
526 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 41, NO. 2, APRIL 2011

Weakly Supervised Training of a Sign Language
Recognition System Using Multiple Instance

Learning Density Matrices
Daniel Kelly, John Mc Donald, Member, IEEE, and Charles Markham

Abstract—A system for automatically training and spotting
signs from continuous sign language sentences is presented. We
propose a novel multiple instance learning density matrix algo-
rithm which automatically extracts isolated signs from full sen-
tences using the weak and noisy supervision of text translations.
The automatically extracted isolated samples are then utilized
to train our spatiotemporal gesture and hand posture classifiers.
The experiments were carried out to evaluate the performance
of the automatic sign extraction, hand posture classification, and
spatiotemporal gesture spotting systems. We then carry out a
full evaluation of our overall sign spotting system which was
automatically trained on 30 different signs.

Index Terms—HMM, multiple instance learning (MIL), sign
language recognition, size function, support vector machine
(SVM), weakly supervised learning.

I. INTRODUCTION

S IGN language spotting is the task of detecting and classi-
fying signs in a signed sentence in a set vocabulary.

In this paper, we propose a system which attempts to solve
the three major difficulties in automatic sign language spotting.

The first difficulty is that, when recognizing temporal ges-
tures, the hand(s) must move from the end point of the previous
gesture to the start point of the next gesture. These intergesture
transition periods are called the movement epenthesis [1] and
are not part of either of the signs. Thus, an accurate recognition
system must be able to distinguish between valid sign segments
and the movement epenthesis. We solve this by developing
a temporal gesture model which addresses the problem of
movement epenthesis detection without the need for explicit
epenthesis training.

The second difficulty with developing automated techniques
for sign language spotting is that an ideal sign language spotting
system should give good recognition accuracy for the sign-
ers not represented in the training data set. User-independent
hand posture recognition is particularly challenging as a user-
independent system must cope with the geometric distortions
due to different hand anatomies or different performances of
the gestures by different persons. We address this problem by

Manuscript received January 4, 2010; revised April 22, 2010; accepted
July 15, 2010. Date of publication September 23, 2010; date of current version
March 16, 2011. This paper was recommended by Associate Editor S. Sarkar.

The authors are with the Computer Science Department, National University
of Ireland Maynooth, Maynooth, Ireland (e-mail: dankelly@cs.nuim.ie).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCB.2010.2065802

proposing a real-time user-independent hand posture classifier
which we integrate with our temporal gesture model to classify
signs.

The third difficulty in developing automatic sign language
recognition systems is developing the algorithms which scale
to large vocabularies. A difficulty with this is that previous
research has typically required manual training data to be
generated for each sign. This involved a signer or interpreter
hand labeling each sign or sign phoneme such that a recognition
system could be trained on the isolated samples of each sign.
This can be a very time-consuming and expensive procedure
and makes it difficult to expand sign vocabularies. To solve
this problem, we propose a weakly supervised system, using
our novel multiple instance learning (MIL) density matrix al-
gorithm, which automatically extracts isolated samples of signs
which can then be used to train our hand gesture models. The
main contribution of this paper is that we propose techniques
to address all three of these difficulties in a single recognition
framework which can automatically learn and recognize signs.
Currently, there exists no work which deals with all of these
problems in a sign language recognition system.

A. Related Work

Gesture recognition systems which deal with temporal ges-
tures, hand postures, and automatic training are briefly reviewed
in this section. For a comprehensive review of the automatic
sign language recognition, refer to the survey paper by Ong and
Ranganath [2].

1) Temporal Gestures: While many works have proposed
promising isolated gesture recognition techniques, natural ges-
tures which occur in sign language are continuous; therefore,
sign language recognition requires the spotting of the gesture
from continuous videos (i.e., determining the start and end
points of a meaningful gesture pattern). An approach to dealing
with continuous recognition is to use hidden Markov models
(HMMs) for implicit sentence segmentation. Starner et al. [3]
and Bauer and Kraiss [4] model each word or subunit with an
HMM and then train the HMMs with data collected from full
sentences. A downside to this is that training on full sentence
data may result in a loss in valid sign recognition accuracy
due to the large variations in the appearance of all the possible
movement epentheses that could occur between two signs.

Wang et al. [5] also use HMMs to recognize the continuous
sign sequences with a 92.8% accuracy, although signs were
assumed to end when no hand motion occurred. Assan and

1083-4419/$26.00 © 2010 IEEE

KELLY et al.: WEAKLY SUPERVISED TRAINING OF A SIGN LANGUAGE RECOGNITION SYSTEM 527

Grobel [6] model the HMMs such that all transitions go through
a single state while Gao et al. [7] create separate HMMs that
model the transitions between each unique pair of signs that
occur in sequence. Vogler and Metaxas [8] also use an explicit
epenthesis modeling system where one HMM is trained for
every two valid combinations of signs. While these works have
had promising results in gesture recognition and movement
epenthesis detection, the training of such systems involves a
large amount of extra data collection, manual data labeling,
model training, and recognition computation due to the extra
number of HMMs required to detect the movement epenthesis.
Few researchers have addressed the problem of the move-
ment epenthesis without explicitly modeling these movements.
Yang et al. [9] proposed an American Sign Language recog-
nition method based on an enhanced level building algorithm
and a trigram grammar model. Their method was based on a
dynamic programming approach to spot signs without explicit
movement epenthesis models. The recognition rate was 83%
with 39 signs, articulated in 25 different sentences, but it is
unclear how the system would perform if the grammar model
was trained on a real-world corpus where there existed more
variability than there existed in the 150 sentences used to train
their grammar model.

Yang et al. [10] develop threshold models in a conditional
random field model which performs an adaptive threshold
for distinguishing between signs in a vocabulary and nonsign
patterns. The experiments show that their system can spot signs
from continuous data with an 87.0% detection rate from a
vocabulary of 48 signs wherein the system was trained on ten
isolated samples of each of the 48 signs. The system was then
tested on continuous sentences which contained 480 samples
of the signs in the sign vocabulary. In this paper, we propose
an HMM-based gesture recognition framework which accu-
rately spots and classifies motion-based gestures and detects the
movement epenthesis.

2) Hand Postures: Although there are many methods in
the literature which have described promising hand posture
recognition systems, most of these methods have been evalu-
ated on signer-dependent data sets [2]. Analogous to speaker
independence in speech recognition, an ideal sign recognition
system should give good recognition accuracy for the signers
not represented in the training data set. The user-independent
hand posture recognition is particularly challenging as a user-
independent system must cope with the geometric distortions
due to different hand anatomies or different performances of
the gestures by different persons. Triesch and von der Malsburg
[11] proposed a user-independent hand posture recognition sys-
tem using elastic graph matching which reported a recognition
rate of 92.9% when classifying ten hand postures. The elastic
graph matching method showed very promising results but was
reported to have a high computational complexity with the
method requiring several seconds to analyze a single image.
One of the goals of this paper was to incorporate an accurate
user-independent and real-time hand posture classifier into a
sign recognition system.

3) System Training: The previous works for the recogni-
tion of temporal gestures and hand postures, described in
Section I-A1 and A2, carry out training using manually labeled

Fig. 1. Flowchart of our proposed automatic sign training and sign spotting
framework. (a) System Training. (b) Sign Classifiers. (c) Sign Recognition.

training data. The automatic labeling of signs is an extremely
challenging task and is demonstrated by the limited works
dealing with this problem.

Buehler et al. [12] develop a MIL technique to extract
given sign language words from videos annotated with weakly
aligned subtitles. This technique allows the automatic extrac-
tion of isolated signs without manual labeling. The results show
that their technique was able to find 65% of the words from
a vocabulary of 210 words. Cooper and Bowden [13] also
implement an automated method to extract signs from subtitles.
A temporally constrained adaptation of apriori mining is used
to extract similar regions of a video, with the aid of a proposed
contextual negative selection method. The system was tested
on 23 signs which occurred in a 30-min video. Their proposed
method was able to correctly isolate, on average, 53.7% of the
signs. Nayak et al. [14] proposed an unsupervised approach
to extract the instances of continuous basic units of the signs,
which are called signemes, from continuous sentences. They
automatically extracted signeme models, using iterative condi-
tional models, given a set of sentences with one common sign.
The experiments showed that their method was able to correctly
extract ten key signs from 136 sentences with an error rate of
13%. While these works have proposed promising techniques
for the automatic extraction of target sign segments, no work
has further developed these techniques to automatically train
a full sign language spotting system on temporal and hand
posture information.

B. System Overview

The goal of this paper is to develop a weakly supervised
system which automatically extracts isolated samples of signs
which can then be used to train temporal gesture and hand pos-
ture recognition frameworks. Section III presents the gesture
similarity functions which will be utilized by our proposed au-
tomatic training framework. Section IV presents our automatic
sign extraction system which utilizes the text translations of
the videos to automatically extract isolated samples of target
words. Section V presents our framework for training classifiers
which model the automatically extracted signs. Section VI
presents our continuous sign spotting system which utilizes
the automatically trained classifiers. Section VII presents the
experimental results. Fig. 1 shows a visualization of the flow of
our automatic training and sign spotting systems.

528 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 41, NO. 2, APRIL 2011

Fig. 2. Extracted features from image.

II. FEATURE EXTRACTION

The focus of this paper is to develop a pattern recognition
framework for the automatic spotting of sign language gestures.
For completeness and to introduce feature notation, we briefly
describe the feature tracking methods, although we do not
consider it to be the innovative part of our work. The tracking
of the hands is performed by tracking colored gloves [see
Fig. 2(a)] using the mean shift algorithm [15].

In this paper, we build a multichannel sign language spotting
system which utilizes hand movements, positions, orientations,
and postures to classify sign language sentences. In the remain-
der of this paper, we treat these four components as two distinct
information channels described in the following paragraphs.

Hand Posture Channel: The key feature used for the analy-
sis of the hand posture channel is the external contour made
by the hand [see Fig. 2(b)]. To extract this feature from the
image, we segment the glove region in the image using a back
projection image computed during the mean shift algorithm.
We then extract the external contour of the hand blob, which
we denote as C. The dominant hand is used to convey most
hand shape information, and thus, we consider only the shape
of the dominant hand when analyzing the hand shape. When the
dominant and nondominant hands overlap, we extract a single
contour made around the dominant and nondominant hands as
illustrated in Fig. 2(a) and (b).

