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Abstract—We investigate the increasingly prominent task of
jointly inferring multiple networks from nodal observations.
While most joint inference methods assume that observations
are available at all nodes, we consider the realistic and more
difficult scenario where a subset of nodes are hidden and cannot
be measured. Under the assumptions that the partially observed
nodal signals are graph stationary and the networks have similar
connectivity patterns, we derive structural characteristics of the
connectivity between hidden and observed nodes. This allows us
to formulate an optimization problem for estimating networks
while accounting for the influence of hidden nodes. We identify
conditions under which a convex relaxation yields the sparsest
solution, and we formalize the performance of our proposed
optimization problem with respect to the effect of the hidden
nodes. Finally, synthetic and real-world simulations provide
evaluations of our method in comparison with other baselines.

Index Terms—Graph learning, network topology inference,
hidden nodes, graph signal processing, graph stationarity, multi-
layer graphs.

I. INTRODUCTION

IN recent years, graphs have become a staple model of

the irregular (non-Euclidean) structure commonly found in

contemporary data. Disciplines like signal processing often

rely on graphs to capture the underlying irregular domain

of the signals, where such successful applications include

genetics, brain networks, and communications [2]–[4]. Nev-

ertheless, despite the popularity of graph-based methods, in

practice the topology of the graph is often not readily available,

spurring the development of graph learning algorithms [5]–[7]

to infer the network topology from a set of nodal observations.

Indeed, the task of network topology inference, also known

as graph learning, has emerged as a vibrant research area

within graph signal processing (GSP) [8]–[11]. A crucial

assumption for learning the graph topology is the statistical

relationship between the signals and the unknown topology.
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Different assumptions lead to different methods, with notewor-

thy examples including correlation networks and (Gaussian)

Markov random fields ((G)MFR) [2], [5], [12], smooth (local

total variation) models [13]–[15], GSP-based approaches [16]–

[18], and models with more elaborate graph priors [19], [20].

A common feature of the previous works is that they focus

on learning a single graph. However, many contemporary

setups involve multiple related networks, each with a subset

of signals. Some examples include brain analytics, where

observations from different patients are used to estimate their

brain functional networks; social networks, where the same

set of users may present different types of interactions; or

multi-hop communication networks in dynamic environments,

where a network needs to be inferred for each time instant.

Intuitively, in situations where several closely related networks

exist, approaching the problem in a joint fashion can boost the

performance of network topology inference by harnessing the

relationships among graphs [21]–[26].

Despite the clear benefits, joint network topology inference

approaches usually assume that observations from every node

are available, which is often not the case. In many relevant

scenarios, the observed signals correspond only to a subset of

the nodes in the whole graph, while the remaining nodes stay

unobserved or hidden. Ignoring the presence of the hidden

nodes can drastically hinder the performance of the graph

learning algorithms. Nevertheless, accounting for their influ-

ence is not a trivial endeavor since the inference task becomes

ill-posed. For single network inference, some works dealing

with this challenging setting include graphical models [27],

[28], inference of linear Bayesian networks [29], nonlinear

regression [30], and stationary-based algorithms [31], [32].

However, the presence of hidden nodes is yet to be addressed

for several unknown graphs. Since the key to joint topology

inference is exploiting the similarity of the graphs, it is crucial

to model the influence of the hidden nodes to measure the

graph similarity between nodes that remain unobserved.

To this end, we propose a topology inference method that

simultaneously performs joint estimation of multiple graphs

and accounts for the presence of hidden variables. Under

the assumption that the observed signals are realizations of

a random process that is stationary on the graph [10], [33],

we formalize the relationship between the nodal observations

and the unknown networks under the influence of the hidden

nodes. The joint formulation necessitates exploiting graph

similarities, not only with respect to observed nodes but also

to hidden ones. To accomplish this, we carefully model the

structure associated with latent variables and exploit it with
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a regularization inspired by the group Lasso penalty [34].

Finally, we conduct thorough mathematical and numerical

analyses of the proposed approach, where we show the

conditions under which it recovers the sparsest solution and

bounds the error of the estimated graphs, and we evaluate its

performance and the hidden variables’ detrimental influence

through simulations with synthetic and real-world data.

Related work and contributions. Early methods for joint

graph learning were introduced in [22] assuming that obser-

vations follow a GMRF and, later on, in [23] followed by a

joint inference method for graph stationary signals. However,

both works assumed that observations from the whole graphs

were available. At the same time, the influence of hidden

nodes when learning a single graph was studied in [27]

and [32] assuming that the observations adhered respectively

to a GMRF or a graph-stationary model. On the other hand,

the relevant task of learning several graphs in the presence

of hidden nodes has only been considered under GMRF

assumptions in the preliminary results from [35]. In contrast,

in this paper, we (i) build over our previous work from [1]

for joint graph learning with hidden variables under the more

lenient assumption of stationary observations; and (ii) develop

a theoretical analysis to characterize how the hidden nodes

influence the quality of the estimated graphs. Finally, note that

GMRF and graph stationarity are intrinsically different models

for the observations, resulting in materially different inference

algorithms and, even more relevant for the problem at hand,

requiring different methods to encourage graph similarities

with respect to both observed and hidden nodes.

To summarize, our main contributions are:

• We design a convex optimization problem to jointly learn

the topology of several related graphs in the presence of

hidden variables under graph-stationary observations.

• We rely on a regularization inspired by group Lasso to

model the similarity between hidden nodes and hence

harness the similarity of the entire node set, both hidden

and observed nodes.

• We derive theoretical guarantees for the recoverability of

the estimated graphs in the presence of hidden nodes.

• We evaluate the performance of the proposed approach

and compare it with state-of-the-art alternatives in syn-

thetic and real-world datasets.

The remainder of the paper is organized as follows. Sec-

tion II introduces GSP concepts necessary for our proposed

network topology inference method and its theoretical guar-

antees. We introduce in Section III the task of learning graphs

in the presence of hidden nodes. In Section IV we present

our proposed optimization problem that accounts for hidden

nodes, along with its convex relaxation. We provide theoretical

guarantees for the viability and performance of our method

in Section V, which are validated by several synthetic and

real-world experiments in Section VI. Finally, a concluding

discussion is provided in Section VII.

II. FUNDAMENTALS OF GSP

We introduce notation and concepts in GSP to characterize

the statistical relationship between the network topology and

measurements on nodes, both observed and hidden.

Notation. For a matrix Y ∈ R
M×N , vec(Y) ∈ R

MN

denotes the vertical concatenation of the columns of Y. We

let calligraphic letters denote index sets, where, given any

matrix X ∈ R
M×N and any vector x ∈ R

N , we let XC,·

and X·,C respectively return the rows and columns of X

selected from index set C and xC returns the entries of x

selected from C. The notation IM denotes the identity matrix

of size M×M , while 1M×N and 0M×N respectively represent

matrices of all ones and zeros of size M ×N . We let D, L,

and U respectively denote the indices of the diagonal, lower

triangular, and upper triangular entries of a vectorized square

matrix, i.e., for any matrix Y ∈ R
M×M and y = vec(Y), we

have that yD contains the diagonal entries of Y. We define

yL and yU similarly. The notation O(·) and o(·) denote the

usual asymptotic meaning, and we say that f ≍ g if f = O(g)
and g = O(f).

Graph signal processing and graph stationarity. We con-

sider undirected graphs of the form G = (V , E), where V
denotes the set of |V| = N nodes and E ⊆ V × V is the edge

set such that the unordered pair (i, j) ∈ E if and only if nodes

i and j are connected. A convenient representation for the

structure of a graph is its adjacency matrix A ∈ R
N×N , where

Aij = Aji 6= 0 if and only if (i, j) ∈ E . We may define a more

general class of matrices to encode graph structure known as

the graph shift operator (GSO), of which the adjacency matrix

is an example [8]–[10]. Formally, the GSO is a square matrix

S ∈ R
N×N , where Sij 6= 0 only if i = j or (i, j) ∈ E .

Commonly chosen GSOs include the adjacency matrix A

and the graph Laplacian L := diag(A1) − A [8], [10].

Because we consider undirected graphs, S is symmetric and

thus diagonalizable.

Critical to the network inference task is the statistical

relationship between nodal observations and the topology of

G. We represent real-valued observations on the nodes of G as

graph signals x = [x1, . . . , xN ]⊤ ∈ R
N , where xi denotes the

signal value at the i-th node. In this work, we assume that the

observations are realizations of a random graph signal that is

stationary on G [16], [33], [36], a versatile model that has

shown theoretical and practical relevance. From a mathemat-

ical point of view, a random graph signal x is stationary on

its underlying graph G if the covariance matrix of x, denoted

as C, can be written as a (matrix) polynomial of the GSO S,

which results in C and S having the same eigenvectors [10],

[33], [37], [38]. This definition includes correlation networks,

where C = S and MRFs, where C = S−1, as particular cases.

