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Fig. 1. Analyzing the influence of road topology and traffic conditions on POI accessibility: density distribution before (a) and after (b)
removing the selected road segments FE and ED; and density distribution before (c) and after (d) slowing down the average speeds of
the selected road segments MN and NO.

Abstract— Density map is an effective visualization technique for depicting the scalar field distribution in 2D space. Conventional
methods for constructing density maps are mainly based on Euclidean distance, limiting their applicability in urban analysis that shall
consider road network and urban traffic. In this work, we propose a new method named Topology Density Map, targeting for accurate
and intuitive density maps in the context of urban environment. Based on the various constraints of road connections and traffic
conditions, the method first constructs a directed acyclic graph (DAG) that propagates nonlinear scalar fields along 1D road networks.
Next, the method extends the scalar fields to a 2D space by identifying key intersecting points in the DAG and calculating the scalar
fields for every point, yielding a weighted Voronoi diagram like effect of space division. Two case studies demonstrate that the Topology
Density Map supplies accurate information to users and provides an intuitive visualization for decision making. An interview with
domain experts demonstrates the feasibility, usability, and effectiveness of our method.

Index Terms—Density map, network topology, urban data

1 INTRODUCTION

Road network is an important infrastructure in cities. With expansion
of cities and evolution of transportation technology, road networks
are becoming increasingly intensive and unobstructed. Consequently,
two geographically distant locations may have a short commuting time
due to road connectivity [2]. Hence, road network is of importance in
many real-world applications, including urban planning [39] and urban
scaling analysis [26]. For example, traffic management can benefit
from forecasting and visualizing the congestion conditions of a city
based on vehicle detector data on roads [25]. Moreover, road network
also shields an effect on urban data visualization. For an example, a
recent work of [51] presented a more accurate edge bundling method
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for urban traffic data, by carefully considering the constraints implied
by underlying road networks.

Density map, as an effective visualization technique [14], is widely
used in urban analysis, which involves spatial distribution patterns [50],
such as anomaly detection [41], risk analysis [33] and air pollution
propagation analysis [9]. A density map depicts the continuous dis-
tribution of scalar field in a 2D planar space by assigning a unique
color to each individual scalar value [16, 37]. The scalar field is com-
puted from the premise of the finite observation of the data [37]. The
process is referred as density estimation, which can be parametric or
nonparametric. Kernel density estimation (KDE) is a common non-
parametric model, which typically applies a kernel (e.g., parabolic,
Gaussian, and Sigmoid) to the proximity between two locations. The
proximity is typically computed as Euclidean distance in a Cartesian
coordinate system. Due to its simplicity, KDE has been widely adopted
in movement visualization, such as vessel movements [33,46] and flight
trails [18, 19].

Nevertheless, the KDE based on Euclidean distance is inappropriate
for many urban analyses that should take road networks into considera-
tion, simply because most movements in cities are constrained by road
networks [5]. Fig. 1 illustrates a real-world scenario, where domain
experts would like to analyze how easy to access points-of-interest
(POIs), i.e., the POI accessibility. For accurate accessibility measure-
ment, we shall consider the following properties of a road network
when measuring the proximity between two locations:
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• Topological: Locations are connected through roads and intersec-
tions, which can be obstructed by obstacles, such as accidents
or road repairs. For instance, if the path (F-E-D) in Fig. 1(a) is
under repair, the shortest paths from H2 to locations in region 1
will be altered, affecting POI accessibility in the region.

• Directional: Unlike the Euclidean distance, the proximity of A
→ B could be very different from that of B→ A. In most cities,
a road has two different directions, which can be modeled as two
directional edges. For example, when the aforementioned case in
Fig. 1(a) occurs, the shortest path (E → D) changes but that in
the other direction (D→ E) remains the same.

• Temporal variant: The proximity here is typically measured by
the access time rather than the physical distance, which depends
much on traffic conditions that vary over time. For instance,
the POI accessibility in Region 5 is greatly affected by traffic
conditions, e.g., the non-peak hours in Fig. 1(c) and the peak
hours in Fig. 1(d).