Spatiotemporal Gesture Channel: Hand positions are used
to describe the spatiotemporal gestures, and the face and eye
positions are also used as spatiotemporal gesture cues. The face
and eye detection is carried out using a cascade of boosted
classifiers working with the haar-like features proposed by
Viola and Jones [16]. A set of public domain classifiers [17],
for the face, left eye, and right eye, are used in conjunction
with the OpenCV implementation of the haar cascade object
detection algorithm. We define a raw spatiotemporal gesture
feature vector F extracted from each image. Each feature
vector F contains a description of the following: the right
hand position (RHx, RHy), left hand position (LHx, LHy),
face position (FCx, FCy), face width (FW), left eye position
(LEx, LEy), and right eye position (REx, REy). During sign
language communication, the parts of the face may become
occluded by the hands. If a face part cannot be detected by the

computer vision algorithm, then we use the previous points for
the occluded parts of the face.

III. GESTURE SIMILARITY FUNCTIONS

Before describing our MIL density matrix algorithm which
we utilize to automatically extract isolated samples of sign
language target words, we first describe the gesture similarity
functions used as part of our MIL algorithm. In order to
compare the spatiotemporal gestures and hand postures, we
require a measure of the similarity between the gesture frames.
We implement two similarity functions, one for spatiotemporal
gesture similarity and one for hand posture similarity.

A. Spatiotemporal Gesture Similarity Function

As described in Section II, the raw feature vector describ-
ing the hand, head, and eye positions is defined as F . From
the raw feature vector, we calculate a feature vector f̂ =
{RPx, RPy, Vx, Vy,DH}, where RPx and RPy describe the
position of the hands relative to the eyes, Vx and Vy describe
the velocity of the movement of the hand, and DH describes the
distance between the two hands. We choose this feature vector
as it holds information about the movement of the hand through
the velocity vector while also holding information about the
location of the articulation through the relative position vector.
The distance between each hand is also useful as it stores
information on how each hand is moving relative to the other
hand. This feature vector is calculated for both the right and
left hands, which we denote as f̂R and f̂L, respectively.

Given two feature vectors F̂ and F̂ ′, where F̂ = {f̂R, f̂L},
we define the similarity function DG() as the weighted sum of
the distance for the right and left hands where ωR and ωL define
the right and left weights, respectively

DG(F̂ , F̂ ′)=ωR

(
1−dG

(
f̂R, f̂ ′

R

))
+ ωL

(
1 − dG

(
f̂L, f̂ ′

L

))
.

(1)

The distance between the individual hands dG() is then cal-
culated by first calculating three individual distances between
each of the three spatiotemporal gesture features (movement,
position, and hand distance) as follows:

dG
pos(f̂ , f̂ ′) =

√
(RPx − RP ′

x)2 +
(
RPy − RP ′

y

)2
(2)

dG
mov(f̂ , f̂ ′) =

√
(Vx − V ′

x)2 +
(
Vy − V ′

y

)2
(3)

dG
dis(f̂ , f̂ ′) =

√
(Dh − D′

h)2. (4)

Using each of the three distances, the overall distance can
then be calculated using a normalized sum of the three distances

dG(f̂ , f̂ ′) = ωposd
G
pos(f̂ , f̂ ′)

+ ωmovd
G
mov(f̂ , f̂ ′) + ωdisd

G
dis(f̂ , f̂ ′) (5)

where ωx = (1/maxG
x ∗3)(x ∈ {pos,mov,dis}) and maxG

x is
the maximum distance dG

x () calculated between all pairs of
frames in a data set. The scale factors ωx normalize each

KELLY et al.: WEAKLY SUPERVISED TRAINING OF A SIGN LANGUAGE RECOGNITION SYSTEM 529

Fig. 3. (a) Graph of some measuring function ϕ. (b) Shaded region ≡ ϕ ≤ y.
(c) Shaded region ≡ ϕ ≤ x. (d) Graph depicting ϕ ≤ y and ϕ ≤ x. (e) Graph
of size function �ϕ with current �ϕ(x, y) = 3.

distance measure such that 0 ≤ dG(f̂ , f̂ ′) ≤ 1 for all pairs of
features f̂ and f̂ ′.

B. Hand Posture Similarity Function

This paper presents a method of calculating a hand posture
similarity function from a Hu moment feature set and our novel
eigenspace size function shape representation calculated from
the external hand contour C.

1) Hu Moments: The Hu moments [18], which are a refor-
mulation of the nonorthogonal centralized moments, are a set of
translation, scale, and rotation invariant moments. The set of Hu
moments I = {I1, I2, I3, I4, I5, I6, I7} is calculated from the
hand contour described in Section II. The Hu moment distance
between two hand contours Ck and Cl is calculated using the
Hu moment comparison metric implemented in the OpenCV
library [19] and is described in

dhu(Ck, Cl) =
7∑

I=1

|Λ (I(Ck)[i]) − Λ (I(Cl)[i])| (6)

Λ(hu) =
1

sign(hu) × log(hu)
. (7)

2) Size Functions: Size functions are integer-valued func-
tions which represent both the qualitative and quantitative prop-
erties of a visual shape [20]. They have recently been shown to
perform well at carrying out the user-independent recognition
of the hand postures used in sign language [21]. For a given
hand contour C, let G be a graph whose vertices are the points
of the contour. Let ϕ, the measuring function, be a real-valued
function defined on the vertices of G [see Fig. 3(a)]. The size
function �ϕ, induced by the measuring function ϕ, is an integer-
valued function defined on a real pair (x, y) according to the
following algorithm.

1) Find the subgraph Gϕ≤y of G determined by the points p
with ϕ(p) ≤ y [see Fig. 3(b)].

2) Identify the connected components of Gϕ≤y [see
Fig. 3(b)].

3) The size function �ϕ at point (x, y) equals the number of
connected components of Gϕ≤y which contain at least a
vertex with Gϕ≤x [see Fig. 3(c)–(e)].

When identifying the number of connected components of
the graphs Gϕ≤y and Gϕ≤y , it should be noted that the graphs
are circular. Therefore, in Fig. 3(d), there exist three connected
components of Gϕ≤y , which contain at least a vertex with
Gϕ≤x, and not four which would be the case if the graphs
were not circular. This ensures that the number of connected
components will remain the same independent of the start and
end points for which the measuring function was computed.

The theory of the size functions does not identify a formal
tool to resolve a suitable measuring function. Therefore, a
suitable measuring function must be found heuristically. As
defined by Stokoe’s model [22], a hand posture is made up of
the shape and orientation of the hand. Thus, for the application
of classifying the hand postures performed in sign language, the
measuring function chosen must be sensitive to the orientation
changes of the hand (although a suitable classifier should not
be sensitive to the minor changes in the hand orientation).
With Stokoe’s model in mind, the measuring function model
proposed in this paper utilizes a family of measuring functions
indexed by the angle θε{0, 1(2π/NΘ), 2(π/2NΘ), . . . , (NΘ −
1)(2π/NΘ)}, where NΘ is the total number of rotation angles
used. Each measuring function ϕθ = Dθ(p) is a function which
rotates p about the center of gravity of G and measures the dis-
tance between the horizontal axis and a point p on the graph Gθ.
The horizontal axis is a line which passes through the minimum
point of Gθ. For every θ, a size function �ϕθ is generated, result-
ing in a set of size functions Γϕ = {�ϕ1, �ϕ2, . . . , �ϕNΘ}. The
sensitivity of the system to orientation can then be controlled
by means of adjusting NΘ.

To illustrate the concept of the size functions and their ap-
plication in analyzing the hand postures used in sign language,
a specific example will be used. The hand contour is extracted
using the method described in Section II. For this example, let
NΘ = 4. The hand contour is rotated to each of the four θ values
[see Fig. 4(a)], the measuring function is applied to each of
the four rotated contours [see Fig. 4(b)], and the size functions
are then generated from each of the measuring functions [see
Fig. 4(c)].

3) PCA and Size Functions: In order to quantify the shape
information held in a size function, we utilize a more robust
method of shape representation, as compared to the unmodified
normalized size function representation used in [20] and [23].
We apply an important improvement to the size function tech-
nique by implementing a size function feature which is more
robust to noise and small changes in shape which occur from
different people [21]. The technique is a method of incorporat-
ing eigenspace information into the hand posture feature using
a principal component analysis (PCA). The PCA computes
a linear projection from a high-dimensional input space to a
low-dimensional feature space. It is a statistical technique used
for finding the patterns in data of high dimensions. Since we
are looking for the similarities and differences between two
size functions, we can utilize the PCA in order to reduce the
influence of noise and small variations in shape by different
persons and to highlight the portions of the size function useful
for user-independent hand posture recognition. To calculate the
principal components of a size function, the size function is de-
scribed as an N × N matrix Xθ = �ϕθ. From the size function

530 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 41, NO. 2, APRIL 2011

Fig. 4. (a) θ rotation applied to hand contour. (b)Measuring function ϕθ

applied to hand contour. (c) Size function �ϕθ generated.

matrix, we calculate a covariance matrix Σ. The eigenvector
matrix Vθ and the eigenvalue matrix Wθ are then computed
from the covariance matrix and then sorted in order of de-
creasing eigenvalue. This records the components in order of
significance, the eigenvector with the highest eigenvalue being
the principal component. Therefore, the first column of Vθ, a
1 × N vector, corresponds to the principal component vector.
Kelly et al. [21] have shown that this method of combining
the size functions and PCA improves upon the original size
function and performs well at discriminating between the hand
postures independent of the person performing them.

4) Size Function Distance: We define dSF(Ck, Cl) as the
distance measure computed between the size functions of con-
tours Ck and Cl: For each contour C, we compute the set of size
functions Γϕ(C) and then calculate the eigenvectors and eigen-
values for that set of size functions. For each θ, we choose only
the first P eigenvectors, resulting in a set of matrices Mθ(C)
with dimensions N × P and a set of eigenvalues Wθ(C) of
dimension P . We define our weighted eigenspace size function
ζθ(C) in

ζθ(C)[p, i] = Mθ(C)[p, i] × 	θ(C, p) ×
θ(C) (8)

where 	θ(C, x) is a weighting factor for each eigenvector x
associated with the size function indexed by θ according to

	θ(C, x) =
Wθ(C)[x]∑K

k=0 Wθ(C)[k]
. (9)

The second weighting factor
θ(C) is calculated for each set
of eigenvectors associated with the size function indexed by θ
such that the size function with the greatest total variance gets
a greater weighting according to

θ(C) =

∑P
p=0 Wθ(C)[p]∑NΘ

θ=0

∑P
p=0 Wθ(C)[p]

. (10)

The distance dSF(Ck, Cl) between the hand contours Ck

and Cl is then defined as the Euclidian distance between the
weighted eigenspace size functions

dSF(Ck, Cl) =

√√√√ 2π∑
θ=0

P∑
p=0

N∑
I=0

(ζθ(Ck)[p, i] − ζθ(Cl)[p, i])2.

