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Abstract

Unit visualizations are a family of visualizations where every data item is represented by a unique 

visual mark—a visual unit—during visual encoding. For certain datasets and tasks, unit 

visualizations can provide more information, better match the user’s mental model, and enable 

novel interactions compared to traditional aggregated visualizations. Current visualization 

grammars cannot fully describe the unit visualization family. In this paper, we characterize the 

design space of unit visualizations to derive a grammar that can express them. The resulting 

grammar is called Atom, and is based on passing data through a series of layout operations that 

divide the output of previous operations recursively until the size and position of every data point 

can be determined. We evaluate the expressive power of the grammar by both using it to describe 

existing unit visualizations, as well as to suggest new unit visualizations.
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1 Introduction

Visualization encodes symbolic data into visual structures [1], and arguably the most 

straightforward way to do this is to use a direct mapping where each data item becomes a 

unique visual mark. Such visualizations strictly maintain the identity of each visual mark 

and its relation to a corresponding data item. Drucker and Fernandez use the term unit 
visualizations to refer to this family of visualization techniques, and prominent examples of 

such techniques include unit charts, dotplots, and scatterplots [2]. In contrast, visualizations 

based on data aggregation—such as barcharts, piecharts, or histograms—merge multiple 

data items into inseparable graphic entities [3]. While such data abstraction improves the 

scalability of the visual representation, it surrenders the identity property of the visual 

marks, making it impossible to distinguish individual data points in the visualization. 

Maintaining the identity property, on the other hand, allows for many novel interactions not 

possible using an aggregating visualization, such as querying individual data points, tracking 
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their movement during transitions, and filtering on an item level. While many useful 

visualizations that exhibit these properties exist, to date, this type of visualization has not yet 

been classified as a unique category, and their design space has not been systematically 

explored.

In this paper, we address this gap in the literature by presenting ATOM, a high-level grammar 

for unit visualizations based on a structured exploration of their design space. ATOM uses a 

sequence of recursive layout operations that organize the output of previous operations until 

the size and position of each data point can be determined, as shown in Figure 1. In our 

implementation, Atom specifications are standard JSON objects that are ingested by the 

Atom engine and then rendered as Scalable Vector Graphics in a modern web browser.

We validate the Atom grammar using a two-pronged strategy. First, we use Atom to replicate 

existing unit visualizations, such as barcharts, mosaic plots, dotplots, and density plots 

(Figure 2). This approach demonstrates the expressive power of the grammar. Second, we 

use Atom to create new unit visualization techniques.

This yields a number of previously unknown visualizations that may be useful to explore 

further, and proves that our grammar also has significant generative power.

The remainder of this paper is structured as follows: We first define and discuss unit 

visualizations and their difference from visualizations that use aggregation. We then review 

the literature on current unit visualizations and visualization grammars. This leads to our 

design space of unit visualizations and a grammar for describing them. We validate our work 

with several examples of existing as well as novel unit visualizations. Finally, we discuss the 

Atom grammar in contrast to existing visual grammars and derive guidelines for how to best 

use them. We close the paper with our conclusion and our plans for future work.

2 Aggregated vs. Unit Visualizations

We define unit visualizations as visualizations that maintain the identity property of its 

visual marks, i.e., where each visual mark is a unique entity that is associated with a 

corresponding unique data item. The identity property means that for every data item in the 

data table, there is a corresponding visual mark in its visualization. While the unit 

visualization family has not yet been properly categorized in the visualization field, there 

nonetheless exist several examples of effective unit visualizations, such as unit charts, 

dotplots, and scatterplots.

Maintaining the identity property can lead to visual clutter for large datasets. To combat this, 

many visualization techniques are based on data abstraction, such as aggregation, 

segmentation, or filtering [4]. Instead of maintaining an absolute one-to-one mapping 

between data items and visual marks, these abstracted or aggregated visualization techniques 

merge multiple data items into visual aggregates that can no longer be separated, and where 

the identity property thus does not hold. Examples of aggregated visualizations are 

barcharts, piecharts, and histograms.
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In this section, we contrast unit visualizations to aggregated visualizations in an effort to 

identify the areas in which using a unit visualization can be advantageous. Analogously, we 

also recognize situations where unit visualizations provide limited utility.

2.1 Strengths of Unit Visualizations

Unit visualizations have the following advantages over traditional aggregated visualizations:

• Intuition: The identity property ensures that there is a one-to-one mapping 

between data points and visual marks, which is a simple bijective function that 

minimizes the need for the user to consider data abstraction when interpreting 

the visualization. This also allows detecting outliers in a subgroup. As an 

example, Figure 2(c) shows Miss Helen Loraine Allison, who was the only child 

in first and second class to die.

