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Abstract—Mobile communication networks were designed to
mainly support ubiquitous wireless communications, yet they are
also expected to achieve radio sensing capabilities in the near
future. However, most prior studies on radio sensing usually rely
on far-field assumption with uniform plane wave (UPW) models.
With the ever-increasing antenna size, together with the growing
demands to sense nearby targets, the conventional far-field UPW
assumption may become invalid. Therefore, this paper studies
near-field radio sensing with extremely large-scale (XL) antenna
arrays, where the more general uniform spheric wave (USW)
sensing model is considered. Closed-form expressions of the
Cramér-Rao Bounds (CRBs) for both angle and range estimations
are derived for near-field XL-MIMO radar mode and XL-phased
array radar mode, respectively. Our results reveal that different
from the conventional UPW model where the CRB for angle
decreases unboundedly as the number of antennas increases, for
XL-MIMO radar-based near-field sensing, the CRB decreases
with diminishing return and approaches to a certain limit as the
number of antennas increases. Besides, different from the far-
field model where the CRB for range is infinity since it has no
range estimation capability, that for the near-field case is finite.
Furthermore, it is revealed that the commonly used spherical
wave model based on second-order Taylor approximation is
insufficient for near-field CRB analysis. Extensive simulation
results are provided to validate our derived CRBs.

Index Terms—Cramér-Rao bound, near-field sensing, XL-
MIMO radar, XL-phased array radar, uniform spherical wave.

I. INTRODUCTION

With the fifth-generation (5G) mobile communication net-

works being commercially deployed, researchers have started

the investigation of the key technologies for the sixth-

generation (6G) networks [2]–[4]. There is no doubt that

6G will continue to significantly improve the performance of

wireless communications, in terms of coverage, connectivity

density, data rate, latency, etc. On the other hand, it is also

widely believed that 6G should go beyond communications,

by providing various new services such as high-performance

ubiquitous localization and radar sensing [5]–[7], which is

possible thanks to the continuous expansion of cellular band-

width and the ever-increasing of antenna size. Therefore,

the integration of sensing and communication has received

significant research interest recently, under various terms like

This work was supported by the National Key R&D Program of China with
Grant number 2019YFB1803400.

Part of this work has been presented at the 2022 IEEE ICC Workshops,
Seoul, Korea in July 2022 [1].

The authors are with the National Mobile Communications Research
Laboratory, Southeast University, Nanjing 210096, China. Y. Zeng and Z. Xiao
are also with the Purple Mountain Laboratories, Nanjing 211111,China (e-
mail: {wanghuizhi, zhiqiang xiao, yong zeng}@seu.edu.cn). (Corresponding

author: Yong Zeng.)

joint communication and radar/radio sensing (JCAS) [8], dual-

functional radar communications (DFRC) [9], and integrated

sensing and communication (ISAC) [10].

Most of the research on ISAC can be loosely categorized

into waveform design [11]–[15], codebook design [16], beam

alignment [17] [18] and information-theoretical limits analysis

[19]–[21], etc. For radar sensing, several estimation-theoretic

metrics such as Cramér-Rao Bound (CRB) [22], Weiss-

Wdinstein Bound [23] and Ziv-Zakai Bound [24] are used

to evaluate the performance of parameter estimations, such

as propagation delay, angle of arrival/departure (AoA/AoD),

Doppler frequency, etc. Perhaps the most commonly used

bound for parameter estimation is CRB, which serves as a

lower bound for unbiased mean-square error (MSE) estimator.

Different CRBs have been derived for two typical radar sens-

ing modes, namely MIMO radar mode and phased array radar

mode [25]. For MIMO radar mode, orthogonal waveforms

are transmitted from different antennas, so as to obtain the

waveform diversity gain. In this case, both colocated and

distributed MIMO radar systems have been studied in terms of

CRB analysis [26]–[28]. On the other hand, for phased array

radar mode, coherent waveforms are transmitted from different

antennas, so as to obtain high transmit coherent processing

gain. The CRBs for monostatic phased array radar system with

single transmit antenna and muti-antenna arrays have been

studied in [29] and [30], respectively. Existing results in [26]

reveal that for both MIMO and phased array radar modes,

the CRBs for angle estimation decrease indefinitely with the

increase of signal-to-noise ratios (SNRs) and the number of

transmit and receive antennas.

On the other hand, MIMO communications have been

tremendously advanced from small MIMO in 4G to massive

MIMO in 5G [31]. Looking forward towards 6G, there have

been growing interests in the study of extremely large-scale

MIMO (XL-MIMO) [32]–[36], for which the antenna size is

so large that conventional far-field assumption with uniform

plane wave (UPW) models become invalid. Instead, the more

generic spherical wavefront characteristics need to be taken

into account [1]. However, most existing studies mentioned

above for CRB analysis mainly rely on the conventional UPW

models [37], which was justifiable since most prior radar

sensing applications were mainly for distant targets and the

antenna size is usually moderate. With the ever-increasing

antenna size at base stations (BSs), together with the growing

demands to also sense nearby targets, it is necessary to develop

new CRB analysis for near-field sensing, without restricting to

the conventional far-field UPW models.

There are some relevant works for CRB analysis that
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consider the near field effect for source localization prob-

lems [38]–[41]. For example, Fresnel approximation based

on second-order Taylor approximation is commonly used to

approximate spherical wavefront [38] [39]. In [42], a near-field

tracking problem for inferring the position and velocity of a

moving source was considered, and the posterior Cramér-Rao

Lower Bound was derived. However, although such a second-

order Taylor approximation method well fits the exact near-

field uniform spheric wave (USW) model in most practical

systems, it may introduce some systematic errors and make

the model asymptotically biased [43]. Moreover, most existing

results are derived for the source localization problem that

involves only one-hop signal propagation, which cannot be

applied for radar sensing scenario with double-hop signal

propagation. In [40], the authors derived the conditional and

unconditional CRBs for near-field bistatic MIMO radar sys-

tem. However, such results were dependent on the derivative

of the path difference with respect to unknown parameters,

which is difficult to gain insights between the CRBs and the

key system parameters or array configuration. To the best of

our knowledge, closed-form CRB expressions in terms of the

key system parameters, such as SNR and number of antennas,

have not been reported for near-field radar sensing taking into

account uniform spherical wave (USW) characteristics. This

motivates our current work. The main contributions of this

paper are summarized as follows:

• First, we present the near-field bistatic sensing model with

extremely large-scale antenna arrays, for which the signal

processing procedures for XL-MIMO radar mode and

XL-phased array radar mode are introduced, respectively.

It is found that directly deriving the CRBs for near-field

bistatic sensing is challenging, since it involves four-

dimension parameter estimation, including transmitter-

side and receiver-side angles and ranges, respectively. To

tackle this difficulty, we transform the problem into two-

dimensional parameter estimation problem by exploiting

the geometrical relationship between the transmit and

receive arrays, so that the receiver-side parameters can be

represented in terms of the transmitter-side parameters.

• Next, to gain useful insights, the basic monostatic near-

field sensing is first considered, which can be viewed as a

special case of the general bistatic near-field sensing. The

closed-form expressions of the near-field CRBs for angle

and range estimation are derived. The asymptotic cases

with very large target range or antenna size are respec-

tively considered to gain useful insights. It is revealed

that our newly derived CRBs for near-field USW-based

sensing include the results based on the conventional

far-field UPW model as special cases. Different from

the conventional far-field sensing, for XL-MIMO near-

field sensing, the CRB for angle estimation no longer

decreases indefinitely as the array size increases. Instead,

it would approach to a limit that is dependent on the

inter-element spacing. Moreover, the CRB for range

estimation, which is infinity in conventional UPW model,

is shown to be finite in the near-field case, showing the

capability for range discrimination with XL-MIMO near-

field sensing.

• Finally, for the more general bistatic XL-MIMO sensing,

as it is quite challenging to derive the closed-form CRB

expressions when near-field USW model is considered

at both transmitter and receiver sides, we consider the

more tractable and likely scenario in practice that the

sensing target locates in the near-field of the transmit

array. The corresponding closed-form CRBs of angle

and range are derived and useful insights are obtained.

Furthermore, by comparing our CRBs with the classic

Capon algorithm [44], numerical results are provided to

validate our derived near-field CRBs.