(11)

5) Hand Shape Similarity Function: The overall similarity
between the two hand contours C and C ′ is then calculated
using a normalized sum of the size function and Hu moment
distances as follows:

DH(C,C ′) = 1 −
(
ωSfd

SF(C,C ′) + ωHudhu(C,C ′)
)

(12)

where ωx = (1/maxH
x ∗2)(x ∈ {Sf,Hu}) and maxH

x is the
maximum distance dH

x () calculated between all pairs of frames
in the data set. The scale factors ωx normalize the similarity
measure such that 0 ≤ DH(C,C ′) ≤ 1 for all pairs of hand
contours C and C ′.

It should be noted that in the experiments, the parameter
combination, which produced the best performance, was N =
16, NΘ = 6, and P = 1, where N , NΘ, and P correspond to
the size of the size function, the number of the graph rotations,
and the number of the principal components, respectively.

IV. AUTOMATIC SIGN EXTRACTION

Given a target word, a set of video sequences, and the
corresponding weakly aligned text translations, the goal is to
automatically identify which frames in each video, if any,
contain the target word. Furthermore, we must also identify
which frames contain the key hand postures related to the
target word. The only information available about the video
sequences is from the text translations; thus, labels are at a
sequence level and not at the required frame level. The difficulty
in this problem is that no one-to-one mapping exists between
the English translations and the signs since the ordering of
sign language is different in the English translations. Another
difficulty with the learning task is that there exist ambiguities
in the translation task where the same sign may have different
translations or a word may appear in the text translation but the
corresponding sign may not occur in the video. This introduces
a significant correspondence problem between the translation
and overlapping video sequence, so the supervision is weak.

In order to find the frame level labels, we can formulate the
task as a MIL problem. Using a MIL notation, we define a
video sequence as a bag, where the set of positive bags B+ =
{B0, . . . , BNB

} is the set of videos in which the target word
occurs and NB is the number of bags in the set of bags B+.
The videos contained within the set of bags should be chosen
such that the target word appears with the most frequency
compared to the other words in the text translations. This can
be done automatically by a process of word counting. Each
bag Bi represents a sequence of features for each frame Bi =
{Bi[0], . . . , Bi[NBi]}, where NBi is the number of frames in
a bag Bi. To reduce the impact of the translation ambiguities,
we develop a MIL solution that requires only positive bags. In

KELLY et al.: WEAKLY SUPERVISED TRAINING OF A SIGN LANGUAGE RECOGNITION SYSTEM 531

Fig. 5. Visual representation of the calculation of the spatiotemporal gesture comparison matrix Gij .

a traditional MIL framework, a learner uses both the positive
and negative bags to learn the intended concept, where a
negative bag represents a sequence of features which do not
lie within the concept. In the case of the sign language videos,
a negative bag would represent a set of videos which did not
contain the text translation for a target word. Since there are
ambiguities in the translations, there is no guarantee that the
corresponding sign does not occur in the videos. The work of
Buehler et al. [12] acknowledges the difficulty in estimating
the errors in negative bags without manual labeling, and their
work uses a heuristic to determine the errors in the negative
bags. We address the problem of the errors in the negative bags
by developing a MIL framework which requires the positive
bags only. This eliminates the need to automatically identify the
errors in the negative bags and thus limits the type of translation
ambiguities, which our system must deal with, to the errors in
the positive bags. The translation ambiguities which our system
must identify are thus limited to the situations where the text
translation contains a target word but the corresponding sign
does not occur in the video.

A. MIL Density Matrix

We develop a novel MIL density matrix algorithm, inspired
by diverse density MIL [24], to label videos at the frame level.
Since hand postures and spatiotemporal gestures are indepen-
dent channels, we propose a multichannel MIL density matrix
algorithm. We define seperate bags for each channel, denote
the set of spatiotemporal gesture bags as G+, and denote the
set of hand shape bags as H+. The first step in our MIL density
matrix algorithm is to compute the comparison matrices Gij

and Hij in order to compare each pair of bags (Gi, Gj) and
(Hi,Hj), respectively. Each of the comparison matrix Gij and
Hij corresponds to an NBj × NBi matrix. For each column
t (0 ≤ t < NBi) in the spatiotemporal gesture comparison
matrix Gij , we store only the best similarity measure between
Gi[t] and all the features in Gj . All the other entries in that
column are set to zero. Each element of the comparison matrix,
Gij [t, ιt], is calculated as defined in (13) and (14), where ιt is
the frame index of Gj which is most similar to Gi[t]. Fig. 5
shows a visual example of the calculation of the spatiotemporal
comparison matrix where we show the calculation of the simi-

larity measures for column 0 by calculating all the similarities
[DG(Gi[0], Gj [0]), . . . ,DG(Gi[0], Gj [8])]T . In column 0, it
can be seen that the index ι0 representing the most similar
gesture frame is the fourth frame of Gj . The fourth element
of the first column in the comparison matrix Gij then stores the
similarity measure between Gi[0] and Gj [4] while all the other
entries in that column are set to zero.

The hand posture comparison matrix Hij is calculated in a
similar fashion. For each column t (0 ≤ t < NBi) in the hand
posture comparison matrix Hij , we store the similarity between
Hi[t] and Hj [ιt], where ιt is the frame index of Gj which best
matches Gi[t] [as defined in (15)]. For example, in Fig. 5, it was
identified that the most similar gesture frame for column 0 was
the fourth frame of Gj . This means that, in the corresponding
hand posture comparison matrix Hij , the fourth element of the
first column stores the similarity measure between Hi[0] and
Hj [4] while all the other entries in that column are set to zero.
Using the most similar spatiotemporal comparison index allows
us to prioritize the spatiotemporal gestures. This allows us to
match the hand poses which help us to discriminate between
the spatiotemporal gestures that have similar spatiotemporal
patterns but differ only in the hand pose. Each element of the
comparison matrices is calculated using the similarity functions
DG and DH which we define in Section III. It should be noted
that the similarity functions DG and DH are implemented such
that similar frames return values close to one while the frames
which are not similar return values close to zero. The threshold
values τG and τG are implemented such that the similarity
comparisons Gij [t, ιt] and Hij [t, ιt] only include the video
frames which are within a set similarity. This reduces the effect
that nonsimilar frames have on the overall detection of target
words, and through experiments, we have found that a threshold
value of 0.75, for both τG and τG, has performed well

ιt = arg max
0≤ι̃<NBj

DG (Gi[t], Gj [ι̃]) (13)

Gij [t, ιt]=
{

DG (Gi[t], Gj [ιt]) if DG (Gi[t], Gj [ιt])>τG

0 else.
(14)

Hij [t, ιt]=
{

DH (Hi[t],Hj [ιt]) if DH(Hi[t],Hj [ιt])>τH

0 else.
(15)

532 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 41, NO. 2, APRIL 2011

For convenience, we denote a bag as B hereinafter, but the
following computations are calculated for both the spatiotem-
poral gesture bags G and the hand pose bags H by replacing
the notation B and b with H and h or G and g accordingly.
After computing the comparison matrix Bij , we convert it
to a comparison vector bij as shown in (16), where each
vector bij corresponds to an NBi-dimensional row vector. Each
comparison vector is used as a measure of how closely matched
each frame, in bag Bi, is to the most similar frame in bag Bj

bij [t] =
NBj∑
n=0

Bij [t, n]. (16)

Each element bij [t] represents the sum of the similarity
metrics in the tth column of the comparison matrix Bij . Since
the tth column in Bij contains, at most, one similarity metric,
then the element of the comparison vector bij [t] corresponds
to the same similarity metric. We also define a transposed
comparison vector, as shown in (17), where each element bij

′
[t]

of the NBj-dimensional column vector represents the sum of
the similarity metrics in the tth row of the comparison matrix.
Each transposed comparison vector is used as a measure of
which frames in Bj has the most similarities with the bag Bi

bij

′
[t] =

NBi∑
n=0

Bij [n, t]. (17)

Each comparison vector bij represents a comparison be-
tween the ith and jth bags. The comparison vector does not
have any representation of how the ith and jth bags interact
with all the other bags in the set of bags. In order to build a
full comparison model between each pair of bags (Bi, Bj), we
must not only understand how Bi and Bj interact with each
other but also how the pair of bags (Bi, Bj) interact with all
the other bags in the set of bags B+. In order to do this, we
first build a model of Bi compared to all other bags, followed
by a model of Bj compared to all other bags. We then use
both these models to understand how Bi and Bj interact. We
compare Bi to all the other bags by summing all the comparison
vectors bik,∀k ∈ B+ [see (18)]. We then compare Bj to all
the other models by summing all the transposed comparison
vectors bkj

′
,∀k ∈ B+ [see (18)]

bi =
NB∑
k=0

bik b
′

j =
NB∑
k=0

bkj

′
(18)

where bi corresponds to an NBi-dimensional row vector and
b′

j corresponds to an NBj-dimensional column vector. Fig. 6
shows the spatiotemporal gesture comparison matrices Gij for
a sample set of five positive bags for the target sign “Alot”.
Each matrix, at coordinates (Gi, Gj), corresponds to a visual
representation of comparison matrices Gij , where the dark pix-
els represent a high similarity between the gesture frames. The
hand-labeled time segments in each bag represent the frames
of each video which were hand labeled as being a target sign.
Fig. 6 also shows a visualization of the summed comparison
vectors g1 and g′

5 being computed from the corresponding set

Fig. 6. Visualization of comparison matrices Gij and calculation of summed
comparison vectors g1 and g′

5.