• Perception: Maintaining item identity allows for tracking items during animated 

transitions and interaction. While there is a limit to the number of objects that 

humans can reliably track [5], [6], this property nevertheless allows a user to 

follow a selected item during a transition [7] and to get the overall gist of where 

groups of items are moving. This property can also be used for visual 

sedimentation [8], where data items are accumulated over time.

• Constructivism and physicality: Correlating a unique visual mark with a 

unique data item conforms to how novices think about and construct visual 

representations using physical tokens [9].

• Interaction: The identity property ensures that users can get details on demand 

for each individual data item [10]. Furthermore, filtering can be performed on a 

per-item level, with animations showing visual marks appearing or disappearing 

from the display.

2.2 Weaknesses of Unit Visualizations

On the other hand, there are disadvantages associated with unit visualizations that should be 

considered during design:

• Computational scalability: A key limitation for unit visualization is the 

scalability of the hardware platform [3], i.e., the memory, computation, and 

rendering performance associated with managing unique visual marks for all 

data items. For truly large datasets, or for hardware platforms with limited 

capabilities—such as smartphones, tablets, and smartwatches—this can become 

a limiting factor against adopting a unit visualization.

• Display scalability: A unit visualization is only useful if individual visual marks 

can be distinguished. This means that there is a limit to how small each visual 

mark can be relative to the screen resolution or physical size of the display it is 

being visualized on.

• Perceptual scalability (visual clutter): Finally, the human visual system is 

limited in the number of objects that it can perceive [3], let alone track [5], [6]. 

While clutter reduction is an important research topic in visualization [11], most 
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of these techniques are based on mechanisms that are in direct conflict with the 

identity property of unit visualizations, including aggregation, sampling, and 

summarization. While some of these issues concern cases with a large number of 

data objects, there are also issues with using unit visualizations for a very small 

number of data objects, where empty space and aliasing can make comparison 

difficult. For some tasks, such as comparing proportions, aggregated 

visualizations—such as stacked bar charts— may be superior if there are small 

numbers of data objects.

3 Related Work

Even though the term unit visualizations is somehwat novel, many unit visualizations have 

been proposed in the past. In this section, we review these techniques and explain why 

previous visualization grammars are insufficient for describing them. Table 1 gives a 

representative sampling of visual representations and visualization systems that can be 

construed as unit visualizations.

3.1 Unit Visualizations

Having a bijective mapping between rows of data and visual marks is arguably the simplest 

method to generate visualizations in the same sense as how we first learn to represent 

numbers as children by counting fingers on a hand. A simple extension of finger counting is 

to use visual shapes to represent data as tallies, where evidence of their use has been found 

as early as the upper Paleolithic eras. Neurath used multiple repetitive icons to represent 

quantities of information in his Isotype work in the early 1930’s [12]. Waffle charts or 

square pie charts uses a square matrix and fills the portion grid with colors to show the 

compositions of data while keeping individual points. More recently, Huron et al. has 

examined how tokens can be used to help teach basic visualization literacy [9], [13]. 

However, in these cases, the individual blocks are physical representations of numerical 

quantities rather than an individual data table row. Previous visualizations have delivered the 

numerical information effectively for print media. But the development of interactive 

visualizations leads to a more extreme approach tying visual marks to data. Representing 

each data row as a visual mark and interactively rearranging them to find patterns have been 

used in exploratory business analytics in commercial software [2] and in classroom 

environments [14].

When the dimensions associated with data increases, visualizations can map these additional 

attributes to visual variables [15] such as position, shape, or area of a visual mark. The 

simplest version of this, the scatterplot, has been in use since the mid-17th Century. Other 

examples include bubble charts [16], popularized by Hans Rosling in his Gapminder work.

When not directly mapping the position of marks using data, marks can be “packed” onto 

the screen. Examples of this range from Wilkinson’s dotplots [17] to Keim’s pixel charts 

[18]. Much of this work tends to blur the distinction between aggregate-based visualizations 

and unit-based visualizations, where the units are laid out in a way that reveals both the 

individual units themselves as well as the overall statistical structure of the data.
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While unit representations in static visualizations might be useful for their simplicity, 

interaction and animation provide opportunities to highlight some of the utility that the 

individual representation of each row affords [2], [19], [20], [21]. These interactive 

multidimensional visualization systems maintain object identity during interactive visual 

exploration such as axis changes, filtering, brushing, and selection. Representative examples 

of unit visualizations are shown in Figure 3.