The rest of this paper is organized as follows. Section

II introduces the general near-field USW model for bistatic

radar sensing, together with the key radar signal processing

procedures for XL-MIMO radar mode and XL-phased array

radar mode, respectively. Section III derives the closed-form

expression of CRB for the monostatic scenario, which can

be treated as a special case of bistatic sensing. Section IV

derives the CRBs for bistatic sensing when the sensing target

is located at the near field of the transmit array. Section V

provides numerical results to validate our derived CRBs.

Notations: Lower and upper-case bold letters denote vectors

and matrices, respectively. zi denotes the i-th element of

a vector z. ZT , Z∗, ZH and det(Z) denote the transpose,

conjugate, conjugate transpose, and determinant of the matrix

Z, respectively. R{·} denotes the real part, and ⊗ denotes

the Kronecker product. ∂
∂z (·) denotes the partial derivative of

z. 1L denotes the vector of dimension L × 1 with all ones.

Finally, j denotes the imaginary unit and ‖z‖ denotes the

Euclidean norm of vector z .
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Fig. 1. Near-field radar sensing with XL-MIMO.

II. SYSTEM MODEL

As shown in Fig.1, we consider a near-field radar sensing

system with XL-MIMO. Let M ≫ 1 and N ≫ 1 denote

the number of transmit and receive antenna elements, respec-

tively. For notational convenience, we assume that M and

N are odd numbers. Furthermore, both the transmitter and

receiver are equipped with uniform linear arrays (ULAs) with

inter-element spacing denoted by dT and dR, respectively.

Thus, the array apertures of the transmitter and receiver
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are DT ≈ MdT and DR ≈ NdR, respectively. For sim-

plicity, we assume that the transmit and receive ULAs are

parallel to each other and their distance is R. Without loss

of generality, the transmit ULA is placed along the y-axis

and centered at the origin. Therefore, the location of the mth

transmit element is wm = [0,mdT ]
T , where m ∈ M, with

M , {0,±1, · · · ,±(M − 1)/2} . Similarly, the location of

the nth receive element is [R, ndR]
T , where n ∈ N , with N ,

{0,±1, · · · ,±(N − 1)/2} . Let q = [r cos θ, r sin θ]T denotes

the location of the radar sensing target, where r is the

distance between the target and the center of the transmit array,

and θ ∈
[

−π
2 ,

π
2

]

is the direction of the target with respect to

the normal vector of the transmit array. Therefore, the distance

between the target and the mth transmit antenna is

rm = ‖wm−q‖ = r
√

1− 2mεT sin θ +m2εT 2, (1)

where εT , dT

r ≪ 1. Note that (1) is the exact distance

expression that can be degenerated to the conventional far-

field UPW model by using first-order Taylor approximation

when DT ≪ r.

For XL-MIMO systems, when the far-field assumption no

longer holds, the exact distance expression (1) is usually

needed to accurately model the signal phase and amplitude

variations across different array elements. In this case, the

element of the transmit array response vector not only depends

on the direction θ, but also on the range r, which can

be expressed as ãm(r, θ) =
√
α0

rm
e−j 2π

λ rm [32], m ∈ M,

with α0 denoting the channel power gain at the reference

distance of 1m.

Similarly, let l denotes the distance between the tar-

get and the center of the receive antenna array, and ϕ
denotes the direction of the target with respect to the

normal vector of the receive array. Therefore, the ele-

ment of the receive array response vector can be ex-

pressed as b̃n(l, ϕ) =
√
β0

ln
e−j 2π

λ ln , n ∈ N , with ln =

l
√

1− 2nεR sinϕ+ n2εR2 denoting the distance between the

target and the center of the receive array. εR
∆
= dR

l ≪
1, and β0 denotes the channel power gain at the reference

distance of 1m. Furthermore, when the distance R between

the transmit and receive arrays is known, the receiver side

range and angle parameters l and ϕ can be expressed in terms

of the transmitter side parameters r and θ, i.e.,

l(r, θ) =
√

R2 + r2 − 2Rr cos θ,

ϕ(r, θ) = arcsin

{

r sin θ√
R2 + r2 − 2Rr cos θ

}

.
(2)

As a result, the distance ln and the element of the receive

array response vector b̃n(l, ϕ) can be represented in terms of

r and θ as

ln(r, θ) =

√

R2 + r2 − 2Rr cos θ − 2ndRr sin θ + n2dR
2,

b̃n(r, θ) =

√
β0

ln(r, θ)
e−j 2π

λ
ln(r,θ).

(3)

Let xm(t) denotes the transmitted waveform by the mth

transmit antenna, m ∈ M. The received signal by the nth

receive antenna due to target reflection can be expressed as

rn(t) = κ̃b̃n(r, θ)
∑

M−1
2

m=−M−1
2

ãm(r, θ)xm(t − τ) + nn(t), (4)

where κ̃ is a complex reflection coefficient that includes the

impact of radar cross section (RCS) of the target, τ is the

propagation delay of the reflected signal by the target. Note

that we assume that the propagation delays between different

transmit and receive elements are approximately equal, which

is valid when DT + DR ≤ c
B , where B denotes system

bandwidth, and c is the speed of light. nn(t) is the independent

and identically distributed (i.i.d.) additive white Gaussian noise

(AWGN) with power spectral density N0.

Note that ãm(r, θ) can be equivalently written as ãm(r, θ) =√
α0

r
r
rm
e−j 2π

λ rm , and when r > 1.2DT [45], the amplitude

variations across array elements can be neglected. There-

fore, the transmit array response vector can be expressed as

ã(r, θ) =
√
α0

r a(r, θ), where

a(r, θ) = [a
−M−1

2
(r, θ), ..., am(r, θ), ..., aM−1

2
(r, θ)]T , (5)

with the element am(r, θ) = e−j 2π
λ rm . Similarly, the receive

response vector can be expressed as b̃(r, θ) =
√
β0

l b(r, θ),
where

b(r, θ) = [b
−N−1

2
(r, θ), ..., bn(r, θ), ..., bN−1

2
(r, θ)]T , (6)

with bn(r, θ) = e−j 2π
λ ln . Note that we have expressed the

receive array response vector in terms of the transmitter side

angle and range parameters (r, θ) based on the relationship (3).

Therefore, according to (4), the vector form of the received

signal for bistatic near-field radar sensing can be written as

r(t) = κb(r, θ)aT (r, θ)x(t − τ) + n(t), (7)

where x(t) = [xm(t)]m∈M denotes the transmitted waveform

vector, κ , κ̃
√
α0β0

r
√
R2+r2−2Rr cos θ

is the coefficient taking into

account the reference power gains, n(t) ∈ C
N×1 is the i.i.d.

AWGN with zero mean and power spectral density N0. Note

that the coefficient κ also depends on the target location

(r, θ) in general. However, since the variation of amplitude

is much less sensitive than the phase variation, we ignore the

dependence of κ on (r, θ) for the subsequent CRB derivation.

In the following, we consider two standard radar modes,

i.e., MIMO radar mode and phased array radar mode [25],

which we term as XL-MIMO radar and XL-phased array radar

respectively in the context of near-field sensing with extremely

large-scale antenna arrays [1].

A. XL-MIMO Radar

For MIMO radar, the transmitted waveform x(t) in (7) is

x(t) =

√

P

M
s(t), (8)

where P is the total transmit power, and s(t) =
[sm(t)]m∈M represents the M orthogonal waveforms, which

satisfy [46]

1

Tp

∫

Tp

sm(t)s∗k(t− α)dt =

{

Rss(α), m = k,

0, m 6= k,
(9)

where Tp is the duration of coherent processing interval (CPI),

and Rss(α) is the autocorrelation function of the waveforms

sm(t), with Rss(0) = 1. By substituting (8) into (7), the

received signal for XL-MIMO radar is [1]

r(t) = κ

√

P

M
b(r, θ)aT (r, θ)s(t − τ) + n(t)

= κ

√

P

M
b(r, θ)

∑
M−1

2

m=−M−1
2

am(r, θ)sm(t − τ) + n(t).

(10)

By applying matched filtering to r(t) with each of the orthog-

onal waveforms sk(t−α), k ∈ M, where α is some selected
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time delay that may be different from the groundtruth delay

τ , the output signal can be expressed as

yk =
1

√

Tp

∫

Tp

r(t)s∗k(t − α)dt

= κ

√

TpP

M
b(r, θ)ak(r, θ)Rss(α− τ) + ñk,

(11)

where ñk
∆
= 1√

Tp

∫

Tp
n(t)s∗k(t − α)dt. The normalization

factor 1√
Tp

is applied to ensure that the noise remains to have

variance N0. By concatenating yk ∈ CN×1 for all k ∈ M,

and if the matched filter delay α mathces with the groundtruty

delay τ , we obtain the following MN dimensional data vector

y = κ

√

TpP

M
b(r, θ)⊗ a(r, θ) + ñ, (12)

where ñ = [ñk]k∈M ∈ CMN×1represents the resulting noise

after matched-filtering, which can be shown to have zero mean

and variance N0.

