
1

Tyler’s Covariance Matrix Estimator in Elliptical
Models with Convex Structure

Ilya Soloveychik, Ami Wiesel

Abstract—We address structured covariance estimation in
elliptical distributions by assuming that the covariance is a
priori known to belong to a given convex set, e.g., the set of
Toeplitz or banded matrices. We consider the General Method
of Moments (GMM) optimization applied to robust Tyler’s scatter
M-estimator subject to these convex constraints. Unfortunately,
GMM turns out to be non-convex due to the objective. Instead,
we propose a new COCA estimator - a convex relaxation which
can be efficiently solved. We prove that the relaxation is tight in
the unconstrained case for a finite number of samples, and in the
constrained case asymptotically. We then illustrate the advantages
of COCA in synthetic simulations with structured compound
Gaussian distributions. In these examples, COCA outperforms
competing methods such as Tyler’s estimator and its projection
onto the structure set.

Index Terms—Elliptical distribution, Tyler’s scatter estimator,
Generalized Method of Moments, robust covariance estimation.

I. INTRODUCTION

Covariance matrix estimation is a fundamental problem in
the field of statistical signal processing. Many algorithms for
detection and inference rely on accurate covariance estimators
[1, 2]. The problem is well understood in the Gaussian
unstructured case. But becomes significantly harder when
the underlying distribution is non-Gaussian, for example in
elliptical distributions, and when there is prior knowledge on
the structure. In this paper, we propose a unified framework for
covariance estimation in elliptical distributions with general
convex structure.

Over the last years there was a great interest in covariance
estimation with known structure. The motivation to these
works is that in many modern applications the dimension of
the underlying distribution is large and there are not enough
samples to estimate it precisely without additional structure
hypotheses. The prior information on the structure reduces
the number of degrees of freedom in the model and allows
accurate estimation with a small number of samples. This is
clearly true when the structure is exact, but also when it is
approximate due to the well known bias-variance tradeoff.
Prior knowledge on the structure can originate from the
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physics of the underlying phenomena or from similar datasets,
e.g., [3, 4, 5, 6, 7].

Many covariance structures are easily represented in convex
form. Probably the most popular structure is the Toeplitz
model. It arises naturally in the analysis of stationary time
series which are used in a wide range of applications in-
cluding radar imaging, target detection, speech recognition,
and communication systems, [3, 4, 8]. Toeplitz matrices are
also used to model the correlation of cyclostationary processes
in periodic time series [9]. In other settings the number of
parameters can be reduced by assuming that the covariance
matrix is sparse [10, 11]. A popular sparse model is the
banded covariance, which is associated with time-varying
moving average models [11]. Another important example of a
convex structure is the SPICE estimator, which was proposed
in [6] to treat high-dimensional array processing problems,
where the covariance structure is approximated by a low-
dimensional linear combination of known rank one matrices.
In the last decade, all of these structures have been successfully
considered in the Gaussian case.

In a different line of works, there is an increasing interest
in robust covariance estimation for non-Gaussian distributions
[12, 13, 14, 15, 16]. Significant attention is being paid to the
family of elliptical and generalized elliptical (GE) distribu-
tions [17, 18], which include as particular cases Generalized
Gaussian distribution (GG), Compound Gaussian (CG) and
many others [17]. Elliptical models are commonly used to
measure radar clutter [19], noise and interference in indoor and
outdoor mobile communication channels [20] and other appli-
cations. For these purposes robust covariance estimators were
developed including Maronna’s famous scatter M-estimator
[21]. Later Tyler [22] proposed a particular kind of scatter
M-estimator which has become widely used [12, 13, 23].
Although, generally M-estimators are given as solutions to
optimization programs, Tyler showed that his M-estimator can
be obtained as a solution to a simple fixed point equation.
One of the most prominent disadvantage of these methods
is that the optimization programs appearing from them are
non-convex, thus making imposition of additional constraints
rather difficult. In some cases it is possible to cure this obstacle
by changing the metric of the underlaying manifold, thus
appealing to the notion of geodesic (g-) convexity. It has been
recently shown that some of the popular M-estimators are in
fact g-convex, which significantly simplifies their treatment
[14]. However, the imposition of additional constraints on
the scatter matrix requires to define them as g-convex sets,
rather than classical convex sets. Different improvements
were achieved in this direction [16], but this field is not
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still developed enough in order to solve the problems under
consideration.