From a practical (generative) point of view, stationary random

graph signals are particularly suited to represent consensus

dynamics, heat diffusion processes, and network processes

on brain structural networks [39]–[41]. Formally, under this

point of view we have that the random graph signal x can

be modelled as x = Hw, where w is a stochastic zero-mean

white input signal and H performs the diffusion process on

w that characterizes the influence of the GSO S on x. To that

end, the matrix H is assumed to be a linear graph filter [9],

[42], [43], a matrix polynomial of the GSO H =
∑L−1

l=0 hlS
l

with real-valued filter coefficients {hl}
L−1
l=0 that sufficiently
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models nodal behavior for many signal processing tasks,

including denoising and interpolation [10], [39], [42], [44],

[45]. The structure of S dictates the behavior of the graph

signal x = Hw, where we may view Slw as the diffusion

of w across an l-hop neighborhood. Under the diffusion

model, the signal behavior at the i-th node is encoded in

the diffused signal values in an (L − 1)-hop radius. Under

this setting, the graph signals are random with covariance

C = E[xx⊤] = HE[ww⊤]H = H2 due to the input w being

white. Clearly, if H is a polynomial of S, so is C = H2,

showing that both point of views are equivalent.

Finally, we note that under stationarity of x, we have that

matrices S and C commute and hence, it must hold that CS =
SC. This is a compact and tractable way to account for the

graph stationarity of the observed signals and will be later on

used as a constraint in our optimization problems.

III. INFERENCE OF MULTILAYERED GRAPHS WITH LATENT

VARIABLES

Let there be a set of K undirected networks {G(k)}Kk=1

on the same set V of N nodes with GSOs denoted as

{S∗(k)}Kk=1. We assume that for each graph there exist a set

with Rk realizations of a stationary graph signal collected

in data matrices X(k) ∈ R
N×Rk , where the Rk columns

contain the nodal observations on the k-th graph. For a signal

x(k) on the k-th graph, its covariance matrix is denoted by

C(k) = E[x(k)(x(k))⊤]. We further assume that for every

graph we do not know the entire data matrix X(k) but only

observe signal values on a subset O ⊂ V of O nodes, where

H := V\O denotes the set of H hidden nodes. Our goal is to

estimate the subnetwork of each network G(k) induced by O
from partially observed graph signals.

Under this setting, we can now formalize the task of

estimating the network structure at the node subset O that is

encoded in the GSOs {S∗(k)}Kk=1. Without loss of generality,

we partition the GSO and the covariance matrix of each

network as

S∗(k) =

[

S
∗(k)
O S

∗(k)
OH

S
∗(k)
HO S

∗(k)
H

]

, C(k) =

[

C
(k)
O C

(k)
OH

C
(k)
HO C

(k)
H

]

, (1)

where S
∗(k)
OH = (S

∗(k)
HO )⊤ and C

(k)
OH = (C

(k)
HO)

⊤ by the symme-

try of S∗(k) and C(k). The submatrices S
∗(k)
O ∈ R

O×O and

S
∗(k)
H ∈ R

H×H encode the connectivity of the subnetworks of

G(k) induced by O and H, respectively, while S
∗(k)
OH ∈ R

O×H

represents the edges connecting observed nodes to hidden

nodes. We similarly define C
(k)
O , C

(k)
H , and C

(k)
OH. Given the

partitions in (1), we aim to estimate the subnetworks encoded

in {S
∗(k)
O }Kk=1.

We also partition each X(k) to be conformal with S∗(k) and

C(k) as X(k) = [X
(k)⊤
O ,X

(k)⊤
H ]⊤, where X

(k)
O ∈ R

O×Rk is

the data matrix containing the partially observed graph signals

and X
(k)
H ∈ R

H×Rk remains unknown. We can thus apply

the partially observed stationary graph signals X
(k)
O and the

commutative relationship C(k)S∗(k) = S∗(k)C(k) as described

in Section II to recover the structure in S
∗(k)
O . Given the

problem setting, we can now formalize our joint topology

inference problem in the presence of hidden nodes as follows.

Problem 1 Given the sets {X
(k)
O }Kk=1 of graph signal values

at the observed nodes for each of the K graphs, recover

{S
∗(k)
O }Kk=1 under the following assumptions:

(AS1) the number of hidden nodes H is much smaller than

the number of observed nodes, that is, H ≪ O;

(AS2) the signals in X(k) are realizations of a process that is

stationary in S∗(k); and

(AS3) the GSOs S∗(k) and S∗(k′) are sparse and have similar

sparsity patterns.

We elaborate on the implications of the assumptions. The

first assumption (AS1) ensures the tractability of the prob-

lem. When most of the nodes in the graph are observed,

the covariance submatrix C
(k)
O sufficiently characterizes the

structure of S
∗(k)
O . Importantly, under H ≪ O, the matrix

product C
(k)
OHS

∗(k)
HO is low-rank, a crucial result for infer-

ring S
∗(k)
O , which is also assumed in different single graph-

learning approaches. Assumption (AS2) establishes a global

relationship between the graph signals X(k) and the unknown

graph structure S∗(k), including both observed and hidden

nodes. This assumption enables us to specify how the hidden

nodes affect X(k) by considering the connectivity between

observed and hidden nodes encoded in S
∗(k)
OH from (1) and

the commutative relationship C(k)S∗(k) = S∗(k)C(k). The

final assumption (AS3) guarantees that all K graphs have

similar edge connectivity patterns across all the shared node

set V . Not only can we then benefit from jointly inferring the

observed subnetworks, but we may also share hidden node

information across all K graphs during inference. We naturally

expect that the support of S
∗(k)
O will be similar across all K

graphs [22], [23], [35]; however, it is important to also exploit

the edgewise similarity for S
∗(k)
OH to account for connections

between observed and hidden nodes.

Notice that for the simpler case where the set H of hidden

nodes differs across graphs, (AS3) would allow us to exploit

nodal observations from graph k that are hidden for graph k′ to

account for hidden nodes. However, in this work, we address

the more challenging scenario in Problem 1, where there is a

subset of nodes for which there are no direct observations for

any graph. We rely on the statistical relationship between the

graph signals and the graph topology to formulate a suitable

optimization problem for jointly inferring the subnetworks in

S
∗(k)
O .

IV. JOINT GRAPH LEARNING WITH LATENT VARIABLES AS

A CONVEX OPTIMIZATION PROBLEM

Network topology inference with stationary graph signals

commonly exploits the commutativity of the graph signal co-

variance matrices and the GSOs. We also adopt this approach;

however, unlike previous works, we cannot directly apply the

commutative relationship due to the presence of hidden nodes.

We must revisit the commutativity of C(k) and S∗(k) with the

partitions in (1) before introducing our inference problem with

stationary graph signals. From stationarity (AS2), we know that

S∗(k)C(k) = C(k)S∗(k) for all k = 1, . . . ,K . From (1) it then

follows that

C
(k)
O S

∗(k)
O − S

∗(k)
O C

(k)
O = (P∗(k))⊤ −P∗(k) (2)
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for all k = 1, . . . ,K , where P∗(k) := C
(k)
OHS

∗(k)
HO . The

right-hand side of (2) fully accounts for the influence of

hidden nodes. When P∗(k) is known, estimating S
∗(k)
O relies

solely on the commutator on the left-hand side. This is

similar to traditional network inference with stationary graph

signals, where we also know the value of the commutator

C(k)S∗(k) − S∗(k)C(k) = 0N×N .

With the prior structural information in place, we can

approach estimating the subnetworks from sample covariance

submatrices Ĉ
(k)
O = 1

Rk
X

(k)
O (X

(k)
O )⊤ by the following non-

convex optimization problem

min
{S

(k)
O

,P(k)}K
k=1

K
∑

k=1

αk‖S
(k)
O ‖0 +

∑

k<k′

βk,k′‖S
(k)
O − S

(k′)
O ‖0

+

K
∑

k=1

γk‖P
(k)‖2,1 +

∑

k<k′

ηk,k′

∥

∥

∥

∥

[

P(k)

P(k′)

]∥

∥

∥

∥

2,1

s. t.
∑K

k=1 ‖Ĉ
(k)
O S

(k)
O − S

(k)
O Ĉ

(k)
O +P(k) − (P(k))⊤‖2F ≤ ǫ2,

S
(k)
O ∈ S, (3)

where we have introduced auxiliary matrices {P(k)}Kk=1 to

account for the right hand side of (2). We first discuss (3) as it

relates to {S
(k)
O }Kk=1. The first two terms in the objective of (3)

encourage sparse subnetworks with similar sparsity patterns

as in (AS3). The second constraint encourages valid GSOs for

S
(k)
O . In this work, we let the GSOs denote adjacency matrices,

so we define

S :=
{

S : S = S⊤, diag(S) = 0,
∑

j Sj1 = 1
}

, (4)

where {S
(k)
O }Kk=1 denote valid submatrices of nontrivial ad-

jacency matrices, that is, S
(k)
O 6= 0O×O . While we select

adjacency matrices as GSOs, problem (3) accommodates other

GSOs, such as the graph Laplacian [16], under minor modifi-

cations.

