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Gain-Constrained Recursive Filtering with
Stochastic Nonlinearities and Probabilistic Sensor

Delays
Jun Hu, Zidong Wang, Bo Shen and Huijun Gao

Abstract— This paper is concerned with the gain-

constrained recursive filtering problem for a class of time-

varying nonlinear stochastic systems with probabilistic sen-

sor delays and correlated noises. The stochastic nonlinear-

ities are described by statistical means that cover the mul-

tiplicative stochastic disturbances as a special case. The

phenomenon of probabilistic sensor delays is modeled by

introducing a diagonal matrix composed of Bernoulli dis-

tributed random variables taking values of 1 or 0, which

means that the sensors may experience randomly occurring

delays with individual delay characteristics. The process

noise is finite-step autocorrelated. The purpose of the ad-

dressed gain-constrained filtering problem is to design a fil-

ter such that, for all probabilistic sensor delays, stochastic

nonlinearities, gain constraint as well as correlated noises,

the cost function concerning the filtering error is minimized

at each sampling instant, where the filter gain satisfies a cer-

tain equality constraint. A new recursive filtering algorithm

is developed that ensures both the local optimality and the

unbiasedness of the designed filter at each sampling instant

which achieving the pre-specified filter gain constraint. A

simulation example is provided to illustrate the effectiveness

of the proposed filter design approach.

Keywords—Recursive filtering, probabilistic sensor delays,

gain constraint, stochastic nonlinearities, correlated noises,

time-varying systems.

I. Introduction

In recent years, the filtering technique has been play-
ing an important role in a variety of application areas in-
cluding target tracking, computer vision and estimation of
structural macroeconomic models. A rich body of results
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has been reported in the literature with different perfor-
mance indices [4, 10, 11, 14, 18, 27, 34]. For example, the
Kalman filter has proven to be the globally optimal linear
estimator in [14] for the linear systems. In [24, 25], the
optimal linear filters have been designed for systems with
multiple packet dropouts. The extended Kalman filtering
algorithm has been successfully applied in [27] to identify
both the model parameters and the actual value of gene
expression levels for gene regulatory network. Most of the
existing results have relied on an implicit assumption that
the process noises are uncorrelated, see e.g. [12, 26, 27, 36].
However, such an assumption is not always true in practice
since the process noise sequences of a discrete-time system
sampled from a continuous-time system are inherently cor-
related across time. Recently, the filter design problems
have been dealt with in [6, 7, 23] for linear discrete-time
systems with correlated noises.

Most traditional filtering algorithms have been based on
the measurement outputs that are supposed to contain in-
formation about the current state of the system. However,
in engineering practice, the system measurements may be
subject to unavoidable sensor delays, which is particularly
true in a networked environment. In the past decade,
a great number of results have been reported for filter-
ing problems with deterministic/fixed sensor delays, see
e.g. [1, 37]. On the other hand, because of limited band-
width of the communication channel, it is often the case
that the sensor delay occurs in a random way when, for
example, the information is transmitted through networks
in real-time distributed decision-making and multiplexed
data communication environment [33]. Accordingly, the
filtering problems with random sensor delays have recently
received much research attention (see e.g. [3, 16, 18, 35]),
where all sensors share the same type of delay characteris-
tics as pointed out in [4, 12]. Nevertheless, in reality, the
system measurements are usually collected through multi-
ple sensors with different physical constraints. In this case,
it is somewhat conservative to assume that all sensors un-
dergo random delays of the same probability distribution
law. Rather, it would make more practical sense to consider
individual features for randomly occurring sensor delays
[4]. As such, in this paper, one of our motivations is to uti-
lize a series of mutually independent Bernoulli-distributed
random variables to parameterize the random occurrence
of the delays for each individual sensor.

Apart from the measurement delays, it has been well
recognized that the existence of nonlinearities may lead to
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undesirable oscillatory behavior and therefore poses great
challenges on the filter design. In the past few decades,
the nonlinear filtering/control problems have been the fo-
cuses of research that have attracted considerable research
attention, see e.g. [2, 5, 9, 22, 28, 29, 31]. Parallel to the
sensor delay phenomenon, the nonlinearity may also oc-
cur in a random fashion especially when the signals are
transmitted through networks suffering from limited band-
width. For example, the intensity of nonlinear disturbances
may vary with the network conditions for various reasons
including signal congestion, quantization, fading and dis-
order. Accordingly, the so-called stochastic nonlinearities
have started to receive some initial research interest for
filtering problems, see e.g. [30, 36]. On the other hand,
for practical purposes, the filter design is inevitably sub-
ject to certain physical constraints. For example, in many
applications, the system states should preserve the posi-
tivity, the system outputs experience saturations, and the
filter gains may need to be of a specific structure for easy
implementation. The filtering problems with constraints
have been gaining a recurring research interest in the past
decade, see e.g. [13,21,26]. Very recently, in [26], a Kalman
filter algorithm has been developed to cope with the con-
straints on the data injection gain. Unfortunately, up to
now, very little research effort has been made on the gain-
constrained filtering problem with either stochastic nonlin-
earities or probabilistic sensor delays, not to mention the
case where multiple sensors may undergo varying commu-
nication delays with different delay rates. It is, therefore,
the main purpose of this paper to shorten such a gap.