In the present work we derive COCA - COnvexly Con-
strAined Covariance Matching estimator. The underlying idea
is based on the concept of Generalized Method of Moments
(GMM) [24]. COCA searches for a covariance possessing the
given convex structure that minimizes the norm of a sample
moment’s identity. This identity is in fact the optimality condi-
tion of an M-estimator. COCA tries to simultaneously satisfy
this condition while constraining the structure. Unfortunately,
this requires solving a high dimensional non-convex mini-
mization program. Instead, we propose a convex relaxation
and express COCA as a standard convex optimization with
linear matrix inequalities which can be computed using off-
the-shelf numerical solvers, such as CVX, [25, 26]. In terms
of its analysis, we prove two promising results. First, in the
unconstrained case, COCA is tight and identical to Tyler’s
estimator. This result basically “convexifies” Tyler’s estimator.
Second, in the structured case, COCA is asymptotically tight
and hence consistent. Finally, we demonstrate the finite sample
advantages of COCA over existing methods using numerical
simulations.

The paper is organized in the following way. First, we
formulate the problem, derive its Cramer-Rao performance
bound and briefly describe the existing solutions: the sample
covariance, Tyler’s estimator and the projection method. We
then introduce GMM, derive its convex relaxation named
COCA and show that it coincides with Tyler’s estimator in
the unconstrained case. Then we prove that adding convex
structure does not affect asymptotic consistency of the COCA
estimator. Finally, we provide numerical examples and appli-
cations demonstrating the performance advantages of COCA.

We denote by P(p) the closed cone of hermitian positive
semi-definite p × p matrices. We write M � 0 if M ∈ P(p)
for some p ∈ N and M � 0 if in addition all the eigenvalues
of M are positive. When convergence of random entities is
considered a.s. denotes the almost sure with respect to the
probability measure convergence and P−→ denotes convergence
in probability. For a matrix M, ‖M‖F and ‖M‖2 denote
correspondingly its Frobenius and spectral norms; ‖M‖ stands
for a not specified norm. |M| denotes the determinant of the
matrix; MT stands for the transpose and MH for the conjugate
transpose matrix. Given a matrix M, the operator vec (M)
stacks all its columns into a one tall column. The sample
measurements xi ∈ Cp are assumed to be independent and
identically distributed (i.i.d.). We write x ∼ N (0,M) for a
centered complex circularly symmetric normally distributed
random vector with covariance matrix M. We use j for the
imaginary unit and avoid using it as an ordering index. I
denotes the identity matrix of a proper dimension. Matrices
are denoted by bold Capital letters M, column vectors by bold
non-capital v and scalars by non-capital r.

II. MODEL AND PROBLEM FORMULATION

A. Complex Angular Elliptical distribution

Consider a p dimensional complex zero mean Generalized
Elliptically (GE) distributed random vector s ∈ Cp, [17, 18].

Such a vector can be defined as [17]

s = rΛu,

where u is a q dimensional random vector, uniformly dis-
tributed over the unit complex hypersphere, r is a nonnegative
random variable, Λ ∈ Cp×q . The random variable r is called
the generating variate of s, we assume r has no atom at 0. If,
in addition, we require r to be stochastically independent of u
the distribution becomes elliptical. Below, we will normalize
the random vectors and eliminate their generating variate. This
will allow us to treat both GE and elliptical families in a
similar way. The parameter Θ0 = ΛΛH is referred to as
the dispersion or shape matrix of x and coincides with its
covariance matrix (up to a scaling factor) when the latter
exists. We assume Θ0 � 0. The topic of this paper is the
estimation of this shape matrix.

A closely related distribution is the Complex Angular Ellip-
tically (CAE), [27], denoted by x ∼ U(Θ0). This distribution
can be obtained by normalizing a GE random vector s:

x =
s

‖s‖
, s 6= 0,

The CAE probability density function is given by [27]

p(x) =
(p− 1)!

πp
1

|Θ0|(xHΘ−10 x)p
, (1)

where x belongs to a complex unit p-dimensional sphere. Ig-
noring additive constants, the negative log-likelihood function
of CAE distribution is given by

l(Θ; x) = log|Θ|+ plog(xHΘ−1x). (2)

The GE class of distributions includes proper complex
Gaussian, compound Gaussian, elliptical, skew-elliptical, CAE
and other distributions, [18]. An important property of the
GE family is that the shape matrix of a population does not
change whenever the random vector is divided by its Euclidean
norm [17, 18]. As explained above, after normalization any GE
vector becomes CAE distributed. This allows us to treat the
shape matrices of all the mentioned distributions using a single
robust estimator.

Note that the negative log-likelihood (2) is insensitive to
multiplication of the shape matrix by a positive constant, thus
we are only interested in the estimation of the shape matrix
up to a positive scalar factor. There are different approaches
of fixing the scale; below we fix the trace of the estimator to
get rid of this ambiguity.