Fig. 7. Visualization of density matrix Φ(G1, G5).

of comparison matrices. It can be seen from the comparison
matrices that there exist high areas of similar frames where
the hand-labeled sections occur, illustrating the power of our
technique for measuring the areas of similarity.

Following the calculation of the summed comparison vec-
tors, we then compute the density matrix Φ(Bi, Bj), which
measures the interaction between the pair of bags Bi and Bj ,
by multiplying the summed comparison vectors to calculate an
NBj × NBi matrix

Φ(Bi, Bj) = bib
′

j . (19)

Fig. 7 shows a visualization of the computation of the density
matrix Φ(G1, G5) computed from the summed comparison
vectors shown in Fig. 6.

We then compute a density vector Ψ(Bi) for bag Bi using the
set of density matrices {Φ(Bi, B1), . . . ,Φ(Bi, BNB

)}. Each el-
ement Ψ(Bi)[t] of the density vector is calculated by averaging
the tth column of each of the density matrices Φ(Bi, Bj)

Ψ(Bi)[t] =
1

NB

NB∑
j=0

NBj∑
k=0

Φ(Bi, Bj)[t, k]
NBj

. (20)

KELLY et al.: WEAKLY SUPERVISED TRAINING OF A SIGN LANGUAGE RECOGNITION SYSTEM 533

An overall density vector Ψi is then calculated from the inner
product of the hand posture and spatiotemporal gesture density
vectors

Ψi = Ψ(Hi) · Ψ(Gi) (21)

where Ψ(Hi) and Ψ(Gi) denote the density vector of the ith
bag for the hand posture and spatiotemporal gestures, respec-
tively. We then normalize the density vectors such that all
density values have a maximum value of one and a minimum
of zero (i.e., (0 ≤ Ψi[t] ≤ 1)∀t ∈ NBi,∀i ∈ B+).

B. Automatic Sign Labeling

Given the density vector Ψi, we now label the frames in the
corresponding video. In order to account for the translation am-
biguities, we must detect whether the target sign was actually
performed in the video even though the translation information
specifies that it does occur. In order to do this, we flag the
video sequences which have no frames with a high similarity
to the other video sequences in the set of positive bags. A video
sequence is classified as a noneligible sentence if the maximum
frame density Ψi[tmax] falls below a set threshold, where tmax

is then defined as the frame with the maximum density

tmax = arg max
t̂

Ψi[t̂]. (22)

From the experiments, we observed that a threshold value
of 0.55 performed best when thresholding the maximum frame
density. Any sequence which is classified as a noneligible
sentence of the target sign is automatically discarded and not
considered for the remaining automatic training steps for the
current target word. The positive sequences are sequences
which have a corresponding maximum frame density which
exceeds the threshold. We process all positive sequences us-
ing our density labeling algorithm which we now describe in
the following sentences. We first apply a 1-D Gaussian filter
g(x)(σ = 1.5) to the density vector Ψi to create a blurred
density vector Ψ̃i = Ψi ∗ g. We define the function Lmin(X, t)
to be the index of the local minima of distribution X at position
t. We then find the local density minima as defined in

tminS =Lmin(Ψ̃i, t
max − 1) (23)

tminE =Lmin(Ψ̃i, t
max + 1). (24)

The indices of the local minima are then used to calculate a
modified density vector as follows:

Ψ̃i

∗
= Ψi −

Ψi[tminS] + Ψi[tminE]
2

. (25)

In order to identify the subsequence of the density vector Ψ̃i

∗
,

which corresponds to the sequence of the video in which the
target sign is performed, we find the maximum sum contiguous
subsequence (MSCS) of Ψ̃i

∗
. The MSCS of Ψ̃i

∗
corresponds

to the subsequence with the maximum value of
∑T

t Ψ̃i

∗
[t].

The start and end frames tsi and tei of the target word within
bag i are then defined as the indices in which the MSCS

Fig. 8. Vector Ψ̃i and automatically labeled target signs Alot.

begins and ends. The spatiotemporal gesture and hand posture
sequences which correspond to the target word are then defined
as Ĝi = {Gi[tsi], . . . , Gi[tei]} and Ĥi = {Hi[tsi], . . . , Hi[tei]},
respectively. Fig. 8 illustrates the density vectors of the target
sign Alot in five different sequences as well as the frames
which were hand labeled as containing the target sign and the
frames which our automatic sign labeling technique labeled.
The density vectors of the five sequences shown in Fig. 8
were calculated using the same spatiotemporal gesture density
matrices shown in Fig. 6 along with the hand shape density
matrices.

V. TRAINING AND CLASSIFICATION

For a given sign, we recognize both the spatiotemporal
gestures and hand postures independent of each other and
then combine the recognition results to make an overall sign
classification. Our spatiotemporal gesture spotting system is
based on an HMM framework which models the spatiotemporal
pattern of the hand movements over time. The hand posture
recognition framework is built on a support vector machine
(SVM) framework which is automatically trained to classify the
key hand postures within the signs.

A. Spatiotemporal Gesture HMM Framework

We propose an HMM-based spatiotemporal gesture spot-
ting framework which detects the movement epenthesis and
classifies the spatiotemporal gestures as one of a number of
pretrained signs. We use the compact notation λ = {A,B, π}
to indicate the complete parameter set of an HMM, where A
is a matrix storing transition probability and aij denotes the
probability of making a transition between the states si and sj .
B is a matrix storing output probability for each state, and π is
a vector storing initial state probability.

1) HMM Threshold Model: Lee and Kim [25] proposed a
single-channel HMM threshold model using discrete observa-
tions to recognize a set of distinct gestures. Kelly et al. [26] ex-
pand on the work of Lee and Kim to develop an HMM threshold
model system which models the continuous multidimensional
sign language observations within a parallel HMM network
to recognize the two hand signs and identify the movement
epenthesis. A specific HMM, called a threshold model, is
created to model the movement epenthesis by calculating the
likelihood threshold of an input gesture and to provide a confir-
mation mechanism for provisionally matched gesture patterns.

534 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 41, NO. 2, APRIL 2011

For a network of HMMs Λ = {λ1, λ2, . . . , λW }, where λw is
a dedicated gesture HMM used to calculate the likelihood that
the input gesture belongs to gesture class w, a single threshold
model λ is created to calculate the likelihood threshold for
each of the dedicated gesture HMMs. Each dedicated gesture
HMM is trained to model a specific combination of gesture
subpatterns while the threshold HMM is created to model an
arbitrary combination of gesture subpatterns. It is not in the
scope of this paper to describe the threshold model in detail,
and readers should consult the works of Lee and Kim [25] and
Kelly et al. [26] for a more detailed discussion on the HMM
threshold model technique.

2) Parallel HMM Training: When recognizing a two-
handed spatiotemporal gesture, a parallel HMM is required to
model the left and right hands [27]. We implement a parallel
HMM threshold model system which initializes and trains a
dedicated parallel HMM denoted as λw. We denote the parallel
HMM as λw = {λw

L , λw
R}, where λw

L and λw
R are HMMs which

model the left and right hand gestures, respectively.
The parallel HMMs are trained using an automated HMM

initialization and training technique, utilizing iterative cluster-
ing and the Baum–Welch and Viterbi realignment processes,
proposed by Kelly et al. [26]. Each HMM is trained on

data from all spatiotemporal gesture subsequences Ĝk

Lw
and

Ĝk

Rw
(1 ≤ k ≤ K) extracted using our automatic sign label-

ing technique. We define k as the index for the kth training
example for target word w, K as the total number of training

examples for target word w, and Ĝk

Lw
and Ĝk

Rw
as the

left and right hand observation sequences, respectively. Each

of the observation subsequence Ĝk

Lw
and Ĝk

Rw
contains

the same set of features used to calculate the spatiotemporal
gesture similarity described in Section III-A; therefore, the kth
gesture subsequence of the right hand for word w is defined as

Ĝk

Rw
= {f̂w

R1, . . . , f̂
w
RTkw

}, and Tkw is the length of the kth
subsequence for word w.

A weighting of ωLw and ωRw is applied to the left and
right hand HMMs, respectively, to account for the variations
in information held in each of the hands for a particular sign.
The weighting applied in the system is based on a variance
measure of the observation sequences. The variances of the
left and right hand observations are computed by calculating
the variance of each observation dimension σ2

Lw[i] and σ2
Rw[i],

where 0 ≤ i ≤ D and D are the dimension of the observation
vectors. The left HMM weight ωLw and the right HMM weight
ωRw are then calculated using

ωLw =
D∑

i=0

σ2
Lw[i]

(σ2
Lw[i] + σ2

Rw[i]) × D
(26)

ωRw =
D∑

i=0

σ2
Rw[i]

(σ2
Lw[i] + σ2

Rw[i]) × D
. (27)

A parallel HMM threshold model λ′ = {λL, λR} is then cre-
ated using the network of trained parallel HMMs λw (w ∈ W).

3) Parallel HMM Gesture Classification: To classify the
parallel observations Ĝ = {ĜL, ĜR}, the Viterbi algorithm is

run on each model given the unknown observation sequences
ĜL and ĜR, calculating the most likely state paths through each
model w. The likelihoods of each state path, which we denote
as P (ĜL|λw

L) and P (ĜR|λw
R), are also calculated. We calculate

the overall likelihoods of a dedicated gesture and a movement
epenthesis with the equations defined in

P (Ĝ|λw) =P
(
ĜL|λw

L

)
ωLw +

(
ĜR|λw

R

)
ωRw (28)

P (Ĝ|λ) =
P

(
ĜL|λL

)
ΓLw + P

(
ĜR|λR

)
ΓRw

2
(29)

where ΓLw and ΓRw are constant scalar values used to tune
the sensitivity of the system to the movement epenthesis.
The sequence of observations can then be classified as w if
P (Ĝ|λw) ≥ P (Ĝ|λ) evaluates to be true.

B. Hand Posture Training

While the spatiotemporal gesture spotting framework can
be directly trained on data extracted from our automatic sign
extraction framework described in Section IV and IV-B, the
hand posture spotting system must apply further processing
to the extracted hand posture subsequences Ĥi. This addi-
tional extraction process is required due to the variation in
the possible hand postures which can occur within a particular
sign sequence. For a particular sign, there are usually only a
small number of frames in which the key hand postures are
performed. The remaining hand postures performed in a sign
are transitional postures which do not contribute to identifying
the meaning of the sign.