Unit visualizations have arisen naturally in the visualization community; therefore, many 

variations have been developed in an ad-hoc fashion based on heuristics or the authors’ 

intuition. This paper extracts the common factors in these unit visualization representations 

and creates a general framework so that both the description of existing visualizations and 

the design of novel ones can take a more systematic approach. As grammars for 

visualizations have been successful in unifying many disparate visualization types [22], we 

use a similar approach for unit visualizations with the goal of achieving more formal 

mathematical rigor.

3.2 Grammars for Visualizations

Visualizations can be constructed using tools at various levels of abstraction. To support 

programming visualizations from scratch, many libraries have been proposed that provide 

basic primitives, including Prefuse [31], Processing [32], D3 [33], and Protovis [34]. 

However, programming falls outside the reach of many people, and requires undue focus on 

implementation details rather than freeing the designer to focus on the visual representation. 

Furthermore, new visualizations cannot as a rule be enumerated using a general-purpose 

programming language.

Declarative languages decouple the specification from the execution [35], [36], and using a 

declarative visualization grammar allows for simpler description as well as enabling 

enumeration of legal visual representations. Many declarative visualization grammars have 

been introduced with distinct goals: some have lower levels of abstraction allowing more 

expressiveness, while others offer more simplicity. Examples of these pure declarative 

methods include ggplot2 [37], ggvis [38], Vega [36], Reactive- Vega [39], and Vega-Lite 

[40].

One of the first examples of this grammar-based approach to visualization was Wilkinson’s 

“Grammar of Graphics” (GoG); an abstraction that makes thinking, reasoning, and 

communicating about graphics much easier [22]. Building upon these notions, ggplot2 is a 

widely-used R package for visualizations that implements GoG [37]. However, GoG and 

ggplot2 are focused on visual specification and do not provide the interaction operations 

necessary for truly interactive graphics.

Vega [36] extended the specification of visual representations with support for modeling the 

interaction design. Reactive Vega [39] provided a robust implementation of this in the Vega 

grammar based on event-driven reactive functional programming. However, even declarative 

grammars tend to be verbose, making it time-consuming and difficult for novices to 

construct visualizations. Therefore, Vega-Lite [40] was developed to sacrifice some of the 

expressiveness of Vega while gaining easier use.

Park et al. Page 5

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Beyond general-purpose visualization grammars, also domain-specific grammars have been 

developed for specific types of visualizations. Product plots by Wickham and Hofmann can 

generate more than 20 statistical graphics by the combination of a few primitives for 

absolute counts or relative proportions [41]. Baudel and Broeksema [42] describe the design 

space of sequential space-filling layout, including many variants of treemaps [43], mosaic 

plots [44], and pixel bar charts [44], with five independent dimensions. MacNeil and 

Elmqvist [45] propose a view specification grammar for slicing and dicing datasets and 

visual space into mosaics similar to Atom, but their grammar operates at the granularity of 

individual visualization techniques in the resulting tiles. Overall, there is a tradeoff between 

the compactness of the domain-specific grammar versus its expressivity. Atom adds several 

primitives in order to support a wider set of possible visualizations than many of the 

grammars discussed above.

3.3 Contributions

According to our survey, existing declarative grammars are currently insufficient for 

describing the class of unit visualizations we have identified in this paper. To date, only low-

level programming libraries such as D3 can be used to describe unit visualizations, and this 

must be done directly at the mark placement level.

The grammar we propose in this work, Atom, incorporates many of the concepts of 

Wilkinson’s Grammar of Graphics [22], such as mark selection, statistical calculation, and 

aesthetics. However, in the Grammar of Graphics, only collision modifiers such as dodging 

and stacking are used to avoid the overlapping, which limits the range of potential layouts, 

whereas Atom provides more sophisticated such operators. Also, in contrast to GoG-style 

grammars, which tend to specify layouts implicitly based on mark choice, visualizations in 

Atom emerge from a combination of low-level grouping and primitive layout operations. In 

this way, Atom has more in common with rule-based layout systems such as graftals and L-

systems [46].

4 Design Space of Unit Visualizations

A visualization grammar should be able to express the design space of the visualization type 

with minimal specification. In this section, we explore the design from the perspectives of 

visual space, layout, and mark representation. We focus on static representations in this 

paper, leaving a survey of animation and interaction patterns for unit visualizations as future 

work.