B. Structure

In many applications, it is common to assume prior infor-
mation on the structure of Θ0. In particular, we can assume
that it belongs to a known closed convex subset S ⊂ P(p).
In many applications the role of S is played by a part of
an affine hyperplane laying inside P(p). For simplicity, we
consider the case of an affine set S, but most of the results
can be generalized to an arbitrary closed convex set separated
from zero. Specifically, we assume that

S = L ∩ P(p), (3)
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where the hyperplane L is parametrized as

L = B0 +

{
k∑
i=1

aiBi,Bi ∈ Cp×p, ai ∈ R

}
, (4)

where B0 � 0 and all Bi are hermitian, k = dimL ≤ p2.
Note that L is parametrized by the real numbers ai ∈ R, i =
1, . . . , k, this is necessary to preserve the hermitian structure
of the matrices in the affine hyperplane - if complex numbers
are allowed the resulting sum may not be hermitian.

Typical examples of such affine structures are:
• Toeplitz: In stationary time series, the covariance be-

tween the i-th and the h-th components depend only
on the the difference |i − h|. This kind of processes
is encountered very often in many engineering areas
including statistical signal processing, radar imaging,
target detection, speech recognition, and communications
systems, [3, 4, 8, 9, 28, 29]. The hyperplane L forms
a k = 2p − 1 dimensional affine subspace. Using the
notations in (4) we define the basis matrices as

B0 = 0,B1 = I,

Bi =



0 . . . 1 . . . . . . 0
...

. . .
... 1

. . . 0
1 . . . 0 . . . . . . 0
0 1 . . . 0 . . . 1
...

. . .
... 0

. . .
...

0 0 . . . 1 . . . 0


, i = 2, . . . , p,

where the both i−1-th subdiagonals consist of ones, and
analogously

Bi =



0 . . . j . . . . . . 0
...

. . .
... j

. . . 0
−j . . . 0 . . . . . . 0
0 −j . . . 0 . . . j
...

. . .
... 0

. . .
...

0 0 . . . −j . . . 0


,

i = p+ 1, . . . , 2p− 1.
• Banded: A natural approach to covariance modeling

is to quantify the statistical relation using the notion
of independence or correlation, which corresponds to
sparsity in the covariance matrix [11]. Assuming that i-th
element of the random vector is uncorrelated with the h-
th if |i−h| > b leads to b-banded structure, also known as
time varying moving average models. Using the definition
in (4) we have symmetric matrices

B0 = 0,Bm = Eih + Ehi, (5)

where Eih are the unit matrices, i runs from 1 to p, h from
i to min(i+b, p) and m runs from 1 to ms = (2p−b)(b+1)

2
and insures linear ordering, and the hermitian ones

Bm = jEih − jEhi, (6)

where i runs from 1 to p−1, h from i+1 to min(i+b, p)
and m runs from ms+1 to 2ms−p = p(2b+1)−b(b+1).

• Direction of Arrival Problem: The problem of finding
the direction of arrivals (DOA’s) of k plane waves im-
pinging on a passive array of p narrow-banded sensors
can be reduced to that of estimating the parameters in
the following model [6]

xi = B(θ)yi + ωi, i = 1, . . . , n, (7)

where xi ∈ Cp are the noisy observation vectors, yi ∈ Ck
are the unknown signal vectors, and ωi ∈ Cp are hidden
noise processes. The vector θ = [θ1 . . . θk] consists of
unknown real parameters, and the matrix B(θ) ∈ Cp×k
has the following special structure:

B(θ) = [b(θ1) . . .b(θk)], (8)

where b(θh) is the so-called steering vector or transfer
vector (between the h-th signal source and the array
output i). The exact form of the b(θ) vectors depend
on the array configuration. For example in a uniform and
linear array we have

b(θ) = [1 ejθ e2jθ . . . e(p−1)jθ]T (9)

Assuming that the elements of yi are statistically inde-
pendent of the noise, the covariance matrix of xi can be
decomposed as

Θ0 =

k∑
i=1

v2i b(θi)b(θi)
H + σ2I, (10)

where v2i denote the signal sources powers and σ2 stands
for the power of the additive white noise. The goal is
to estimate θ from the measurements xi, i = 1, . . . , n.
In particular, a standard approach is to estimate the
covariance with a structure that satisfies (10) and solve
for the corresponding θ. For this purpose, we generate a
dense grid of N points θi over the interval of possible
angles [θl; θu] and fit the true covariance matrix by the
linear model

Θ =

N∑
i=1

aib(θi)b(θi)
H + σ2I,

where ai ≥ 0. If necessary, the l1 norm of the parameter
vector a = {a1, . . . , ak} can be constrained to ensure
sparsity and linear independence. Returning to the struc-
ture notations in (4) we have

B0 = σ2I,Bi = b(θi)b(θi)
H , i = 1, . . . , N.