Summarizing the above discussion, it is of both theoreti-
cal importance and practical significance to investigate the
gain-constrained recursive filtering problems with stochas-
tic nonlinearities, probabilistic sensor delays as well as cor-
related noises. Our aim is to develop an effective recursive
filter such that the specified cost function with respect to
the filtering error is minimized. The main contribution of
this paper lies in the following four aspects. 1) A uni-
fied framework is established to solve the gain-constrained
filtering problem for discrete time-varying system in the si-
multaneous presence of probabilistic sensor delays, stochas-
tic nonlinearities and correlated noises. 2) Individual delay
rate is introduced to cater for the randomly occurring delay
phenomenon for each sensor. 3) The Hadamard product is
used to facilitate the algorithm development and intensive
stochastic analysis is carried out to obtain the filter pa-
rameter for ensuring the desired filtering performance. 4)
The presented filter scheme is both unbiased and recursive,
hence suitable for online applications.

Notations. The notations used throughout the paper
are standard. δi−j is the Kronecker delta function, which
is equal to unity for i = j and zero for i 6= j. ◦ is
the Hadamard product with this product being defined as
[A ◦B]ij = Aij ·Bij . tr(·) stands for the trace of a matrix.
E{x} stands for the expectation of stochastic variable x.
Prob{·} represents the occurrence probability of the event
“·”. diag{X1, X2, . . . , Xn} stands for a block-diagonal ma-
trix with matrices X1, X2, . . . , Xn on the diagonal. Ma-

trices, if their dimensions are not explicitly stated, are as-
sumed to be compatible for algebraic operations.

II. Problem Formulation and Preliminaries

Consider the following class of time-varying nonlinear
systems:

~xk+1 = ~Ak~xk + ~f (~xk, ηk) + ~Bkωk (1)

~yk = ~Ck~xk + ~g (~xk, ζk) + ~νk (2)

where ~xk ∈ R
n is the state vector to be estimated, ~yk ∈ R

m

is the ideal output vector, ηk ∈ R and ζk ∈ R are mutu-
ally uncorrelated zero-mean Gaussian noise sequences in k,
ωk ∈ R

q is the process noise, ~νk ∈ R
m is the measurement

noise, ~Ak, ~Bk and ~Ck are known matrices with appropriate
dimensions.
The delayed sensor measurement is described by

yk = (I − Γk) ~yk + Γk~yk−1. (3)

Here, yk ∈ R
m is the actual measurement output vector,

Γk = diag{γk,1, γk,2, . . . , γk,m} accounts for the different
delay rate of the individual sensor where the random vari-
ables γk,i ∈ R (i = 1, 2, . . . ,m) are mutually independent
in k and i taking the values of 1 or 0 with

Prob{γk,i = 1} = E {γk,i} := βk,i

Prob{γk,i = 0} = 1− E {γk,i} := 1− βk,i

(4)

with βk,i ∈ [0, 1) being a known scalar. γk,i is assumed to
be independent of ηk, ζk, ωk, ~νk and ~x0.
The functions ~f(~xk, ηk) and ~g(~xk, ζk) represent the

stochastic nonlinearities of the states with ~f(0, ηk) = 0 and
~g(0, ζk) = 0 and have the following first moment for all ~xk:

E

{

[

~f(~xk, ηk)
~g(~xk, ζk)

]

∣

∣

∣

∣

∣

~xk

}

= 0 (5)

and the covariance given by

E

{

[

~f(~xk, ηk)
~g(~xk, ζk)

] [

~f(~xj , ηj)
~g(~xj , ζj)

]T
∣

∣

∣

∣

∣

~xk

}

=







0, k 6= j
r
∑

i=1

Πi~x
T
k Ωi~xk, k = j

(6)

where Πi = diag {Π1i,Π2i} and Ωi (i = 1, 2, . . . , r) are
known matrices with appropriate dimensions, and r is a
known positive integer.
The initial state ~x0 and all the noise signals are uncor-

related with each other while possessing the following sta-
tistical properties:

E {~x0} = x̄0, E

{

(~x0 − x̄0) (~x0 − x̄0)
T
}

= ~P0|0,

E {ωk} = 0,

E
{

ωkω
T
l

}

= Qkδk−l +

fk
∑

t=1

Qk,lδk−l−t +

dk
∑

t=1

Qk,lδk−l+t

E {~νk} = 0, E
{

~νk~ν
T
k

}

= ~Rk

(7)
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where ~P0|0, ~Rk > 0, Qk > 0 and Qk,l are known matrices
with appropriate dimensions.
Remark 1: Note that the system measurement model (3)

was used in [4,17,19]. As pointed out in [4,19], the random
variable γk,i accounts for the random varying delay of the
i-th sensor and the value βk,i represents the probabilities of
delay in the measurements of the i-th sensor. The delayed
model in [4] considers the case where the measurements
from multiple sensors could have different random delay
characteristics. Following the standard practice of commu-
nication network design [20], the assumption of one-step
sensor delay is based on the supposition that the induced
data latency from the sensor to the controller is restricted
not to exceed the sampling period.
By defining

xk :=

[

~xk

~xk−1

]

, Ak :=

[

~Ak 0
I 0

]

, Bk :=

[

~Bk

0

]

,

Ck :=

[

~Ck 0

0 ~Ck−1

]

, f (xk, ηk) :=

[

~f (~xk, ηk)
0

]

,

νk :=

[

~νk
~νk−1

]

, Υk :=
[

I − Γk Γk

]

,

g (xk, ζk, ζk−1) :=

[

~g (~xk, ζk)
~g (~xk−1, ζk−1)

]

,

(8)

we have the following compact form:

xk+1 = Akxk + f (xk, ηk) +Bkωk, (9)

yk = Υk [Ckxk + g (xk, ζk, ζk−1) + νk] (10)

where νk is the measurement noise of the augmented sys-
tem (9)-(10). It follows readily from (7)-(8) that νk obeys

E {νk} = 0,

E
{

νkν
T
l

}

= Rkδk−l +Rk,k−1δk−l−1 +Rk,k+1δk−l+1

(11)

with

Rk =

[

~Rk 0

0 ~Rk−1

]

, Rk,k−1 =

[

0 0
~Rk−1 0

]

,

Rk,k+1 =

[

0 ~Rk

0 0

]

.

For convenience of later developments, define the follow-
ing notations:

Ῡk := E {Υk} =
[

I − Γ̄k Γ̄k

]

,

Υ̃k := Υk − Ῡk =
[

Γ̄k − Γk Γk − Γ̄k

]

,
(12)

where Γ̄k := diag{βk,1, βk,2, . . . , βk,m}. According to (4),

we have an easily accessible result that Υ̃k is a zero-mean
stochastic matrix sequence.
For system (9)-(10), we are interested in designing a filter

of the following form:

x̂k+1|k = Akx̂k|k, (13)

x̂k+1|k+1 = x̂k+1|k +Kk+1(yk+1 − Ῡk+1Ck+1

×x̂k+1|k) (14)

where x̂k|k is the estimate of xk at time k with x̂0|0 =
[

x̄T
0 0

]T
, x̂k+1|k is the one-step prediction at time k,

and Kk+1 is the filter parameter to be determined.
The criterion for the addressed filtering problem is that

the desired filter parameter in (13)-(14) should minimize
the following cost function

ℵk+1 (Kk+1)

:=E

{

(

xk+1 − x̂k+1|k+1

)T
Wk+1

(

xk+1 − x̂k+1|k+1

)

} (15)

subject to the gain constraint

Mk+1Kk+1Nk+1 = Fk+1 (16)

where Mk+1, Nk+1 and Fk+1 are known matrices. As dis-
cussed in [26], the symmetric positive-definite weighting
matrix Wk+1 characterizes how much the state elements
should be updated relative to each other, which gives a
performance index. Furthermore, the matrices Mk+1 and
Nk+1 are assumed to be of, respectively, full row rank and
full column rank.
Remark 2: As pointed out in [26], the gain-constrained

filtering problem stems from the data-injection issue arose
in practice because 1) the data-injection is restricted to
ensure the unbiasedness of the state estimates irrespective
to the arbitrary unknown exogenous inputs; 2) the data-
injection is restricted to simplify the estimator structure
so as to facilitate the multiprocessor implementation for
applications or to deal with the partial/complete sensor
outage; and 3) the data-injection is restricted to guarantee
the state estimates satisfying a linear equality constraint.
Note that the gain-constrained filtering problem has been
investigated for a broad class of real-time dynamical sys-
tems, see e.g. the estimation problem of two state contin-
uous stirred tank reactor [15], the tracking problem of a
land based vehicle [21], the tracking problem of a vehicle
along circular roads [32] and so on.
Remark 3: In view of (5) and (7), it is reasonable to have

the time update equation obeying (13). We will show later
that the filter (13)-(14) to be developed is also unbiased.
Moreover, due to the stochasticity resulting from multiple
sources (stochastic nonlinearities, probabilistic sensor de-
lays as well as correlated noises) and filter gain constraints,
we aim to pursue the local optimality of filter design in the
sense of minimizing the cost function (15) on the filtering
error at each sampling instant.