The transportation and geography communities have strived to in-
clude road networks in KDE computation, e.g., [7, 8]. However, prox-
imity measurement only applies to one-dimensional road networks [40],
whilst density map requires scalar field distribution in a 2D planar sur-
face. This limitation yields unintuitive visualizations compared with
density map. A new method is required to derive scalar fields outside
the road network. We consider the following requirements for such
a method: i) correctness, which should accurately coordinate with
the complex road topology and the dynamic traffic conditions; and ii)
intuitiveness, which should intuitively depict density fields on a 2D
planar surface instead of a 1D road network.

In this study, we propose Topology Density Map to fulfill the require-
ments. The method works as follows: First, we construct a directed
acyclic graph (DAG) from each POI to all road intersections, taking
road topology and traffic conditions into consideration. Next, we find
shortest paths to intersections with minimum access times, and measure
the density propagation along the shortest paths. Lastly, we extend
density estimation from each intersection to the neighboring regions,
and then generate a density map based on the estimated 2D scalar fields.
The main contributions of this work are listed as follows:

• The topology density map extends the existing network-
constrained density estimation method from a 1D road network to
a 2D planar surface, providing more correct and intuitive density
field estimation in an urban area.

• The topology density map forms a weighted Voronoi diagram
like effect that reflects the space partition by the POI accessibility.
This kind of visualization is especially useful when multiple POIs
affect the same region.

• The feasibility and usability of the topology density map are
demonstrated by two real-world case studies, and the effectiveness
of the method is confirmed by expert feedbacks.

The remaining of this paper is structured as follows: Sec. 2 discuses
related works in visual analytics and visualizations for urban data anal-
ysis. Sec. 3 summarizes the limitations of existing density estimation
methods and provides an overview of our approach. Sec. 4 describes the
domain problems and details of preparing input data. Sec. 5 presents the
details of the topology density map construction, and the comparison
of the visual effect with network KDE. Sec. 6 demonstrates two case
studies conducted on a real-world dataset and the feedbacks from three
independent domain experts. Sec. 7 describes the various considera-
tions of our approach, including the parameter selection, the computing
efficiency, and alternative designs, and discusses the limitations and
future works. Finally, Sec. 8 concludes this paper.

2 RELATED WORK

2.1 Visual Analytics for Urban Traffic
Benefiting from the advancement of location sensing technologies,
movement data, which characterize moving objects in the location space
(where), time space (when), and attribute space (what) [22], become

(a) Planar KDE (b) NKDE
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Fig. 2. Illustration of density estimation using (a) planar KDE (Euclidean
distance), and (b) NKDE (network distance). Planar KDE encodes
density fields using colors, while NKDE uses line width.

ubiquitous and abundant [38]. Urban traffic is a specific movement data
that record commuter/goods/vehicle movements on road networks in a
city. Urban traffic data provide unprecedented information on human
activities [1], and visual analytics is an effective tool for analyzing
urban traffic [5]. Many visual analytics have been developed for urban
traffic in different cities for different purposes, such as to study hidden
themes of taxi movements in Shenzhen [6], to make an improvement
in the performance for bus route planning in Beijing [44], to stack and
visualize trajectory attributes for movements in San Francisco [43], and
to explore commuting movements in New York City [11]. Interested
readers may refer to the surveys [1, 5].

Visual clutter is a main issue in visual analytics for urban traffic, and
it is mainly caused by large amounts of traffic data. Many solutions have
been proposed to mitigate this problem, such as designing effective filter
interactions [23], building efficient query database [11], and developing
realistic edge bundling [51]. Among the solutions, density map is
an effective visualization technique for depicting scalar fields on a
2D planar surface [33, 46]. Many visual analytics adopt a density
map to present information in an urban environment. For example,
Shen et al. [35] identified hotspots of taxi movements from taxi GPS
traces, which can help drivers find optimal paths between a pair of
start-end locations. Liu et al. [27] revealed the space visibility from taxi
GPS trajectory data, which can assist planners in identifying optimal
locations for placing advertisement boards.