C. Problem

We can now state the problem addressed in this paper: let
xi ∼ U(Θ0), i = 1, . . . , n, Θ0 ∈ S and assume the prior
knowledge on the true covariance matrix is given in the form
of an affine set. We are interested in estimation of the unknown
shape matrix Θ0.
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III. PERFORMANCE BOUNDS

Before addressing the possible solutions for the above
covariance estimation problem, it is instructive to examine the
inherent performance bounds. For this purpose, we consider
the Cramer-Rao Bound (CRB) on the variance of an unbiased
estimators. Under mild regularity conditions, the CRB is
asymptotically achievable by the Maximum Likelihood Esti-
mator (MLE) and is therefore an important benchmark.

A straight forward approach to the CRB is to use the
structured parameterization in (4) and compute the Fisher
Information Matrix FIM(a) associated with the parameter
vector a = {a1, . . . , ak}. The CRB(a) matrix would then be
obtained by inverting this matrix. Below we use the explicit
dependence of the estimator Θ(a) on its parameter vector a
to calculate the CRB(Θ). We then bound the Mean Squared
Error MSE(Θ) of any unbiased estimator by the trace of the
CRB(Θ) matrix.

As we have already mentioned above the negative log-
likelihood (2) of the CAE population is not sensitive to the
scaling of the shape matrix. Thus, the FIM is singular and
cannot be inverted to obtain the CRB, this phenomenon is
known as non-identifiability of parameters, see e.g. [30] and
references therein for an extensive treatment of this issue.
Indeed, it is impossible to estimate the scaling of the covari-
ance due to the normalization in our model. Instead, we need
an alternative parameterization which eliminates this scale
invariance. Specifically, we add the constraint Tr (Θ) = p and
reparameterize the structure of L while lowering its dimension
to k′ = k − 1:

L′ = D0 +

{
k−1∑
i=1

aiDi,Di ∈ Cp×p, ai ∈ R

}
,D0 � 0. (11)

From now on we denote

S ′ = L′ ∩ P(p).

For example, in the Toeplitz and banded examples discussed
above we have:
• Toeplitz: The coefficient a1 in L is no longer needed

since the main diagonal becomes known, and

D0 = I,Di = Bi+1, i = 1, . . . , 2p− 2.

• Banded: Of the p diagonal elements, the first p − 1 are
chosen as independent, and we obtain

D0 = I,Di = Bi −Bp, i = 1, . . . , p− 1,

Dm = Bm+1,m = p, . . . , p(2b+ 1)− b(b+ 1)− 1.

• Direction of Arrival Problem: In the DOA case it is
more convenient to set Tr (Θ) = σ2p, thus

D0 = σ2I.

All the matrices Bi, i = 1, . . . , N satisfy Tr (Bi) =
b(θi)

Hb(θi) = p, thus we set

Di = Bi − I, i = 1, . . . , N.

Note that Di are linearly independent due to the specific
choice of Bi as above.

Given this scale dependent parametrization, the FIM(a) com-
puted element-wise reads as

FIMhm(a) = E
(
∂ ln p(x; a0)

∂ah

∂ ln p(x; a0)

∂am

)
= −E

(
∂2 ln p(x; a0)

∂ah∂am

)
, (12)

where a0 corresponds to the parametrization of the true
covariance matrix. We follow the calculations of [27, 31] to
obtain

FIM(a)hm =
pTr

(
Θ−1

0 DmΘ−1
0 Dh

)
− Tr

(
Θ−1

0 Dh

)
Tr

(
Θ−1Dm

)
p+ 1

,

h,m = 1, . . . , k′.

The unknown covariance Θ depends on a linearly:

vec (Θ) = Ja,

where

J =

{
∂vec (Θ)

∂a

}
= {vec (D1) , . . . , vec (Dk)}

is the Jacobian p2 × k′ matrix. Thus, the CRB of the
covariance error reads as

CRB(Θ) = J CRB(a)JH = J FIM−1(a)JH ,

and the total MSE over all the elements in the covariance
estimator is bounded as

MSE(ΘEst) = E
[∥∥ΘEst −Θ0

∥∥2
F

]
≥ Tr (CRB(Θ)) .

IV. EXISTING SOLUTIONS

In this section, we review the existing solutions to the
covariance estimation problem with and without structure.

