCA (Difference-of-Convex
Algorithm) [33], [34]; ii) the M(ajorization)-M(inimization)
algorithm [35], [36]; iii) alternating/successive minimization
methods [37]–[39]; and iv) partial linearization methods [32],
[40], [41]. The aforementioned methods identify classes of
“favorable” nonconvex functions, for which a suitable convex
approximation can be obtained and convergence of the asso-
ciated sequential convex programming method can be proved.
However, the sum-energy functionE(Q) in (13) and the
resulting nonconvex optimization problemP do not belong to
any of the above classes. More specifically, what makes current
algorithms not readily applicable to ProblemP is the lack
in the objective functionE(Q) of a(n additively) separable
convex and nonconvex part [eachEin(Q) in (13) is in fact
the ratio of two functions, tr(Qin) and∆t

in
(Qin ,Q

ν
−n), of the

sameset of variables]. Therefore, the proposed approximation
function Ẽ(Z;Zν), along with the resulting SCA-algorithm,
i.e., Algorithm 2, are an innovative contribution of this work.

V. D ISTRIBUTED IMPLEMENTATION

To alleviate the communication overhead of a centralized
implementation (Algorithm 2), in this section we devisedis-
tributedalgorithms converging to local optimal solutions ofP .
Following [31], the main idea is to choose the approximation
functionsẼ and g̃in so that (on top of satisfying conditions
P.1-P.3 and C.1-C.6, needed for convergence) the resulting
convexified problemsPν can be decomposed into (smaller)
subproblems solvable in parallel across the SCeNBs, with
limited signaling between the SCeNBs and the cloud.

Since the approximation functioñE introduced in (18) is
(sum) separable in the optimization variables of the MUs in
each cell, any choice of̃gin ’s enjoying the same decompos-
ability structure leads naturally to convexified problemsPν

that can be readily decomposed across the SCeNBs by using
standard primal or dual decomposition techniques.
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Of course there is more than one choice ofg̃in meeting the
above requirements; all of them lead toconvergentalgorithms
that however differ for convergence speed, complexity, com-
munication overhead, and a-priori knowledge of the system
parameters. As case study, in the following, we consider two
representative valid approximants. The first candidateg̃in is
obtained exploiting the Lipschitz property of the gradientof
the rate functionsrin , whereas the second one is based on
an equivalent reformulation ofP introducing proper slack
variables. The first choice offers a lot of flexibility in the
design of distributed algorithms−both primal and dual-based
schemes can be invoked−but it requires knowledge of all the
Lipschitz constants. The second choice does not need this
knowledge, but it involves a higher computational cost at the
SCeNBs side, due to the presence of the slack variables.

A. Per-cell distributed dual and primal decompositions

The approximation functioñgin in (22) has the desired
property of preserving the structure of the original constraint
function gin “as much as possible” by keeping the convex
part r+in(Q) of rin(Q) unaltered. Numerical results show that
this choice leads to fast convergence schemes, see Sec. VI.
However the structure of̃gin preventsPν to be decomposed
across the SCeNBs due to thenonadditivecoupling among
the variablesQn in r+in(Q). To cope with this issue, we lower
boundr+in(Q) [and thus upper bound̃gin in (22)], so that we
obtain an alternative approximation ofgin that is separable
in all the Qn’s, while still satisfying C.1-C.6. Invoking the
Lipschitz property of the (conjugate) gradients∇Q∗

jl
r +
in(•) on

Q, with constantLjl,in [given in (19) in Appendix B of the
supporting material], we have

r +
in
(Q) ≥ r̃ +

in
(Q;Qν) , r +

in
(Qν)

+
∑

jl∈I

(〈
Π +

jl,in
(Qν),Qjl −Qν

jl

〉
− cjl,in ‖ Qjl −Qν

jl
‖2
)
,

for all Q,Qν ∈ Q, where eachΠ +
jl,in(Q

ν) and cjl,in are
defined respectively as

Π +
jl,in(Q

ν) ,

{
∇Q∗

jl
r +
in(Q

ν), if l 6= n or jl = in,

0, otherwise
(26)

with∇Q∗
jl
r +
in
(Qν)=HH

jln
(Rn(Q

ν
−n)+HinnQ

ν
in
HH

inn
)−1Hjln

and

cjl,in ,

{
Ljl,in , if l 6= n or jl = in,

0, otherwise.
(27)

Note thatr̃ +
in(Q;Qν) is (sum) separable in the MUs’ covari-

ance matricesQin ’s. The desired approximant ofgin can be
then obtained just replacingr+in(Q) in g̃in with r̃ +

in
(Q;Qν)