Both works adopted density-based epsilon distance algorithms to
generate density maps. However, the algorithms can only model the
scalar field propagation at local scales, whilst many city-scale urban
analyses require considerations of road network and traffic conditions,
such as mobility [49] and transportation efficiency analysis [10]. This
work aims to fill the gap with a feasible solution for city-scale urban
analysis. We develop a new approach to density map construction,
namely, Topology Density Map. We show the efficiency of the topology
density map in city-scale accessibility analysis.

2.2 Density Estimation in Urban Analysis
Scalar fields distributed over space can be visualized as a field schema-
tization that aggregates representatives for local regions based on field
data, i.e., density maps [16]. As an effective visualization technique,
density maps have been widely adopted in urban analysis [52]. A key
step in density map construction is measuring the scalar field distri-
bution in the study area. Many density estimation methods have been
proposed. Among them, kernel density estimation (KDE) has been
proven efficient and effective [4]. On the basis of proximity measure-
ment, the KDE for urban analysis can be divided in two parts: the
density estimation based on the Euclidean distance − planar KDE
(Fig. 2(a)), and the density estimation based on network proximity −
network KDE (NKDE) (Fig. 2(b)).

Planar KDE obeys the rule that in a Cartesion coordinate system,
straight line is the shortest between two points, i.e., Euclidean distance.
Planar KDE is frequently employed when the trajectory position is
unconstrained, such as vessel movements [33, 46] and flight trails [18,
19]. In cities, however, the method is only suitable for local-scale urban
analyses. For example, Grubesic [12] adopted planar KDE in detecting
hotspots for crime in a city, and Kloog et al. [21] applied planar KDE



in studying the relationship between breast cancer cases and artificial
lighting at night. For city-scale analyses that involve urban traffic along
road networks, planar KDE is no longer suitable. For an example, Zeng
et al. [49] studied passenger mobility using the public transportation
system in a city, which cannot be depicted using planar KDE.

The NKDE that estimates density based on the proximity along a
road network is appropriate for city-scale urban analyses. However,
NKDE construction is rather challenging. First, we need to find a
suitable proximity measurement on the road network, which could be
affected by many factors, such as traffic conditions, street crossings,
and obstacles, etc. For instance, Delso et al. [7] considered the im-
pact of street crossings when measuring travel times between positions.
Second, we need to develop an efficient algorithm for computing pair-
wise proximities. For example, Deng et al. [8] constructed a network-
constrained Delaunay triangulation to facilitate the measurement of
network proximities between locations. Nevertheless, even when these
two challenges are well resolved, density fields are computed as prop-
agation along 1D road networks (Fig. 2(b)), which is less intuitive in
comparison with density fields on a 2D planar space (Fig. 2(a)).

We develop topology density map that combines the intuitiveness
of planar KDE in presenting continuous density fields over space and
the correctness of NKDE in considering the road topology and traffic
conditions for city-scale urban analysis. Various optimization tech-
niques are designed to facilitate the construction and visual effect of
the topology density map.

3 REQUIREMENT ANALYSIS AND METHOD OVERVIEW

Density estimation is the key step in density map generation. This sec-
tion briefly introduces planar KDE (Sec. 3.1.1) and NKDE (Sec. 3.1.2),
followed by a discussion of the requirements when applied to urban
data analysis and visualization (Sec. 3.2). An overview of our topology
density map is presented at the end (Sec. 3.3).

3.1 Conventional Density Estimation
In this work, we regard planar KDE as a density estimation method
that adopts kernel functions with Euclidean distance, while NKDE is
a special case of planar KDE, with the distance measured on the road
network as described in [48]. Both approaches are state-of-the-arts
methods for estimating density fields.