4.1 Visual Space

The visual space dimension determines the visual coordinate system, and typically includes 

1D, 2D, and 3D coordinate systems. It is important to distinguish between data dimensions 

and visual dimensions. For example, a dotplot represents one data dimension but requires 2D 

visual space. Similarly, a treemap of a single level uses a single data dimension, but requires 

2D visual space. When the input data is 2D, 3D visual space can be used; for example, in 3D 

dotplots [26].
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4.2 Layout

The layout strategy decides the positioning of visual marks for each data object. We identify 

two fundamental types of layout strategies for unit visualizations: overlapping and non-

overlapping layouts.

Overlapping layouts allow visual marks to intersect on the display. This means that the 

position and shape of the marks are independent, i.e., they can be a--rranged on the display 

without considering other marks. A scatterplot, which is one of the most widely used types 

of statistical graphics, is an example of an overlapping layout [50]. While simple and 

effective, scatterplots suffer from overplotting—where two or more marks partially or 

completely overlap—when one of the variables mapped to position is categorical or 

countable. Even when both variables in a scatterplot are continuous numbers, large or locally 

dense datasets can yield overplotting. Previously, jittering—where occluded points are 

translated from their original positions to become visible— was used for categorical 

variables [22], [51] to intelligently reduce point occlusion [52], or separated using user-

controlled attractors [24]. Overplotting defeats much of the potential benefits of unit 

visualizations, in that individual points obscure other points, thus preventing judgment about 

overall numbers and individual interactions. Conceptually, however, overplotting “fits” 

within a unit specification. In vector file formats such as SVG, the dots are still in the file’s 

contents, even though they are not visible. These hidden units can be revealed by changing 

the transparency property of each individual marks in some cases when the overlapping is 

not severe. Even though we allow overlapping layouts such as Mapping (as shown in Figure 

4) in unit visualizations, we may wish to avoid overlap and non-overlapping or space-filling 

layouts are very common in existing unit visualizations.

Non-overlapping (or space-filling [50]) layouts remove overplotting by organizing visual 

marks disjointly in visual space. However, avoid overlapping requires developing methods to 

properly partition and organize the output visual spaces. Usually the position and shape of 

marks depend on the input domain and output range at the same time. For example, given a 

rectangular unit representation in 2D visual space, the layout algorithm must calculate four 

parameters for each visual mark—position (x, y) and dimension (width, height)—under the 

constraints that each mark should be disjoint from other marks.

Non-overlapping layouts can be further specialized to reduce the number of possible layouts 

and enable efficient comparison among visual marks into two common patterns: subdividing 
and packing. Subdividing fixes one visual dimension such as width or height to be that of the 

entire visual space, so that the remaining dimension can be determined by the data property. 

Because one dimension is maxed out, positioning becomes a trivial matter of sorting. 

Packing, on the other hand, lays out a visual mark—either a square or circle—in an 1:1 

aspect ratio. Squarified treemaps [43] or circle packing [53] are examples of a packing 

layout. Beeswarm plots [23] enable more efficient, non-overlapping arrangements of points 

in a scatterplot. Hieraxes [25] avoids overplotting of visual marks by stacking them to 

resemble fluctuation diagrams. Finally, new packing layouts are based on physicalization, 

such as the Kinetica [21] and TouchViz [20] systems, which both use visual marks that 

resemble physical objects by occupying space and being affected by gravity.
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4.3 Mark Representation

The visual representation of individual marks can either be a static predefined geometry or 

used as a visual variable mapped by data properties. Rectangles are the most common 

representation for non-overlapping layouts in that they require minimal parameters to fix in 

the visual space and are easy to partition recursively. Because non-overlapping unit 

visualizations show all the data without overlap, images can be used as marks. Circles also 

have been commonly used for both overlapping and non-overlapping layouts, and are 

particularly common in scatterplots and dotplots.

5 Atom: A Unit Visualization Grammar

Above we explored the design space of existing unit visualizations and abstracted the 

underlying principles, especially the layout operations that differentiate unit visualizations 

with aggregated visualizations. The grammar we propose in this paper, Atom, is based on 

this survey, and enables the specification of various visualizations into succinct orthogonal 

grammar components. Its name, Atom, is obviously derived from the Greek word atomos, 
meaning indivisible, in the sense that a visual mark in unit visualizations are not separable.