[cf. (22)], resulting in

q̃in(Q, fin ;Q
ν), −r̃ +

in
(Q;Qν) +

cin · fin

fin · T̃in − win

−r -
n(Q

ν
−n)−

∑

jl∈I

〈
Π -

jl,n
(Qν),Qjl −Qν

jl

〉

,
∑

jl∈I

q̃jl,in(Qjl ;Q
ν) + q̄in(fin ;Q

ν)

(28)

with q̃jl,in(Qjl ;Q
ν) and q̄in(fin ;Q

ν) given by

q̃jl,in(Qjl ;Q
ν) , cjl,in ‖ Qjl −Qν

jl
‖2

−
〈
Π +

jl,in(Q
ν) +Π -

jl,n(Q
ν),Qjl −Qν

jl

〉
,

q̄in(fin ;Q
ν) ,

cin · fin
fin · T̃in − win

− rin(Q
ν).

It is not difficult to check that̃qin(Q, fin ;Q
ν), on top of being

separable in the MUs’ covariance matrices, also satisfies the
required conditions C.1-C.6. Using̃qin(Q, fin ;Q

ν) instead of
g̃in(Q, fin ;Q

ν), the convexified subproblem replacingPν is:
givenZν ∈ X ,

Ẑ(Zν) , argmin
Q,f

∑

in∈I

Ẽin(Zin ;Z
ν)

s.t. a)
∑

jl∈I

q̃jl,in(Qjl ;Q
ν) + q̄in(fin ;Q

ν) ≤ 0,

∀in ∈ I,

b)
∑

in∈I

fin ≤ fT , fin ≥ 0, ∀in ∈ I,

c)Qin ∈ Qin , ∀in ∈ I,
(Pν

d )
where with a slight abuse of notation we still useẐ(Zν) ,

(Q̂(Zν), f̂(Zν)) to denote the unique solution ofPν
d .

ProblemPν
d is now (sum) separable in the MUs’ covariance

matrices; it can be solved in a distributed way using standard
primal or dual decomposition techniques. We briefly show next
how to customize standard dual algorithms toPν

d .

1) Per-cell optimization via dual decomposition:The sub-
problemsPν

d can be solved in a distributed way if the side
constraintsq̃in(Q, fin ;Q

ν) ≤ 0 are dualized (note that there
is zero duality gap). The dual problem associated withPν

d is:
givenZν , (Qν , fν) ∈ X ,

max
λ,((λin )in∈I ,λf )≥0

D
(
Ẑ(λ;Zν),λ;Zν

)
(29)

whereẐ(λ;Zν) , (Ẑn(λ;Z
ν))Nc

n=1, with eachẐn(λ;Z
ν) ,

(Q̂n(λ;Z
ν), f̂n(λ;Z

ν)) = (Q̂in(λ;Z
ν), f̂in(λ;Z

ν))Kn

i=1, is
the unique minimizer of the Lagrangian function associated
with Pν

d , which after reorganizing terms can be written as

Ẑ(λ;Zν), argmin
Q∈Q,f∈R

|I|
+

Nc∑

n=1

(LQn
(Qn,λ;Q

ν)+ Lfn(fn,λ; f
ν
n )),

(30)
whereQn , (Qin)

Kn

i=1, fn , (fin)
Kn

i=1, and

LQn
(Qn,λ;Q

ν) =

Kn∑

i=1



Ẽin(Qin , f

ν
in ;Z

ν) +
∑

jl∈I

λjl q̃in,jl(Qin ;Q
ν)



,

Lfn(fn,λ; f
ν
n )=

Kn∑

i=1

{
cf
2
(fin − fν

in)
2+

λin · cin · fin

fin · T̃in − ωin

+λffin

}
.

(31)

Note that, thanks to the separability structure of the
Lagrangian function, the optimal solutionŝZn(λ;Z

ν) =
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Algorithm 3 : Distributed implementation of S.2 in Alg. 2.

Initial data: λ
0 ≥ 0, Zν = (Qν , fν), {βk} > 0. Setk = 0,

(S.1): If λ
k satisfies a suitable termination criterion:STOP;

(S.2): For each SCeNBn, compute in parallelQk+1
n (λk; zν)

and fk+1
n (λk; zν) [cf. (32)];

(S.3): Update at the master nodeλk+1 according to

λk+1
in

,


λk

in
+ βk



∑

jl∈I

q̃jl,in(Qjl ;Q
ν) + q̄in(fin ;Q

ν)





+

,

∀in ∈ I

λk+1
f ,

[
λk
f + βk

(
∑

in∈I

fk+1
in
− fT

)]+

(S.4): k ← k + 1 and go back to (S.1).

(Q̂n(λ;Q
ν), f̂n(λ; f

ν)) of (30) can be computed in parallel
across the SCeNBs, solving each SCeNBsn the following
strongly convex problems: givenλ ≥ 0,

Q̂n(λ;Q
ν) , argmin

Qn∈ΠKn
i=1

Qin

{LQn
(Qn,λ;Q

ν)}

f̂n(λ; f
ν) , argmin

fn∈R
Kn
+

{Lfn(fn,λ; f
ν
n )} .