3.1.1 Planar KDE
Planar KDE is a nonparametric estimation method, i.e., not making
use of prior knowledge about the data distribution. Instead, the method
studies the data distribution characteristics from the data themselves.
Planar KDE simulates a probability distribution curve using a smooth
kernel function to fit the observed data points. The method is often
used to estimate unknown probabilities, e.g., movement distributions in
a 2D space [18, 19, 33, 46].

Given a set of observed data points D := {xi}, we can estimate
density field λ (s |D) at location s in a 2D space as follows:

λ (s |D) = ∑
xi∈D

1
πr2 K(

d(xi− s)
r

) (1)

where r is the kernel radius, which is often called bandwidth, d(·) is
the Euclidean distance between point xi and location s, and K is a
weighting function known as kernel function. Several common kernel
functions exist, including parabolic, Gaussian, Sigmoid, and negative
exponential functions. The function value typically decreases as the
distance increases, coping with the distance-decay effect. Given this
property, planar KDE is often employed in spatial analysis, as many
geographic phenomenon follow the first law of geography, which states
that “everything is related to everything else, but near things are more
related than distant things” [42].

3.1.2 NKDE
NKDE is usually used to estimate the density fields of road-constrained
events on a road network, such as the impacts of traffic accidents.
Density fields are measured as linear propagations along a road network.

Given observed data points D := {xi} and road network G, density field
λ (s|D,G) at location s can be estimated as:

λ (s|D,G) = ∑
xi∈D

1
r

K(
dG(xi− s)

r
) (2)

where parameters r and K represent the same settings with those in
planar KDE, while dG(·) denotes the network proximity between xi
and s. In this sense, the function is only valid for location s on the road
network G. According to Fig. 2(b), we can only estimate the density
field outside the road network at p2, but not for p1.

3.2 Requirement Analysis
Though popular, planar KDE and NKDE fail to fulfill the following
requirements when applied to urban data analysis.

R1. Correctness. As discussed above, planar KDE can provide
an intuitive representation of the density fields over a 2D space. The
method employs Euclidean distance to estimate the density fields within
the kernel radius, which however is unsuitable for urban areas. This
is because road networks in a city typically exhibit a complex topol-
ogy and dynamic traffic conditions that should be considered. There
may not be a straight connection between two locations, or a straight
connection may not be the fastest path due to traffic jams or road main-
tenance. In such scenarios, people no longer commute via a straight
line, but alternatively choose a suitable path according to road connec-
tions and current traffic conditions, such as the path between p2 and s
in Fig. 2(b). Furthermore, in practice, roads in a city are often bidirec-
tional, with median dividers separating roads into opposite directions.
On these roads, vehicles cannot cross the road or change directions
until they reach turning points. However, planar KDE cannot reflect
the bidirectional characteristic when estimating density fields. There-
fore, when analyzing urban problems that consider human mobility on
road networks, planar KDE will produce an inaccurate density field
estimation, generating incorrect visualization that may be detrimental
to decision-making.

R2. Intuitiveness. NKDE adopts the proximity along road network
instead of the Euclidean distance for estimating the density fields, which
can correctly compute the impact of events (e.g., traffic accidents and
taxi pick-ups/drop-offs) distributed along the road network. However,
this kind of density estimation can only measure the density propagation
along a road network that provides 1D measurements [48], unlike the
density fields over a 2D space. However, most human activities take
place at locations not covered by road networks in a city. NKDE fails
to provide an intuitive visualization for density fields at these locations.
Taking p1 in Fig. 2(b) as an example, users cannot retrieve its density
field with NKDE. The lack of density fields hinders certain analytical
tasks, such as the comparison of the density fields at p1 and at p2.
Therefore, NKDE can only present the density fields along the road
network, whilst users typically need to visualize density fields over
an entire urban area. The visualization is unintuitive, making urban
analysis less effective.