Unit visualizations are intended for multidimensional datasets. We can represent a 

multidimensional dataset as a setD where each member o is an data object or a row in a data 

table with attributes a1,a2,.. .,am, where m is the number of attributes in the dataset. The 

visual space is a set V, which is composed of all points p in the theoretical space. It is 

different from a physical canvas on the display, where the visualization is drawn. For 

example, we can map a small portion of visual space on the whole output display to zoom in 

a specific part of visualization. We define a container C as a tuple of 𝒟c ⊆ 𝒟, 𝒱c ⊆ 𝒱 . The 

root container is a container where the data is the entire dataset, and the canvas is the entire 

visual space. A cell, on the other hand, is a container whose set D c contains only one 

element.

A unit visualization operation is an operation that generates a set of subcontainers 

𝒟o1
, 𝒱o1

, 𝒟o2
, 𝒱o2

, …, 𝒟on
, 𝒱on

 as output given container𝒞i = 𝒟i, 𝒱i  as an input, 

where the data Doi and the spatial domain 𝒱Oi
 satisfies 𝒟oi

⊆ 𝒟i and𝒱oi
⊆ 𝒟o Hence, a unit 

visualization operation is composed of two suboperators in the data domain and spatial 

domain, respectively. Given the parent container, the data domain operation divides a dataset 

of parent container into a set of datasets for child containers. Based on our design space, 

these are the most common such operations:

• BIN: Partitioning of D according to the values of attributes such that all 

subsequent child groups will contain the different values of an attribute;

• DUPLICATE: Duplicate D into subcontainers;

• FILTER: Partition according to a given condition such that one group contains 

data object that meets the condition and the other group contains the remainder; 

and
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• FLATTEN: Partition so each subcontainer has a single item.

The spatial domain operation splits the parent space into child spaces and assigns them to 

the output datasets of the data domain operation to produce the child containers. We list the 

most common spatial domain operations in Figure 5.

To produce the target visualizations, our grammar builds a root container and recursively 

applies unit visualization operations until all containers become cells. In other words, 

rendering becomes a tree traversal, where the root container is the root of the tree and the 

cell containers are leaves. Once all cells have been generated, the layout is complete and the 

visualization can be drawn.

These recursive layout operations are inspired by the layout process of product plots [41]. 

Atom can be thought of as closely related to product plot because space-filling layouts are 

quite similar to the composition rule of product plots. However, overlapping plots such as 

scatterplots are not within the scope of product plots, and Atom adds a cell operation at the 

end of layout operations, making all data points unique visual marks.

The Atom grammar is formally defined asG = (V, Σ, R, S), where V is a set of variables, Σ is 

a set of terminals, R is a set of production rules, and S is a start symbol.

Here are the production rules R in BNF notation [54]:

Start : : = Root) Lay   outs) Marks) (1)

Root : : = DAT A CANV AS (2)

Layouts : : = Layout \ Layout) Layouts (3)

Layout : : = DataOp VisualPolicy (4)

DataOp : : = BinOp \DUPLICATE\ FilterOp \FLATTEN (5)

BinOp : : = BIN\BIN BINSIZE (6)

FilterOp : : = FILTER CONDITION (7)

VisualPolicy : : = VisualOp) Size (isShared (8)

VisualOp : : = MAP2D\FILLX\FILLY \MAXFILL\PACK (9)

Marks : : = Size) Shape Alignment) isShared (10)
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Size : : = UNIFORM\ SizeFunc (11)

SizeFunc : : = COUNT \SUM V AR (12)

Shape : : = CIRCLE\RECT ANGLE (13)

isShared : : = TRUE\FALSE (14)

A visualization can be defined by specifying the root container 〈Root〉, the layout 

operations, and how individual marks will be represented, as shown in Rule (1). The root 

container requires the data and the associated canvas for visualization (Rule (2)). Rule (3) 

states that there can be one or more layouts. Each layout is composed of a data operation and 

visual policy (Rule (4)). Available data operations are shown in Rule (5). The BIN operation 

can be performed according to attribute values in the case of nominal variables, and can have 

an optional BINSIZE parameter that indicates the number of bins in the case of continuous 

variables, as in Rule (6). A visual policy is composed of a visual operation, size setting, and 

the 〈isShared〉 setting (Rule (8)). Size can be either uniform or a function of the contents 

(Rule (11)). Figure 4 shows operations in the Atom grammar with the variable size vs. 

uniform size. If type is sum, it can have an additional key parameter that will determine the 

variables to be summed (Rule (12)).

Finally, a visual mark is specified using geometric attributes. The available attributes are 

simple because a single mark is drawn on a cell container, where there is only one data 

object.