(32)

The solution ofPν
d can be then computed solving the dual

problem (29). It is not difficult to prove that the dual function
D is differentiable with Lipschitz gradient. One can then solve
(29) using, e.g., the gradient-based algorithm with diminishing
step-size described in Algorithm 3, whose convergence is
stated in Theorem 3 (the proof follows standard arguments
and thus is omitted, because of space limitations).

Theorem 3. GivenPν
d , choose{βk} so thatβk > 0, βk →

0,
∑

k βk = +∞, and
∑

k(βk)
2 < ∞. Then, the sequence

{λk} generated by Algorithm 3 converges to a solution of
(29). Therefore, the sequence{Ẑk(λk;Z

ν)}k converges to the
unique solution ofPν

d . �

B. Alternative decomposition via slack variables

In this section we present an alternative decomposition strat-
egy of problemP that does not require the knowledge of the
Lipschitz constantsLjl,in . At the basis of our approach there
is an equivalent reformulation ofP based on the introduction
of proper slack variables that are instrumental to decouplein
eachr+in(Q) [cf. (20)] the covariance matrixQin of userin
from those of the MUs in the other cells−the interference
term Rn(Q−n) [cf. (4)]. More specifically, introducing the
slack variablesYin , and

Iin(Q) ,
∑

jm∈I,m 6=n

HjmnQjmHH
jmn+HinnQinH

H
inn, (33)

we can write
r+in(Q) = r+

in
(Y), (34)

with

r+
in
(Y) , log2 det (Rw +Yin) andYin = Iin(Q). (35)

Using (34), (35), andgin(Q, fin) written as in (21), the
original offloading problemP can be rewritten in the following
equivalent form: denotingY , (Yin)in∈I ,

min
Q,f ,Y

E(Q)

s.t. a) − r+
in
(Yin)− r -

n(Q−n) +
cin ·fin

fin ·T̃in−win

≤ 0, ∀in ∈ I,

b)
∑

in∈I

fin ≤ fT , fin ≥ 0, ∀in ∈ I,

c)Qin ∈ Qin , ∀in ∈ I,

d)0 � Yin � Iin(Q), ∀in ∈ I.
(P̃)

We denote byX̃ the feasible set ofP̃ . The equivalence
betweenP and P̃ is stated next.

Lemma 4. Given the nonconvex problemsP and P̃ , the
following hold:

(a): Every feasible point of̃P (or P) is regular (i.e., satisfies
the Mangasarian-Fromovits Constraint Qualification [42]);

(b): P and P̃ are equivalent in the following sense. If(Q̄, f̄)
is a stationary solution ofP , then there exists āY such that
(Q̄, f̄ , Ȳ) is a stationary solution of̃P; and viceversa. �

Condition (a) in the lemma guarantees the existence of
stationary points ofP̃, whereas (b) allows us to compute
(stationary) solutions ofP solving P̃.

We convexify nextP̃ following the same guidelines as in
Sec. IV [see P.1-P.3 and C.1-C.6]. Introducing

g̃in(Q, fin ,Yin ;Q
ν) , −r+

in
(Yin) +

cin · fin

fin · T̃in − win

−r -
n(Q

ν
−n)−

∑

jm∈I

〈
Π -

jm,n(Q
ν),Qjm −Qν

jm

〉
,

(36)
and using the same approximantẼ(Z;Zν) as defined in (16),
we have: given a feasibleWν , (Zν ,Yν),

Ŵ(Wν) , argmin
Q,f ,Y

Ẽ(Z;Zν) +
cY
2
‖Y −Yν‖2

s.t. a) g̃in(Q, , fin ,Yin ;Q
ν) ≤ 0, ∀in ∈ I,

b)
∑

in∈I

fin ≤ fT , fin ≥ 0, ∀in ∈ I,

c)Qin ∈ Qin , ∀in ∈ I,

d)0 � Yin � Iin(Q), ∀in ∈ I

(P̃ ν)
where Ŵ(Wν) = (Q̂(Wν), f̂(Wν), Ŷ(Wν)) denotes the
unique solution of̃P ν , andcY is an arbitrary positive constant.

The stationary solutions of̃P (and thusP) can be computed
solving the sequence of strongly convex problemsP̃ ν . The
formal description of the scheme is still given by Algorithm
2 wherein in Step 2,̂Z(Zν) is replaced byŴ(Wν); conver-
gence is guaranteed under conditions in Theorem 2.