A. Sample Covariance

The classical solution to the above covariance estimation
problem is the sample covariance matrix defined by

ΘSC =
1

n

n∑
i=1

xix
H
i . (13)

The sample covariance estimator is unbiased, always exists
and is asymptotically consistent in any distribution with
bounded second moments by the Law of Large Numbers.
In the Gaussian case when n ≥ p, it also maximizes the
likelihood and is asymptotically efficient. In the elliptical case
it converges to a scaled shape matrix. Sample covariance has
been extensively studied so far and is generally suboptimal.
A broad exposition on sample covariance performance for a
large class of distributions was performed in [32, 33]. An
additional disadvantage of this estimator is its ignorance to
the prior structure.

In the recent years there have been proposed a number of
covariance matrix estimators for Gaussian models with convex
structure based on sample covariance, see e.g. [34, 35].
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B. Tyler’s M-estimator

The most popular approach to the shape matrix estimation in
elliptical distributions is due to Tyler [22]. Tyler’s M-estimator
estimator is defined as the fixed point solution to the equation:

ΘTyler =
p

n

n∑
i=1

xix
H
i

xHi [ΘTyler]
−1

xi
. (14)

This equation defines ΘTyler up to a scaling factor, so the scale
has to be fixed by some additional constraint. Two popular
choices are to fix Tr

(
ΘTyler

)
or
∣∣ΘTyler

∣∣ as constant. When
n > p, it has been proven that the fixed point iteration
converges to the unique solution with probability one [21].
This estimator is asymptotically consistent in all elliptical
distributions. In fact, it maximizes the likelihood of the CAE
population (2). The advantages of Tyler’s estimator are its
simplicity and robustness. Its most significant drawbacks are
that it does not necessary exist if n < p and can hardly exploit
known structure since the optimization problem obtained by
minimizing the empirical likelihood (2) is not convex. In [23]
knowledge based variants of the fixed point iteration were
proposed without convergence analysis. Recently, regularized
and structured versions of Tyler’s estimator were proposed
in [13, 14, 36, 37] based on the theories of concave Perron
Frobenius and geodesic convexity. Another approach of im-
posing linear symmetry structure on Tyler’s estimator, making
extensive use of the g-convexity of the problem, was proposed
by [16], where the constraint set is given as a set of fixed points
of certain isometries over the manifold P(p). Unfortunately,
these approaches are limited in their modeling capabilities and
cannot deal with general convex models as described above.

C. Convex Projection

A natural approach for introducing convex structure into
covariance estimation is via projection. In our settings the
projection is made onto a convex set S ′ defined above, e.g.
[38, 39]. Given any unstructured estimator ΘEst, e.g., the
sample covariance or Tyler’s estimator, its projection onto the
closed convex set S ′ is defined as

PS′(ΘEst) = argmin
M∈S′

∥∥M−ΘEst
∥∥ , (15)

where ‖·‖ is some norm. For convex structures as described
above, the projection is a convex optimization problem which
can be efficiently solved using standard numerical packages,
e.g., CVX, [25, 26].

The main advantage of the projection method is that, when
Θ0 ∈ S ′, the projection PS(ΘEst) is closer to Θ0 than
ΘEst. The main disadvantage is that it requires a two-step
solution which does not couple the distribution properties
and the structure information simultaneously and is therefore
suboptimal.

V. COCA ESTIMATOR

A. Definition

In this section we propose COCA - the COnvexly Con-
strAined covariance estimator for GE distributions. Unlike the

existing solutions, COCA exploits both the elliptical nature
and the structure of the underlying distribution. COCA is based
on the GMM [24] together with an asymptotically tight convex
relaxation.

The underlying principle behind COCA is the following
identity [17, 40]:

E

(
p

xix
H
i

xHi Θ−10 xi

)
= Θ0, (16)

holding for all GE and, in particular, CAE populations. In-
deed, Tyler’s estimator is just the sample based solution that
satisfies this identity. When the number of samples is small,
even without any structural assumptions, the solution to this
equation does not necessarily exist. Instead, we propose the
GMM approach which seeks an approximate solution to

min
Θ∈S′

∥∥∥∥∥Θ− p

n

n∑
i=1

xix
H
i

xHi Θ−1xi

∥∥∥∥∥ , (17)

where ‖·‖ is some norm. Intuitively, this optimization tries to
simultaneously solve Tyler’s program and project it onto the
set of prior structure. By choosing an adaptive weighted norm,
an optimal solution to (17) would result in an asymptotically
consistent and accurate estimator [24, 38]. Unfortunately, the
objective is non-convex and it is not clear how to find its global
solution in a tractable manner.

In what follows, we propose a convex relaxation of (17)
that allows a computationally efficient solution. First, let us
introduce auxiliary variables di, i = 1, . . . , n:

min
Θ∈S′,di

∥∥∥∥∥Θ− 1

n

n∑
i=1

dixix
H
i

∥∥∥∥∥
subject to di =

p

xHi Θ−1xi
, i = 1 . . . n.