As a concrete example, we will use the Titanic dataset to explain how our unit grammar can 

draw the unit column chart in Figure 6. The root container is the container, where D is a set 

that contains all the people on the Titanic, and V is given as the whole canvas to draw. The 

pack aspect ratio can lead to wasted space, especially when there is a small number of data 

points inside a container. To resolve this, we use maxfill to find an optimal aspect ratio that 

is close to pack while removing empty space.

5.1 Shared Property

Operations in Atom have a sharing setting to control the input domains for the visual 

variable calculation. Sharing can be applied to both data operations and visual operations. 

This is needed when a child container does not have all the information to be properly laid 

out, and information from siblings is required.

As a concrete example, in Figure 7 a container containing 1st Class passengers would like to 

apply the second layout operation of (Flatten,PackXY). However, it does not know what 

should be the size of the cell container, because it has only information about the number of 

1st Class passengers. To calculate the size of a cell size, it has to know the number of objects 
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in the most crowded container, here 3rd Class passengers. Sharing is a mechanism to 

synchronize the operation among the sibling containers.

When sharing is enabled, the input domains are shared among siblings. Otherwise, the input 

domain is limited to the current container. For example, Figure 7 shows that by changing the 

sharing settings of the size variable, we can create absolute and relative versions of the 

Titanic passengers faceted among class. Sharing settings are hierarchical, meaning that each 

level can have its own sharing configuration on or off, and these affect to what extent the 

domain is shared as shown in Figure 8. A useful way to understand the sharing flag is 

thinking of it as a way to specify whether the container should be “absolute” or “relative” 

with sibling containers.

5.2 View Composition

Existing grammars, such as Vega-Lite [40] or Grammar of Graphics [22], use a separate 

view composition algebra to construct multiple views. In Atom, no such view composition 

operators are needed; we can instead use the existing layout operations to build small 

multiple charts and multiple views.

More specifically, to generate a faceted chart in Atom, where data is separated across 

multiple views, we can use the BIN operator to partition the data into the separate regions. 

For a repeated chart, where the same data is replicated across multiple representations, we 

can use DUPLICATE to disseminate the data to all views.

5.3 Implementation Details

Our implementation of Atom is built in JavaScript using D3 [33] and Scalable Vector 

Graphics (SVG) [55]. The core part of the code is 1,186 lines. A website with more 

examples and an interactive editor is available at https://intuinno.github.io/unit, and the 

software is available as open source. Extensibility is an important aspect of grammars, where 

users can add various layout functions such as packing algorithms for polar or three-

dimensional coordinates. We leave for future work refactoring of the code base to better 

support such extensibility.

6 Evaluation

Given our terminology of unit vs. aggregated visualization, we here discuss when unit 

visualizations are appropriate. We will also discuss their limitations and strategies to 

overcome these.

6.1 Expressive Power

Table 2 shows how existing unit visualizations can be expressed with grammar components. 

Basically, we have been able to use Atom to recreate all of the examples in Table 1, with the 

exception of dotplots [17] since these use a more complex packing algorithm.
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6.2 Generative Power

Figure 9 shows a novel visualization that can be generated using Atom. The passengers in 

the Titanic dataset were faceted according to the passenger class and each passenger is 

represented with a rectangle. The area of the rectangle is proportional to the fare that each 

passenger paid and sorted so that people who paid the most are located in the top-left. The 

ratio between the price and the area of the rectangle is shared among child containers so that 

the comparison between passenger classes is immediately identifiable. The visualization is a 

combination of unit-based barcharts and a treemap layout succinctly expressed as an ATOM 

specification.

Similarly, Figure 10 shows another novel visualization where a small variation in the layout 

specification generates an unit variation of the fluctuation chart.

7 DISCUSSION

Below we discuss some of the finer points of our work on the Atom unit visualization 

grammar.

7.1 Comparison to Existing Declarative Grammars

As mentioned earlier, classic declarative grammars for visualizations, such as those that 

build upon the work of Wilkinson’s Grammar of Graphics [22], are in wide use. In these 

systems, layouts are typically specified using a combination of mark type (bars, circles, or 

points, etc.) and a method for mapping attributes of those marks using the data. While we 

could extend such systems to generate unit visualizations by adding additional layout rules, 

the way that Atom specifies visualizations is done in a fundamentally different manner: in 

Atom, visualizations emerge from the recursive application of a small set of primitive rules 

and layouts at different levels of aggregation. In this manner, Atom shares more in common 

with parallel rewriting systems such as L-systems and graftals [46], where graphics emerge 

from the successive application of a series of substitution rules. The difference is that Atom 

adds the notion of data and aggregate measures to those rules. For example, barcharts or 

scatterplots are never specified explicitly, but are specified through grouping and packing 

relationships.