We next discuss the auxiliary matrices {P(k)}Kk=1. The first

constraint encourages the commutativity in (2) with P(k) as

an approximation of P∗(k) = C
(k)
OHS

∗(k)
HO to avoid a bilinear

formulation. As will be discussed in Section V, the upper

bound ǫ accounts for both the sample covariance submatrix

error and the difference between P(k) and P∗(k). Thus,

similarly to [35], we introduce the low-rank matrices P(k) to

replace entities that depend on hidden nodes. However, instead

of using the standard convex surrogate for low-rankness given

by the nuclear norm, we rely on the ℓ2,1 to impose additional

structure on P(k) based on the assumptions in Problem 1.

Precisely, the last two terms in the objective apply a group

Lasso penalty via the ℓ2,1 norm [34], which evaluates the ℓ1
norm of the vector containing the ℓ2 norm of each column of

the input matrix, that is, ‖P(k)‖2,1 =
∑O

i=1 ‖P
(k)
·,i ‖2. Recall

that since H ≪ O by (AS1), the matrix P∗(k) is not only low-

rank but has sparse columns, hence the third term in the ob-

jective applying the ℓ2,1 norm to encourage column-sparsity in

P(k). While low-rank constraints are commonly implemented

with the convex nuclear norm penalty [32], where solutions

with sparse singular values are sought, we simultaneously

promote low-rankness while encouraging column sparsity by

the group Lasso penalty. Additionally, since the networks are

assumed to have similar sparsity patterns by (AS3), we expect

that the column sparsity patterns of P∗(k) across networks will

be similar, hence the fourth term in the objective.

As is common with optimization problems for sparse net-

work inference, we introduce a convex relaxation of (3) that

enjoys efficient solvability and theoretical guarantees. Our

convex formulation is

min
{S

(k)
O

,P(k)}K
k=1

K
∑

k=1

αk‖S
(k)
O ‖1 +

∑

k<k′

βk,k′‖S
(k)
O − S

(k′)
O ‖1

+

K
∑

k=1

γk‖P
(k)‖2,1 +

∑

k<k′

ηk,k′

∥

∥

∥

∥

[

P(k)

P(k′)

]∥

∥

∥

∥

2,1

s. t.
∑K

k=1 ‖Ĉ
(k)
O S

(k)
O − S

(k)
O Ĉ

(k)
O +P(k) − (P(k))⊤‖2F ≤ ǫ2,

S
(k)
O = (S

(k)
O )⊤, diag(S

(k)
O ) = 0, ∀k = 1, . . . ,K,

∑

j [S
(1)
O ]j1 = 1, (5)

where we have removed the nonconvexities in (3) by substi-

tuting the ℓ0 norms in the objective with convex ℓ1 norms.

We further specified the constraints according to (4) for valid

adjacency submatrices. While the last constraint is valid to

preclude trivial adjacency submatrices, it would not be viable

for graph Laplacians as GSOs. However, the theoretical results

in Section V still hold for graph Laplacian GSOs by replacing

the last constraint in (4) to enforce valid graph Laplacian

submatrices.

V. THEORETICAL RESULTS

We formalize the viability of the convex relaxation in (5)

by presenting conditions under which the solutions to (3) and

(5) are equivalent. We also compute an upper bound on the

error of the solution to (5) and apply the bound to evaluate

the effectiveness of (5) at accounting for hidden nodes.

A. Sparsity of the convex relaxation

We first introduce the following definitions to rewrite the

optimization problems in (3) and (5) in vector form. Let the

vectors α ∈ R
K and β ∈ R

K(K−1)/2 collect values of αk

and βk,k′ , respectively. Let L′ := L(1) ∪ · · · ∪ L(K), where

L(k) := {i = j+(k− 1)O2 : j ∈ L} for L containing indices

for a O2-length vector (corresponding to the vector form of an

O×O matrix) as described in Section II. We define the directed

difference matrix Z := [1⊤
K⊗−IK ]·,L+[IK⊗1⊤

K ]·,L, where L
contains indices for a K2-length vector. We can then introduce

the matrix Ψ := 2[Ψ0]·,L′ associated with the objectives of

(3) and (5), where

Ψ0 :=

[

diag(α)⊗ IO2

diag(β)Z⊤ ⊗ IO2

]

.

For the first constraint of (3) and (5), we introduce Σ :=
blockdiag(Σ(1), . . . ,Σ(K)), where Σ(k) := [Σ

(k)
0 ]·,L +

[Σ
(k)
0 ]·,U and Σ

(k)
0 = (−Ĉ

(k)
O ⊕ Ĉ

(k)
O ) for all k = 1, . . . ,K ,

and L and U for Σ(k) return entries of a vector of length O2.

Furthermore, let Q be a commutation matrix such that for any

square matrix Y, we have that vec(Y⊤) = Qvec(Y), and let
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M = blockdiag(IO2 − Q, . . . , IO2 − Q) with K diagonal

blocks. Let E(k,i) = {(k− 1)O2 + (i− 1)O+ j}Oj=1 be index

sets for all k = 1, . . . ,K and i = 1, . . . , O. Based on this,

define E(k,k′,i) = E(k,i) ∪ E(k′,i) for every k, k′ = 1, . . . ,K
with k < k′, where E(k,i) corresponds to the indices of the

i-th column in the vectorized version of the matrix P(k) and

E(k,k′,i) to the indices of the i-th columns of the vectorized

versions of P(k) and P(k′).

With the following vectorizations,

s = [vec(S
(1)
O )⊤L , · · · , vec(S

(K)
O )⊤L ]

⊤ ∈ R
KO(O−1)/2, (6)

p = [vec(P(1))⊤, · · · , vec(P(K))⊤]⊤ ∈ R
KO2

, (7)

we may rewrite the optimization problem (3) as

{s′,p′} = argmin
{s,p}

‖Ψs‖0 +
K
∑

k=1

O
∑

i=1

γk‖pE(k,i)‖2

+
∑

k<k′

O
∑

i=1

ηk,k′‖pE(k,k′,i)‖2

s. t. ‖Σs+Mp‖2 ≤ ǫ, (e1 ⊗ 1O−1)
⊤s = 1

(3’)

and (5) as

{ŝ, p̂} = argmin
{s,p}

‖Ψs‖1 +
K
∑

k=1

O
∑

i=1

γk‖pE(k,i)‖2

+
∑

k<k′

O
∑

i=1

ηk,k′‖pE(k,k′,i)‖2

s. t. ‖Σs+Mp‖2 ≤ ǫ, (e1 ⊗ 1O−1)
⊤s = 1.

(5’)

We further denote J as supp(Ψs′) and I as supp(s′), where

supp(y) denotes the support of the vector y. With the above

definitions in place, we have the following result.

Theorem 1. Assume that problem (5’) is feasible. The solution

{ŝ, p̂} of (5’) is equivalent to the solution {s′,p′} of (3’) if

the following two conditions are satisfied:

1) Σ·,I is full column rank; and

2) There exist constants ψ,Cs > 0 such that

‖ΨJ c,·(T1 −T2)Ψ
⊤
J ,·‖∞ < 1,

where

T1 :=
(

ψ−2(Σ⊤Σ+ 2ǫ2C−2
s IKO(O−1)/2)

+Ψ⊤
J c,·ΨJ c,·

)−1
,

T2 :=
T1(e1 ⊗ 1O−1)(e1 ⊗ 1O−1)

⊤T1

(e1 ⊗ 1O−1)⊤T1(e1 ⊗ 1O−1)
.

The proof of Theorem 1 can be found in Appendix A,

but we also provide a summary here. To decouple the joint

optimization of s and p, we consider an alternating minimiza-

tion algorithm, permitting separate analysis of s-subproblems

and p-subproblems at each iteration. Proximal alternating

minimization [46], an iterative optimization algorithm, applied

to (3’) and (5’) can be shown to converge to the original

solutions {s′,p′} and {ŝ, p̂}, respectively. We then can show

that the p-subproblems for (3’) and (5’) are equivalent for

every iteration, and therefore p′ = p̂. When the iterations

grow sufficiently large for convergence, the s-subproblems for

(3’) and (5’) are equivalent under the conditions of Theorem

1, so s′ = ŝ.