(18)

This problem is not convex due to the equality constraints. We
suggest to relax them to the inequalities:

min
Θ∈S′,di

∥∥∥∥∥Θ− 1

n

n∑
i=1

dixix
H
i

∥∥∥∥∥
subject to di ≤

p

xHi Θ−1xi
, i = 1 . . . n,

di > 0, i = 1 . . . n.

(19)

This relaxed problem is actually a convex minimization pro-
gram. In order to show this we use

Proposition 1. (Schur’s Complement [41]) For any hermitian
matrix X of the form

X =

(
A B

BH C

)
,

if A and C are invertible then the following properties hold:
1) X � 0 iff C � 0 and A−BC−1BH � 0,
2) X � 0 iff A � 0 and C−BHA−1B � 0.

As a corollary we obtain that for Θ ∈ P(p),Θ � 0,x ∈ Cp
and α > 0 the following conditions are equivalent:

1) Θ � 1
αxxH ,

2) α ≥ xHΘ−1x.
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Thus, we rewrite the inequalities di ≤ p
xH
i Θ−1xi

, i = 1 . . . n

as linear matrix inequalities (LMI):

ΘCOCA = arg


min

Θ∈S′,di

∥∥∥∥∥Θ− 1

n

n∑
i=1

dixix
H
i

∥∥∥∥∥
subject to Θ � 1

p
dixix

H
i ,∀i = 1 . . . n,

di > 0,∀i = 1 . . . n.
(20)

In this form COCA can be efficiently computed by standard
semi-definite program solvers, e.g., CVX, [25, 26].

B. Consistency

The non-relaxed version of COCA in (17) is clearly a
reasonable approach for structured covariance estimation in
elliptical models. The interesting question is how tight is
the relaxation. We now provide two promising results in this
direction.

Theorem 1. In the unstructured case S = P(p) with n ≥
p+ 1, the COCA estimator is unique up to a positive scaling
factor and coincides with Tyler’s estimator.

Proof. It is known that when n ≥ p+ 1, (20) has at least one
solution which results in a zero objective value. It is Tyler’s
estimator which satisfies

d∗i =
p

xHi [Θ∗]−1xi
, i = 1 . . . n.

It remains to show that there are no other feasible solutions
which result in a zero objective and is not a scaled version of
this one. Indeed, assume in contradiction that there is such an
additional solution, and for it Θ = 1

n

∑n
i=1 dixix

H
i . Multiply

each inequality di ≤ p
xH
i Θ−1xi

by the matrix xix
H
i for i =

1 . . . n and sum up to obtain

Θ =
1

n

n∑
i=1

dixix
H
i �

p

n

n∑
i=1

xix
H
i

xHi Θ−1xi
= f(Θ). (21)

The inequality (21) reads now as Θ � f(Θ). As stated in
the Corollary V.I from [12] (the Corollary V.I is formulated
there for the real case, but it remains valid in the complex case
as explained there by the authors), this implies that Θ is the
fixed point of f : Θ = f(Θ), which is exactly the definition
of Tyler’s estimator in (14). Thus proving that it is the only
solution to (20) up to a positive scaling factor.

Theorem 1 proves that the unconstrained COCA estimator
performs as a classical MLE and is, thus, efficient with the
asymptotically normal distribution:

√
n
(
ΘCOCA −Θ0

) P−→ N (0,CRB).

In the constrained case, for a general convex set S ′, the anal-
ysis is more difficult but we still have promising asymptotic
results.

Theorem 2. In the structured case, COCA is an asymptotically
consistent estimator of the true shape matrix Θ0 ∈ S ′.

Proof. Is provided in the Appendix.

The efficiency of the constrained COCA estimator remains
an open question. We do not expect the constrained estimator
to be statistically efficient. However, we believe that it can get
quite close by adaptively tuning the norm as detailed in the
next subsection.

C. Choice of norm

The definition of the COCA estimator depends on the choice
of the norm in the objective of (20). The consistency result
in Theorem 2 is invariant to this choice, but the finite sample
performance may change significantly. Natural choices are the
Frobenius, trace and spectral norms. In addition, it is well
known from the theory of GMM that adaptive weighted norms
can enhance the performance of estimators. Similar ideas were
applied in [38] to develop covariance matching estimators.