Also, as previously mentioned, product plots [41] are closely related, where a combination 

of rules produce plots that allow for the visualizations of joint distributions and counts. 

Since most packing layouts of units are proportional to area, unit visualizations specified in 

Atom can achieve much of the expressive power of product plots. Similar patterns are found 

in prior work for domainspecific grammars such as the one proposed by Schultz et al. for 

treemaps [56]. Their work defines both a theoretical design space as well as a tool for rapid 

visualization development.

7.2 Exploration of the Design Space

It is intriguing to explore how new types of visualizations might emerge through 

systematically applying different rules at different levels of aggregation. Figures 9 and 10 

show two different visualizations that come from the successive application of those rules. 
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The space of possible combinations, though, is extremely large, and it is beyond the scope of 

this paper to figure out effective ways for narrowing the enumeration of parameters that 

produce effective visualizations. Instead we have found that there are certain heuristic 

situations where unit visualizations are particularly effective in contrast to aggregate 

visualizations; we list them below. This is by no means an exhaustive list, but our work in 

this paper lays the foundation for a systematic enumeration of possible visualization 

parameters.

• To deliver relative percentage or probability: When represented in an aggregated 

visualization, count or relative percentage can be ambiguous in the users’ mental 

model. A classic example is a Bayesian inference problem. For example, a small 

percentage in a large group can mean much larger absolute numbers than a large 

percentage in a small group. This concept is notoriously difficult to deliver 

effectively using text. Garcia-Retamero and Hoffrage found that doctors and 

patients can make more accurate inferences when information was 

communicated in natural frequencies rather than probabilities [57]. This is also 

the underlying problem for the so-called Simpson’s paradox [58], where 

aggregate averages can be deceptive in comparison to the underlying counts.

• To show underlying distribution of statistical summary: Wilkinson recommends a 

tally, stem-and-leaf, or a dotplot as a starting point for analysis instead of 

commonly recommended bar charts or kernel density estimations [22]. For 

example, in his book he states that histograms do not reveal granular data, but 

other unit visualizations do.

• To show outliers: Outliers are often lost when using an aggregate visualization 

because the individual values are averaged in with the rest to produce a single 

summary statistic. By showing the units themselves, with appropriate attributes 

such as color and shape applied, outliers and their context can be more easily 

identified.

7.3 Animation and Interaction

One of the distinct advantages of unit visualizations is that there is a one-to-one 

correspondence for units in one layout with units in another layout. This allows for 

straightforward animated transitions when switching between different unit visualizations 

for the same data by linearly interpolating the positions for each element from its initial and 

final positions. Staggered starting times [7], [59], staged animations [60], or path clustering 

[61] can be used to help create more interpretable animated transitions.

Original declarative grammars focused on the generation of static visualizations, as in the 

case of Grammar of Graphics or gg- plot2. However, as interactive visualizations become 

more common, recent advances allow for describing interactive interactions with declarative 

specifications. Reactive Vega by Satyanarayan et al. [39] is the first grammar that can 

specify interactions with declarative specifications. Vega-Lite [40] further simplified the 

specification by using intelligent defaults and showing novel interactions by enumerating 

over specifications.
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Our Atom grammar currently does not include support for interactivity, but is at this point 

only a visual specification language, similar to the original Grammar of Graphics [22] or 

ggplot2 [37]. On the other hand, by focusing on the specific domain of unit visualizations, as 

Atom does, we can still enable interactions that are common to all unit visualizations, such 

as item-level selection, details-on-demand, filtering, and cross-highlighting. Further 

interaction, such as focus+context layouts, advanced navigation, and query operations, are 

left as future work.

8 Conclusion and Future Work

In this paper, we have defined a new family of visualizations that are based on maintaining 

the unique identity of each visual mark as well as its direct one-to-one mapping to a data 

item. Many of these so-called unit visualizations are already part of the standard vocabulary 

of visualization techniques—such as dotplots, mosaic plots, and scatterplots—but our 

investigation in this paper has revealed that their design space is actually much larger than 

was previously known. To better capture this new family of techniques, we developed ATOM, 

a grammar for unit visualizations based on a declarative specification. Our implementation 

of the Atom grammar can generate any arbitrary unit visualization in this design space. To 

validate the expressive power of the grammar, we have presented examples of a large 

number of existing unit visualizations expressed as Atom specifications; to validate its 

generative power, we have also suggested a number of novel ones.