III. Main Results

To proceed, we introduce the following lemmas which
will be helpful in deriving our main results. For presenta-
tion clarity, we place all proofs of the results in appendices.
Lemma 1: [8] Let A = [aij ]n×n be a real matrix and

B = diag{b1, b2, . . . , bn} be a diagonal stochastic matrix.
Then

E{BABT } =











E{b21} E{b1b2} · · · E{b1bn}
E{b2b1} E{b22} · · · E{b2bn}

...
...

. . .
...

E{bnb1} E{bnb2} · · · E{b2n}











◦A
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where ◦ is the Hadamard product.
Lemma 2: The state covariance matrix Xk+1 =

E
{

xk+1x
T
k+1

}

obeys the following recursion:

Xk+1 =AkXkA
T
k +AkGkB

T
k +BkG

T
k AT

k

+

r
∑

i=1

HT
1 Π1itr

(

Ω̄1iXk

)

H1 +BkQkB
T
k

(17)

with initial value X0 = diag{x̄0x̄
T
0 , 0}+ diag{ ~P0|0, 0} and

Gk := Bk−1Qk−1,k +

dk
∑

t=2





t
∏

j=2

Ak+1−j



Bk−tQk−t,k,

Ω̄1i := HT
1 ΩiH1,

H1 :=
[

In 0
]

.

(18)

Proof: See Appendix -A.
Lemma 3: The one-step prediction error covariance

Pk+1|k = E

{

x̃k+1|kx̃
T
k+1|k

}

is given by

Pk+1|k =AkPk|kA
T
k +AkZkB

T
k +BkZ

T
k AT

k

+

r
∑

i=1

HT
1 Π1itr

(

Ω̄1iXk

)

H1 +BkQkB
T
k

(19)

with

Zk

:=
(

I −KkῩkCk

)

Gk −

dk
∑

t=2

{[(

t
∏

j=2

(

I −Kk+2−j

× Ῡk+2−jCk+2−j

)

Ak+1−j

)

Kk+1−tῩk+1−tCk+1−t

]

×

[

Bk−tQk−t,k +

dk
∑

i=t+1

(

i
∏

l=t+1

Ak+1−l

)

Bk−iQk−i,k

]}

where Ω̄1i, H1 and Gk are defined in (18), and Pk|k :=

E

{

x̃k|kx̃
T
k|k

}

is the filtering error covariance with x̃k|k =

xk − x̂k|k being the filtering error.
Proof: See Appendix -B.

In Lemma 2 and Lemma 3, similar to [6], the recursions
of state covariance and the one-step prediction error covari-
ance have been established. Next, we will proceed to show
that 1) the proposed filtering scheme is unbiased; and 2)
the cost function (15) with constraint (16) is minimized at
each sampling instant by appropriately designing the filter
parameter.
Theorem 1: The filter in (13)-(14) is unbiased. More-

over, the filtering error covariance Pk+1|k+1 obeys the fol-
lowing recursion

Pk+1|k+1

=
(

I −Kk+1Ῡk+1Ck+1

)

Pk+1|k

(

I −Kk+1Ῡk+1Ck+1

)T

−
(

I −Kk+1Ῡk+1Ck+1

)

(Rk+1 + Jk+1) Ῡ
T
k+1K

T
k+1

−Kk+1Ῡk+1 (Rk+1 + Jk+1)
T (I −Kk+1Ῡk+1Ck+1

)T

+Kk+1[Ῡk+1

(

Ω̄2,k+1 +Rk+1

)

ῩT
k+1 + Kk+1

+ Lk+1 + Qk+1]K
T
k+1

(20)

where

Ω̄2,k+1 := diag

{

r
∑

i=1

Π2itr
(

HT
1 ΩiH1Xk+1

)

,

r
∑

i=1

Π2itr
(

HT
2 ΩiH2Xk+1

)

}

,

H2 :=
[

0 In
]

,

Γ̆k+1 := diag{βk+1,1 (1− βk+1,1) , βk+1,2 (1− βk+1,2) ,

· · · , βk+1,m (1− βk+1,m)},

Rk+1 := −AkKkῩkRk,k+1,

Jk+1 := −AkKkῩkΨk+1,

Kk+1 := Γ̆k+1 ◦
(

H̄Ck+1Xk+1C
T
k+1H̄

T
)

,

H̄ :=
[

Im −Im
]

,

Lk+1 := Γ̆k+1 ◦
(

H̄Ω̄2,k+1H̄
T
)

,

Qk+1 := Γ̆k+1 ◦
(

H̄Rk+1H̄
T
)

,

Ψk+1 :=

[

0
∑r

i=1 Π2itr
(

HT
2 ΩiH2Xk+1

)

0 0

]

, (21)

and Xk+1 and Pk+1|k are defined, respectively, in (17) and
(19).