VI. COMPUTATIONAL COMPLEXITY

The COCA estimator developed in this paper can signifi-
cantly change the approach to Tyler’s shape matrix estimator,
as it transforms the involved optimization into a convex
problem, making the imposition of affine constraints possible.
Unfortunately, it suffers from a significant drawback since it
is computationally complex and involves solution of high-
dimensional non-linear programs. In fact, this is also the
drawback in the Gaussian case, where the projection onto the
structure set requires a comparable computational effort (see
[39] and references therein). The most appropriate general
class of methods usually applied in such SDP programs is
known as interior-point algorithms, [42], which are polynomial
in the dimension of the problem. In practice, interior-point
optimizers like MOSEK, SeDuMi and SDPT3 solve problems
in a fixed number of iterations between about 10 and 100. Each
iteration has polynomial complexity typically O((k+n)3). The
exact power and additional logarithmic multipliers depend on
the norm involved in the COCA-optimization and other spe-
cific details of the program at hand. To enjoy the advantages
of the COCA fully, the proposed algorithms should be tuned
to exploit the specific structure of the problem, e.g. Toeplitz or
banded and the norm. Because of this and lack of space such
algorithms are outside the scope of the current paper. One of
the main directions of our future research is the development
of less demanding COCA solvers.

VII. NUMERICAL RESULTS

In this section we demonstrate the advantages of COCA
using numerical simulations. We investigated the performance
benefits of COCA when the true shape matrix was either
Toeplitz, banded or constructed based on the DOA grid. We
compared the following estimators: ΘSC in (13), ΘTyler in (14),
ΘProj in (15) and ΘCOCA in (20). In ΘProj we projected Tyler’s
estimator when it existed and the sample covariance otherwise.

For each number of samples n we generated 1000 sets
of independent, compound proper normally distributed p-
dimensional samples and calculated the empirical MSE for
all the estimators. The samples were generated as x =

√
τv,

where the random variable τ ∼ χ2 and the random vector
v was zero-mean circularly symmetric normally distributed
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Fig. 1. COCA in the Toeplitz case.

with the covariance matrix Θ0. To compare the performance
of COCA and all the other estimators to the CRB we used
the Frobenius norm in the optimization problem and when
calculating the empirical MSE.

A. Toeplitz Covariance Matrix

For p = 10 the Toeplitz shape matrix was chosen to have 1-s
on the main diagonal and 1

5 ±
j
5 , 1

25 ±
j
25 on the first two sub-

diagonals correspondingly. The results are reported in Fig. 1. It
is easy to see the performance advantage of COCA over all the
other estimators. For convenience we also put the constrained
CRB for this case on the same plot. As the COCA estimator
performs better in the sense of MSE we can imply that it is
biased.

B. Banded Covariance Matrix

As an example of banded structure we took a matrix having
the numbers 20, 40, . . . , 20p on the main diagonal for p = 10,
12± 3j, . . . , (12± 3j)(p− 1) and 2± 2j, . . . , (2± 2j)(p− 2)
on the first two sub-diagonals correspondingly and scaled it to
have trace p. The band width is 2 in this case. The averaged
errors and the CRB are reported in Fig. 2.

C. DOA Covariance Matrix

In the DOA experiments we took n = 5 signal sources
uniformly localized in the interval [0, π]. The noise added
was white of energy σ = 1/100. The number of sensors was
p = 10. The grid was constructed by dividing the range [0, π]
into p equal subintervals. The convergence rates for different
estimators are present in Fig. 3. We also provide the CRB
for comparison.
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Fig. 2. COCA in the banded case.
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Fig. 3. COCA in the DOA case.

D. Different Norms Comparison

As we have already mentioned, the formulation of the
COCA-estimator (20) leaves freedom for the choice of the
norm. In the examples above we used the Frobenius norm. In
this section we compare the performance of COCA with dif-
ferent norms. In particular we took the spectral, the Frobenius
and the trace norms and compared the COCA performance
with the CRB. The numerical results for the banded (b = 2)
type of constraints are provided in Figure 4. As we can see
the choice of the norm affects the results quite slightly and the
one making the optimization problem easier to solve should
be picked.
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Fig. 4. Performance of the COCA with different norms in the banded case.

E. Discussion

As we can see with the examples considered above, the
COCA estimator outperformes the benchmarks used. Its MSE
is actually quite close to the projection estimator, which can
be considered as a one-step approximation to the COCA. We
must also note that the MSE of COCA is less that the CRB
for small values of n in the first two figures. This is indeed
possible, since COCA is only asymptotically unbiased and
may turn out to be biased in finite samples.