Our work in this paper is part of a larger trend in the visualization community of abstracting 

visualizations into high-level declarative grammars. These grammars reduce the need for in-

depth programming knowledge and instead enables specifying visualizations in terms of 

marks, layout, and data. The Atom grammar is specialized for unit visualizations, and it can 

surely be further refined to support additional visual marks, interaction techniques, and 

layouts in the future. However, a longer-term research vision should be to find a definitive 

grammar that can unify many of these existing grammars, while retaining both the simplicity 

and the power of the original ones.
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Fig. 1. 
Sequence of layout operations to generate a unit column chart for survivors of the Titanic by 

passenger class.
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Fig. 2. 
Example unit visualizations authored using the Atom grammar for the Titanic dataset: (a) 

Unit barchart for passenger class; (b) unit mosaic plot for passenger class, survival, and 

gender; and (c) unit violin plot for age distribution faceted by passenger class. In each chart, 

blue dots represent the people who survived and red dots represent those who did not.
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Fig. 3. 
Examples of unit visualizations. (a) Tallies; (b) ISOTYPES [12]; (c) Circle packing [16]; (d) 

Kinetica [21]; (e) Beeswarm [23]; (f) Dust & Magnet [24]; (g) Hierarchical axes [25]; (h) 

Stacker [26]; (i) Visual sedimentation [8]; (j) SandDance [27]; (k) Gatherplots [28]; (l) 

Squares [29]; (m) Past Visions [30].
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Fig. 4. 
Visual representations of example operations (VisualOp) and the resulting subcontainers for 

unit visualizations
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Fig. 5. 
Common layout operations for unit visualizations.
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Fig. 6. 
Example grammar to generate a unit column chart for survivors of the Titanic by passenger 

class.
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Fig. 7. 
Unit visualization for the Titanic dataset. By varying the sharing flag of the size variable for 

the second packing layout, we can create both absolute and relative versions. In (a) we can 

see that the least number of second class passengers survived (absolute count), but (b) shows 

that third class passengers had the least (relative) chance of survival.

Park et al. Page 25

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Sharing can be applied hierarchically. Here the Titanic dataset has been faceted by gender 

and passenger class. In Figure 6, every facet shares the size by setting the size sharing 

property of “layout2” and “layout3” as true. This yielded a unit bar chart where every dot 

size is same and the size is adjusted such that the most crowded facet can fill the assigned 

space. However, (a) shares size only in layout2 that the unit will be the same size among the 

class but not across genders. This is in contrast to (b), where sizes are independent of gender 

and class, meaning that every unit will be scaled up to fill their subcontainer.
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Fig. 9. 
Unique visualization generated using Atom. Here the passengers of the Titanic were faceted 

according to their class, and then each unit was sized by the price of the ticket.
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Fig. 10. 
Unique visualization generated using Atom. Here the passengers of the Titanic were faceted 

according to their gender (vertical) an their class (horizontal), and then each unit was 

colored based on survival (blue passengers survived).
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TABLE 2

Expressing existing unit visualizations using Atom.

Type Operation Note

Scatterplots Map2D

Bar+column chart FillX or FillY
MaxFill

Unit pie chart FillTheta
Pack Polar coords

Isotypes [12] FillX
Pack

Choropleths Map2D GIS data

Dotplot [17]
FillX
FillY
Pack

Original dotplot
not feasible

Hierarchical axes [25]
FillX
FillY
Pack (center-align)

Quantum Treemap [47] MaxFill
Pack

MaxFill with
variable size

Bubble Chart [48] Map2D Variable size

PivotViewer
FillX
FillY
Pack

Image as mark

SandDance [27] Multiple operations

Histoimages [49]
FillX (Duplicates)
Left (Image): Map2D
Right (Histo): Pack

Colored pixel as
mark

Squares [29] FillY
Pack or FillX Rectangle/square

Past Visions [30] FillX
Square Image as mark

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 February 02.


	Abstract
	Introduction
	Aggregated vs. Unit Visualizations
	Strengths of Unit Visualizations
	Weaknesses of Unit Visualizations

	Related Work
	Unit Visualizations
	Grammars for Visualizations
	Contributions

	Design Space of Unit Visualizations
	Visual Space
	Layout
	Mark Representation

	Atom: A Unit Visualization Grammar
	Shared Property
	View Composition
	Implementation Details

	Evaluation
	Expressive Power
	Generative Power

	DISCUSSION
	Comparison to Existing Declarative Grammars
	Exploration of the Design Space
	Animation and Interaction

	Conclusion and Future Work
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Fig. 9.
	Fig. 10.
	Table 1.
	TABLE 2