The last thing left is showing how to solve each subproblem
P̃ ν in a distributed way. Problem̃P ν can be decoupled
across the SCeNB’s in the dual domain (note that there is
zero duality gap). Indeed, denoting byW , (Q, f ,Y), and
λ , ((λin )in∈I , λf ) andΩ , (Ωin � 0)in∈I the multipliers
associated with the constraints (a), (b), and (d), respectively,



9

the (partial) Lagrangian has the followingadditivestructure:

L(W,λ,Ω;Qν) ,

Nc∑

n=1

{LQn
(Qn,λ,Ω;Yν)+

LYn
(Yn,λ,Ω;Wν) + Lfn(fn,λ, f

ν
n )} ,

where

LQn
(Qn,λ,Ω;Wν)=

Kn∑

i=1

{
Ẽin(Qin , f

ν
in ;Z

ν)−λinr
-
n(Q

ν
−n)

−
∑

jm∈I

λjm

〈
Π -

in,jm(Qν),Qin −Qν
in

〉

−
∑

jm∈I,m 6=n

〈
Ωjm ,HinmQinH

H
inm

〉

−
〈
Ωin ,HinnQinH

H
inn

〉}
,

LYn
(Yn,λ,Ω;Wν) =

Kn∑

i=1

{
−λinr

+
in(Yin) + 〈Ωin ,Yin〉

+
cY
2
‖Yin −Yν

in‖
2
}
,

and Lfn(fn,λ, f
ν
n) is given by (31). The minimization of

L(W,λ,Ω;Wν) w.r.t. W = (Q, f ,Y) , (Qn, fn,Yn)
Nc

n=1

becomes then

D(λ,Ω;Wν) ,

Nc∑

n=1

(
min
Qn∈Q

LQn
(Qn,λ,Ω;Wν)

+ min
(Yin�0)in∈I

LYn
(Yn,λ,Ω;Wν) + min

f∈R
|I|
+

Lfn(fn,λ, f
ν
n)

)

(37)
whose unique solutionŝW(λ,Ω;Wν) , (Q̂n(λ,Ω;Qν),
Ŷn(λ,Ω;Yν), f̂n(λ; f

ν))Nc

n=1 can be computed in parallel
across the SCeNBsn:

Q̂n(λ,Ω;Qν) , argmin
Qn∈Qn

{LQn
(Qn,λ,Ω;Qν)} (38)

Ŷn(λ,Ω;Yν) , argmin
(Yin�0)Kn

i=1

{LYn
(Yn,λ,Ω;Yν)} (39)

f̂n(λ; f
ν) , argmin

fn∈R
Kn
+

{Lfn(fn,λ; f
ν
n)} . (40)

Interestingly, problem (39) admits a closed form solution.

Lemma 5. Let UH
in
DinUin be the eigenvalue/eigenvector

decomposition ofcYYν
in
−Ωin , withDin = diag((din,j)

nRn

j=1 ).
The optimal solution of problem (39) is

Yin = UinDYin
UH

in (41)

with DYin
= diag((yin,j)

nRn

j=1 ) given by

yin,j =

[
−
(
σ2
w

2 −
din,j

2cY

)
+

√(
σ2
w

2 +
din,j

2cY

)2
+

λin

2cY

]+
.

Proof. See Appendix C in the supporting material for the
proof here omitted for lack of space.

GivenŴ(λ,Ω;Wν), the dual problem associated with̃P ν

is
max

λ≥0,(Ωin�0)in∈I

D(λ,Ω;Wν), (42)

with D(λ,Ω;Wν) defined in (37). It can be show that the dual
function isC2, with Hessian Lipschitz continuous with respect
to Wν onX . Then, the dual problem (42) can be solved using
either first or second order methods. An instance of gradient-
based schemes is given in Algorithm 4, whose convergence is
guaranteed under the same conditions as in the Theorem 3. In
S.3, the symbol[A]+ denotes the Euclidean projection of the
square matrixA onto the convex set of positive semidefinite
matrices (having the same size ofA).

A faster algorithm solving the dual problem can be readily
obtained using second order information. It is sufficient to
replace the update of the multipliers in Step 3 of Algorithm 4
with the following (convergence is still guaranteed by Theorem
3):

λk+1
in

= λk
in + βk(λ̂

k+1
in
− λk

in), ∀in ∈ I

Ωk+1
in

, Ωk
in + βk(Ω̂

k+1

in −Ωk
in), ∀in ∈ I

λk+1
f = λk

f + βk(λ̂
k+1
f − λk

f )

(43)

where

λ̂k+1
in

,

[
λ̂k
in + (∇2

λin
D(Ŵk+1,λ,Ω;Wν))−1

· ∇λin
D(Ŵk+1,λ,Ω;Wν)

]+
,

(44)

vec
(
Ω̂

k+1

in

)
,

[
vec
(
Ω̂

k

in

)
+
(
∇2

vec(Ω∗
in

)D(Ŵk+1,λ,Ω;Wν)
)−1

·vec
(
∇Ω∗

in
D(Ŵk+1,λ,Ω;Wν)

)]
+
,

(45)

λ̂k+1
f ,

[
λ̂k
f + (∇2

λf
D(Ŵk+1,λ,Ω;Wν))−1·

∇λf
D(Ŵk+1,λ,Ω;Wν)

]+
.