B. XL-phased Array Radar

For phased array radar, transmit beam is formed to search

or track the target at a certain direction θ′ and range r′ [1]. In

this case, the transmitted signal in (7) is

x(t) =

√
P

‖a(r, θ)‖a
∗(r′, θ′)s(t), (13)

where P is the total transmit power, a(r′, θ′) is the transmit

steering vector towards the target at range r′ and angle θ′, s(t)
is the single transmitted waveform satisfying 1

Tp

∫

Tp
s(t)s∗(t−

α)dt = R(α), where R(α) is the autocorrelation function for

phased array radar. By substituting (13) into (7), the received

signal for XL-phased array radar is

r(t) = κ

√
P

‖a(r, θ)‖
b(r, θ)aT (r, θ)a∗(r′, θ′)s(t − τ) + n(t). (14)

By applying matched filtering for r(t) with the transmitted

waveform s(t− α), we have

y(α, r′, θ′) =
1

√

Tp

∫

Tp

r(t)s∗(t − α)dt

= κ

√

TpP

‖a(r, θ)‖
b(r, θ)aT (r, θ)a∗(r′, θ′)R(α − τ) + ñ,

(15)

where ñ
∆
= 1√

Tp

∫

TP

n(t− α)s∗(t)dt is the resulting noise

vector with zero mean and variance N0. When the searching

parameters match with the groundtruth values, i.e., θ′ = θ,
r′ = r, α = τ, and by noting that ‖a(r, θ)‖ =

√
M , we have

y = κ
√

TpMPb(r, θ) + ñ. (16)

C. Cramér-Rao Bound

It follows from (12) and (16) that, for both XL-MIMO radar

mode and XL-phased array radar mode, the resulting signal

after matched filter can be written in the unified form as
y = ρg+ ñ, (17)

where ρ is a constant that is approximately independent of

the sensing parameters θ and r. For XL-MIMO radar mode,

we have g = b(r, θ) ⊗ a(r, θ) and ρ = κ
√

TpP
M , while for

XL-phased array radar mode, we have g = b(r, θ) and ρ =
κ
√

TpPM .

Let w = ρg and z = [θ, r, κr, κi]
T that includes the

unknown parameters, where κr and κi denote the real and

imaginary parts of κ, respectively. According to [26], the

Fisher’s information matrix (FIM) with respect to z can be

expressed as

F =
2

N0
ℜ
{

(

∂w

∂z

)(

∂w

∂z

)H
}

=
2

N0







vθθ vθr vθκr vθκi

vθr vrr vrκ̃ vrκi

vθκr vrκr vκrκr 0
vθκi

vrκi 0 vκiκi






=

[

Π11 Π12

Π21 Π22

]

,

(18)

where vz1z2 , ℜ{( ∂w∂z1 )(
∂w
∂z2

)H}. The CRB for the parameters

of interest (r, θ) is related to the inverse of the FIM

F−1 =
N0

2

[

Q−1 ×
× ×

]

, (19)

where Q=Π11 − Π12Π
−1
22 Π

T
12 is the Schur complement

of Π22 corresponding to F. Furthermore, it is shown in [26]

that Q = |ρ|2Q′, with

Q′ =





‖gθ‖2sin2Ω R{gHWg}

‖g‖2

R{gHWg}

‖g‖2
‖gr‖2sin2Θ



 , (20)

where gθ = ∂g
∂θ , gr =

∂g
∂r , sin2Ω = 1− |gH

θ g|2

‖gθ‖2‖g‖2 , sin2Θ =

1− |gH
r g|2

‖gr‖2‖g‖2 , and W = (gH
θ gr)I− gθg

H
r .

Therefore, the CRBs of angle θ and range r can be ex-

pressed as [26]

CRBθ =
N0

2|ρ|2
‖gr‖2sin2Θ

detQ′
, (21)

CRBr =
N0

2|ρ|2
‖gθ‖2sin2Ω

detQ′
. (22)

Thus, the remaining task for the near-field CRB derivation for

the input-output relation (17) is to obtain the terms ‖gr‖2,

‖gθ‖2, detQ′, sin2Θ and sin2Ω appearing in (21) and (22).

In the following, to gain useful insights, we first consider near-

field sensing for the basic monostatic scenario, which can be

treated as a special case of the bistatic setup in Fig. 1, by

letting R = 0, M = N , dT = dR, and b(r, θ) = a(r, θ).
After that, the more complicated bistatic sensing scenario will

be considered in Section IV.

III. NEAR-FIELD CRB FOR MONOSTATIC SENSING

A. XL-MIMO Radar

In order to derive the closed-form expressions for

the angle and range CRBs in (21) and (22), the

terms ‖gθ‖2, ‖gr‖2, ‖g‖2,ℜ{gHWg}, sin2Ω, and sin2Θ should

be derived. For the special case of monostatic sensing where

b(r, θ) = a(r, θ), we have g = a(r, θ) ⊗ a(r, θ). Thus, we

can derive the following results:

‖gθ‖2 =

[

∂aH(r, θ)

∂θ
⊗ aH(r, θ) + aH(r, θ)⊗ ∂aH(r, θ)

∂θ

]

×
[

∂a(r, θ)

∂θ
⊗ a(r, θ) + a(r, θ)⊗ ∂a(r, θ)

∂θ

]

= 2

∥

∥

∥

∥

∂a(r, θ)

∂θ

∥

∥

∥

∥

2

‖a(r, θ)‖2 + 2

∣

∣

∣

∣

∂aH(r, θ)

∂θ
a(r, θ)

∣

∣

∣

∣

2

= 2Ma+ 2|c|2,

(23)

where a ,

∥

∥

∥

∂a(r,θ)
∂θ

∥

∥

∥

2

, and c , ∂aH(r,θ)
∂θ a(r, θ) are relevant in-

termediate parameters. Similarly, other relevant terms in (21)

and (22) can be obtained as
‖gr‖2 = 2Mp+ 2|q|2, ℜ{gHWg} = 2M2ℜ{Me− c∗q},

sin2Ω =
Ma− |c|2

Ma+ |c|2
, sin2Θ =

Mp− |q|2

Mp+ |q|2
,

(24)
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where the intermediate parameters e, p, and q are defined as

e ,
∂aH(r, θ)

∂θ

∂a(r, θ)

∂r
, p ,

∥

∥

∥

∥

∂a(r, θ)

∂r

∥

∥

∥

∥

2

, q ,
∂aH (r, θ)

∂r
a(r, θ). (25)

Note that all these intermediate parameters are dependent

on a(r, θ) and its derivatives. Therefore, to further derive

the expression of intermediate parameters, based on (5), the

derivatives of am(r, θ) with respect to r and θ are obtained as
∂am(r, θ)

∂θ
= − j2π

λ
e
−j 2π

λ
rm

∂rm

∂θ
,

∂am(r, θ)

∂r
= − j2π

λ
e
−j 2π

λ
rm

∂rm

∂r
,

(26)

where ∂rm
∂θ and ∂rm

∂r can be obtained based on (1):
∂rm

∂θ
=

−mdT cos θ
√

1− 2mεT sin θ + (mεT )2
,

∂rm

∂r
=

1−mεT sin θ
√

1− 2mεT sin θ + (mεT )2
.

(27)

As a result, the intermediate parameters a, c, e, q, and q are

given by

a =
∑

M=1
2

m=−M=1
2

(

∂am(r, θ)

∂θ

)2

=
4π2r2cos2θ

λ2

∑
M−1

2

m=−M−1
2

m2εT
2

1− 2mεT sin θ + (mεT )2
,

(28)

c =
∑

M=1
2

m=−M=1
2

∂am
∗(r, θ)

∂θ
am(r, θ)

= −j 2πr cos θ
λ

∑
M−1

2

m=−M−1
2

mεT
√

1− 2mεT sin θ + (mεT )2
,

(29)

e =
∑

M=1
2

m=−M=1
2

∂am
∗(r, θ)

∂θ

∂am(r, θ)

∂r

=
4π2r

λ2

∑
M−1

2

m=−M−1
2

mεT cos θ(mεT sin θ − 1)

1− 2mεT sin θ + (mεT )2
,

(30)

p =
∑

M=1
2

m=−M=1
2

(

∂am(r, θ)

∂r

)2

=
4π2

λ2

∑

M−1
2

m=−M−1
2

[

1− m2εT
2cos2θ

1− 2mεT sin θ + (mεT )2

]

,

(31)

q =
∑

M=1
2

m=−M=1
2

∂am
∗(r, θ)

∂r
am(r, θ)

= j
2π

λ

∑
M−1

2

m=−M−1
2

1−mεT sin θ
√

1− 2mεT sin θ + (mεT )2
.