Proof: See Appendix -C.
Having obtained the filtering error covariance, we are

now ready to deal with the optimization issue of the cost
function (15) under the constraint (16). Based on [26], the
filter parameter is designed to minimize the cost function
(15) subject to the constraint (16).
Theorem 2: Let the filter parameter Kk+1 be

Kk+1 =Hk+1S
−1
k+1 + Ik+1(Mk+1Hk+1S

−1
k+1Nk+1

− Fk+1)Jk+1.
(22)

Then, the cost function ℵk+1 (Kk+1) in (15) with the con-
straint (16) is minimized by Kk+1 defined in (22). More-
over, the filtering error covariance Pk+1|k+1 is given by

Pk+1|k+1

=Pk+1|k −Hk+1S
−1
k+1H

T
k+1 + Ik+1(Mk+1Hk+1S

−1
k+1

×Nk+1 − Fk+1)
(

NT
k+1S

−1
k+1Nk+1

)−1

× (Mk+1Hk+1S
−1
k+1Nk+1 − Fk+1)

T IT
k+1

(23)

where

Hk+1 :=
(

Rk+1 + Jk+1 + Pk+1|kC
T
k+1

)

ῩT
k+1,

Ik+1 :=W−1
k+1M

T
k+1

(

Mk+1W
−1
k+1M

T
k+1

)−1
,

Jk+1 :=
(

NT
k+1S

−1
k+1Nk+1

)−1
NT

k+1S
−1
k+1,

Sk+1 :=Ῡk+1

[

Ck+1Pk+1|kC
T
k+1 + Ω̄2,k+1 +Rk+1

+ (Rk+1 + Jk+1)
T
CT

k+1 + Ck+1(Rk+1

+ Jk+1)

]

ῩT
k+1 + Kk+1 + Lk+1 + Qk+1,

(24)
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and Ω̄2,k+1, Rk+1, Jk+1, Kk+1, Lk+1 and Qk+1 are de-
fined in (21).

Proof: See Appendix -D.

Remark 4: In this paper, we examine how the proba-
bilistic sensor delays, stochastic nonlinearities, correlated
noises and gain constraint influence the performance of the
recursive filter for a class of time-varying nonlinear stochas-
tic system. In Theorem 2, all these important aspects are
dealt with in a unified yet effective framework. In par-
ticular, the proposed filtering algorithm has the following
advantages: 1) the filter structure is simple and easy to
be implemented; 2) all the system parameters, occurrence
probabilities of the sensor delays, statistical characteristics
of the stochastic nonlinearities and the moment informa-
tion of the correlated noises are explicitly reflected in the
algorithm; and 3) the algorithm is of a recursive nature
suitable for online applications. In the case where global
optimality of the recursive filter approach becomes a con-
cern, specific efforts would have to be made for our future
research.

Remark 5: It is well known that the traditional Kalman
filter serves as an optimal filter in the minimum-variance
sense for linear systems with the assumption that the model
is exactly known. In order to cope with the network-
induced phenomena and the gain constraints, some im-
portant filter algorithms have been developed for linear
systems, see e.g. [18, 26]. Unfortunately, the existing es-
timation methods based on the traditional Kalman filter-
ing theory cannot be simply applied to the addressed sys-
tem (1)-(2) in the simultaneous presence of the probabilis-
tic sensor delays, stochastic nonlinearities, gain constraint
and correlated noises. To be specific, the following aspects
prevent the existing methods from being applied to the re-
cursive filtering problem considered in this paper: 1) the
probabilistic sensor delays are described by a series of ran-
dom variables, where each sensor is allowed to have indi-
vidual delay rate, 2) the stochastic nonlinearities described
by statistical means are taken into account to better re-
flect the reality, and 3) the process noises are finite-step
auto-correlated and there is a constraint on the filter gain.
In conclusion, our developed recursive filtering scheme pro-
vides another approach that complements the existing tech-
niques for handling network-induced phenomena and gain
constraints.

Remark 6: To deal with the computational complexity of
the proposed filtering algorithm, we recall that the length
of time-horizon is N , and the variable dimensions can be
seen from xk ∈ R

2n and yk ∈ R
m. It is not difficult

to calculate the overall computational complexity of the
given algorithm as O(N(2n)3), which depends linearly on
the length of finite time horizon and polynomially on the
variable dimension. Generally, the classical Kalman filter
and extended Kalman filter have less computation burden
than the proposed filter method. However, the new filter
scheme has a potential advantage to deal with the compli-
cated problem with multiple constraints addressed in this
paper.