(46)

Algorithm 4 : Distributed dual scheme solving̃P ν

Initial data: λ
0 ≥ 0, Ω0 � 0, Wν = (Qν ,Yν , fν), {βk}k >

0. Setk = 0,
(S.1): If λk, Ωk satisfy a suitable termination criterion:STOP;
(S.2): For each SCeNB n, compute in parallel
Qk+1

n (λk;Ωk;Wν), Yk+1
n (λk;Ωk;Wν) andfk+1

n (λk;Wν)
solving (38)-(40);
(S.3): Update at the master nodeλ andΩ according to

λk+1
in

,
[
λk
in + βkg̃in(Q

k+1
in

,Qk+1
−n , fk+1

in
;Qν , fν

in)
]+

, ∀in,

λk+1
f ,

[
λk
f + βk

(
∑

in∈I

fk+1
in
− fT

)]+

Ωk+1
in

,

[
Ωk

in + βk

(
Yk+1

in
− Iin(Q

k+1)
)]

+
, ∀in ∈ I

(S.4): k ← k + 1 and go back to (S.1).

The explicit expression of the Hessian matrices and gradi-
ents in (44)-(46) is given in Appendix D in the supporting
document and here omitted for lack of space. Numerical
results show that using second order information significantly
enhances practical convergence speed.
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VI. N UMERICAL RESULTS

In this section we present some numerical results to assess
the effectiveness of the proposed joint optimization of the
communication and computational resources.

The simulated scenario is the following. We consider a
network composed ofNc = 2 cells, where all transceivers
are equipped withnT = nR = 2 antennas (unless stated
otherwise). In each cell, there areKn = 4 active users, ran-
domly deployed. In all our experiments the system parameters
are set as (unless stated otherwise):fT = 2 · 107, T̃ = 0.1,
w = 105, Rw = N0Inr

, snr = 10dB. This choice guarantees
the nonemptiness of the feasible setX ; the constantα in the
diminishing step-size rule (24) is chosen asα = 1e−4, and
the termination accuracyδ is set to10−3.
Example# 1: Joint vs. disjoint optimization. We start com-
paring the energy consumption of the proposed offloading
strategy with a method where communication and computa-
tional resources are optimized separately. The benchmark used
to assess the relative merits of our approach is an instance
of Algorithm 2 wherein the computational ratesfin are not
optimized but set proportional to the computational load of
each user, while meeting the computational rate constraint
fT with equality, i.e.,fin = winfT /

∑
in∈I win CPU cy-

cles/second. We termed such a methodDisjoint Resource
Allocation (DRA)algorithm. Note that this algorithm is still
guaranteed to converge by Theorem 2. An important parameter
useful to assess the usefulness of offloading algorithms is the
ratio ηin := win/bin between the computational loadwin to
be transferred and the number of bitsbin enabling the transfer.
Fig. 1 shows an example of overall energy consumption,
assuming the same ratioηin := η for all users, obtained using
Algorithm 2 and DRA algorithm. In particular,η is varied
keeping a fixed work loadw and changing the numberbin
of bits to be sent. The radio channels are Rayleigh fading
and the results are averages over100 independent channel
realizations. Fig. 1 shows a few interesting features: i) the

100 150 200 250 300 350 400
0

500

1000

1500

E
(Q

⋆
)

η

 

 

Algorithm 2

DRA

Fig. 1. Energy consumption vs.η = win/bin for Algorithm 2 and for DRA.

joint optimization yields a considerable gain with respect
to the disjoint optimization for applications having a low
ratio η, i.e., applications with a high number of bits to be
transferred, for a given computational loadw; ii) the overall

1 2 3 4 5 6 7 8 9 10

10
2

10
3

E
(Q

ν
)

Ite rat ion index ν

 

 

T̃ = 220, MIMO 2 × 2

T̃ = 250, MIMO 2 × 2

T̃ = 220, MIMO 2 × 8

T̃ = 250, MIMO 2 × 8

Fig. 2. Convergence speed: Optimal energy vs. the iterationindex for different
values ofT̃ .