(32)

Since εT ≪ 1, similar to [32], we can derive the closed-form

expressions for the above intermediate parameters as follows.

Proposition 1: The closed-form expressions of the interme-

diate parameters a, c, e, p, q can be derived as

a =
4π2r2cos2θ

λ2εT





DT

r
+ sin θ ln

∣

∣

∣

∣

∣

∣

D2
T

4r2
− sin θDT

r
+ 1

D2
T

4r2
+ sin θDT

r
+ 1

∣

∣

∣

∣

∣

∣

− cos 2θ

cos θ
∆t

span

(

DT

r

)]

,

(33)

c = −j 2πr cos θ
λ





√

D2
T

4r2
− sin θ

DT

r
+ 1−

√

D2
T

4r2
+ sin θ

DT

r
+ 1

+ψ

(

DT

r

)

sin θ

]

,

(34)

e =
4π2r cos θ

λ2εT





DT

r
sin θ − cos 2θ

2
ln

∣

∣

∣

∣

∣

∣

D2
T

4r2
− sin θDT

r
+ 1

D2
T

4r2
+ sin θDT

r
+ 1

∣

∣

∣

∣

∣

∣

−∆t
span

(

DT

r

)

sin 2θ

]

,

(35)

p =
4π2

λ2εT



sin2θ
DT

r
− ln

∣

∣

∣

∣

∣

∣

D2
T

4r2
− sin θDT

r
+ 1

D2
T

4r2
+ sin θDT

r
+ 1

∣

∣

∣

∣

∣

∣

cos2θ sin θ

+∆t
span

(

DT

r

)

cos θ cos 2θ

]

,

(36)

q = j
2π

λεT



ψ

(

DT

r

)

cos2θ − sin θ

√

D2
T

4r2
− sin θ

DT

r
+ 1

+ sin θ

√

D2
T

4r2
+ sin θ

DT

r
+ 1



 ,

(37)

where ∆t
span(

DT

r ) , arctan( DT

2r cos θ − tan θ) +

arctan( DT

2r cos θ + tan θ) is the angular span of the

transmit array [32], ψ(DT

r ) , ln

(

p2+
√

1+p2
2

p1+
√

1+p2
1

)

and p1 =
−DT

2r −sin θ

cos θ , p2 =
DT
2r −sin θ

cos θ .
Proof: Please refer to Appendix A.

Based on (33)-(37), the parameters in (23) and (24) can be

obtained. By substituting them into (21) and (22), the closed-

form expressions of the near-field CRBs of angle and range

can be obtained, as given below.

Theorem 1: For near-field monostatic XL-MIMO radar

mode, the CRBs of angle θ and range r can be expressed

in closed-form as

CRBθ =
1

2γL

M(Mp− |q|2)
2{(Ma − |c|2)(Mp − |q|2)− [Me− c∗q]2}

, (38)

CRBr =
1

2γL

M(Ma − |c|2)
2{(Ma − |c|2)(Mp − |q|2)− [Me− c∗q]2}

, (39)

where γ = P |κ|2
σ2 defined as the SNR, with σ2 = N0B, and

L , BTp denotes time-bandwidth product in a CPI. The

intermediate parameters a, c, e, p, q are given in closed-form

in Proposition 1.

To gain useful insights for Theorem 1, we consider three

asymptotic cases when DT

r ≫ 1, DT

r cos θ → ∞, or DT

r ≪
1, respectively.

Corollary 1.1: When DT

r ≫ 1, the CRBs in Theorem 1

reduces to

CRBθ =
1

2γL
×

λ2
[

(

DT sin θ
r

)2
+ πDT

r
cos θ cos 2θ − 4(cos2θ ln DT

r cos θ
+ sin2θ)

2
]

8π2r2M( πDT
rcos θ

− 4ln2 DT
r cos θ

)cos2θ
,

(40)

CRBr =
1

2γL

λ2
[

(

DT
r

)2
+ πDT

r
cos 2θ
cos θ

− 4(ln DT
r cos θ

− 1)
2
sin2θ

]

8π2M( πDT
r cos θ

− 4ln2 DT
r cos θ

)
.

(41)

Proof: Please refer to Appendix B.

Corollary 1.2: When DT

r cos θ → ∞, the limits of near-field

CRBs of angle and range are

lim
DT

r cos θ
→∞

CRBθ =
1

2γL

λ2dT sin2θ

8π3r3 cos θ
, (42)

lim
DT

r cos θ
→∞

CRBr =
1

2γL

λ2dT cos θ

8π3r
. (43)

Proof: Please refer to Appendix C.

As a comparison, the CRB for angle with the conventional

far-field UPW model can be derived based on [26]

Cθ =
1

2γL

3λ2

2π2d2
T
M(M2 − 1)cos2θ

, (44)
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whereas that for range is infinity since far-field sensing does

not have range discrimination capability. Note that for the

given inter-element distance dT , the array aperture DT in-

creases proportionally with the number of antennas M . There-

fore, it is observed from (42)-(44) that different from the far-

field UPW model where the CRB decreases indefinitely with

the number of antennas M or array aperture DT , for near-field

XL-MIMO sensing with USW model, when the array aperture

DT goes to infinity, the CRBs of angle and range approach

to a limit that is dependent on the inter-element distance dT .

This implies that in order to achieve the extreme performance

for unbiased angle and range estimation with zero errors, not

only the array aperture DT should be sufficiently large, but

also the inter-element spacing dT should be infinitesimally

small. This theoretically shows that the emerging holographic

MIMO could potentially achieve better near-field sensing than

conventional discrete MIMO [47]–[49].

Corollary 1.3: When DT

r ≪ 1, the CRB in (38) reduces to

CRBθ =
1

2γL

3λ2

2π2d2TM
3cos2θ

Ξ(θ), (45)

where Ξ(θ) , 6sin2θ+cos2θ cos 2θ
9sin2θ+cos6θ ∈ (0.6, 1].

Proof: Please refer to Appendix D.

By comparing (44) and (45), it is found that when the array

aperture DT is much smaller than the target range r, our newly

derived CRB for USW-based near-field sensing reduces to the

conventional UPW-based far-field sensing, with a correction

factor Ξ(θ).
The near-field CRB expressions in (38) and (39) are derived

by considering the USW propagation based on the exact dis-

tance expression (1). Another common approach for modelling

USW is to apply the second-order Taylor approximation for (1)

[50] [51]. In this case, the CRBs in (38)-(39) can be obtained

in the following.

Corollary 1.4: When the second-order Taylor approxima-

tion is used for the distance expression (1), the near-field CRBs

in (38)-(39) reduce to

CRBθ =
1

2γL

3λ2

2π2d2TM(M2 − 1)cos2θ
, (46)

CRBr =
1

2γL

6λ2r2[15r2 + (dT sinθ)2(M2 − 4)]

(πd2
T
cos2θ)

2
M(M2 − 1)(M2 − 4)

. (47)

Proof: Please refer to Appendix E.

Corollary 1.4 shows that surprisingly, if the second-order

Taylor approximation is used for USW modeling, the CRB

of angle coincides with that based on the conventional UPW

model in (44). This is because the USW feature, which is

mainly captured by the second-order term in a(r, θ), is offset

by other terms p, e, c, q. This implies that the second-order

Taylor approximation may not be accurate enough to evaluate

the near-field CRB for angle estimation. On the other hand,

when M is large, the expression (47) shows that the CRB of

range is inversely proportional to M3 and would eventually

approach to 0. This is in contrast with the result based on the

exact distance expression as presented in (43).