In summary, there is an urgent need for a new density estimation
method that can simultaneously fulfill the requirements of correctness
and intuitiveness in urban data visualization and analysis.

3.3 Overview of Topology Density Map
We develop the topology density map, a new density estimation method
specifically designed for urban data visualization and analysis. Topol-
ogy density map fulfills the correctness requirement by incorporating
road topology and traffic condition into account, and the intuitiveness re-
quirement by extending the density estimation from a 1D road network
to a 2D planar surface.

Fig. 3 illustrates the construction process of the topology density
map. The method takes a road network G with vertices A, B, C, and
D, and two POIs H1 and H2 as inputs (Fig. 3(a)). Thanks to the open
data campaign, these urban data are becoming increasingly ubiquitous,
such as the open street map (OSM) for road networks. With the in-
formation, we can construct a directed acyclic graph (DAG) for each
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to a POI with the highest density field. Here A & B are assigned to H1, while C & D are assigned to H2. (d) Finally, we extend density estimation from
1D road network to 2D planar surface.

POI, with the POI as the starting vertex and all intersections of the road
network connected (Fig. 3(b)). Here, the edges in the road network
are bidirectionally modeled, and the connectivity between neighboring
vertices is affected by traffic conditions. Thus, the proximity compu-
tation is consistent with the reality. For instance, the proximity from
POI H1 to vertex D is computed as an aggregation of dG(HA), dG(AB),
dG(BC), and dG(CD) rather than Euclidean distance between H and
D (the yellow line in Fig. 3(a)). Next, we assign each intersection
to a POI with the highest density field (Fig. 3(c)). Here A and B are
assigned to H1, while C and D are assigned to H2. Finally, we extend
the density estimation from a 1D road network to a 2D planar surface
(Fig. 3(d)). For point P in the region, we retrieve the shortest path to
each POI by iterating on the neighboring intersections. For instance,
the proximity from H1 to P is dG(HA)+dG(AP), while that from H2
to P is dG(H2C)+dG(CP). We choose the smaller proximity from H2
to P, and compute the density field using that value.

4 DOMAIN PROBLEM AND DATA PREPARATION

This section first introduces the domain problem of accessibility mea-
surement for public service facilities (Sec. 4.1). Next, we introduce the
data used in the study, and describe the data preparation for topology
density map construction (Sec. 4.2).

4.1 Accessibility
Providing easy access to public service facilities has always been a
high-priority topic in urban planning. Here, each public service facility
is regarded as a POI. POI accessibility is represented as scalar fields
distributed over space, which can be visualized using a density map.
Short et al. [36] pointed out that accessibility in an urban area is better
computed as access time rather than physical distance. Furthermore,
commuting by vehicles is the most common travel mode in cities.
Hence, many studies (e.g., [20,34]) used vehicle access time to indicate
POI accessibility.

This work also employs vehicle access time on roads as an index to
indicate POI accessibility. A long access time between a source POI
and a target location indicates low POI accessibility, and vice versa.
As illustrated in Fig. 3, the path from POI H to location P can be
modeled as n road segments {segi}n

i=1 and walkway w between P and
a surrounding intersection. Hence we can compute POI accessibility
Acc of H at location P as:

Acc(P,H) = (
n

∑
i=1

t(segi)+ t(w))−α (3)

where t(·) denotes the vehicle access time on a road segment segi or the
travel time spent on walkway w, and α is the accessibility attenuation
coefficient that measures the accessibility decay speed. Peeters and
Thomas [30] summarized that α typically lies in the range [0.9, 2.29],
where small values are preferred for large accessibility ranges, while
large values are chosen for small accessibility ranges. This work adopts

Acc

t
POIPOI

Acc

Acc

t t
segiseg1seg0 segi

+

(a) (c)(b)

......

Fig. 4. The overall accessibility (a) between a POI and a location can
be divided into (b) accessibility measured on road segments and (c)
accessibility measured on walkway from intersection to the location.

a small attenuation coefficient of 1 for large accessibility ranges. Notice
also that t(segi) is a time-variant function that is dependent on the
dynamic traffic conditions of road segment segi.