Under the sufficient conditions of Theorem 1, the convex

relaxation in (5) enjoys recovery of the sparsest solution of

(3) even in the presence of hidden nodes. Note that this result

differs significantly from that of Theorem 1 in [23] due to

the presence of another variable p that is not associated with

an entrywise sparsity penalty. Condition 1) of Theorem 1

guarantees that the solution to (5) is unique, and condition 2)

permits the existence of a dual certificate that ensures that the

solutions to (5) and (3) are equivalent [23], [47]. Thus, under

the conditions of Theorem 1, the ℓ1 norm does not introduce

any estimation error for obtaining the sparsest GSO submatrix

estimates, and we need only consider the distortion from

the sample covariance submatrices {Ĉ
(k)
O }Kk=1 and auxiliary

matrices {P̂(k)}Kk=1 obtained from (5).

B. Robust recovery under hidden nodes

By Theorem 1, we can guarantee under mild conditions

when the solution to (5) is equivalent to the sparsest solution

from (3). Therefore, to evaluate the efficacy of our method

in estimating the true GSO submatrices {S
∗(k)
O }Kk=1, we need

only consider the estimation error of (5). In the sequel, we

derive an upper bound on the distortion between the true GSO

submatrices {S
∗(k)
O }Kk=1 and the estimated ones {Ŝ

(k)
O }Kk=1

obtained from (5). Let s∗ be the vectorization of the true GSO

submatrices {S
∗(k)
O }Kk=1 as in (6). We define K as supp(Ψs∗),

and we let R :=
∑K

k=1 Rk and ω := maxk=1,...,K ωk,

where ωk := max{maxi[C
(k)
O ]ii,maxi[S

∗(k)
O C

(k)
O S

∗(k)
O ]ii}.

We present our main result on the performance of our proposed

method.

Theorem 2. Let {Ŝ
(k)
O }Kk=1 be the estimated subnetworks

obtained from (5) with ǫ = ǫR + α for

α2 =

K
∑

k=1

∥

∥

∥

(

P̂(k) − (P̂(k))⊤
)

−
(

P∗(k) − (P∗(k))⊤
)

∥

∥

∥

2

F

and ǫR ≥ C1Oω
√

(K logO)/R for some constant C1 > 0.

Under the following four conditions,

1) K = o(logO);
2) R1 ≍ R2 ≍ · · · ≍ RK;

3) logO = o(min{R/(K7(logR)2), (R/K7)1/3}); and

4) Σ is full column rank;

with probability at least 1 − e−C2 logO for some constant C2

we have that

K
∑

k=1

‖Ŝ
(k)
O − S

∗(k)
O ‖1 ≤ τ(ǫR + α),

where τ =
4
√

|K|σmax(Ψ)‖Ψ†‖1
σmin(Σ)

(2 +
√

|K|). (8)

The proof of Theorem 2 can be found in Appendix B. In

brief, we first apply the commutative relationship described
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in Section II to show that {s∗, p̂} is a feasible solution to

(5’). We can then bound the ℓ1-norm difference between the

vectorization of the true GSOs s∗ and the estimated one ŝ

based on the commutativity constraint, ǫ = ǫR + α.

Theorem 2 presents an upper bound on the estimation

error of (5). If K and O are fixed, then as the number

of observed graph signals R increases, the sample covari-

ance submatrices {Ĉ
(k)
O }Kk=1 approach the true covariance

submatrices, and the first term τǫR in the upper bound in

(8) becomes negligible. With enough observed graph signals,

the error primarily depends on the second term τα, which

denotes the approximation error of {P̂(k)}Kk=1, the crux of our

proposed method. If (5) is effective at enforcing P(k) to share

structural characteristics of C
(k)
OHS

∗(k)
HO such that they are close,

then the estimation of the GSO submatrices S
∗(k)
O becomes

easier according to (8). Furthermore, as P(k) becomes a more

accurate approximation of P∗(k), the estimation accuracy of

Ŝ
(k)
O improves increasingly when compared to estimating S

∗(k)
O

while ignoring the presence of hidden nodes. We formalize

this statement in the following result that characterizes the

effectiveness of our proposed formulation with respect to the

auxiliary matrices {P(k)}Kk=1.

Corollary 1. Let the naive subnetwork estimates considering

only observed nodes be denoted as {S̃
(k)
O }Kk=1 [23], which

we define as the solution to (5) while fixing P(k) = 0O×O

for every k = 1, 2, . . . ,K , and we let ǫ = ǫR, where

ǫR ≥ C1Oω
√

(K logO)/R for some constant C1 > 0, and

γk = 0, ηk,k′ = 0 for every k, k′ = 1, 2, . . . ,K and k < k′.

Additionally, let s̃ be the vectorization as in (6) of {S̃
(k)
O }Kk=1

and define δ as

δ2 =

K
∑

k=1

‖P∗(k) − (P∗(k))⊤‖2F .

Then, we have that

K
∑

k=1

‖S̃
(k)
O − S

∗(k)
O ‖1 ≤ (τ + τ ′)(ǫR + 1

2δ),

where τ =
4
√

|K|σmax(Ψ)‖Ψ†‖1
σmin(Σ)

(2 +
√

|K|)

and τ ′ =
2ρKO(O − 1)(1 +

√

|K|)σmax(Ψ)‖Ψ†‖1
σmin(Σ)

(9)

for some ρ ∈ [0, 1]. Furthermore, we have that if

K
∑

k=1

∥

∥

∥

(

P̂(k) − (P̂(k))⊤
)

−
(

P∗(k) − (P∗(k))⊤
)

∥

∥

∥

2

F

≤

(

τ ′

τ

)2

ǫ2R +

(

τ + τ ′

2τ

)2 K
∑

k=1

∥

∥

∥
P∗(k) − (P∗(k))⊤

∥

∥

∥

2

F
,

(10)

then the error bound in (8) is lower than the error bound in

(9).

The proof of Corollary 1 can be found in Appendix C,

which follows a similar procedure to the proof of Theorem

2. Corollary 1 demonstrates the criticality of accounting for

hidden nodes. We describe these implications more intuitively

here. First, as discussed following Theorem 2, we note that as

P̂(k) approximates P∗(k) more accurately, we achieve greater

improvement over {S̃
(k)
O }Kk=1 from our proposed inference

problem (5). Indeed, as the matrix difference (P̂(k))⊤ − P̂(k)

approaches the right-hand side of (2), we remove the influence

of the hidden nodes on the estimation of the observed subma-

trices. Second, note that the second term in the upper bound

of (10) is proportional to δ, which measures the influence

of the hidden nodes on the observed nodes in the stationary

graph signal regime. When δ is negligible, the hidden nodes

have little effect on the observed nodes, and the inclusion of

{P(k)}Kk=1 in the inference process may affect performance

detrimentally. However, as δ increases, the need to account

for the right-hand side of (2) becomes crucial. We verify

this comparison of (5) and the naive solution {S̃
(k)
O }Kk=1 with

synthetic simulations in Section VI.

VI. NUMERICAL EVALUATION

We introduce several experiments to assess the performance

of the proposed network topology inference method. The ex-

periments employ synthetic and real-world data and compare

the quality of the graphs estimated by different algorithms.

For the k-th graph, we compute the normalized error between

the true S
∗(k)
O and the estimated Ŝ

(k)
O as

nerr(S
∗(k)
O , Ŝ

(k)
O ) =

‖S
∗(k)
O − Ŝ

(k)
O ‖2F

‖S
∗(k)
O ‖2F

, (11)

and then report the average across the K graphs being

estimated, i.e., 1
K

∑K
k=1 nerr(S

∗(k)
O , Ŝ

(k)
O ). The code for the

proposed method and the experiments is available on GitHub1.

A. Synthetic experiments

We rely on synthetic graphs and signals to assess how

different elements impact the performance of the proposed

approach. Unless specified otherwise, in the following ex-

periments we consider K = 3 graphs with N = 20 nodes

from which O = 19 are observed. The graph G(1) is sampled

from an Erdős-Rényi (ER) random graph model with a link

probability of p = 0.2, and the related graphs are created by

randomly rewiring a fixed number of edges. Stationary graph

signals are generated by diffusing a white input signal across

the graph, i.e., x = Hw, where the coefficients of H are

drawn from a uniform distribution and w ∼ N (0, I).

Varying the effect of hidden nodes. We start by illustrating

the result in (10) that expresses when it is beneficial to

incorporate P(k) for hidden nodes. To this end, we estimate

K = 3 networks from perfectly known covariance submatrices

C
(k)
O so ǫR = 0 [cf. (10)], to assess only the effects of

P(k) and the hidden nodes H, characterized respectively by

α from Theorem 2 and δ from Corollary 1. We compare two

network inference methods: (i) “JH-GSR”, which denotes the

method in (5) that accounts for hidden nodes, and (ii) “J-GSR”,

which denotes the method described in Corollary 1 that ignores

hidden variables [23]. Fig. 1a shows the network estimation

1https://github.com/reysam93/hidden joint inference

https://github.com/reysam93/hidden_joint_inference
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Fig. 1: We test the performance of the proposed network topology inference in different settings. (a) Evaluation of the performance of graph
inference accounting for hidden nodes via (5) and graph inference ignoring hidden nodes as described in Corollary 1 as the weights of
edges between observed and hidden nodes increase. (b) Evaluation of the influence of increasing the number of graphs being estimated. (c)
Evaluation of the detrimental effects of increasing the number of hidden nodes. The experiments consider different graph learning alternatives
and the reported results are the average error of 100 independent realizations.

error as the edge weights connecting observed nodes and

hidden nodes increase, that is, as nonzero entries in S
∗(k)
OH

grow larger. While the GSO sparsity patterns do not change,

the hidden node influence δ increases with the edge weights

in S
∗(k)
OH . To measure performance that is consistent with

Corollary 1, we report the average error across all K graphs

as the normalized ℓ1-norm difference, equivalent to computing

(11) with the ℓ1 norm replacing the squared Frobenius norm.