B. XL-phased Array Radar

For monostatic XL-phased array radar, we have g = a(r, θ),
and ρ = κ

√

TpPM for the model (17). Thus, ‖g‖2 =

‖a(r, θ)‖2 = M. Similar to the analysis of XL-MIMO radar

in Section III-A, the following parameters in (21) and (22) can

be obtained:

‖gθ‖2 = a, ‖gr‖2 = p, sin2Ω = 1− |c|2

aM
, sin2Θ = 1− |q|2

pM
, (48)

where the intermediate parameters a, c, p, and q are given in

closed-form in (33)-(37). Therefore, based on (21) and (22),

the closed-form CRBs of range and angle can be obtained, as

shown in Theorem 2 below.

Theorem 2: For near-field monostatic XL-phased array radar

sensing, the closed-form CRBs for angle and range estimation

are

CRBθ =
1

2γL

(Mp− |q|2)
(Ma− |c|2)(Mp − |q|2)− [Me− c∗q]2

, (49)

CRBr =
1

2γL

(Ma − |c|2)
(Ma − |c|2)(Mp − |q|2)− [Me− c∗q]2

, (50)

where the closed-form expression of the intermediate param-

eters a, c, e, p, q are given in (33)-(37).

By comparing Theorem 2 with Theorem 1, it is observed

that the CRBs for XL-phased array radar mode are 2
M frac-

tional of those for XL-MIMO radar mode. Such an additional

gain is contributed by the transmit beamforming gain by

phased array radar. Similar analysis as in Section III-A can be

obtained for XL-phased array sensing. The proofs are omitted

for brevity.

Corollary 2.1: For the asymptotic case when DT

r ≫ 1 , the

CRBs of angle and range in Theorem 2 reduce to

CRBθ ≈ 1

2γL
×

λ2
[

(

DT
r

)2
sin2θ + πDT

r
cos θ cos 2θ − 4(cos2θ ln DT

r cos θ
+ sin2θ)

2
]

4π2r2M2( πDT
rcos θ

− 4ln2 DT
r cos θ

)cos2θ
,

(51)

CRBr ≈ 1

2γL

λ2
[

(

DT
r

)2
+ πDT

r
cos 2θ
cos θ

− 4(ln DT
r cos θ

− 1)
2
sin2θ

]

4π2M2( πDT
r cos θ

− 4ln2 DT
r cos θ

)
.

(52)

Corollary 2.2: For the asymptotic case when DT

r cos θ → ∞,

the CRBs in (51) and (52) approach to the following limits:

lim
DT

r cos θ
→∞

CRBθ =
1

2γL

λ2dT sin2θ

4Mπ3r3 cos θ
, (53)

lim
DT

r cos θ
→∞

CRBr =
1

2γL

λ2dT cos θ

4Mπ3r
. (54)

Corollary 2.2 shows that different from the near-field XL-

MIMO radar mode, for XL-phased array radar mode, the

CRBs decrease indefinitely as the number of array elements

M or aperture DT go to sufficiently large.

The CRB of angle for the conventional far-field UPW-based

sensing can be obtained based on [30]

Cθ =
1

2Lγ

3λ2

π2d2TM
2(M2 − 1)cos2θ

. (55)

Corollary 2.3: Similar to (45), when DT

r ≪ 1, the CRB in

(49) reduces to

CRBθ =
1

2γL

3λ2

π2d2TM
4cos2θ

Ξ(θ), (56)

where Ξ(θ) = 6sin2θ+cos2θ cos 2θ
9sin2θ+cos6θ

.
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Corollary 2.4: When the second-order Taylor approximation

is used for the distance expression (1), the CRBs in (49) and

(50) reduce to

CRBθ =
1

2γL

3λ2

π2d2TM
2(M2 − 1)cos2θ

, (57)

CRBr =
1

2γL

12λ2r2[15r2 + (dT sinθ)2(M2 − 4)]

(πd2T cos2θ)2M2(M2 − 1)(M2 − 4)
, (58)

which are consistent with the results in [52].

IV. NEAR-FIELD CRB FOR BISTATIC SENSING

In this section, we extend the above analysis to bistatic

near-field sensing. However, when near-field USW model is

considered at both the transmitter and receiver sides, the CRB

derivation is rather challenging. Moreover, considering the

practical transmitter and receiver sizes and the target distance,

the target is less likely to locate at the near-field of both

the transmitter and receiver sides. Therefore, in the follow-

ing, we consider XL-MIMO and XL-phased array sensing

when the target locates at the near-filed of the transmitter

while at the far-field of the receiver. In this case, the ele-

ment of the receive steering vector in (6) can be expressed

as bn(r, θ) = e−j 2π
λ (l−ndR sinϕ(r,θ)). Based on the expression

of ϕ(r, θ) in (2), bn(r, θ) can be written as

bn(r, θ) = e−j 2π
λ

le
j 2π

λ

rndR sin θ√
R2+r2−2Rr cos θ .

(59)

Note that only the phase variation related to (r, θ) is consid-

ered. Therefore, the constant term e−j 2π
λ l in bn(r, θ) can be

incorporated into the coefficient κ in (7), by defining the new

coefficient κ̂ = κe−j 2π
λ l.

A. XL-MIMO radar

Similar to the analysis in Section III-A, for bistatic XL-

MIMO radar mode, the parameters in (21) and (22) can be

expressed as
‖gθ‖2 =Mi+Na+ fc∗ + f∗c,

‖gr‖2 =Ms+Np+ hq∗ + h∗q,

gH
θ gr =Mk +Ne+ fq∗ + h∗c,

gHgθ = Nc∗ + f∗M,gH
r g = Nq +Mh,

(60)

where the intermediate parameters are defined as

i =

∥

∥

∥

∥

∂b(r, θ)

∂θ

∥

∥

∥

∥

2

, s =

∥

∥

∥

∥

∂b(r, θ)

∂r

∥

∥

∥

∥

2

, f =
∂bH (r, θ)

∂θ
b(r, θ),

k =
∂bH (r, θ)

∂θ

∂b(r, θ)

∂r
, h =

∂bH (r, θ)

∂r
b(r, θ).

(61)

In order to derive the closed-form expressions for the interme-

diate parameters in (61), we define Γθ(r, θ) and Γr(r, θ), as

Γθ(r, θ) ,
∂ sinϕ

∂θ
=

r cos θ(R2+r2−Rr cos θ)−Rr2

(R2+r2−2Rr cos θ)3/2
,

Γr(r, θ) ,
∂ sinϕ

∂r
=

R sin θ(R−r cos θ)

(R2+r2−2Rr cos θ)3/2
,

(62)

which are independent of the index of antenna element n.

Furthermore, by considering the symmetry of antenna array,

the parameters in (61) reduce to

i =
π2d2RΓ2

θ

3λ2
N(N2 − 1), s =

π2d2RΓ2
r

3λ2
N(N2 − 1),

f = h = 0, k =
π2d2RΓθΓr

3λ2
N(N2 − 1).

(63)

Theorem 3: For bistatic XL-MIMO radar sensing with near-

field at the transmitter and far-field at receiver, the closed-form

expression of CRBs are

CRBθ =
1

2γL

×
M(Ms+Np− N

M
|q|2)

(Mi+Na− N
M

|c|2)(Ms+Np− N
M

|q|2)− (Mk +Ne− N
M
c∗q)

2
,

(64)

CRBr =
1

2γL

×
M(Mi+Na− N

M
|c|2)

(Mi+Na− N
M

|c|2)(Ms+Np− N
M

|q|2)− (Mk +Ne− N
M
c∗q)

2
,

(65)

where the intermediate parameters a, c, e, p, q are given in

closed-form in (33)-(37).

Proof: Theorem 3 can be shown by calculating the terms

in (60) as ‖gθ‖2 =Mi+Na, ‖gr‖2 =Mj +Np, gH
θ gr =

Mk +Ne, gHgθ = Nc∗, gH
r g = Nq.

The CRB of angle for bistatic MIMO radar based on

conventional far-field UPW model is given in [26]

Cθ =
1

2γL

3λ2

π2N [d2R(N2 − 1) + d2T (M2 − 1)]cos2θ
. (66)

The closed-form CRBs in Theorem 3 are rather involved. To

gain some useful insights, we consider the special case when

θ = 0 in the following.

Corollary 3.1: When θ = 0, the CRBs in Theorem 3 reduce

to

CRBθ =
1

2γL

M

d2
R
rMN(N2−1)

3λ2(R−r)
+ 4π2r2N

λ2ε2
T

[

DT
r

− 2 arctan
(

DT
2r

)]
,

(67)

CRBr =
1

2γL

λ2

4π2N

[

2r
DT

arctan
(

DT
2r

)

−
(

2r
DT

)2
ln2

(

DT
2r

+

√

1 +
(

DT
2r

)2
)] .