IV. An Illustrative Example

Consider the following system:










~xk+1 = ~Ak~xk + ~f(~xk, ηk) + ~Bkωk,

~yk = ~Ck~xk + ~g(~xk, ζk) + ~νk,

ωk = ςk + ςk−1,

with

~Ak =





1 T T 2

2
0 1 T
0 0 1



 , ~Bk =





T 2

2
T
1



 ,

~Ck =

[

1.05 0.28 0.03
0 1 + 0.2 sin(3k) 0.15

]

,

where T = 0.01 is the sampling period, ςk ∈ R and ~νk ∈
R

2 are zero-mean Gaussian noises with variances 0.05 and
0.01I2, respectively.
The delayed sensor measurement is described by

{

yk,1 = (1 − γk,1)~yk,1 + γk,1~yk−1,1

yk,2 = (1 − γk,2)~yk,2 + γk,2~yk−1,2

where ~yk,i (i = 1, 2) is the i-th element of the ideal output
~yk, yk,i (i = 1, 2) is the i-th element of the actual measured
output yk. The random variables γk,i (i = 1, 2) satisfy
the Bernoulli distribution with Γ̄k := diag{βk,1, βk,2} =
{0.1, 0.05}.

The stochastic nonlinearities ~f(~xk, ηk) and ~g(~xk, ζk) are
chosen as follows:

~f(~xk, ηk) =





0.5
0.4
0.2



 [0.5sign (~xk,1) ~xk,1ηk,1 + 0.4sign (~xk,2)

× ~xk,2ηk,2 + 0.3sign (~xk,3) ~xk,3ηk,3]

~g(~xk, ζk) =

[

0.3
0.6

]

[0.5sign (~xk,1) ~xk,1ζk,1 + 0.4sign (~xk,2)

× ~xk,2ζk,2 + 0.3sign (~xk,3) ~xk,3ζk,3]

where ~xk,i (i = 1, 2, 3) denotes the i-th element of the sys-
tem state, ηk,i and ζk,i (i = 1, 2, 3) stand for zero-mean un-
correlated Gaussian white noises with variance Ξk = 0.2.
It is not difficult to verify that the above stochastic non-
linearities satisfy (5)-(6) with

Π1i =





0.25 0.20 0.10
0.20 0.16 0.08
0.10 0.08 0.04



 , Π2i =

[

0.09 0.18
0.18 0.36

]

,

Ωi = Ξk ×





0.25 0 0
0 0.16 0
0 0 0.09



 .

In the simulation, set the initial value of estimation as

~̂x0|0 =
[

400 100 9
]T

and ~P0|0 = 0.01I3. Other param-
eters are chosen as Wk+1 = 0.15I6 and

Mk+1 =

[

1 0 0.35 1 0 0.35
0 1 0 0.62 1 0.01

]

,

Nk+1 =

[

1
0.82

]

Fk+1 =

[

0.35
0.6

]

.
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Let MSEi denote the mean square error (MSE) for the

estimation of ~xk,i, i.e., (1/M)
∑M

j=1

(

~x
(j)
k,i − ~̂x

(j)
k|k,i

)2

(i =

1, 2, 3), where M = 100 denotes the number of simulation
test. The simulation results are shown in Figs. 1-6. Among
them, the Log(MSE)i for the estimation of ~xk,i (i = 1, 2, 3)
are shown in Figs. 1-3. Moreover, the trajectories of the
actual states ~xk,i and their estimates ~̂xk|k,i (i = 1, 2, 3)
are plotted in Figs. 4-6. The simulation results illustrate
that the presented scheme performs well in estimating the
system states, which is due to the fact that we have made
specific efforts to compensate the effects of the probabilistic
sensor delays, stochastic nonlinearities as well as correlated
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15

k/time step
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Fig. 3. Log(MSE3)
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Fig. 4. Actual state ~xk,1 and estimated state ~̂xk|k,1

noises.

V. Conclusions

In this paper, the recursive filtering problem has been in-
vestigated for a class of nonlinear systems in the simultane-
ous presence of probabilistic sensor delays, stochastic non-
linearities, gain constraint and correlated noises. The filter
parameter has been designed such that the specified cost
function with gain constraint is minimized at each sam-
pling instant. It has been shown that the proposed algo-
rithm is of a recursive form suitable for online applications.
A simulation example has been given to illustrate the effec-
tiveness of the presented filtering scheme, where the pro-
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posed method has been applied to estimate the states for
the addressed time-varying system involving the stochastic
nonlinearities, the randomly varying delayed observations
coming from two sensors with different delay characteris-
tics and the correlated process noises. The results are po-
tentially applicable to state estimation for stabilizing the
output feedback control systems. Further research topics
include the extension of the main results to the filtering
problem for a more general class of time-varying nonlinear
systems and the derivation of globally optimal filter for the
considered time-varying nonlinear systems.