We let ǫ = 10−8 for the first constraint in (5); however,

the solution to the naive problem with P(k) = 0O×O may

not be feasible. Indeed, when ǫ is small enough, it may be

impossible to obtain a feasible solution {S̃
(k)
O }Kk=1 such that

all constraints hold. In such a case where the solution is

infeasible, we let its error be 1. Along with network estimation

error, we compare in Fig. 1a normalized values of α and

δ to evaluate when the result in (10) holds. In particular,

we let ᾱ :=
∑

k nerr(P
∗(k), (P∗(k))⊤ + P̂(k) − (P̂(k))⊤)/K

and δ̄ :=
∑

k nerr(P
∗(k), (P∗(k))⊤)/K . Since we need only

consider which value is greater, we plot ᾱ/C and δ̄/C for

some constant C > 0 such that the values are between 0 and

1.

When the edge weight is 0, the hidden nodes are decoupled

from the network and thus have no effect on the observed

nodes, and indeed “J-GSR” perfectly recovers the true net-

works. For zero-valued edge weights in S
∗(k)
OH , we observe

α ≥ δ, where “JH-GSR” is comparable but not superior to “J-

GSR”. As the edge weight increases and becomes nonnegligi-

ble, the effect of the hidden nodes increases, and we observe in

Fig. 1a that α < δ for all nonzero edge weights and “JH-GSR”

consistently outperforms “JH-GSR” as expected from (10). We

thus validate the necessity of our proposed method, where as

the influence of hidden nodes increases, we must account for

their presence to maintain a satisfactory estimation error.

Varying the number of graphs. We next assess the benefits

of considering a joint network topology inference approach

when several graphs need to be learned. To that end, Fig. 1b

illustrates the normalized error computed according to (11)

as the number of graphs K being estimated increases. The

performance of “JH-GSR” is compared with (i) “S-GSR”,

the network topology inference method from stationary ob-

servations [16] where graphs are learned individually and

the presence of hidden variables is ignored; “SH-GSR”, a

generalization of (i) that takes into account the influence of

hidden variables [32]; and (iii) “J-GSR” as in Fig. 1a. Looking

at the results, we observe that “JH-GSR” outperforms the

alternatives, showcasing the benefits of harnessing the graph

similarity while accounting for the influence of the hidden

nodes. We also observed that the joint approaches achieve a

lower error when more than one graph is being estimated, and

furthermore, that the benefits of the joint approaches increase

with K . Lastly, Fig. 1b also shows that for the setup at hand,

ignoring the influence of hidden nodes results in a worse

performance than ignoring the relation across networks, which

is studied in more detail in the following experiment.

Varying the number of hidden nodes. The results in Fig. 1c

investigate the detrimental influence of the presence of hidden

nodes in the network topology inference task. We examine

fixed-size graphs with N = 20 nodes and increase the number

of hidden nodes H as shown in the x-axis. We evaluate

the performance of (i) our proposed method, “JH-GSR”, (ii)

an alternative implementation of our method replacing the

group Lasso penalty by the nuclear norm, “NN”, and (iii)

the joint network topology inference ignoring the presence

of hidden nodes, “J-GSR” [23]. Then, for each baseline, we

consider the estimation of either 2 or 6 graphs. First, from

Fig. 1c, it can be seen that increasing the number of hidden

nodes renders the inference problem more challenging and,

moreover, that ignoring the presence of hidden nodes results in

poor performance. Second, the superior performance of “JH-

GSR” over “NN” supports our initial intuition that the group

Lasso penalty is better suited to capture the structure of the

problem at hand. Furthermore, we also observe that estimating

6 graphs leads to a better performance than estimating 2, a

behavior aligned with the previous experiment.

Varying graph similarity. The last experiment involving

synthetic data tests the impact of (AS3), a critical assumption

in joint graph learning. More precisely, we consider estimating

K = 3 graphs as the proportion of different edges increases,

i.e., as the graphs become more dissimilar. The errors of the es-

timated graphs are depicted in Fig. 2a, where we compare the
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,Ŝ
(k

)
O

)

G1 JH-GSR G1 SH-GSR

G2 JH-GSR G2 SH-GSR

G3 JH-GSR G3 SH-GSR

70 75 80 85 90

0.4

0.6

(c) Percentage of samples

n
er
r(
S
∗
(k

)
O

,Ŝ
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Fig. 2: We test the performance of the proposed network topology inference in settings with synthetic and real-world data. (a) Evaluation of
the impact of the graph similarity in joint network topology inference methods. This experiment considers different graph learning alternatives
and the reported results are the average error of 100 independent realizations. (b) Error estimating three graphs considering either a joint
or a separate method. Graphs are obtained from the students of the University of Ljubljana dataset. (c) Error estimating two graphs from
voting signals considering different approaches.

performance of “JH-GSR” with (i) “LVGL”, a graphical Lasso

algorithm modeling the presence of hidden nodes [27]; and

(ii) “FGL”, a joint graphical Lasso algorithm [22]. Moreover,

since graphical Lasso algorithms assume that the observations

are drawn from a GMRF, we consider two different types of

signals. Signals sampled from a GMRF are denoted as “M”,

and signals generated as the diffusion of a white input via a

polynomial of the GSO are denoted as “P”. As expected from

(AS3), Fig. 2a shows that the performance of joint methods,

“JH-GSR” and “FGL”, deteriorates as we consider a higher

number of different links. For the two signal models, we

observe that “JH-GSR-M” is superior to “JH-GSR-P” since the

GMRF model is a simpler special case of graph stationarity

that is less sensitive to hidden nodes. Interestingly, “JH-

GSR-M” also outperforms “FGL-M”, although the latter is a

method tailored for GMRF observations, showcasing the more

general nature of the stationary model and the importance

of accounting for the presence of hidden nodes. In contrast,

we observe that graphical models are incapable of estimating

graphs from stationary observations, and we note that “LVGL-

P” is not included in the figure due to its high error.

B. Application to real-world graphs

In addition to the synthetic data where we know the model

relating the networks and the observed graph signals, we assess

our proposed method with real-world data to demonstrate

its efficacy in several scenarios, including those where the

stationarity assumption is not explicitly enforced.

Students dataset. The following experiment combines real-

world graphs with synthetic signals. This mixed approach

allows us to investigate the applicability of the proposed

method to real-world graphs while ensuring that the observed

signals are stationary. We employed three graphs defined on a

common set of 32 nodes, where nodes represent students from

the University of Ljubljana, and the different graphs encode

various types of interactions among the students2. The results

are displayed in Fig. 2b, where we observe the error of the

recovered graphs as the number of samples increases. The

2Original data available at http://vladowiki.fmf.uni-lj.si/doku.php?id=pajek:data:pajek:students

error reported is the average of 50 realizations of random sta-

tionary graph signals, with only one hidden node considered.

For each of the three graphs, we evaluate the performance

of both the joint and the separate estimation methods, “JH-

GSR” and “SH-GSR”. From the results, it is evident that the

recovery of all three graphs significantly improves with a joint

approach, demonstrating the benefits of leveraging the existing

relationship between the networks.

Learning multiple observed graphs from voting data.

Finally, we close with an experiment aimed at learning two

related political graphs from voting data3. More specifically,

we consider 25 cantons of Switzerland as the nodes of the

graph and the percentage of votes in favor of 185 initiatives

submitted between 2000 and 2020 as the signals. Our goal

then is to infer the political graph of Switzerland for two

consecutive periods of time. Intuitively, although political

representation may evolve with time, this process is typically

slow and, hence, the two graphs are expected to be closely

related. We validate the estimations via ground truth graphs

whose links reflect the political preferences of the cantons,

which are obtained by performing separate inference of both

graphs with all available signals. We consider H = 2 hidden

nodes and estimate the K = 2 graphs varying the percentage

of available signals from 70% to 90%. We compare the pro-

posed algorithm, “JH-GSR”, with three alternative methods:

“J-GSR”, “SH-GSR”, and “J-LVGL” from [35].