(68)

Proof: Please refer to Appendix F.

Corollary 3.1 shows that the CRB for range is only depen-

dent on
DT /2

r , which is determined by the angle between the

two lines from the target to the ends of the transmit array, or

the transmit angular span as defined in [32]. Furthermore, it

can be shown that the CRB for range in (68) does not decrease

monotonically with the transmit array aperture DT . Instead,

it first decreases and then increases as DT increases, and the

minimal point occurs at DT ≈ 12r, as proved in Appendix

F. This indicates that when the number of receive antennas N
is fixed, larger transmit aperture DT does not necessarily lead

to better range estimation. This can be explained by the fact

that for XL-MIMO radar mode, when the total power of the

antenna array is fixed to P , the power of each antenna element

decreases as the number of antenna increases, as evident

from (8). However, (26) and (27) show that the magnitude

of the partial derivatives decrease for larger antenna index

m. This means that when DT is larger enough, the marginal

contribution by adding additional antennas fail to compensate

the resulting power reduction of each antenna element, which

leads to the increase of the CRB for range.

Corollary 3.2: When θ = 0, for the asymptotic case that
DT

r cos θ → ∞, the CRBs of angle and range in (67) and (68)
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approach to the following limits:

lim
DT

r cos θ
→∞

CRBθ =
1

2γL

λ2

π2r2N

[

d2R
3(R−r)2

(N2 − 1) + 4

] ,
(69)

lim
DT

r cos θ
→∞

CRBr = lim
DT

r cos θ
→∞

1

2γL

DT
2λ2

4π2r2N
(

π
DT
r

− 4ln2 DT
r

)

→ ∞.

(70)

Proof: Corollary 3.2 can be shown by substituting the g2
and g4 in Appendix B into (67) and (68), and (70) can be

written as

CRBr

(a)
≈ 1

2γL

DT
2λ2

4π2r2Nπ
DT
r

=
1

2γL

λ2

4π2Nπ

DT

r
→ ∞. (71)

with (a) follows from Appendix C.

Corollary 3.2 shows that when the transmit array aperture

DT goes large, the CRB for angle will approach to a limit

that is dependent on the number of receive antennas N , rather

than decreasing indefinitely with DT . Besides, the CRB of

range depends on both the number of the transmit and receive

elements, and will approach to infinity when DT goes large,

which is consistent with Corollary 3.1.

Corollary 3.3: When θ = 0, for the asymptotic case when
DT

r ≪ 1, the CRBs for angle and range in (67) and (68)

reduce to

CRBθ ≈ 1

2γL

3λ2

π2N

(

d2R

(

r
R−r

)2
(N2 − 1) + d2TM

2

) ,

CRBr =
1

2γL

M

Np− N
M

|q|2
→ ∞.

(72)

Proof: Corollary 3.3 can be shown by substituting the

intermediate parameters in Appendix D into (67) and (68).

Corollary 3.3 shows that when the array aperture DT is

much smaller than the target range r, our newly derived CRB

results are consistent with the existing results (66) based on

the conventional UPW model. Note that the additional factor

(r/(R− r))2 in the denominator of (72) is due to the fact that

we expressed the receiver side angle ϕ in terms of r and θ in

(2), so Γθ(r, θ) is different from ∂ sin θ
∂θ in the far-field UPW

model, even when θ = ϕ.

B. XL-phased array radar

For XL-phased array radar mode, the parameters in (21) and

(22) can be expressed as
‖gθ‖2 = i, ‖gr‖2 = s, sin2Ω = sin2Θ = 1,

ℜ{gHWg}
‖g‖2

= ℜ{k},detQ′ = is− ℜ2{k} = 0.
(73)

Note that since detQ′ = 0, it immediately follows from

(21) and (22) that both the CRBs for angle and range will

be infinity, which implies that in this scenario, neither the

angle nor the range can be estimated. This is expected since

when far-field UPW model is applied at the receiver side and

phased array beamforming is applied at the transmitter side,

the considered bistatic sensing problem is equivalent to the

far-field target localization problem [53]. In this case, only

the angle ϕ of the target with respect to the receive array can

be estimated, and it is impossible to obtain the transmit angle

θ and range r based on ϕ alone. Therefore, both the CRBs

for angle and range is infinity.

To sum up, the CRBs for different classes of sensing

discussed above are given in Table I.

V. NUMERICAL RESULTS

Numerical results are provided in this section to validate

our derived near-field CRB results. Unless otherwise stated,

the carrier frequency is f = 2.37GHz, dT = dR = 0.0628m,

and the SNR is γ = P |κ|2
σ2 = 0 dB.

A. Monostatic Sensing
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CRB for angle estimation

Fig. 2. CRB of angle for monostatic sensing.

Fig.2 and Fig.3 plot the CRBs of angle θ and range r
versus the number of antennas M for various models, as

given in (38)-(39), (49)-(50), (42) and (53), respectively. In

this case, the target range is set to be r = 10m, while the

angle is θ = π/6. The legend “Near-field-MIMO” and “Near-

field-phased array” denote the general expression of CRBs

in (38), (39), (49) and (50), while “Approximate-MIMO”

and “Approximate-phased array” denote the CRBs based on

the second-order Taylor approximation in (46), (47), (57)

and (58), respectively. Besides, “Far-field-MIMO” and “Far-

field-phased array” denote CRBs of the conventional UPW

model, respectively. The dotted lines are the asymptotic limits

when DT

r cos θ → ∞. Fig.2 shows that the CRBs for angle of

8 16 32 64 128 256 512 1024 2048

Number of elements M

10-5

100

105

C
R

B
 fo

r 
ra

ng
e 

es
tim

at
io

n(
m

)

CRB for range estimation

Fig. 3. CRB of range for monostatic sensing. For conventional UPW model,
CRB of range is ∞.

phased array radar mode is smaller than that of MIMO radar

mode, since the former usually benefits from an additional
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TABLE I
CRBS FOR DIFFERENT CLASSES OF SENSING UNDER VARIOUS SCENARIOS

XL-MIMO radar mode XL-phased array radar mode

CRBθ CRBr CRBθ CRBr

Monostatic

Near-Field
USW model

General result (38) (39) (49) (50)

DT ≫ r (40) (41) (51) (52)

DT
r cos θ

→ ∞ 1
2γL

λ2dT sin2θ

8π3r3 cos θ
1

2γL
λ2dT cos θ

8π3r
1

2γL
λ2dT sin2θ

4Mπ3r3 cos θ
1

2γL
λ2dT cos θ
4Mπ3r

Near-Field USW model with
second-order Taylor approximation

1
2γL

3λ2

2π2d2
T
M(M2−1)cos2θ

(47) 1
2γL

3λ2

π2d2
T
M2(M2−1)cos2θ

(58)

Far-Field UPW model
DT ≪ r [26]

1
2Lγ

3λ2

2π2d2
T
M(M2−1)cos2θ

∞ 1
2γL

3λ2

π2d2
T
M2(M2−1)cos2θ

∞

Bistatic

Near-Field
transmitter

USW model

General result (64) (65) ∞
DT

r cos θ
→ ∞ (69) (70) ∞

Far-Field UPW model [21] (66) ∞ [21] ∞

transmit beamforming gain. Besides, the CRBs of angle for

both XL-MIMO radar and XL-phased array radar decrease

with the increase of antenna size, but with diminishing return.

Furthermore, for relatively small M values, the CRBs of

angle for XL-MIMO and XL-phased array radar are consistent

with the far-field CRBs. However, with the increasing of

antenna number, the two models lead to dramatical different

results. This indicates that using inappropriate far-field model

to analyse near-field sensing with extremely large-scale arrays

may cause severe errors. Furthermore, it is observed from

Fig. 3 that the range CRBs also decrease with the number

of antenna elements. Besides, for moderate antenna number,

say M < 64, the CRBs of range are quite large. It is observed

that the second-order Taylor approximation as (46)-(47) and

(57)-(58) is accurate for moderate M , but would lead to large

errors when M is large.
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Fig. 4. CRB of angle for monostatic sensing.

Fig.4 and Fig.5 plot the CRBs of angle and range versus

the target angle θ. The number of antenna elements is set

to be M = 1024, while the target range is r = 10m. Fig.4

shows that the CRB of angle increases with |θ|, and the largest

CRB occurs at the boresight of the array. Besides, for the
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Fig. 5. CRB of range for monostatic sensing.

considered setup, using second-order Taylor approximation

or far-field UPW model may cause 20dB error on average,

which is nonnegligible in practice. Furthermore, Fig.5 shows

that CRBs based on the second-order Taylor approximation

have the opposite trend compared with the CRBs based on

the exact distances, which indicates that using second-order

Taylor approximation would be inaccurate for near-field CRB

for range.