1) Hand Posture Clustering: The goal of our hand posture
clustering process is, given a set of hand posture subsequences
Ĥ , to automatically extract the clusters that contain the hand
postures which best represent the key postures of that sign.
We now describe the key posture clustering algorithm in the
following paragraph.

We define the hand posture density subsequence as Ψ̂(Hi) =
{Ψ(Hi[tsi]), . . . ,Ψ(Hi[tei])} and calculate the mean μ and stan-

dard deviation σ over all density sequences i ∈ Ĥ+. The prob-
ability P (Ψ̂(Hi)[t]) of frame t of the ith bag being a key hand
posture is then calculated using the cumulative distribution
function

P
(
Ψ̂(Hi)[t]

)
=

1
2

(
1 + erf

(
Ψ̂(Hi)[t] − μ

σ
√

2

))
. (30)

When training an automatic sign language spotting frame-
work, the system will be trained on a set of target words
w (1 ≤ w ≤ W). For a target word w, we calculate the start
and end frames of the spatiotemporal gesture and hand pos-
ture sequences Ĝi and Ĥi for all positive bags i. For each
word w, we then extract the hand postures Hi[t], where
P (Ψ̂(Hi)[t]) > 0.5, and construct an initial hand posture clus-
ter ξw = {Hi[1], . . . ,Hi[L(ξw)]}, where L(ξw) corresponds to
the total number of hand postures Hi[t] with a corresponding
probability P (Ψ̂(Hi)[t]) > 0.5. The initial clusters are con-
structed for all words w ∈ W , resulting in an initial set of hand

KELLY et al.: WEAKLY SUPERVISED TRAINING OF A SIGN LANGUAGE RECOGNITION SYSTEM 535

posture clusters Ξ = {ξ1, . . . , ξW }. Using this set of initial
clusters, the aim is to extract the subsets of each cluster which
contain only the hand postures that represent the key hand
postures useful for discriminating between signs. In order to
achieve this, we develop an iterative validation and cluster
trimming algorithm to remove non-key hand postures from each
cluster. We automatically interpret the set of clusters by analyz-
ing the dissimilarity between each cluster pair using a cluster
silhouette [28] representation. We define Sw in (31)–(36) as the
measure of dissimilarity for cluster ξw, where w is the index of
the word and L(ξw) defines the number of hand postures in the
posture cluster for word w

Sw =
1

L(ξw)

L(ξw)∑
t

sw[t] (31)

sw[t] =
bw[t] − aw[t]

max {bw[t], aw[t]} (32)

bw[t] = χw

l̂
[t] (33)

l̂ = arg min
l:(l 	=w)

χw
l [t] (34)

aw[t] = χw
w[t] (35)

χw
l [t] =

1
L(ξl)

L(ξl)∑
j=0

DH (ξw[t], ξl[j]) (36)

where χw
l [t] defines the average distance between the tth hand

posture in the posture cluster of word w and all hand postures
in the posture cluster of word l.

A value of Sw close to one means that the hand postures
are appropriately clustered. If Sw is close to −1, then the
hand postures are clustered poorly, therefore containing hand
postures which occur in other clusters, and, thus, are not
useful for discriminating between signs. For each iteration of
our validation and cluster trimming algorithm, we calculate
all dissimilarity measures Sw and sw for each word w. We
then remove the poorly clustered hand postures based on the
dissimilarity measures. If Sw < 0, then we perform a cluster
trimming procedure where we remove hand postures H , which
have the lowest dissimilarity sw[t], from cluster ξw. Removing
elements from cluster ξw in the current iteration will affect
the dissimilarity values for all clusters in the next iteration;
therefore, to avoid overfitting, we limit the number of hand
postures which can be removed for each iteration to a fraction
of the total number of hand postures in the cluster. For the
experiments we conduct, we remove, at most, 10% of the hand
postures at each iteration. This algorithm will repeat until one
of two stopping criteria occurs for all hand posture clusters.
The first stopping criteria for our algorithm specifies that no
further postures be removed from the cluster if the dissimilarity
measure Sw > 0. The second stopping criteria specifies that the
number of postures in a cluster must not go below a predefined
threshold. We set this predefined threshold to be a proportion
of the total number of positive bags NB+

w
for each word w.

We use the heuristic that a key hand posture occurs for at least
250 ms in each video; thus, each key posture will appear in at
least six frames per video. We then set the minimum number of
postures Tmin per cluster to be Tmin = NB+

w
× 6. Algorithm 1

Fig. 9. Visualization of cluster validation and trimming algorithm.

details our iterative validation and trimming procedure, and
Fig. 9 shows a visualization of the algorithm being applied to a
set of three initial clusters.

Input: Set of Initial Posture Clusters Ξ
Output: Set of Key Posture Clusters Ξ′

Converged = False
while!Convergeddo

Converged = True
foreachw ∈ Wdo

Calculate Dissimilarity Sw and sw[t] for all t’s
ifSw < 0 ∩ L(ξw) > Tminthen

MaxRemove = L(ξi) × 0.1
Sort(sw, ξw) in Increasing Order of sw

forj < MaxRemovedo
ifsw[j] < 0then

Remove ξw[j] from ξw

Converged = False
end

end
end

end
end
Algorithm 1: Cluster Validation and Trimming Algorithm

C. Hand Posture SVM Framework

A set of SVMs [29] is trained on data, using the discussed
Hu moments and eigenspace size functions, extracted from
the automatically created hand posture cluster set Ξ. Given an
unknown hand image, the relevant features are extracted, and
the SVMs use the data to estimate the most probable hand
posture classification. To classify a hand contour C representing
an unknown hand posture, it must be assigned to one of the W
possible words. The set of posture classes can be defined as α =
{α1, . . . , αW }. The proposed recognition framework uses two
distinct measurement vectors to represent a hand posture. For
each posture class αw, a set of two SVMs {SV M sf

w , SV Mhu
w }

is used to calculate P (αw|I(C), ζ(C)), the probability that
posture C belongs to class αw given the measurement vectors
I(C) and ζ(C), where I(C) is the set of Hu moments and ζ(C)
is the weighted eigenspace size function computed from the
hand contour C.

1) SVMs: SVMs are a set of supervised learning methods
used in classification and regression. A one-against-all SVM
model is used in this paper, and the training of the SVM
consists of providing the SVM with data for two classes. The
data for each class consist of a set of n-dimensional vectors.
The SVM will construct a hyperplane in the n-dimensional

536 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 41, NO. 2, APRIL 2011

space, attempting to maximize the margin between the two
input classes.

The SVM type used in this paper is the classification SVM
type 1 using a nonlinear classifier by means of the kernel trick
as proposed by Aizerman et al. [30]. The kernel used is a radial
basis function as defined by k(x, x′) = exp(−γ‖x − x′‖2).
The SVM is extended to obtain class probability estimates by
computing the pairwise class probabilities rij ≈ p(y = i|y =
i or j,X) using Lin et al.’s [31] improved implementation
of Platt’s method [32] which defines rij ≈ 1/(1 + eAf̂+B),
where A and B are estimated by minimizing the negative log-
likelihood function using the known training data and their
decision values f̂ . We then use the second approach proposed
by Wu et al. [33] to compute pi from all rij’s by solv-
ing the optimization problem minp(1/2)

∑C
i=1

∑
j:j 	=i(rijpi −

rijpj)2 subject to
∑C

i=1 pi = 1, pi ≥ 0,∀i.
2) SVM Training: The SVMs are trained on the data ex-

tracted from the automatically created hand posture cluster
set Ξ. The weighted eigenspace size function data and Hu
moment data are then extracted from the training clusters
to create the sets Huw = {Iw[1], Iw[2], . . . , Iw[L(ξw)]} and
ζw = {ζw[1], ζw[2], . . . , ζw[L(ξw)]}, where Huw is the set of
Hu moments and ζw is the set of weighted eigenspace size
function [defined in (8)] for the hand posture cluster ξw.

To train each SV M sf
w , the set ζw is used as the positive la-

beled training data, and ζw := {ζk}∀k 	=w is used as the negative
labeled training data. Similarly, each SV Mhu

w is trained using
Huw as the positive labeled data and Huw := {Huk}∀k 	=w as
the negative labeled data. The SVMs SV M sf

w and SV Mhu
w are

then trained to maximize the hyperplane margin between their
respective classes (ζw, ζw) and (Huw,Huw).

3) Posture Classification: To classify a hand contour C,
each SV M sf

w and SV Mhu
w will calculate P (αw|ζ(C)) and

P (αw|I(C)); the probabilities ζ(C) and I(C) belong to class
αw, using the method outlined in Section V-C1, where I(C)
and ζ(C) are the Hu moments and weighted eigenspace size
function extracted from the hand contour C, respectively. The
classifier weights used to determine the overall probability are
defined in (37), where cvsf

w and cvhu
w are the cross validation

accuracies achieved during the training of each SV M sf
w and

SV Mhu
w , respectively

μsf
w =

cvsf
w

cvsf
w + cvhu

w

μhu
w =

cvhu
w

cvsf
w + cvhu

w

. (37)

A weighted combination of the probabilities is then cal-
culated to generate the overall probability P (αw|I(C), ζ(C))
according to

P (αw|I(C), ζ(C)) =
(
P (αw|ζ(C)) × μsf

w

)
+

(
P (αw|I(C)) × μhu

w

)
. (38)

VI. CONTINUOUS RECOGNITION

Thus far, we have described our techniques developed to au-
tomatically train and classify spatiotemporal gestures and hand
postures. We will now describe in the following paragraphs how
we expand on our automatically trained spatiotemporal gesture

and hand posture classifiers in order to spot and classify the
signs within continuous sequences of natural sign language.

To perform the continuous gesture spotting, we utilize the
automatically trained spatiotemporal gesture HMM framework,
discussed in Section V-A, and the automatically trained hand
posture SVM system, discussed in Section V-B and C.

The first step in our sign spotting algorithm is the spa-
tiotemporal gesture end point detection using the automatically
trained spatiotemporal gesture HMM framework. We detect
the gesture end points from continuous streams of spatiotem-
poral gesture observations Ĝ = {f̂1, f̂2, . . . , f̂T } and calculate
the HMM model likelihoods of observation windows Ĝ∗ =
{f̂T−L, f̂T−L−1, . . . , f̂T }, where Ĝ∗ is a subset of Ĝ and L
defines the length of the observation subset used. In this paper,
we set L as the average length of the automatically extracted
subsequences used to train the system.