The estimation error of the two graphs using the four

methods is shown in Fig. 2c. Since the number of available

signals for the second graph is considerably smaller than

the signals available for the first graph, we observe a much

larger estimation error for the second graph when the separate

approach “SH-GSR” is employed. In contrast, for the joint

estimation method “J-GSR”, we observe that errors are similar

for both graphs and inferior on average compared to “SH-

GSR”. This behavior illustrates that harnessing the similarity

of the graphs results in an improvement in performance since

it allows sharing common learned structures across graphs.

Moreover, we observe that “JH-GSR” outperforms both “SH-

GSR” and “J-GSR” since, in addition to being a joint ap-

3Original data available at https://swissvotes.ch/page/home

http://vladowiki.fmf.uni-lj.si/doku.php?id=pajek:data:pajek:students
https://swissvotes.ch/page/home
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proach, it takes into account the influence of the hidden nodes.

We also compare “JH-GSR” with “J-LVGL”, both of which

perform joint network inference while accounting for hidden

nodes. However, we find that “JH-GSR” is drastically superior

due to complexities in the data structure that “J-LVGL” cannot

capture accurately. Indeed, the stationary model subsumes the

GMRF model while allowing for more complex statistical

relationships between the graph topology and the signals.

To summarize, it is not only crucial to account for the

presence of hidden nodes but, when several related graphs are

involved, it is also important to exploit the similarity between

both observed and hidden nodes. This becomes particularly

relevant when data is limited to a subset of the graphs, as

demonstrated in the improved estimation of the second graph

when considering joint network inference methods.

VII. CONCLUSION

In this paper, we presented a method to infer multiple

networks on the same node set in the presence of hidden nodes.

To characterize the effect of the hidden nodes, we assumed that

graph signals were stationary on their respective networks. By

the inherent block structure of the covariance matrix C(k) and

the GSO S∗(k) of the k-th network, we introduced a set of

auxiliary matrices P(k) to account for the effect of hidden

nodes in the relationship C(k)S∗(k) = S∗(k)C(k) stemming

from the stationarity assumption. By prior assumptions on

structure and stationarity, we derive characteristics of P(k)

that permit us to form an optimization problem that performs

network inference while accounting for the presence of hidden

nodes. Moreover, we verified that the estimation of the sparsest

networks is equivalent to a computationally feasible convex

relaxation under mild conditions. We further demonstrated a

bound on the error of our proposed method dependent on

the error due to the sample covariance matrices and P(k).

The performance of our method was evaluated in multiple

synthetic and real-world datasets in comparison with other

baseline methods, and we also verified the improvement in

estimation due to the incorporation of P(k).

APPENDIX A

PROOF OF THEOREM 1

We first combine the last two terms in the objective

functions of (3’) and (5’) by defining the combined index

set E :=
⋃O

i=1{E
(k,i)}Kk=1 ∪ {E(k,k′,i)}k<k′ and parameters

{η′g}g∈E such that η′
E(k,i) = γk and η′

E(k,k′,i) = ηk,k′ for every

k, k′ = 1, . . . ,K such that k < k′ and i = 1, . . . , O.

Let us consider solving (3’) by proximal alternating mini-

mization [46] with

p′(t) = argmin
p

∑

g∈E

η′g‖pg‖2 +
1

2λ′t
‖p− p′(t−1)

‖22

s. t. ‖Σs′
(t−1)

+Mp‖2 ≤ ǫ, (12a)

s′
(t)

= argmin
s

‖Ψs‖0 +
1

2µ′
t

‖s− s′
(t−1)

‖22

s. t. ‖Σs+Mp′(t)‖2 ≤ ǫ, (e1 ⊗ 1O−1)
⊤s = 1,

(12b)

and (5’) with

p̂(t) = argmin
p

∑

g∈E

η′g‖pg‖2 +
1

2λ̂t
‖p− p̂(t−1)‖22

s. t. ‖Σŝ(t−1) +Mp‖2 ≤ ǫ, (13a)

ŝ(t) = argmin
s

‖Ψs‖1 +
1

2µ̂t
‖s− ŝ(t−1)‖22

s. t. ‖Σs +Mp̂(t)‖2 ≤ ǫ, (e1 ⊗ 1O−1)
⊤s = 1,

(13b)

for t ∈ N, where the parameters λ′t, µ
′
t, λ̂t, and µ̂t are bounded

above and below by positive real numbers. By the proximal

term in each update step of (12) and (13), the subproblems are

strongly convex, and thus each iteration has a unique solution.

Furthermore, for every t ∈ N and any given pair of constants

Cs
t , C

p
t > 0, we may select positive values λ′t, µ

′
t, λ̂t, and µ̂t

such that the solutions to (12) and (13) are equivalent to

p′(t) = argmin
p

∑

g∈E

η′g‖pg‖2

s. t. ‖Σs′
(t−1)

+Mp‖2 ≤ ǫ, ‖p− p′(t−1)
‖2 ≤ Cp

t ,
(14a)

s′
(t)

= argmin
s

‖Ψs‖0

s. t. ‖Σs+Mp′(t)‖2 ≤ ǫ, (e1 ⊗ 1O−1)
⊤s = 1

‖s− s′
(t−1)

‖2 ≤ Cs
t , (14b)

and

p̂(t) = argmin
p

∑

g∈E

η′g‖pg‖2

s. t. ‖Σŝ(t−1) +Mp‖2 ≤ ǫ, ‖p− p̂(t−1)‖2 ≤ Cp
t ,

(15a)

ŝ(t) = argmin
s

‖Ψs‖1

s. t. ‖Σs+Mp̂(t)‖2 ≤ ǫ, (e1 ⊗ 1O−1)
⊤s = 1

‖s− ŝ(t−1)‖2 ≤ Cs
t . (15b)

Let us initialize the proximal alternating minimization steps

for (14) and (15) with p0 := p′(0) = p̂(0) and s0 := s′
(0)

=
ŝ(0) such that ‖Σs0 + Mp0‖2 < ǫ. Note that the objective

functions of (3’) and (5’) are semi-algebraic functions [48]

and thus have the Kurdyka-Łojasiewicz property [46]. By [46,

Theorem 3.3], there exist constants r′, s′ > 0 such that when

we let ‖p′ − p0‖2 + ‖s′ − s0‖2 < r′ and

‖Ψs′‖0 +
∑

g∈E

η′g‖p
′
g‖2 ≤ ‖Ψs0‖0 +

∑

g∈E

η′g‖[p0]g‖2

< ‖Ψs′‖0 +
∑

g∈E

η′g‖p
′
g‖2 + s′,

where the first inequality is due to the optimality of {s′,p′},

then we have that the sequence {s′(t),p′(t)} converges to

{s′,p′} in finitely many steps. Similarly, there exist constants

r̂, ŝ > 0 such that we can guarantee that the sequence

{ŝ(t), p̂(t)} converges to {ŝ, p̂} in finitely many steps. More

specifically, there exist positive integers T1, T2 such that
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{s′,p′} = {s′(t),p′(t)} for every t ≥ T1 and {ŝ, p̂} =
{ŝ(t), p̂(t)} for every t ≥ T2.

We first show that p′(t) = p̂(t) for every t ∈ N. Let

T := max{T1, T2}. Furthermore, let us consider sequences

of positive real numbers Cs
t , C

p
t for t = 1, . . . , T such that

T−1
∑

t=1

Cs
t ≤

ǫ− ‖Σs0 +Mp0‖2
σmax(Σ)

, (16a)

T
∑

t=1

Cp
t ≤

ǫ− ‖Σs0 +Mp0‖2 − σmax(Σ)
∑T−1

t=1 Cs
t

σmax(M)
, (16b)

Cs
T ≥ (2ǫ+ σmax(M)Cp

T )/σmin(Σ). (16c)

Note that when p′(0) = p̂(0) and s′
(0)

= ŝ(0), we have that

the optimization subproblems (12a) and (13a) are equivalent,

so p1 := p′(1) = p̂(1). Next, assume that for some t ≤ T , we

have that p′(l) = p̂(l) =: pl for every l = 1, . . . , t− 1. Then,

by (16a) and (16b) we have that

‖Σs′
(t−1)

+Mp̂(t)‖2 ≤ ‖Σs0 +Mp0‖2

+
∑t−1

i=1 ‖Σ(s′(i) − s′(i−1))‖2

+
∑t

i=1 ‖M(p̂(i) − p̂(i−1))‖2

≤ ‖Σs0 +Mp0‖2

+ σmax(Σ)
∑t−1

i=1 C
s
i

+ σmax(M)
∑t

i=1 C
p
i

≤ ‖Σs0 +Mp0‖2

+ σmax(Σ)
∑T−1

i=1 Cs
i

+ σmax(M)
∑T

i=1 C
p
i

≤ ǫ,

and by an analogous proof, we have that

‖Σŝ(t−1) +Mp′(t)‖2 ≤ ǫ.