Fig.6 and Fig.7 plot the CRBs of angle and range versus

the target range r. The number of antenna elements is set

to be M = 1024, while target angle is θ = π/6. Fig.6

shows that the CRB of angle decreases with the increasing

of target range. Besides, for large target range r, the newly

developed near-field CRB matches with that from the con-

ventional UPW models. However, they deviate significantly

for relatively small r, where far-field UPW assumption no

longer holds. Fig.7 shows that the developed near-field CRB

for range merges with the conventional result when the range

r is large. Besides, as r increases, the derived CRB of range

based on the exact distance first decreases and then increases,

while for second-order Taylor approximation model, the CRB
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Fig. 6. CRB of angle for monostatic sensing.
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Fig. 7. CRB of range for monostatic sensing.

increases monotonically. This shows that the second-order

Taylor approximation model is less accurate for smaller target

range r.

B. Bistatic Sensing

In this subsection, bistatic near-field sensing results are

presented. corresponding to section IV-A, near-field USW

model is considered only at the transmitter side and the number

of the receive antenna elements is set to be N = 8. The target

angle is θ = 0, and the target range is r = 18m. The transmit

and receive array distance is R = 35m. The classic Capon

algorithm is used to actually estimate the parameters θ and r,
and the performance is evaluated in terms of the root mean

square error (RMSE) in the following way [39]

RMSEi =

√

√

√

√

1

K

K
∑

k=1

(θi − θ̂i)
2
, i = 1, 2, (74)

where θi = [θ, r], and θ̂i denotes the estimate value of θ and

r. K is the total number of experiment, and we set K = 500.

Fig.8 and Fig.9 plot the CRBs of angle and range versus the

transmit antenna number M . It is observed that our derived

CRBs are indeed the lower bounds for the RMSE of the Capon

algorithms. Besides, the developed near-field CRB perfectly

match with the far-field model when M is relatively small.
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Fig. 8. CRB of angle for bistatic sensing.
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Fig. 9. CRB of range for bistatic sensing.

VI. CONCLUSION

This paper studied near-field radio sensing with extremely

large-scale antenna arrays, where the USW model was con-

sidered. We considered two radar modes, namely XL-MIMO

radar and XL-phased array radar modes. For the monostatic

near-field sensing, the closed-form expressions of the CRBs

for angle and range estimation were derived. Several asymp-

totic cases were also considered. It was revealed that different

from the conventional far-field sensing with UPW model,

the CRB for near-field angle estimation no longer decreases

indefinitely as the antenna size increases. Moreover, the CRB

for range estimation was shown to be finite in the near-field

case, which shows the capability for range discrimination with

XL-MIMO sensing. We then considered the general bistatic

case and compared our derived CRBs with the classic Capon

algorithm. Numerical results validated our derived CRBs.

APPENDIX A

PROOF OF PROPOSITION 1

As shown in (33)-(37), the different parameters share

some common summations. Therefore, similar to [32],

in order to obtain closed-form expressions, we first

define the function f1(x)
∆
= x2

x2−2(sin θ)x+1 , where x ∈
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[−MεT
2 , MεT

2 ]. Since εT ≪ 1, we have f1(x) ≈
f1(mεT ), ∀x ∈ [(m− 1

2 )εT , (m+ 1
2 )εT ], m =

−M−1
2 , ..., M−1

2 . So we have
∑

M−1
2

m=−M−1
2

f1(mεT )εT ≈
∫

MεT
2

−
MεT

2

f1(x)dx. (75)

Therefore, the summation (28) and (31) can be expressed as
∑

M−1
2

m=−M−1
2

(mεT )2

1− 2mεT sin θ + (mεT )2

≈ 1

εT

∫
MεT

2

−
MεT

2

x2

x2 − 2(sin θ)x+ 1
dx

= M +
sin θ

εT

∫
MεT

2

−
MεT

2

1

x2 − 2(sin θ)x+ 1
d(x2 − 2(sin θ)x+ 1)

− cos 2θ

εT

∫

MεT
2

−
MεT

2

1

x2 − 2(sin θ)x+ 1
dx

(a)
= M +

sin θ

εT
ln

∣

∣

∣

∣

∣

∣

D2
T

4r2
− sin θDT

r
+ 1

D2
T

4r2
+ sin θDT

r
+ 1

∣

∣

∣

∣

∣

∣

− cos 2θ

εT cos θ
∆t

span

(

DT

r

)

,

(76)

where ∆t
span(

DT

r ) = arctan( DT

2r cos θ − tan θ) +

arctan( DT

2r cos θ + tan θ) is the transmit angular span [32].

(a) in (76) follows from the integral formula 2.103 in

[18], i.e.,
∫ (Mx+N)dx

A+2Bx+Cx2 = M
2C ln

∣

∣A+ 2Bx+ Cx2
∣

∣ +
NC−MB

C
√
AC−B2

arctan Cx+B√
AC−B2

for AC > B2, and the fact that

sin2 θ ≤ 1 in (76). Therefore, the closed-form expression of

the parameter a and p can be derived by substituting (76) in

(33) and (36).

Similarly, we define the functions f2(x)
∆
=

x√
x2−2(sin θ)x+1

and f3(x)
∆
= x

x2−2(sin θ)x+1 , and the

summation in (29) and (32) can be expressed as
∑

M−1
2

m=−M−1
2

mεT
√

1− 2mεT sin θ + (mεT )2

≈ 1

εT

∫

MεT
2

−
MεT

2

x
√

x2 − 2 sin(θ)x+ 1
dx

=
1

εT





√

D2
T

4r2
− sin θ

DT

r
+ 1−

√

D2
T

4r2
+ sin θ

DT

r
+ 1

+ψ

(

DT

r

)

sin θ

]

,

(77)

where ψ(DT

r ) , ln

(

p2+
√

1+p2
2

p1+
√

1+p2
1

)

with p1 =

−DT
2r −sin θ

cos θ , p2 =
DT
2r −sin θ

cos θ , and the summation in (30)
∑

M−1
2

m=−M−1
2

mεT

1− 2mεT sin θ + (mεT )2

≈ 1

εT

∫

MεT
2

−
MεT

2

x

x2 − 2 sin(θ)x + 1
dx

=
1

2εT
ln

∣

∣

∣

∣

∣

∣

D2
T

4r2
− sin θDT

r
+ 1

D2
T

4r2
+ sin θDT

r
+ 1

∣

∣

∣

∣

∣

∣

+
sin θ

εT cos θ
∆t

span

(

DT

r

)

.

(78)

By substituting (76) and (78) into (35) and (36), the closed-

form expressions of parameters e and p can be obtained

accordingly. Furthermore, by substituting (77) into (34) and

(37), c and q in Proposition 1 can be obtained accordingly.

APPENDIX B

PROOF OF COROLLARY 1.1

By noting that the parameters in (33)-(37) involve some

common terms, we first define the following four functions:

g1

(

DT

r

)

,

√

DT
2

4r2
− DT

r
sin θ + 1 −

√

DT
2

4r2
+

DT

r
sin θ + 1,

g2

(

DT

r

)

, ∆t
span

(

DT

r

)

, g3

(

DT

r

)

, ln

∣

∣

∣

∣

∣

∣

DT
2

4r2
− DT

r sin θ + 1

DT
2

4r2
+

DT
r sin θ + 1

∣

∣

∣

∣

∣

∣

,

g4

(

DT

r

)

, ln







p2 +
√

1 + p2
2

p1 +
√

1 + p2
1






,

(79)

where p1 =
−DT

2r −sin θ

cos θ , and p2 =
DT
2r −sin θ

cos θ , as given in

Proposition 1. When DT

r ≫ 1, as in Corollary 1.1, we have

g1

(

DT

r

)

=
DT

2r





√

1 +
4r2

DT
2
− 4r sin θ

DT

−
√

1 +
4r2

DT
2
+

4r sin θ

DT





(a)
≈ DT

2r

(

− 4r

DT
sin θ

)

= −2 sin θ,

(80)

where (a) in (80) follows from the first-order Taylor ap-

proximation with r
DT

≪ 1. Besides, it was shown in [32]

that g2
(

DT

r

)

= ∆t
span(

DT

r ) ≈ π. Similarly, g3
(

DT

r

)

can be

obtained as

g3

(

DT

r

)

= ln

∣

∣

∣

∣

∣

∣

1−
2DT

r
sin θ

DT
2

4r2
+ DT

r
sin θ + 1

∣

∣

∣

∣

∣

∣

≈ 0. (81)

Furthermore, the last term g4
(

DT

r

)

can be expressed as

g4

(

DT

r

)

(d)
≈ ln







DT
2r cos θ

+

√

1 + ( DT
2r cos θ

)
2

− DT
2r cos θ

+

√

1 + ( DT
2r cos θ

)
2






≈ 2 ln

(

DT

r cos θ

)

,

(82)

where (d) follows from
DT
2r −sin θ

cos θ ≈ DT

2r cos θ when DT /r ≫ 1.