energy consumption decreases for computationally intensive
applications, i.e., applications characterized by a highη.
Example# 2: On the convergence speed.To test the conver-
gence speed of Algorithm 2, Fig. 2 shows the average energy
consumptionE(Qν) versus the iteration indexν, for different
values of the maximum latencỹTin (assumed to be equal
for all users) and different number of receive antennas. The
curves are averaged over100 independent channel realizations.
The interesting result is that the proposed algorithm converges
in very few iterations. Moreover, as expected, the energy
consumption increases as the delay constraint becomes more
stringent because more transmit energy has to be used to
respect the latency limit. Finally, it is worth noticing thegain
achievable by increasing the number of receive antennas.
Since the overall optimization problem is non-convex, the
proposed algorithm may fall into a local minimum. To evaluate
this aspect, we ran our algorithm under1, 000 independent ini-
tializations of the initial parameter settingZ0 = (Q0, f0) ∈ X
of Algorithm 2 and, quite interestingly, we always ended up
with practically the same result, meaning that the differences
where within the third decimal point.
Example# 3: Distributed Algorithms.Finally, we tested the
efficiency of the distributed algorithms proposed in Section V.
We assumePin = PT = 1000, α = 1e−5 and the termination
accuracyδ is set to 10−2. Fig. 3 shows the energy evolu-
tion versus the iteration indexm, which counts the overall
number of (inner and outer) iterations in Algorithm 2. More
specifically, we compared three different algorithms used to
run Step2, namely: the dual-decomposition method described
in Algorithm 3, the dual-scheme based on the reformulation
of the nonconvex problemP using slack-variables as given
in Algorithm 4, and its accelerated version based on the
Newton implementation (43). All implementations are quite
fast. As expected, using second order information enhances
convergence speed.

VII. C ONCLUSIONS

In this paper we formulated the computation offloading
problem in a multi-cell mobile edge-computing scenario,
where a dense deployment of radio access points facilitates
proximity high bandwidth access to computational resources,
but increases also intercell interference. We formulated the
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Fig. 3. Evolution of the global energy for the distributed algorithms vs. the
iteration indexm.

resource optimization problem as the joint optimization of
radio and computational resources, aimed at minimizing MUs’
energy consumption, under latency and power budget con-
straints. In the single-user case, we computed the global
optimal solution of the resulting nonconvex optimization prob-
lem in closed form. In the more general multi-cell multi-
user scenario, we developed centralized and distributed SCA-
based algorithms with provable convergence to local optimal
solutions of the nonconvex problem. Numerical results show
that our algorithms outperform disjoint optimization schemes.
Furthermore, the results show, as expected, that offloadingis
more convenient for applications with high computational load
and small number of bits to be exchanged to enable program
migration.

APPENDIX

A. Proof of Theorem 1
(a) It is sufficient to prove the following two facts.

Fact 1: Any stationary point of the nonconvex problemPs is
a global optimal solution of the problem.

Fact 2: Any stationary point of theconvexproblemQs (and
thus a globally optimal solution toQs), is also a stationary
point of Ps, and viceversa.

Proof of Fact 1: Invoking [43, Theorem 3.39 ], it is sufficient
to show that the objective functionE(Q) is a pseudo-convex
function on the convex setXs, i.e., [43, Def. 3.1.3]

∀Q,Y ∈ Xs : E(Q) < E(Y) ⇒ 〈∇Q∗E(Y),Q−Y〉 < 0.
(47)

Fix Y ∈ Xs, and introduce theconvexC1 function φY :
Xs → R defined as

φY(Q) , tr(Q) · r(Y) − tr(Y) · r(Q). (48)

Then, for anyQ ∈ Xs such thatE(Q) < E(Y), the following
holds:

〈∇Q∗E(Y),Q −Y〉
(a)
=

〈∇Q∗φY(Y),Q−Y〉

r(Y)2

(b)

≤
φY(Q)− φY(Y)

r(Y)2
(c)
< 0,

(49)

where (a) follows from the definition ofφY in (48); (b) is due
to the convexity ofφY on Xs; and (c) comes fromE(Q) <
E(Y) ⇒ φY(Q) < φY(Y). Since (49) holds for any given
Y ∈ Xs, (47) holds true. �

Proof of Fact 2: Let us prove the two directions separately.

Qs ⇒ Ps: Let (Q⋆, f⋆) be the optimal solution of
the convex problemQs; denote Q̃⋆ , UHQ⋆U. Then,
there exist multipliersλ⋆

p, µ
⋆
p, α

⋆
p,Φ

⋆
p such that the tuple

(Q̃⋆, f⋆, λ⋆
p, µ

⋆
p, α

⋆
p, β

⋆
p ,Φ

⋆
p) satisfies the KKT conditions of

Qs (note that Slater’s constraint qualification is satisfied):
denoting r̃(Q̃⋆) , log2 |I + D1/2Q̃⋆D1/2|, and after some
simplifications, one gets

(a): I−
µ⋆
p

log(2)
D1/2(I+D1/2Q̃⋆D1/2)−1D1/2

+λ⋆
p I−Φ⋆

p = 0

(b):
µ⋆
p w c

f⋆2(T̃ − w/f⋆)2
− α⋆

p = 0

(c): 0 ≤ λ⋆
p ⊥

(
PT − tr(Q̃⋆)