Then p′(t) is a feasible solution for (15a), and p̂(t) is a

feasible solution for (14a). Since the solutions are unique and

the objective functions are equivalent, we have that p′(t) =

p̂(t) =: pt. Thus by induction, we have that p′(t) = p̂(t) for

every t ∈ N and p′ = p̂ = pT .

Next we show that the solutions s′ and ŝ are equivalent. By

(16c) we have that

‖s′
(T )

− ŝ(T−1)‖2 ≤σ−1
min(Σ)‖Σ(s′

(T )
− ŝ(T−1))‖2

≤σ−1
min(Σ)‖Σs′

(T )
+MpT ‖2

+ σ−1
min(Σ)‖Σŝ(T−1) +MpT−1‖2

+ σ−1
min(Σ)‖M(pT − pT−1)‖2

≤ 2σ−1
min(Σ)ǫ + (σmax(M)/σmin(Σ))Cp

T

≤Cs
T ,

and similarly

‖ŝ(T ) − s′
(T−1)

‖2 ≤ Cs
T .

Thus, s′ = s′
(T )

and ŝ = ŝ(T ) are both feasible solutions of

(14b) and (15b) at iteration T , so we may rewrite (14b) and

(15b) at iteration T as

s′ = argmin
s

‖Ψs‖0

s. t. ‖Σs+MpT ‖2 ≤ ǫ, (e1 ⊗ 1O−1)
⊤s = 1,

‖s− s′
(T−1)

‖2 ≤ Cs
T , ‖s− ŝ(T−1)‖2 ≤ Cs

T , (17)

ŝ = argmin
s

‖Ψs‖1

s. t. ‖Σs+MpT ‖2 ≤ ǫ, (e1 ⊗ 1O−1)
⊤s = 1,

‖s− s′
(T−1)

‖2 ≤ Cs
T , ‖s− ŝ(T−1)‖2 ≤ Cs

T . (18)

Now we provide the conditions for s′ = ŝ. We introduce a

modification to the problems (17) and (18) that are parame-

terized by the positive real number r > 0 as

s′r = argmin
s

‖Ψs‖0 s. t. ‖Φrs +RpT − br‖2 ≤ ǫ, (19)

ŝr = argmin
s

‖Ψs‖1 s. t. ‖Φrs +RpT − br‖2 ≤ ǫ, (20)

where we define block conformal matrices Φr and R and

block conformal vector br as

Φr = [Σ⊤, r(e1 ⊗ 1O−1), ǫ(C
s
T )

−1(1⊤
2 ⊗ IKO(O−1)/2)]

⊤,

R = [M⊤,0KO2 ,0KO2×KO(O−1)]
⊤,

br = [0⊤
KO2 , r, ǫ(Cs

T )
−1s′

(T−1)⊤
, ǫ(Cs

T )
−1ŝ(T−1)⊤]⊤. (21)

Note that as r increases, we recover the solutions to the

unmodified problems (17) and (18), where s′r → s′ and ŝr → ŝ

as r → ∞.

By the proof of Theorem 1 in [23] and Theorem 1 of [47], if

[Φr]·,I is full column rank and there exists a positive constant

ψ > 0 such that

‖ΨJ c,·(ψ
−2Φ⊤

r Φr +Ψ⊤
J c,·ΨJ c,·)

−1Ψ⊤
J ,·‖∞ < 1 (22)

when r → ∞, then we have that s′ = ŝ. Under condition

1) in the statement of Theorem 1, we have that Σ·,I is full

column rank, and since Φr consists of rows appended to Σ,

then [Φr]·,I is also full column rank. Thus, we need only show

that condition 2) implies (22) for r → ∞.

By the definition of Φr and the Sherman-Morrison formula,

we have that

(ψ−2Φ⊤
r Φr +Ψ⊤

J c,·ΨJ c,·)
−1

=

(

ψ−2(Σ⊤Σ+ 2ǫ2(Cs
T )

−2IKO(O−1)/2) +Ψ⊤
J c,·ΨJ c,·

+ r2ψ−2(e1 ⊗ 1O−1)(e1 ⊗ 1O−1)
⊤

)−1

= T1 −
r2ψ−2T1(e1 ⊗ 1O−1)(e1 ⊗ 1O−1)

⊤T1

1 + r2ψ−2(e1 ⊗ 1O−1)⊤T1(e1 ⊗ 1O−1)
,

and as r → ∞, we have

lim
r→∞

(ψ−2Φ⊤
r Φr +Ψ⊤

J c,·ΨJ c,·)
−1

= T1 −
T1(e1 ⊗ 1O−1)(e1 ⊗ 1O−1)

⊤T1

(e1 ⊗ 1O−1)⊤T1(e1 ⊗ 1O−1)

= T1 −T2.
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Then the inequality ‖ΨJ c,·(T1 − T2)Ψ
⊤
J ,·‖∞ < 1 is

equivalent to the condition (22) when r → ∞. Thus, we have

that the conditions hold for s′ = ŝ by Theorem 1 of [23] and

Theorem 1 of [47], as desired.

APPENDIX B

PROOF OF THEOREM 2

To establish an upper bound on the estimation error of (5),

we first provide the following lemma necessary to determine

an upper bound on the error of (5).

Lemma 1. Under the following four conditions,

1) K = o(logO);
2) R1 ≍ R2 ≍ · · · ≍ RK;

3) logO = o(min{R/(K7(logR)2), (R/K7)1/3}); and

4) ǫR ≥ COω
√

(K logO)/R for some constant C > 0;

with probability at least 1− e−C1 logO for some constant C1

we have that

K
∑

k=1

∥

∥

∥
(Ĉ

(k)
O −C

(k)
O )S

∗(k)
O − S

∗(k)
O (Ĉ

(k)
O −C

(k)
O )

∥

∥

∥

2

F
≤ ǫ2R.

Proof. The proof of Lemma 1 follows from the proof of Claim

2 in [23]. �

Recall that s∗ is the vectorization of the true GSO sub-

matrices {S
∗(k)
O }Kk=1 as in (6). We show that {s∗, p̂} is a

feasible solution to (5’). We demonstrate an upper bound on

the commutativity of sample covariance submatrices and true

subnetworks as
∣

∣

∣

∣

K
∑

k=1

‖Ĉ
(k)
O S

∗(k)
O − S

∗(k)
O Ĉ

(k)
O + P̂(k) − (P̂(k))⊤‖2F

∣

∣

∣

∣

1
2

≤

∣

∣

∣

∣

K
∑

k=1

∥

∥

∥
(Ĉ

(k)
O −C

(k)
O )S

∗(k)
O − S

∗(k)
O (Ĉ

(k)
O −C

(k)
O )

∥

∥

∥

2

F

∣

∣

∣

∣

1
2

+

∣

∣

∣

∣

K
∑

k=1

∥

∥

∥

(

P̂(k) − (P̂(k))⊤
)

−
(

P∗(k) − (P∗(k))⊤
)

∥

∥

∥

2

F

∣

∣

∣

∣

1
2

≤ ǫR + α, (23)

where we have used Lemma 1, the definition of α, and the

relationship in (2). Because
∑O

j=1[S
∗(k)
O ]j1 = 1 by definition,

(23) is equivalent to

‖Σs∗ +Mp̂‖2 ≤ ǫR + α = ǫ, (24)

so {s∗, p̂} is a feasible solution to (5’).

We introduce a modification of (5’) to combine the con-

straints into one inequality. Consider the following modified

optimization problem that is parameterized by r > 0

{ŝr, p̂r} = argmin
{s,p}

‖Ψs‖1 +
K
∑

k=1

O
∑

i=1

γk‖pE(k,i)‖2

+
∑

k<k′

O
∑

i=1

ηk,k′‖pE(k,k′,i)‖2

s. t. ‖Φ̄rs+ R̄p− b̄r‖2 ≤ ǫ, (25)

where Φ̄r = [Σ⊤, r(e1 ⊗ 1O−1)]
⊤, R̄ = [M⊤,0KO2 ]⊤,

and b̄r = [0⊤
KO(O−1)/2, r]

⊤. The parameter r determines the

strictness of the second constraint in (5’) such that when r →
∞, we have that ŝr → ŝ. Note that since (e1 ⊗ 1O−1)

⊤ŝ = 1
and (e1 ⊗ 1O−1)

⊤s∗ = 1, then by (24) and the definition of

{ŝ, p̂}, we have that {ŝ, p̂} and {s∗, p̂} are feasible solutions

of (25) for every r > 0.

We next provide an upper bound on the difference between

ŝ and s∗ following the proof of Claim 1 in [23]. First, note

that as in the proof of Claim 1 of [23], we have that when

Σ is full column rank, then so is Φ̄r, which guarantees the

existence of a dual certificate y = I⊤K,·sign(ΨK,·s
∗), where

Ψ⊤y = Φ̄
⊤
r Φ̄r(Φ̄

⊤
r Φ̄r)

−1Ψ⊤I⊤K,·sign(ΨK,·s
∗) ∈ Im(Φ̄

⊤
r ),

yK = sign(ΨK,·s
∗), ‖yKc‖∞ < 1, and ‖Ψs∗‖1 = y⊤Ψs∗.