A candidate gesture κ with end point κe = T is flagged when
∃w : P (Ĝ∗|λw) ≥ P (Ĝ∗|λ), where λw is the spatiotemporal
gesture HMM model for word w and λ is the threshold HMM.

For each candidate end point, we calculate a corresponding
spatiotemporal gesture start point κs. Different candidate start
points are evaluated using the measurement shown in (39),
where βw(Ĝ) is a normalized metric (between zero and one)
which measures the strength of gesture w relative to the move-
ment epenthesis likelihood of the given observations Ĝ

βw(Ĝ) =
P (Ĝ|λw)

P (Ĝ|λw)) + P (Ĝ|λ)
. (39)

To find a candidate start point, the metric βw(Ĝsκe
)

is calculated over different values of s, where Ĝsκe
=

{f̂s, f̂s+1, . . . , f̂κe
} and (κe − L2) ≤ s < κe. The candidate

gesture start point κs is then found using

κs = arg max
s

βw(Ĝsκe
). (40)

A. Candidate Selection

The start and end point detection algorithm may flag can-
didate gestures which overlap, and for this reason, we expand
on our continuous sign spotting algorithm with a candidate
selection algorithm. The purpose of the candidate selection
algorithm is to remove the overlapping candidate gestures such
that the single most likely gesture is the only remaining gesture
for a particular time frame.

Each set of overlapping candidates represents a set of ges-
tures with similar spatiotemporal properties. In order to dis-
criminate between the gestures with similar spatiotemporal
properties, we incorporate the hand shape measure. We con-
sider all the gesture candidates which are flagged using our
technique described earlier in Section VI. We calculate the
overall probability of a particular candidate P (κ|Ĝ, Ĥ) by
combining the spatiotemporal and hand posture probabilities as
described in

P (κ|Ĝ, Ĥ) =βw(Ĝκsκe
) × P (αw|κ, Ĥ) (41)

P (αw|κ, Ĥ) = max
κs<i<κe

P
(
αw|I

(
Ĥ[i]

)
, ζ

(
Ĥ[i]

))
(42)

KELLY et al.: WEAKLY SUPERVISED TRAINING OF A SIGN LANGUAGE RECOGNITION SYSTEM 537

Fig. 10. Candidate gestures Υ. Candidates marked in (dashed) red denote
gestures which are removed by the second candidate selection step. Candidates
in (solid) green denote the final spotted gestures.

where αw is the hand posture SVM model for word w. The
hand posture probability of candidate P (αw|κ, Ĥ) is defined as
the probability of the hand shape which best fits the gesture w.
I(Ĥ[i]) is the set of Hu moments, and ζ(Ĥ[i]) is the weighted
eigenspace size function computed from the hand contour Ĥ[i]
in frame i.

The first step in the candidate selection algorithm is to
cluster the overlapping gestures which have the same gesture
classification. We remove all but one candidate gesture from
this cluster, leaving only the candidate gesture κB with the
highest P (κ|Ĝ, Ĥ) value. We repeat this step for each cluster to
produce a set of candidate gestures Υ = {κB1, κB2, . . . , κBK},
where K is the total number of clusters created from clus-
tering the overlapping gestures which have the same gesture
classification.

The second candidate selection step finds the sets of over-
lapping candidates and removes the least probable candidates
such that a maximum of only one candidate is detected for
any given time frame. Fig. 10 shows the time segments and
gesture probabilities of the recognized gestures after the first
and second candidate selection steps where the signs “Lost” and
Alot are correctly spotted from a sample sign language sentence
“I Lost Alot of Books.”

VII. EXPERIMENTS

A. Classifier Experiments

Before carrying out a full evaluation of our automatic train-
ing and sign language spotting framework, we first perform
preliminary experiments to evaluate the performance of the
gesture classification components. Kelly et al. [21] perform
an evaluation of size functions as a method for hand posture
classification in sign language and show that the eigenspace size
function performs well at discriminating between different hand
postures. We now carry out an evaluation of the spatiotemporal
gesture classifier described in Section V-A in the following
paragraphs.

1) Isolated Spatiotemporal Gesture Classification: The
goal of the spatiotemporal gesture experiments was to evaluate
the performance of our HMM threshold framework model
when recognizing spatiotemporal gestures and identifying
epentheses which occur in sign language. We first evaluate
our framework on a data set which consists of eight different
isolated signs which were manually extracted from videos of
a fluent signer performing natural sign language sentences. To
evaluate the spatiotemporal gesture framework, the eight signs
were chosen such that each sign could be distinguished by
position and movement alone and did not require hand posture
information. A set of ten training signs and a set of ten test
signs were recorded for each sign in the vocabulary (a total

TABLE I
CONTINUOUS SPATIOTEMPORAL GESTURE RECOGNITION: AUC

MEASUREMENTS FOR DIFFERENT MODELS

of 160 gesture samples). An additional set of gestures, which
represents a collection of the movement epenthesis, was also
extracted from the video sequences to test the performance of
the threshold model. For each sign, ten movement epentheses
that occurred before and after the valid sign in different sign
language sentences were recorded. An additional set of 20
random movement epentheses was also recorded, resulting in
a test set of 100 epenthesis samples to evaluate the models on.

Morency et al. [34] propose a latent-dynamic conditional
random field (LDCRF) [34] to combine the strengths of the
conditional random fields (CRF) [35] and the hidden condi-
tional random fields (HCRF) [36] for the recognition of human
gestures by capturing both the extrinsic dynamics and intrinsic
substructure of human gestures. Kelly et al. [37] perform a
full evaluation of a threshold HMM and different CRF models
when recognizing the gestures in sign language. The results
showed that the HMM threshold model and the LDCRF model
performed best when compared to traditional HMMs, CRFs,
and HCRFs.We implemented the LDCRF model [34] and our
HMM threshold model and tested and trained both models on
the same training and test set. To evaluate the performance
of the models, we perform a receiver-operating-characteristic
analysis on the different models and calculate the area under
the curve (AUC) for each model. The results of the experiment
showed that the standard HMM achieved an AUC of 0.902, the
LDCRF achieved an AUC of 0.942, and the HMM threshold
model achieved an AUC of 0.976. While we evaluated the
LDCRF model on different numbers of states, we report only
the best performing LDCRF which was an LDCRF model with
eight states per sign.

2) Continuous Spatiotemporal Gesture Classification: We
perform a second experiment to evaluate the performance of
the models when recognizing continuous unconstrained sign
language sentences. The models were trained on the same set
of eight hand gestures used in the isolated experiments in
Section VII-A1. We use the best performing models trained
during the isolated recognition experiments, discussed in
Section VII-A1, to evaluate the continuous sign language
spotting performance of the HMM threshold framework and
LDCRF model. Thus, we use an LDCRF model with eight
hidden states per label for the spatiotemporal gesture spotting.

Table I shows the performance of our HMM framework
and the LDCRF model when spotting and classifying gestures
within 160 continuous sign language sentences. The 160 test
sentences contain a large amount of signs outside of the eight
chosen signs as well as the epenthesis which occurs between the
signs. The experiment shows an overall detection rate of 95.6%
and an overall reliability of 93.8% for our HMM framework
and an overall detection rate of 83.1% and an overall reliability
of 80.1% for the LDCRF model when spotting and classifying
gestures in continuous sign language sentences.

538 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 41, NO. 2, APRIL 2011

B. Automatic Training Experiments

A description of the experiments conducted to evaluate the
overall performance of our automatic training and sign lan-
guage spotting system is presented in this section.

1) Data Collection: Two fluent Irish sign language (ISL)
signers were recorded while they performed a total of 844
natural sign language sentences. The signers were given no
instruction other than to sign to the camera and to sign sentences
while trying to incorporate certain key words into the sentences.
While recording the sentences, a certified ISL interpreter trans-
lated each sentence through a microphone connected to the
video camera. The videos were captured at 25 fps with a frame
size of 640 × 480.

From the set of 844 sentences, a lexicon of 30 signs was
decided on based on the signs which occurred frequently within
the 844 sentences. The 844 sentences contain a large amount of
signs outside of the 30 chosen signs. The 30 key signs were then
labeled within the 844 sentences. Each of the 30 signs occurred,
on average, 44 times within the 844 sentences with a total of
1344 key signs occurring in the data set. The labeling process
involved marking the start and end points of each sign within
each video. It is important to note that this labeling process is
carried out for ground truth data only and none of these labels
are used in the training of the system.

2) Sign Labeling: The goal of the automatic sign extraction
framework is to accurately detect target signs within unseg-
mented sentences and label them at a frame level. Due to the
ambiguities in the sign translation, the system must also be able
to automatically identify and discard noneligible sentences by
detecting whether a target sign was actually performed in a
given video even though the translation information specifies
that it does occur.

When performing the automatic sign extraction, we construct
a set of bags B+ which contains video sequences where the
target sign is said to occur based on the translation data. Using
our MIL density matrix algorithm, the set of bags is then used to
find the similarities in the video sequences in order to label the
target sign. The automatic sign labeling algorithm is then used
to classify the positive sentences (sentences in which the target
word occurs) and noneligible sentences (sentences in which
the target word does not occur in the video but does occur in
the text translation). For positive signs, the labeling algorithm
then detects the start and end points of the target sign while
noneligible sentences will be automatically discarded.

Since our automatic sign extraction technique is based on
a comparison of the other sentences in the set of bags, the
number of sentences and the number of possible noneligible
sentences in the set of bags can affect the labeling of all the
sentences in the set of bags. We first investigate the effect that
the noneligible sentences have on the automatic sign extraction
framework by varying the number of videos in a bag and
by also varying the percentage of the bag which is made up
of noneligible sentences. We vary the number of elements
in a positive bag from 5–20 videos and vary the percentage
of noneligible sentences, for the current target word, from
0%–50%. To evaluate our automatic sign extraction framework,
we compare the results of the automatic extraction to that of

Fig. 11. Performance of automatic sign labeling and effect of translation
ambiguities.

the ground truth data. In this experiment, we use true positives
(TPs), false negatives (FNs), true negatives (TNs), and false
positives (FPs) to quantify the performance of the system. A TP
refers to when the classifier correctly classifies a positive sign
as one that occurred in the sentence and also correctly labels the
start and end points such that the classified sign overlaps with
the ground truth sign by at least 50%. A FP refers to a sentence
which is incorrectly classified as a positive sentence or a sign
in which the start and end points are flagged such that it does
not overlap with the ground truth sign. A TN refers to when a
sentence is correctly labeled as a noneligible sentence, and a FN
refers to a sentence which is incorrectly labeled as a noneligible
sentence. For the different percentages of noneligible sen-
tences (0%–50%), we calculate the total precision, recall, and
F-measure for all 30 signs when labeled from the bags which
contained 5, 10, 15, and 20 sentences.