)
≥ 0

(d): 0 < µ⋆
p,

c

T̃ − w
f⋆

− r̃(Q̃⋆) = 0

(e): 0 � Q̃⋆ ⊥ Φ⋆
p � 0

(f): 0 ≤ α⋆
p, f⋆ = fT ,

(KKTQs
)

whereA ⊥ B stands for〈A,B〉 = 0, and in (d) and (f)
we used the fact thatµ⋆

p must be positive andf⋆ = fT ,
respectively (otherwise KKTQs

cannot be satisfied). We prove
next that there exist multipliersλ⋆

e, µ
⋆
e, α

⋆
e ,Φ

⋆
e that together

with the optimal solution(Q̃⋆, f⋆) of Qs satisfy the KKT
conditions ofPs, i.e.,

(a′):
c · I

r̃(Q̃⋆)
−

c · tr(Q̃⋆)D1/2(I+D1/2Q̃⋆D1/2)−1D1/2

r̃(Q̃⋆)2 log(2)

−
µ⋆
e

log(2)
D1/2(I+ Q̃⋆D)−1D1/2 + λ⋆

eI−Φ⋆
e = 0

(b′):
µ⋆
e w c

f⋆ 2(T̃ − w/f⋆)2
− α⋆

e = 0

(c′): 0 ≤ λ⋆
e ⊥

(
PT − tr(Q̃⋆)

)
≥ 0

(d′): 0 ≤ µ⋆
e ⊥

(
r̃(Q̃⋆)−

c

T̃ − w/f⋆

)
≥ 0

(e′): 0 � Q̃ ⊥ Φ⋆
e � 0

(f′): 0 ≤ α⋆
e ⊥ (fT − f⋆) ≥ 0.

(KKTPs
)

Plugging (a) of (KKTQs
) in (a′) of (KKTPs

) and using the
fact thatµ⋆

p > 0, we obtain:

λ⋆
e I = −

c I

r̃(Q̃⋆)
+

(1 + λ⋆
p)

µ⋆
p

(
c tr(Q̃⋆)

r̃(Q̃⋆)2
+ µ⋆

e

)
· I

+Φ⋆
e −

1

µ⋆
p

(
c tr(Q̃⋆)

r̃(Q̃⋆)2
+ µ⋆

e

)
·Φ⋆

p,

(50)
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which is satisfied if one setΦ⋆
e, λ⋆

e, andµ⋆
e to

Φ⋆
e ,

1

µ⋆
p

(
c tr(Q̃⋆)

r̃(Q̃⋆)2
+ µ⋆

e

)
·Φ⋆

p

µ⋆
e ,

c µ⋆
p

r̃(Q̃⋆)(1 + λ⋆
p)
−

c tr(Q̃⋆)

r̃(Q̃⋆)2

λ⋆
e , 0.

(51)

By (b′) it must be

α⋆
e =

µ⋆
e w c

f⋆ 2(T̃ − w/f⋆)2
. (52)

Note that, to be a valid candidate solution of KKTPs
, µ⋆

e must
be nonnegative [cf. (d′)], which by (51), is equivalent to

1 + λ⋆
p

µ⋆
p

· tr(Q̃⋆) ≤ r̃(Q̃⋆). (53)

We show next that (53) holds true. By multiplying both
sides of (a) byQ̃⋆ and using the complementarity condition
〈Φ⋆

p, Q̃
⋆〉 = 0 [cf. (e)] we get

1 + λ⋆
p

µ⋆
p

· tr(Q̃⋆)=
1

log(2)
〈Q̃⋆,D1/2(I+D1/2Q̃⋆D1/2)−1D1/2〉

= 〈∇Q∗ r̃(Q̃⋆), Q̃⋆〉 ≤ r̃(Q̃⋆),
(54)

where in the last inequality we used the concavity of the rate
function r̃(•), i.e.,

r̃(Y) ≤ r̃(W) + 〈∇Q∗ r̃(W),Y −W〉, ∀Y,W � 0 (55)

evaluated atY = 0 andW = Q̃⋆. The desired result,µ⋆
e ≥ 0,

follows readily combining (53) and (54).

We show now that the obtained tuple(Q̃⋆, f⋆, λ⋆
e , µ

⋆
e, α

⋆
e,

Φ⋆
e) satisfies KKTPs

. Indeed, (a′) follows from (51); given
µ⋆
e ≥ 0, (b′) is satisfied byα⋆

e as in (52); (c′) follows from
PT−tr(Q̃⋆) ≥ 0 [cf. (c)] andλ⋆

e = 0; (d′) follows fromµ⋆
e ≥ 0

and the second equality in (d). Finally, it is not difficult tosee
thatΦ⋆

e given by (51) satisfies (e′); and finally (f′) is trivially
met by α⋆

e ≥ 0 in (52). This completes the first part of the
proof.