Note that the parameter a in (33) can be written based on

g2 and g3 defined above. Therefore, when DT /r ≫ 1, by

substituting g2 and g3 into (33), we have

a =
4π2r2cos2θ

λ2εT

(

DT

r
+ g3 sin θ − g2

cos 2θ

cos θ

)

=
4π2r2cos2θ

λ2εT

(

DT

r
− cos 2θ

cos θ
π

)

.

(83)

Similarly, other parameters e, c, p, q can be written based on

g1, g2, g3 and g4 and when DT /r ≫ 1, we have

e =
2π2r sin 2θ

λ2εT

(

DT

r
− 2π cos θ

)

,

p =
4π2

λ2εT

(

DT

r
sin2θ + π cos θ cos 2θ

)

,

c = −j 2πr sin 2θ

λεT

[

ln

(

DT

r cos θ

)

− 1

]

,

q = j
4π

λεT

[

cos2θ ln

(

DT

r cos θ

)

+ sin2θ

]

.

(84)

By substituting these terms into (38) and (39), the expres-

sions in (40) and (41) can be obtained accordingly.

APPENDIX C

PROOF OF COROLLARY 1.2

When DT

r cos θ → ∞, the constant terms in (40) and (41) can

be neglected. Therefore, we have the simplified results in (42)
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and (43) by some simple algebraic calculation:

CRBθ ≈ 1

2γL

λ2
[

sin22θ
4

( DT
r cos θ

)
2
+ πDT

r cos θ
cos2θ cos 2θ − 4(cos2θ ln DT

r cos θ
)
2
]

8π2Mr2cos2θ( πDT
rcos θ

− 4ln2 DT
r cos θ

)

(g)
≈ 1

2γ

λ2(DT
r

)
2
sin2θ

8π2r2Mcos2θ πDT
rcos θ

≈ 1

2γ

λ2dT sin2θ

8π3r3 cos θ
,

CRBr ≈ 1

2γL

λ2
[

cos2θ( DT
r cos θ

)
2
+ πDT cos 2θ

rcos θ
− 4sin2θ(ln DT

r cos θ
)
2
]

8π2M( πDT
rcos θ

− 4ln2 DT
r cos θ

)

(g)
≈ 1

2γ

λ2(DT
r

)
2

8π2M
πDT
rcos θ

≈ 1

2γ

λ2dT cos θ

8π3r
,

(85)

where (g) follows from lim
x→∞

(

ax2 + bx− cln2x
)

=

ax2, lim
x→∞

(

bx− cln2x
)

= bx, with x = DT

r cos θ .

APPENDIX D

PROOF OF COROLLARY 1.3

Similar to the derivation in Appendix B, when DT /r ≪ 1,

the functions g1, g2, g3, g4 in Appendix B reduce to

g1

(

DT

r

)

(h1)
≈ −DT

r
sin θ, g2

(

DT

r

)

(h2)
≈ DT

r
cos θ − cos3θ

12

(

DT

r

)3

,

g3

(

DT

r

)

(h3)
≈ −2

DT

r
sin θ +

sin θ

2

(

DT

r

)3

, g4

(

DT

r

)

(h4)
≈ DT

r
,

(86)

where (h1) and (h4) follow from the first-order Taylor ap-

proximation, and (h2) and (h3) follow from the third-order

and second-order Taylor approximation. Note that (h1) and

(h4) are related to c and q, which only appear in the form

of square, so there is no need to consider higher order ap-

proximation when DT /r ≪ 1. By substituting (86) into (33)-

(37), the closed form expressions of intermediate parameters

a, e, p, c, q are obtained. By substituting (86) into (38), the

CRB expression in (45) can be obtained.

APPENDIX E

PROOF OF COROLLARY 1.4

The second-order Taylor approximation of the distance

between the target and the mth antenna element in (1) is

rm ≈ r +
1

2r
(mdT )2cos2θ −mdT sin θ. (87)

Therefore, the element of the steering vector am(θ, r) in (5)

can be expressed as am(θ, r) = ejmv+jm2φ−j 2π
λ r, where v =

2πdT sin θ
λ , φ = −πdT

2cos2θ
λr . The derivatives of angle and range

of steering vector are
∂am(r, θ)

∂θ
= ejmv+jm2φ−j 2π

λ
r

(

jm
∂v

∂θ
+ jm2 ∂φ

∂θ

)

,

∂am(r, θ)

∂r
= ejmv+jm2φ−j 2π

λ
r

(

jm2 ∂φ

∂r
− j

2π

λ

)

,

(88)

where ∂v
∂θ = 2πdT cos θ

λ , ∂φ∂θ = πdT
2 sin 2θ
λr , and ∂φ

∂r = πdT
2cos2θ
λr2 .

Therefore, the intermediate parameters a, c, e, p, q based on the

second-order Taylor approximation model can be derived as

a =

∥

∥

∥

∥

∂a(r, θ)

∂θ

∥

∥

∥

∥

2

=
∑

M−1
2

m=−

M−1
2

m2

(

2πdT cos θ

λ
+ m

πdT
2 sin 2θ

λr

)2

=

(

2πdT cos θ

λ

)2

η1 +

(

πdT
2 sin 2θ

λr

)2

η2,

(89)

where η1 =
∑

M−1
2

m=−M−1
2

m2 = M(M2−1)
12 and η2 =

∑

M−1
2

m=−M−1
2

m4 = M(M2−1)(3M2−7)
240 . Similarly, we can obtain

other parameters:

p =

(

πdT
2cos2θ

λr2

)2

η2 −
(

2πdT cos θ

λr

)2

η1 +
4π2

λ2
M,

e =

(

π2dT
4cos2θ sin 2θ

λ2r3

)

η2 − 2π2dT
2 sin 2θ

λ2r
η1,

c = −j πdT
2 sin 2θ

λr
η1, q = −j πdT

2cos2θ

λr2
η1 + j

2π

λ
M.

(90)

By substituting (90) into (38)-(39), the expressions in (46) and

(47) can be obtained accordingly.

APPENDIX F

PROOF OF COROLLARY 3.1

When θ = 0, the parameters in (62) reduce to

Γθ(r, θ) =
r

R− r
, Γr(r, θ) = 0. (91)

Therefore, the parameters in (64) and (65) reduce to

a =
4π2r2

λ2εT

[

DT

r
−2 arctan

(

DT

2r

)]

, c = e = s = k = f = h = 0,

p =
4π2

λ2εT
2 arctan

(

DT

2r

)

, q = j
2π

λεT
ln









DT
2r

+

√

1 +
(

DT
2r

)2

−DT
2r

+

√

1 +
(

DT
2r

)2









,

i =
π2d2Rr

2

3λ2(R − r)2
N(N2 − 1),

(92)

Therefore, the CRBs in (64) and (65) reduce to

CRBθ =
1

2γL

M

Mi+Na
, CRBr =

1

2γLN

M

p− 1
M

|q|2
. (93)

By substituting (92) in (93), the closed-form expressions in

(67) and (68) can be obtained. In order to obtain the minimal

point of range CRB, the derivative of CRBr with respect

to DT

2r is derived. Let x = DT

2r , and the derivative can be

expressed as
∂CRBr

∂x
=

λ2

8π2γLN

×
arctan x− x

1+x2 + 2√
1+x2

ln
(

x+
√
1 + x2

)

− 2
x
ln2
(

x+
√
1 + x2

)

[

arctan x− 1
x
ln2
(

x+
√
1 + x2

)]2

(94)

In order to obtain the minimal point, let ∂CRBr

∂x = 0 and

solution is x ≈ 6 by numerical simulation, i.e., DT ≈ 12r.
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