VIII. CONCLUSION

In this paper we address structured covariance estimation in
GE distributions. In particular, we assume that the covariance
is a priori known to belong to a given convex set, e.g., the
set of Toeplitz or banded matrices. We utilize the MLE of the
shape matrix of normalized population which is a solution to a
non-convex program and propose its convex relaxation based
on the GMM technique. It is shown that the relaxed program
(COCA) is tight in the unconstrained case and asymptotically
tight in the constrained settings. Numerical simulations show
that COCA performs better then other comparable techniques,
such as unconstrained Tyler’s estimator and its projection.

Our future work will first of all address the performance
properties of the COCA estimator and its generalizations
based on M-estimators. In addition, as we have already men-
tioned, when treated using general purpose numerical packages
COCA may become a resource demanding program. Our
second aim is to develop a more specific algorithm to make
the COCA estimator computationally scalable.

APPENDIX

A. Proof of Theorem 2

Proof. We assume that the set S ′ ⊂ P(p) is a compact convex
set separated from zero. Otherwise, we take a large enough
ball B centered at zero and replace the constraint S ′ by the

intersection S ′ ∩ B. Denote d0i = d0i (x) = p

xH
i Θ−1

0 xi
. For

the sake of convenience we will consider the realizations of
the samples as infinite sequences x = (x1,x2, . . . ,xn, . . . ).
Consider now a random function

hn(Θ0,d; x) =

∥∥∥∥∥Θ0 −
1

n

n∑
i=1

dixix
H
i

∥∥∥∥∥ ,
where d = (d1, d2, . . . , dn, . . . ).

The (strong) Law of Large Numbers implies that

hn(Θ0,d
0; x) =

∥∥∥∥∥Θ0 −
1

n

n∑
i=1

d0ixix
H
i

∥∥∥∥∥
→
∥∥∥∥Θ0 −E

(
xix

H
i

xiΘ
−1
0 xi

)∥∥∥∥ , n→∞ a.s.

For the elliptical distribution E
(

xix
H
i

xiΘ
−1
0 xi

)
= Θ0 [17], so we

get that
hn(Θ0,d

0; x)→ 0, n→∞ a.s. (22)

For now, given a realization x and a number n ∈ N denote by
(Θ̂(n), d̂(n)) the solution of (19), all the d̂(n)i = 0 for i > n.
Define a random variable h̃n depending on x:

h̃n(x) =

∥∥∥∥∥Θ̂(n) − 1

n

n∑
i=1

d̂
(n)
i xix

H
i

∥∥∥∥∥ .
For each x:

h̃n(x) ≤ hn(Θ0,d
0; x),

since (Θ̂(n), d̂(n)) is the extremum of the target function, thus
(22) implies

h̃n(x)→ 0, n→ 0 a.s.

Since S ′ is compact we can choose a convergent subsequence,
and renumber it if needed. We now have:

Θ̂(n) → Θ̄ � 0, n→ 0, (23)

1

n

n∑
i=1

d̂
(n)
i xix

H
i → Θ̄, n→ 0. (24)

All these events happen with probability one and Θ̄ = Θ̄(x)
depends on the realization. The relation (23) implies that for
any ε > 0 there exists n1 ∈ N starting from which Θ̂(n) ≺
(1 + ε)Θ̄. Thus,

1

n

n∑
i=1

d̂
(n)
i xix

H
i �

1

n

n∑
i=1

xix
H
i

xHi

[
Θ̂(n)

]−1
xi

� 1

n

n∑
i=1

xix
H
i

xHi Θ̄−1xi
+
ε

n

n∑
i=1

xix
H
i

xHi Θ̄−1xi
. (25)

In a similar way (24) implies that for the same ε > 0 there
exists n2 ∈ N starting from which

(1− ε)Θ̄ � 1

n

n∑
i=1

d̂
(n)
i xix

H
i . (26)
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Now for n ≥ max(n1, n2)

(1− ε)Θ̄ � 1

n

n∑
i=1

d̂
(n)
i xix

H
i

� 1

n

n∑
i=1

xix
H
i

xHi Θ̄−1xi
+
ε

n

n∑
i=1

xix
H
i

xHi Θ̄−1xi
.

Since ε was chosen arbitrarily and all the sums here are
bounded, this implies that

Θ̄ � 1

n

n∑
i=1

xix
H
i

xHi Θ̄−1xi
, (27)

for sufficiently large n. From here the proof continues as in
Theorem 1: due to Corollary V.I from [12] this implies that
(27) holds with equality and the uniqueness implies that Θ̄ =
Θ0 a.s. up to a scaling factor.

Assume now that the original sequence Θ̂(n) does not con-
verge, which implies that it has a subsequence Θ̂(ni), which
converges to a different limit Θ̄wrong 6= Θ0, but this contradicts
the previous reasoning for the convergent subsequence, thus
showing that the original sequence Θ̂(n) converges to Θ0.
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