Ps ⇒ Qs: the proof follows the same idea as forQs ⇒ Ps; we
then only sketch the main steps. Let(Q̃⋆, f⋆, λ⋆

e, µ
⋆
e, α

⋆
e ,Φ

⋆
e)

be a tuple satisfying KKTPs
(whose existence is guar-

anteed by the Slater’s constraint qualification). We prove
next that there exist multipliers(λ⋆

p, µ
⋆
p, α

⋆
p,Φ

⋆
p) such that

(Q̃⋆, f⋆, λ⋆
p, µ

⋆
p, α

⋆
p,Φ

⋆
p) satisfies KKTQs

. Define

κe = µ⋆
e +

c tr(Q̃⋆)

r̃(Q̃⋆)2
> 0.

Given (a′), it can be easily seen that (a) is satisfied ifΦ⋆
p, λ⋆

p,
andµ⋆

p are chosen as

Φ⋆
p =

µ⋆
p

κe
Φ⋆

e , µ⋆
p =

κe

λ⋆
e +

c

r̃(Q̃⋆)

, and λ⋆
p = 0. (56)

From (b) it must also be

α⋆
p =

µ⋆
p w c

f⋆ 2(T̃ − w/f⋆)2
. (57)

It is not difficult to check that the obtained tuple(Q̃, f⋆,
λ⋆
p, µ

⋆
p, α

⋆
p,Φ

⋆
p) satisfies (a), (b), (c), (e), and (f) of KKTQs

;
the only condition that needs a proof is the equality constraint
in (d), as given next.

Suppose by contradiction that̃r(Q̃⋆) −
c

T̃ − w/f⋆
> 0.

Then, it follows from (d′) thatµ⋆
e = 0, and (a′) reduces to

c I

r̃(Q̃⋆)
−

c tr(Q̃⋆)D1/2(I+D1/2Q̃⋆D1/2)−1D1/2

log(2)r̃(Q̃⋆)2
=−λ⋆

eI+Φ⋆
e.

Multiplying the above equation bỹQ⋆ and using the comple-
mentary condition (e′), we get

λ⋆
e =

c

r̃(Q̃∗)2

(
〈∇Q∗ r̃(Q̃⋆), Q̃⋆〉 − r(Q̃⋆)

)
, (58)

which, givenλ⋆
e ≥ 0 [cf. (c′)] and 〈∇Q∗ r̃(Q̃⋆), Q̃⋆〉 ≤ r̃(Q̃⋆)

[due to (55)], can be satisfied only if〈∇Q∗ r̃(Q̃⋆), Q̃⋆〉 =
r(Q̃⋆), i.e.,

log2 det(I+D1/2Q̃⋆D1/2)

= tr
(
Q̃⋆D1/2(I+D1/2Q̃⋆D1/2)−1 ·D1/2

)
·

1

log(2)
.

Denoting by (σi = σi(D
1/2Q̃⋆D1/2))ri=1 ≥ 0 the non-

negative eigenvalues ofD1/2Q̃⋆D1/2, the above equality can
be rewritten as

r∑

i=1

log(1 + σi) =

r∑

i=1

σi

1 + σi
,

which can be true only ifσi = 0 for all i = 1, · · · , r, and thus
Q̃⋆ = 0 (note thatD 6= 0). This however is in contradiction
with the fact thatQ⋆ is an optimal solution ofQs.
(b): Invoking part (a) of the theorem, the solution(Q⋆, f⋆) of
Qs (and thusPs) can be computed solving KKTQs

. Denote
Q̃⋆ , UHQ⋆U. Multiplying (a) of KKTQs

by Q̃⋆ and using
(e), we get

I− αD1/2(I+D1/2Q̃⋆D1/2)−1D1/2 = 0 (59)

with α , µ⋆
p/ log(2) (recall that one can setλ⋆

p = 0). By
solving (59) and using̃Q⋆ , UHQ⋆U one obtains the desired
expression ofQ⋆ as in (12). Moreover, it follows from (f) that
f⋆ = fT . The only thing left to show is how to computeα
(and thusµ⋆

p) efficiently. Using the optimal structure ofQ⋆

and denotingre , rank(Q⋆), conditions (c) and (d) reduce
respectively to

α = 2

c

reL
−

1

re

re∑

i=1

log2(di)

and
re∑

i=1

(
α−

1

di

)
≤ PT ,

(60)
with L = T̃ − w

fT
. Note that Slater’s constraint qualification

guarantees that there existα andre satisfying (60). Moreover,
it is not difficult to check that they can be efficiently computed
using the procedure described in Algorithm 1.
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