Consider the following inequality

‖Ψs∗ −Ψŝ‖1 ≤ ‖Ψŝ− u‖1 + ‖Ψs∗ − u‖1, (26)

where u ∈ R
KO(O−1)/2 such that supp(u) ⊆ K. We derive

an upper bound for the second term on the right-hand side of

(26) as

‖Ψs∗ − u‖1≤
√

|K|‖Ψs∗ − u‖2

≤
√

|K|‖Ψs∗ −Ψŝ‖2 +
√

|K|‖Ψŝ− u‖1

≤
√

|K|σmax(Ψ)‖s∗ − ŝ‖2

+
√

|K|‖Ψŝ− u‖1

≤

√

|K|σmax(Ψ)

σmin(Φ̄r)
‖Φ̄r(s

∗ − ŝ)‖2

+
√

|K|‖Ψŝ− u‖1. (27)

For the first term on the right-hand side of (26), we have that

ξ := min
u:supp(u)⊆K

‖Ψŝ− u‖1

= max
v

min
u

‖Ψŝ− u‖1 (28)

+ v⊤IKc,·(u−Ψŝ) + v⊤IKc,·Ψŝ

= max
w:supp(w)⊆Kc

min
u

‖Ψŝ− u‖1

+w⊤(u−Ψŝ) +w⊤Ψŝ,

where (28) results from the Lagrangian of ξ and duality theory.

Given the dual certificate y, we have that

ξ = max
w:supp(w)⊆Kc,

‖w‖∞≤1

(y +w)⊤Ψŝ− y⊤Ψŝ

≤ ‖Ψŝ‖1 − y⊤Ψŝ+ y⊤Ψs∗ − ‖Ψs∗‖1

≤ y⊤Ψ(s∗ − ŝ), (29)

where the final inequality is due to the optimality of {ŝ, p̂}
and the feasibility of {s∗, p̂} for (5’). Lastly, since Ψ⊤y =

Φ̄
⊤
r Φ̄r(Φ̄

⊤
r Φ̄r)

−1Ψ⊤I⊤K,·sign(ΨK,·s
∗), we have that

y⊤Ψ(s∗ − ŝ)

≤ sign(ΨK,·s
∗)⊤IK,·Ψ(Φ̄

⊤
r Φ̄r)

−1Φ̄
⊤
r Φ̄r(s

∗ − ŝ)

≤

√

|K|σmax(Ψ)

σmin(Φ̄r)
‖Φ̄r(s

∗ − ŝ)‖2, (30)

where the second inequality results from the fact that every

positive scalar and its ℓ2 norm are equal. We may substitute
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(27) and (30) into (26) and the fact that Ψ is full column rank

to obtain

‖s∗ − ŝ‖1 ≤ τr‖Φ̄r(s
∗ − ŝ)‖2,

where

τr =

√

|K|σmax(Ψ)‖Ψ†‖1
σmin(Φ̄r)

(2 +
√

|K|). (31)

As r → ∞, we have that

‖s∗ − ŝ‖1 ≤ lim
r→∞

τr‖Φ̄r(s
∗ − ŝ)‖2

≤ 2 lim
r→∞

τr(ǫR + α),

where by the feasibility of {ŝ, p̂} and {s∗, p̂} for every r > 0,

we have that

‖Φ̄r(s
∗ − ŝ)‖2 ≤ ‖Φ̄rs

∗ + R̄p̂− b̄r‖2

+ ‖Φ̄r ŝ+ R̄p̂− b̄r‖2

≤ 2(ǫR + α). (32)

Finally, we return to the equivalent matrix formulation as

K
∑

k=1

‖Ŝ
(k)
O − S

∗(k)
O ‖1 ≤ 4τr(ǫR + α). (33)

By the end of the proof of Theorem 2 in [23], we have that

limr→∞ 4τr ≤ τ , as desired.

APPENDIX C

PROOF OF COROLLARY 1

Consider the following optimization problem

min
{S

(k)
O

}K
k=1

K
∑

k=1

αk‖S
(k)
O ‖1 +

∑

k<k′

βk,k′‖S
(k)
O − S

(k′)
O ‖1

s. t.
∑K

k=1 ‖Ĉ
(k)
O S

(k)
O − S

(k)
O Ĉ

(k)
O ‖2F ≤ ǫ2R,

S
(k)
O = (S

(k)
O )⊤, diag(S

(k)
O ) = 0, ∀k = 1, . . . ,K,

∑

j [S
(1)
O ]j1 = 1, (34)

whose solution is equivalent to the naive solution {S̃
(k)
O }Kk=1

described in the statement of Corollary 1. Similarly to (5), we

can define a vectorized version of (34) as

s̃ = argmin
s

‖Ψs‖1 s. t. ‖Σs‖2 ≤ ǫR, (e1 ⊗ 1O−1)
⊤s = 1,

(35)

and a version parameterized by r > 0 as

s̃r = argmin
s

‖Ψs‖1 s. t. ‖Φ̄rs− b̄r‖2 ≤ ǫR, (36)

where Φ̄r and b̄r are defined as for (25) and limr→∞ s̃r = s̃.

We provide the following upper bound via (2)
∣

∣

∣

∣

K
∑

k=1

‖Ĉ
(k)
O S

∗(k)
O − S

∗(k)
O Ĉ

(k)
O ‖2F

∣

∣

∣

∣

1
2

≤

∣

∣

∣

∣

K
∑

k=1

∥

∥

∥
(Ĉ

(k)
O −C

(k)
O )S

∗(k)
O − S

∗(k)
O (Ĉ

(k)
O −C

(k)
O )

∥

∥

∥

2

F

∣

∣

∣

∣

1
2

+

∣

∣

∣

∣

K
∑

k=1

∥

∥

∥
P∗(k) − (P∗(k))⊤

∥

∥

∥

2

F

∣

∣

∣

∣

1
2

≤ ǫR + δ,

and similarly to Theorem 2, we apply Lemma 1 to get

‖Φ̄rs
∗ − b̄r‖2 ≤ ǫR + δ,

where s∗ may not be a feasible solution to (36). However, by

the triangle inequality and the optimality of s̃r, there exists

ρ ∈ [0, 1] such that

‖Ψs̃r‖1 − ‖Ψs∗‖1 ≤ ρ‖Ψs̃r −Ψs∗‖1. (37)

In particular, let ρ = max{0, (‖Ψs̃r‖1 − ‖Ψs∗‖1)/‖Ψs̃r −
Ψs∗‖1}, where ρ = 0 when s∗ is a feasible solution to (36),

but otherwise, it may be possible that ρ ∈ (0, 1]. Furthermore,

since (e1⊗1O−1)
⊤s̃ = 1, then s̃ is a feasible solution to (36)

for every r > 0.

We then can introduce a similar inequality to (26) as

‖Ψs∗ −Ψs̃‖1 ≤ ‖Ψs̃− ũ‖1 + ‖Ψs∗ − ũ‖1, (38)

where ũ ∈ R
KO(O−1)/2 such that supp(ũ) ⊆ K. The upper

bound for the second term of the right-hand side of (38) can

be found analogously to (27), where we have

‖Ψs∗ − ũ‖1≤

√

|K|σmax(Ψ)

σmin(Φ̄r)
‖Φ̄r(s

∗ − s̃r)‖2

+
√

|K|‖Ψs̃r − ũ‖1. (39)

Similarly to (29) in the proof of Theorem 2, we can upper

bound the first term as

ξ̃ := min
ũ:supp(ũ)⊆K

‖Ψs̃− ũ‖1

≤ ‖Ψs̃‖1 − y⊤Ψs̃+ y⊤Ψs∗ − ‖Ψs∗‖1

≤ y⊤Ψ(s∗ − s̃) + ρ‖Ψ(s∗ − s̃)‖1, (40)

where we account for the possible infeasibility of s∗ with (37).

We may combine (40), and (39) to obtain

‖s̃− s∗‖1 ≤ (τr + τ ′r)(2ǫR + δ), (41)

where τr is defined in (31) and we let

τ ′r :=
ρKO(O − 1)(1 +

√

|K|)σmax(Ψ)‖Ψ†‖1
2σmin(Φ̄r)

.

As with the proof of Theorem 2, we have that for r → ∞,

K
∑

k=1

‖S̃
(k)
O − S

∗(k)
O ‖1 ≤ (τ + τ ′)(ǫR + 1

2δ), (42)

as desired.

Finally, the bound (10) is equivalent to the following in-

equality

α2 ≤

(

τ ′

τ

)2

ǫ2R +

(

τ + τ ′

2τ

)2

δ2,

which is a sufficient condition for the upper bound in (8) to

be less than the upper bound in (9).
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