Fig. 4 illustrates the relationship between accessibility (y-axis) and
access time (x-axis). The overall accessibility (Fig. 4(a)) can be de-
composed into two parts: the accessibility measured on road segments
(Fig. 4(b)), and the accessibility measured on a walkway from a sur-
rounding intersection to an arbitrary location in the region (Fig. 4(c)).
Given the nature of the traffic data used in the work, we can only
compute the average vehicle speed for each road segment. In consid-
eration of this fact, we only compute the accessibility value for each
intersection, but not for any point on a road segment. In contrast, we
can compute the accessibility value for any point along the walkway.
Hence, we use dash lines for road segment accessibility and solid line
for walkway accessibility. Notice that both road segment and walkway
accessibilities are inversely proportional functions of access time. The
function slopes are determined by accessibility attenuation coefficient
α , which we set to 1 for a gradual decay effect.

4.2 Data Preparation
We illustrate the applicability of topology density map by visualizing
and analyzing the accessibility for hospitals in Shenzhen, China.

Data Collection. Our topology density map is constructed from
three datasets: i) We extract geographical data and the road network
from the open street map (OSM)1, which is also utilized for our map
visualization. ii) We acquire traffic data from an open data platform2

of Shenzhen, China. We deduce dynamic traffic conditions from the
traffic data. iii) We retrieve hospital locations from the Baidu Map
Service3. The hospitals are POIs analyzed in case studies.

Road Segmentation. We define road segment as a part of the road
between two adjacent intersections. We treat each road segment, instead
of the road (represented as “way” in OSM), as the unit of accessibility
analysis in this study. This introduces several advantages: First, by
dividing a long road into several road segments, we can deduce more
accurate access times because different road segments typically share
different speeds. Second, we can easily establish a DAG, in which an

1https://www.openstreetmap.org/
2https://opendata.sz.gov.cn/data/dataSet/toDataDetails/29200 00403590
3https://api.map.baidu.com/lbsapi/getpoint/index.html

https://www.openstreetmap.org/
https://opendata.sz.gov.cn/data/dataSet/toDataDetails/29200_00403590
https://api.map.baidu.com/lbsapi/getpoint/index.html
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to all vertices with the DAG. (d) We can then compute the density field for each vertex. (d) Next, we extend the density estimation from road network
to 2D planar surface. (e) Finally, we compute density fields for all points in the region and construct a topology density map.

edge represents a road segment and a vertex represents an intersection.
To accomplish road segmentation, we find all intersections in a road
network, and group a sequence of edges connecting those vertices
as one unit corresponding to a road segment. By combining road
segments with traffic data, we can generate an average speed for each
road segment in a certain time period.

POI-Intersection Connection. To study how POI accessibility
propagates along a road network, we need to connect POIs to road
network. POIs have three possible locations relative to a road network
in an urban area: right on an intersection, just beside a road, or neither
beside any road nor on any intersection. In the first situation, we can
simply treat a POI as a vertex in the road network. For the other situa-
tions, Weng et al. [45] created a new vertex that is the projection point
of a POI to its nearest road in the road network. In contrast, we connect
a POI to its nearest intersection. We do this for two reasons. First, due
to the availability of input data, traffic conditions and road topology
in the planar surface enclosed by a road network are unknown to us.
A marginal difference exists between projecting a POI to its nearest
road and connecting it directly to the nearest intersection. Second,
we can only measure the average speed of each road segment, whilst
a vehicle speed is non-uniform when driving on a road. Hence, we
cannot measure the exact access time from the projection point to the
corresponding intersection.