Fig. 11 shows the precision, recall, and F-measure for dif-
ferent percentages of noneligible sentences present in the set of
bags B+. The results show an F-measure of 0.92 when there
exist no noneligible sentences and an F-measure of 0.67 when
50% of the bag is made up of noneligible sentences. In our
data set of 844 sentences, 12.2% of the sentences contained
noneligible sentences. Thus, a good indication of how our
sign labeling system would perform in reality is to evaluate
the system on the bags which approximately contain 12.2%
noneligible sentences. In our experiment, the results show an
F-measure of 0.874 when labeling signs in a bag made up
of 15% noneligible sentences. This can be interpreted as a
promising result. By looking at the corresponding precision and
recall values for the bag made up of 15% noneligible sentences,
we can see that our technique achieves a precision of 0.942.
This means that 94.2% of the data that will be used to train
the spatiotemporal gesture and hand posture models is correct.
The recall rate achieved was 0.833, meaning that only 16.7% of
the valid training data were incorrectly discarded. An important
observation to make from the results of this experiment is
that, as the percentage of noneligible sentences increases, the
precision rate does not drop. A vital part of the classification
of the sentences is to reduce the number of FPs since any FPs
will then be used in the training of the spatiotemporal and
hand posture classifiers. The consistent precision rate achieved
during this experiment demonstrates that our system performs
well at reducing the number of FPs.

3) Start and End Point Detection: The second experiment
we conduct on our automatic sign extraction framework is an

KELLY et al.: WEAKLY SUPERVISED TRAINING OF A SIGN LANGUAGE RECOGNITION SYSTEM 539

evaluation of the performance of the system when detecting
the start and end points of positively labeled sequences. In
all experiments, from now on, we use a set of bags which
contains 15 video sequences of which an average of 12.2%
are noneligible sentences which contain translation ambiguities
of the target word. It is important to note that, although we
manually control the number of noneligible sentences in a
bag during the previous experiment, in this experiment and
all experiments which follow, the percentage of noneligible
sentences are controlled only by the content of our data set and
not by the supervised labeling of the positive and noneligible
sentences.

The sign labeling algorithm computes the density vectors
for each video and automatically identifies and discards any
noneligible sentences in the set of bags. An overall F-measure
of 0.88 was achieved from the automatic classification of pos-
itive and noneligible sentences in each of the 30 bags for each
sign. For the positive videos, the start and end points are then
detected. To evaluate the performance of the start and end point
detection, we compare the automatically detected start and end
points with the ground truth start and end points and compute
the mean error for each sign. The results of the start and
end point detection experiment show that our system detects
the occurrence of a target word within an average of 9.4 and
8.6 frames of the ground truth data. This can be interpreted
as a promising result as this result means that our technique is
able to detect target sign start and end points within 0.376 and
0.344 ms when compared to a human interpreter.

4) Continuous Recognition: The overall goal of this paper
is to automatically train models to recognize natural sign lan-
guage from unconstrained sign language sentences. We now
describe the experiments which were carried out to evaluate
the performance of the overall sign language spotting system in
the following sentences. For each of the 30 target words, a set
of target word subsequences was automatically extracted using
the techniques we describe in Section IV-B. For the experiments
we describe, the subsequences were calculated from the same
set of bags used to evaluate the start and end point labeling in
Section VII-B3. Each bag contained 15 video sequences of
which an average of 12.2% are noneligible sentences which
contained the translation ambiguities of the target word. The
noneligible sentences were automatically detected and dis-
carded by our system with a precision of 0.931 and a recall
rate of 0.856. All the bags contained video sequences from only
one of the two signers. A set of parallel HMMs and a parallel
HMM threshold model were then automatically trained on the
subsequences using the techniques we discuss in Section V-A2.
The key hand postures for each target word were automatically
extracted, and a set of SVMs was then trained to recognize the
key hand postures using the hand posture framework we de-
scribe in Section V-B and C. The samples of the automatically
extracted spatiotemporal subsequences and key hand postures,
used in the actual training, are made available on a video as a
supplement to this paper.

Given an unknown sign language sentence, we then apply
our sign spotting framework described in Section VI to spot and
classify the signs in each sentence. To evaluate the performance
of our sign language spotting framework, we test the system on

TABLE II
CONTINUOUS SPOTTER AND CLASSIFIER PERFORMANCE

the remaining set of sentences, as performed by both signers,
which were not used in the training process.

Table II details the performance of the sign spotting system
when tested on the remaining sentences. The results show that
the system performs well with an overall detection ratio of
0.823 and an overall reliability of 0.812. The user-dependent
results, for Signer 1, show that the system performs with a
detection ratio of 0.86 while the user-independent results, for
Signer 2, show a detection ratio of 0.764. In the previous works
which have used a small number of signers in the training
set, the results of the user-independent recognition evaluations
have seen large decreases when compared to the user-dependent
recognition results [2]. For example, in [38], the accuracy
for training on one signer and testing on another was 51.9%
compared to 92% when the same signer supplied both the
training and test data. Other works [2] have shown that an
increased number of signers in the training set can greatly
improve the overall performance of a user-independent sign
recognition system. Therefore, while the results achieved in this
experiment show a decrease in the signer-independent detection
rate, the fact that only one signer was represented in the training
set means that a decrease of only 9.6% can be interpreted as a
promising result.

We conduct a second experiment in which we evaluate the
impact that our automatic key hand posture extraction and hand
posture recognition components have on the overall detection
of the signs. We carry out the same sign spotting experiment as
before, but this time, no automatic key hand posture extraction
was carried out, and no hand shape probability was included in
the sign spotting framework. In the absence of our hand shape

540 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 41, NO. 2, APRIL 2011

techniques, the results show that the overall detection rate drops
by 10.8%. This shows that our automatic hand posture cluster-
ing method is an important step in developing a full weakly
supervised sign training framework. It also demonstrates the
importance of our hand shape classification for the verification
of detected spatiotemporal signs. A video showing the software
implementation of our system performing sign spotting on a
number of sample sentences is made available as a supplement
to this paper.

The main disadvantage of our proposed framework is the
computational complexity of the continuous sign language
spotting framework. During continuous experiments on the
vocabulary of 30 signs, the continuous sign spotting system
took, on average, two times the length of the video to carry
out the gesture spotting algorithm. Performing the Viterbi al-
gorithm on the HMM threshold models is the main cause of
the high computation time. Reducing the number of states in
the threshold model would decrease the overall computational
complexity, and Lee and Kim [25] have proposed methods to
reduce the number of threshold model states by half using
relative entropy.

VIII. CONCLUSION

Previous research in sign language recognition has typically
required the manual labeling of sign language videos in order to
extract isolated examples of particular signs to train recognition
systems. In order to advance the research of sign language to
the same level as speech recognition, sign vocabularies must be
expanded to the same size as the speech recognition vocabu-
laries. Expanding these manually generated sign vocabularies
is a very difficult time-consuming expensive procedure [12].
Therefore, advancing the sign language recognition research
requires robust automatic training algorithms. In this paper, we
present a novel system of automatically training models for
the recognition of natural sign language. The proposed system
is capable of learning sign language from unsegmented sign
language videos using the weak and noisy supervision of text
translations. Full sign language sentences are automatically
segmented, and the isolated samples of the target words are
extracted from the videos. An HMM-based spatiotemporal
gesture spotting system is trained to recognize the signs in the
vocabulary and to detect the movement epenthesis. Moreover,
an SVM-based hand posture recognition system is trained
on automatically detected key hand postures using our novel
eigenspace size function along with the Hu moments. The
spatiotemporal and hand posture recognition systems are then
combined in a continuous sign spotting framework to detect the
signs from continuous sentences. The experiments demonstrate
that our automatic sign labeling algorithm performed well when
classifying positive signs and noneligible sentences, with an
F-measure of 0.874 when labeling the signs in a bag made
up of 15% noneligible sentences. The results also showed the
sign labeling algorithm detected start and end points of target
words within an average 9.4 and 8.6 frames, respectively. An
evaluation of the performance of our the sign spotting system,
which was automatically trained on a vocabulary of 30 signs,
was carried out. The system was tested on 962 signs which

occurred within continuous sentences. The results indicate that
our system can detect signs from continuous sentences with a
detection rate of 82.3%. The results of the experiments are very
promising. The results of our system are comparable with the
results achieved from the state-of-the-art recognition systems
trained on manual data, such as the work of Yang et al. [10].
By way of comparison, their system was manually trained on
a vocabulary of 48 signs and could detect signs with an 87%
detection rate when tested on 480 signs. The contributions of
this paper are the following: 1) We propose a hand posture clas-
sification model which robustly recognizes the hand postures
independent of the person performing the gesture; 2) we pro-
pose a spatiotemporal gesture spotting model which classifies
spatiotemporal gestures and detects the movement epenthesis
without being explicitly trained on the movement epenthesis;
3) we have combined these posture and spatiotemporal models
into our framework which can automatically learn natural signs
from the weak and noisy supervision of text translations using
our MIL density matrix algorithm. These are important contri-
butions to the area of natural sign language recognition as they
introduce a robust framework for training a recognition system
without the need for manual labeling. While we evaluate our
system on a vocabulary of 30 signs, extending this vocabulary
requires only that a larger video data set, with associated
text translations, be automatically processed by our automatic
training system. Freely available sign language videos and
corresponding translations from television broadcasts could be
utilized as an expansive training set in which our system could
be trained on.

REFERENCES

[1] S. K. Liddell and R. E. Johnson, “American sign language: The phonolog-
ical base,” Sign Lang. Stud., vol. 64, no. 6, pp. 195–278, 1989.

[2] S. C. W. Ong and S. Ranganath, “Automatic sign language analysis: A
survey and the future beyond lexical meaning,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 27, no. 6, pp. 873–891, Jun. 2005.