Appendices

A. Proof of Lemma 2

Proof: By considering (5)-(7) and (9), the recursion
of Xk+1 can be obtained as follows:

Xk+1 =AkXkA
T
k +AkGkB

T
k +BkG

T
k AT

k

+ E
{

f (xk, ηk) f
T (xk, ηk)

}

+BkQkB
T
k

(25)

where Gk := E
{

xkω
T
k

}

. Together with (6) and (8), we have

E
{

f (xk, ηk) f
T (xk, ηk)

}

=

r
∑

i=1

HT
1 Π1itr

(

Ω̄1iXk

)

H1 (26)

where Ω̄1i and H1 are defined in (18).
By (7), the term Gk can be calculated as follows:

Gk =Ak−1E
{

xk−1ω
T
k

}

+Bk−1Qk−1,k

...

=Bk−1Qk−1,k +

dk
∑

t=2





t
∏

j=2

Ak+1−j



Bk−tQk−t,k.

(27)

Note that, in deriving (27), we have used the fact that ηk
is uncorrelated with ωk. Substituting (26) and (27) into
(25) yields (17).

B. Proof of Lemma 3

Proof: It follows from (9) and (13) that

x̃k+1|k = Akx̃k|k + f(xk, ηk) +Bkωk,

and then the one-step prediction error covariance can be
determined as

Pk+1|k =AkPk|kA
T
k +AkZkB

T
k +BkZ

T
k AT

k

+

r
∑

i=1

HT
1 Π1itr

(

Ω̄1iXk

)

H1 +BkQkB
T
k

(28)

where Zk := E
{

x̃k|kω
T
k

}

.
From (10), (14) and (27), the term Zk can be calculated

as:

Zk

=
(

I −KkῩkCk

)

Gk −
(

I −KkῩkCk

)

E
{

x̂k|k−1ω
T
k

}

=
(

I −KkῩkCk

)

Gk −
(

I −KkῩkCk

)

Ak−1

×
(

I −Kk−1Ῡk−1Ck−1

)

E
{

x̂k−1|k−2ω
T
k

}

−
(

I −KkῩkCk

)

Ak−1Kk−1Ῡk−1Ck−1E
{

xk−1ω
T
k

}

...

=
(

I −KkῩkCk

)

Gk −

dk
∑

t=2

{[(

t
∏

j=2

(I −Kk+2−j

× Ῡk+2−jCk+2−j)Ak+1−j

)

Kk+1−tῩk+1−tCk+1−t

]

×

[

Bk−tQk−t,k +

dk
∑

i=t+1

(

i
∏

l=t+1

Ak+1−l

)

Bk−iQk−i,k

]}
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(29)

where Gk is defined in (27). It follows from (28)-(29) that
(19) holds.

C. Proof of Theorem 1

Proof: To begin with, let us show the unbiasedness
of the filter in (13)-(14). According to (10) and (14), the
filtering error can be rewritten as

x̃k+1|k+1

=
(

I −Kk+1Ῡk+1Ck+1

)

x̃k+1|k −Kk+1[Υ̃k+1Ck+1

× xk+1 +Υk+1g (xk+1, ζk+1, ζk) + Υk+1νk+1].

(30)

Taking mathematical expectation of both sides of (30),
it follows from (9) and (13) that

E
{

x̃k+1|k+1

}

=
(

I −Kk+1Ῡk+1Ck+1

)

AkE
{

x̃k|k

}

. (31)

With the given initial condition, it is not difficult to show
that E

{

x̃k|k

}

= 0 for all k ≥ 0, which confirms the unbi-
asedness of the filter (13)-(14). Subsequently, the filtering
error covariance Pk+1|k+1 can be obtained as follows:

Pk+1|k+1

=
(

I −Kk+1Ῡk+1Ck+1

)

Pk+1|k

(

I −Kk+1Ῡk+1Ck+1

)T

−
(

I −Kk+1Ῡk+1Ck+1

)

Rk+1Ῡ
T
k+1K

T
k+1

−Kk+1Ῡk+1R
T
k+1

(

I −Kk+1Ῡk+1Ck+1

)T

−
(

I −Kk+1Ῡk+1Ck+1

)

Jk+1Ῡ
T
k+1K

T
k+1

−Kk+1Ῡk+1J
T
k+1

(

I −Kk+1Ῡk+1Ck+1

)T

+Kk+1Ῡk+1

(

Ω̄2,k+1 +Rk+1

)

ῩT
k+1K

T
k+1

+Kk+1 (Kk+1 + Lk+1 + Qk+1)K
T
k+1,

(32)

where

Rk+1 :=E
{

x̃k+1|kν
T
k+1

}

,

Jk+1 :=E
{

x̃k+1|kg
T (xk+1, ζk+1, ζk)