5 TOPOLOGY DENSITY MAP

In this section, we introduce the key steps on how to construct a topol-
ogy density map: first, to estimate the density fields on road network
(Sec. 5.1), then extend density field estimation to a 2D planar surface
(Sec. 5.2). The construction process is illustrated in Fig. 5, where the
inputs (Fig. 5(a)) include POIs H1 & H2, and road network G with
vertices {A,B,C,D}. The goal is to estimate a density field for arbitrary
point P within polygon ABCD. Next, we present the visual effects of
the topology density map (Sec. 5.3), and its advantage over NKDE in
terms of intuitiveness (Sec. 5.4).

5.1 Density Estimation on Road Network
In this step, we estimate the density propagation along the road network
from POIs, as follows:

Construct DAGs (Fig. 5(b)). After retrieving the access times for
the road segments and connecting the POIs to the road network, we
construct a DAG for each POI to facilitate the accessibility propagation
estimation. Each DAG starts from the corresponding POI, and connects
all intersections by directional road segments. Here, vertices correspond
to intersections, and edges correspond to road segments. We also
consider the road direction, so the edge direction indicates the travel
direction of the corresponding road segment. Fig. 5(b) presents two
example DAGs for POIs H1 and H2 in blue and green, respectively.
Notice that H1 is first connected to vertex A as the nearest intersection,
while H2 is first connected to vertex C as the nearest intersection. All
vertices in the road network are eventually included in the DAGs, with
differences in vertex orders that reflect the road topology.

Find the shortest paths (Fig. 5(c)): Given a DAG, we can easily
find the shortest paths from a POI to all vertices using the Dijkstra

algorithm. All edges here are weighted according to the access time
retrieved from the traffic data. For each vertex, we select the POI with
the least access time as the most accessible POI. This has practical
significance, as people typically choose the most accessible POI and
ignore others in reality. Fig. 5(b) indicates that the most accessible POI
for A and B is H1, while that for C and D is H2.

Compute density field on each vertex (Fig. 5(d)): After identify-
ing the most accessible POI for each intersection, we can then compute
the density propagation along the road network. Here, we use the color
of the most accessible POI to encode an intersection, that is, A & B are
colored blue, while C & D are colored green. Moreover, to better depict
density propagation process on the road network, we further encode
road segments with tapered lines that are preferred for graph readabil-
ity [17]. Here, a line is colored according to its connecting vertex with
a high accessibility value, and the line width gradually decreases from
the vertex with a higher accessibility value to the other vertex with a
lower accessibility value. Taking road segment BC for example, the
line color is green for vertex C, and the line width is decreases from C
to B. Users can easily deduce that vertex C has a higher accessibility to
H2 than vertex B’s accessibility to H1.

5.2 Density Estimation on 2D Planar Surface
In this step, we extend the density estimation from a 1D road network
to a 2D planar surface to fulfill the intuitiveness requirement. Here, we
illustrate the process with density estimation for an arbitrary point P as
in Fig. 5(d). Due to the lack of road network and traffic condition in
area ABCD, we adopt a simplified access time measurement in a linear
correlation with the Euclidean distance between P and the intersections.
Here, we adopt a twofold process as follows:

Compare access time to each POI (Fig. 5(e)): As discussed in
Sec. 4.2, we associate a POI to the road network by connecting the
POI to the nearest intersection. Similarly, we also associate an arbitrary
point P to road network by connecting P to the neighboring intersec-
tions, i.e., {A,B,C,D}, yielding straight walkways AP, BP, CP, & DP.
Given that we have found the most accessible POI for each intersection,
we can compute the access time from P to each POI by summarizing
the network proximity of each road segment and the Euclidean distance
of the straight connection. Taking the access time between P and H1
for an example, we have two options: 1) to connect P to A, yielding an
access time of t(H1A)+ t(AP); 2) to connect P to B, yielding an access
time of t(H1A)+ t(AB)+ t(BP). Given that the access time on the road
network is typically shorter than that on walkways (travel by vehicle vs.
by walking), we select option 1. Similarly, we can also compute the
access time between P and H2 as t(H2C)+ t(CP). The comparison of
the access times to H1 and H2 indicates that the access time to H2 is
lower, and hence the accessibility to H2 is higher.