[3] T. Starner, A. Pentland, and J. Weaver, “Real-time American sign lan-
guage recognition using desk and wearable computer based video,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 20, no. 12, pp. 1371–1375,
Dec. 1998.

[4] B. Bauer and K.-F. Kraiss, “Towards an automatic sign language recogni-
tion system using subunits,” in Proc. Revised Papers Int. Gesture Work-
shop Gesture Sign Lang. Human-Comput. Interaction GW, London, U.K.,
2002, pp. 64–75.

[5] C. Wang, S. Shan, and W. Gao, “An approach based on phonemes to
large vocabulary Chinese sign language recognition,” in Proc. IEEE FG,
Washington, DC, 2002, p. 411.

[6] M. Assan and K. Grobel, “Video-based sign language recognition using
hidden Markov models,” in Proc. Int. Gesture Workshop Gesture Sign
Lang. Human-Comput. Interaction, London, U.K., 1998, pp. 97–109.

[7] W. Gao, G. Fang, D. Zhao, and Y. Chen, “Transition movement models
for large vocabulary continuous sign language recognition,” in Proc. IEEE
FG, May 2004, pp. 553–558.

[8] C. Vogler and D. Metaxas, “A framework for recognizing the simultane-
ous aspects of American sign language,” Comput. Vis. Image Underst.,
vol. 81, no. 3, pp. 358–384, Mar. 2001.

[9] R. Yang, S. Sarkar, and B. Loeding, “Enhanced level building algorithm
for the movement epenthesis problem in sign language recognition,” in
Proc. CVPR, 2007, pp. 1–8.

[10] H. D. Yang, S. Sclaroff, and S. W. Lee, “Sign language spotting with a
threshold model based on conditional random fields,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 31, no. 7, pp. 1264–1277, Jul. 2009.

[11] J. Triesch and C. von der Malsburg, “Classification of hand postures
against complex backgrounds using elastic graph matching,” Image Vis.
Comput., vol. 20, no. 13/14, pp. 937–943, Dec. 2002.

KELLY et al.: WEAKLY SUPERVISED TRAINING OF A SIGN LANGUAGE RECOGNITION SYSTEM 541

[12] P. Buehler, A. Zisserman, and M. Everingham, “Learning sign language
by watching TV (using weakly aligned subtitles),” in Proc. IEEE Comput.
Soc. Conf. CVPR Workshops, Jun. 2009, pp. 2961–2968.

[13] H. Cooper and R. Bowden, “Learning signs from subtitles: A weakly
supervised approach to sign language recognition,” in Proc. IEEE Conf.
CVPR, 2009, pp. 2568–2574.

[14] S. Nayak, S. Sarkar, and B. Loeding, “Automated extraction of signs from
continuous sign language sentences using iterated conditional modes,” in
Proc. CVPR, 2009, pp. 2583–2590.

[15] D. Comaniciu, V. Ramesh, and P. Meer, “Real-time tracking of non-
rigid objects using mean shift,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recog., 2000, vol. 2, pp. 142–149.

[16] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of
simple features,” in Proc. IEEE CVPR, 2001, vol. 1, pp. 511–518.

[17] L. A.-C. M. Castrillon-Santana, O. Deniz-Suarez, and J. Lorenzo-Navarro,
“Performance evaluation of public domain HAAR detectors for face and
facial feature detection,” in Proc. VISAPP, 2008, pp. 179–187.

[18] M.-K. Hu, “Visual pattern recognition by moment invariants,” IEEE
Trans. Inf. Theory, vol. IT-8, no. 2, pp. 179–187, Feb. 1962.

[19] Intel-Corporation, Open Source Computer Vision Library: Reference
Manual, pp. 975–10052000.

[20] C. Uras and A. Verri, “Sign language recognition: An application of
the theory of size functions,” in Proc. 6th Brit. Mach. Vis. Conf., 1995,
pp. 711–720.

[21] D. Kelly, J. McDonald, and C. Markham (2010, Aug.). A per-
son independent system for recognition of hand postures used in
sign language. Pattern Recognit. Lett. [Online]. 31(11), pp. 1359–
1368. Available: http://www.sciencedirect.com/science/article/B6V15-
4YDC3G4-3/2/7f7269fd 77821c3d2b1d92c52f13910a

[22] J. Stokoe and C. William, “Sign language structure: An outline of the
visual communication systems of the American deaf,” J. Deaf Studies
Deaf Educ., vol. 10, no. 1, pp. 3–37, Winter 2005.

[23] M. Handouyahia, D. Ziou, and S. Wang, “Sign language recognition using
moment-based size functions,” in Proc. Int. Conf. Vis. Interface, 1999,
pp. 210–216.

[24] O. Maron, T. Lozano-Pérez, and T. A. L. p Erez, “A framework for
multiple-instance learning,” in Advances in Neural Information Process-
ing Systems. Cambridge, MA: MIT Press, 1998, pp. 570–576.

[25] H. K. Lee and J. H. Kim (1999, Oct.). An HMM-based threshold
model approach for gesture recognition. IEEE Trans. Pattern Anal.
Mach. Intell. [Online]. 21(10), pp. 961–973. Available: http://dx.doi.org/
10.1109/34.799904

[26] D. Kelly, J. M. Donald, and C. Markham, “Continuous recogni-
tion of motion based gestures in sign language,” in Proc. IEEE Int.
Workshop Tracking Humans Eval. Motion Image Sequences ICCV, 2009,
pp. 1073–1080.

[27] C. Vogler and D. Metaxas, “Parallel hidden Markov models for American
sign language recognition,” in Proc. ICCV , 1999, pp. 116–122.

[28] P. Rousseeuw (1987, Nov.). Silhouettes: A graphical aid to the inter-
pretation and validation of cluster analysis. J. Comput. Appl. Math.
[Online]. 20(1), pp. 53–65. Available: http://dx.doi.org/10.1016/0377-
0427(87)90125-7

[29] C.-C. Chang and C.-J. Lin, LIBSVM: A library for support vec-
tor machines, 2001. [Online]. Available: http://www.csie.ntu.edu.tw/
cjlin/libsvm

[30] A. Aizerman, E. M. Braverman, and L. I. Rozoner, “Theoretical founda-
tions of the potential function method in pattern recognition learning,”
Autom. Remote Control, vol. 25, pp. 821–837, 1964.

[31] H.-T. Lin, C.-J. Lin, and R. C. Weng, “A note on Platt’s probabilistic out-
puts for support vector machines,” Mach. Learn., vol. 68, no. 3, pp. 267–
276, Oct. 2007.

[32] J. C. Platt and J. C. Platt, “Probabilistic outputs for support vector ma-
chines and comparisons to regularized likelihood methods,” in Advances
in Large Margin Classifiers. Cambridge, MA: MIT Press, 1999.

[33] T. fan Wu, C. jen Lin, and R. C. Weng, “Probability estimates for multi-
class classification by pairwise coupling,” J. Mach. Learn. Res., vol. 5,
pp. 975–1005, 2004.

[34] L.-P. Morency, A. Quattoni, and T. Darrell, “Latent-dynamic discrimi-
native models for continuous gesture recognition,” in Proc. IEEE Conf.
CVPR, Jun. 2007, pp. 1–8.

[35] A. Quattoni, M. Collins, and T. Darrell, “Conditional random fields for
object recognition,” in Advances in Neural Information Processing Sys-
tems, L. K. Saul, Y. Weiss, and L. Bottou, Eds. Cambridge, MA: MIT
Press, 2005, pp. 1097–1104.

[36] S. B. Wang, A. Quattoni, L.-P. Morency, D. Demirdjian, and T. Darrell,
“Hidden conditional random fields for gesture recognition,” in Proc. IEEE
Comput. Soc. Conf. CVPR, 2006, vol. 2, pp. 1521–1527.

[37] D. Kelly, J. M. Donald, and C. Markham, “Evaluation of threshold model
HMMS and conditional random fields for recognition of spatiotemporal
gestures in sign language,” in Proc. IEEE Int. Workshop Mach. Learn.
Vision-Based Motion Anal. ICCV , 2009, pp. 490–497.

[38] M. Assan and K. Grobel, “Video-based sign language recognition using
hidden Markov models,” in Proc. Int. Gesture Workshop Gesture Sign
Language Human-Comput. Interaction, London, U.K., 1998, pp. 97–109.

Daniel Kelly received the B.Sc. degree in computer
science and software engineering from the National
University of Ireland (NUI) Maynooth, Maynooth,
Ireland, in 2006, and the Ph.D. degree, with a thesis
on the topic of machine learning methods for auto-
mated methods of sign language analysis, from the
Department of Computer Science, NUI Maynooth,
in 2010.

He is currently working as a research fellow in
the Clanty center for sensor web technologies in
University College Dublin. His research interests

include gesture recognition, human motion recognition, computer vision, and
machine learning.

John Mc Donald (M’97) received the B.Sc. degree
(double honors) in computer science and mathemat-
ical physics from the National University of Ireland
(NUI) Maynooth, Maynooth, Ireland, in 1996.

Since 1997, he has been with the Department of
Computer Science, NUI Maynooth, where he has
been a Full-Time Lecturer since 2001. He was a Vis-
iting Researcher at the Department of Electrical and
Computer Engineering, University of Connecticut,
Storrs, in 2002, and at the National Center for Geo-
computation, NUI Maynooth, in 2009. In 2010, he

was a Visiting Scientist at the Computer Science and Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Cambridge. His research
interests include computer vision and pattern recognition, visual simultaneous
localization and mapping, place recognition, human face and gesture analysis,
and digital holography.

He was the Chair of the International Machine Vision and Image Processing
Conference 2007.

Charles Markham received the degree in applied
physics and the Ph.D. degree, with a thesis on
element-specific imaging in computerized tomog-
raphy, from Dublin City University (formerly, the
National Institute for Higher Education, Dublin),
Dublin, Ireland, in 1988 and 1993, respectively.

He is currently a Lecturer with the Computer
Science Department, National University of Ireland
(NUI) Maynooth, Maynooth, Ireland. In 1998, he
was with Dublin City University, Dublin, Ireland,
where he specialized in medical imaging in the area

of element specific imaging using computed tomography. His research interests
include optical brain–computer interfacing, gesture interfaces, and mobile
computer vision.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