}

,

Kk+1 :=E

{

Υ̃k+1Ck+1xk+1x
T
k+1C

T
k+1Υ̃

T
k+1

}

,

Lk+1 :=E{Υ̃k+1g (xk+1, ζk+1, ζk)

× gT (xk+1, ζk+1, ζk) Υ̃
T
k+1},

Qk+1 :=E

{

Υ̃k+1νk+1ν
T
k+1Υ̃

T
k+1

}

,

(33)

and Ω̄2,k+1 is defined in (21).
By using the property of conditional expectation and

applying Lemma 1, we have

Kk+1 = E

{

Υ̃k+1Ck+1xk+1x
T
k+1C

T
k+1Υ̃

T
k+1

}

= Γ̆k+1 ◦
(

H̄Ck+1Xk+1C
T
k+1H̄

T
)

(34)

where H̄ and Γ̆k+1 are defined in (21). Following the same
line of the derivation for (34), the terms of Lk+1 and Qk+1

can be obtained as

Lk+1 = Γ̆k+1 ◦
(

H̄Ω̄2,k+1H̄
T
)

, (35)

Qk+1 = Γ̆k+1 ◦
(

H̄Rk+1H̄
T
)

. (36)

Next, let us determine the term Rk+1 in (33) as follows:

Rk+1

=− E
{

Ak

[

x̂k|k−1 +Kk

(

yk − ῩkCkx̂k|k−1

)]

νTk+1

}

=−AkKkῩkRk,k+1

(37)

Note that, when deriving (37), we have used the facts that
(i) xk+1 is uncorrelated with the measurement noise νk+1;
and (ii) x̂k|k−1 is uncorrelated with the measurement noise
νk+1. Similarly, the term Jk+1 in (32) can be calculated
as

Jk+1 = −AkKkῩkΨk+1 (38)

where Ψk+1 is defined in (21). Then, from (32) and (34)-
(38), it can be concluded that (20) is true.

D. Proof of Theorem 2

Proof: Define the Lagrangian

ℑk+1 (Kk+1) :=tr [ℵk+1 (Kk+1)] + 2tr[(Mk+1Kk+1

×Nk+1 − Fk+1)Λ
T
k+1]

(39)

where Λk+1 is the Lagrange multiplier. Take the partial
derivative of (39) with respect to Kk+1 and Λk+1, respec-
tively. Letting the derivative be zero yields

∂ℑk+1

∂Kk+1

=2

{

−Wk+1Pk+1|kC
T
k+1Ῡ

T
k+1 −Wk+1(Rk+1

+ Jk+1)Ῡ
T
k+1 +Wk+1Kk+1

[

Ῡk+1

(

Ck+1Pk+1|kC
T
k+1

+ Ω̄2,k+1 +Rk+1 + (Rk+1 + Jk+1)
TCT

k+1

+ Ck+1(Rk+1 + Jk+1)

)

ῩT
k+1 + Kk+1

+ Lk+1 + Qk+1

]

+MT
k+1Λk+1N

T
k+1

}

=2
(

−Wk+1Hk+1 +Wk+1Kk+1Sk+1 +MT
k+1Λk+1N

T
k+1

)

=0

(40)

and

∂ℑk+1

∂Λk+1
= 2 (Mk+1Kk+1Nk+1 − Fk+1) = 0 (41)

where Hk+1 and Sk+1 are defined in (24). According to
(41), it can be concluded that (16) is satisfied.
On the other hand, it follows from (40) that

−Wk+1Hk+1 +Wk+1Kk+1Sk+1 +MT
k+1Λk+1N

T
k+1 = 0 (42)

Pre-multiplying and post-multiplying (42) by W−1
k+1 and

S−1
k+1, we have

−Hk+1S
−1
k+1 +Kk+1 +W−1

k+1M
T
k+1Λk+1N

T
k+1S

−1
k+1 = 0 (43)
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Subsequently, pre-multiply and post-multiply (43) by
Mk+1 and Nk+1, respectively. Then, by considering (16),
we can get

−Mk+1Hk+1S
−1
k+1Nk+1 + Fk+1 +Mk+1W

−1
k+1M

T
k+1

× Λk+1N
T
k+1S

−1
k+1Nk+1 = 0.

(44)

According to (44), we obtain

Λk+1 =
(

Mk+1W
−1
k+1M

T
k+1

)−1
(Mk+1Hk+1S

−1
k+1Nk+1

− Fk+1)
(

NT
k+1S

−1
k+1Nk+1

)−1
.

(45)

From (43) and (45), the filter parameter can be determined
as in (22). Subsequently, substituting (22) into (20) and
after tedious algebraic manipulations, we can obtain the
recursion (23).
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