Estimate density field (Fig. 5(f)): Hence, we can estimate a density
field for P with respect to H2 as:

λ (P|H2,G) =
1
r

K(
(t(H2C)+ t(CP))−α

r
) (4)

where λ (P|H2,G) denotes the density field at P given POI H2 and road
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Fig. 6. Visual effects of topology density map: color values clearly reveal
quantitative density fields distributed in the space when there is only one
POI (a); and additional color hues depict accessibility to different POIs
when there are two (b) and three (c) POIs.

network G, t(H2C)+ t(CP))−α reflects the H2 accessibility at location
P (Equation 3), and K is the kernel function with r as the kernel radius
(Equation 2). The color of the point is assigned in accordance with the
color of the source POI, i.e., H2. Similarly, we can estimate the density
fields for other points in the 2D planar surface. Then, we render each
pixel corresponding to its density field and the source POI to generate
a topology density map. An example of the generated topology density
map is presented in Fig. 5(f).

5.3 Visual Effects of Topology Density Map
Topology density map adopts color hues to encode different POIs, and
color values to indicate quantitative density fields. In this way, users
can not only distinguish which POI is the easiest accessible, but also
how much easy to access the POI from arbitrary locations in a 2D
planar space. In each region segmented by road segments, the method
generates a visual effect corresponding to space partition by a weighted
Voronoi diagram where the centers are intersections and the weights are
network-based proximity to POIs; see Fig. 6(a) for an example. Users
can easily identify which intersection is the easiest accessible from a
location in the region.

Fig. 6(a-c) shows visual effects of topology density map with of one
to three POIs, respectively. There is only one POI in Fig. 6(a), so all
density fields are colored in blue. Meanwhile, one can notice that colors
are gradually fading from intersections to region centers, indicating
those locations near by intersections are easier accessible. When more
than one POIs are presented, there will be multiple color hues in the
topology density map, e.g., two hues for two POIs in Fig. 6(b), and three
hues for three POIs in Fig. 6(c). One can easily identify boundaries
between different color hues, separating the space into regions by
the easiest accessible POIs. Here we can notice that the region is
mostly affected by the orange POI. Notice that the space partition effect
and boundaries between two POI regions may be affected by various
parameters when constructing topology density map, e.g., bandwidth
and kernel function. The parameter settings will be further discussed in
Sec. 7.1.

Road direction from B to AUnknown road direction

NKDE Topology density map

AA
P1

B
B

P2
P1
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Fig. 7. Comparing topology density map (right) with NKDE (left). Topol-
ogy density map is more intuitive than NKDE in presenting density distri-
bution over 2D space and depicting road directions.

5.4 Comparison with NKDE
Planar KDE and NKDE are state-of-the-art approaches for density
estimation. However, planar KDE is inaccurate for urban data analysis

and visualization because it omits the road network. In contrast, NKDE
estimates density based on the linear propagation along a 1D road
network, which has been applied to analyze taxi pick-ups/drop-offs [31,
47] and traffic accidents [13]. Hence we only compare our topology
density map with NKDE in terms of intuitiveness (R2).

Fig. 7 presents a comparison of the visualizations generated by
NKDE (Fig. 7(left)) and our topology density map (Fig. 7(right)). Both
visualizations are built from the same POIs and local structure of a
road network. Here, our topology density map reveals the density
fields over the entire space, while NKDE only depicts the density
fields along the roads. For instance, the density values for P1 & P2
are unknown in Fig. 7(left). In contrast, the most accessible POI for
P1 is the green POI, while that for P2 is the purple POI; and density
value for P1 is higher than that for P2, from Fig. 7(right). In this sense,
our topology density map supports better the functions of lookup and
comparison than NKDE. Moreover, our topology density map also
depicts directions of road segments using tapered lines, whilst NKDE
only presents density fields along road segments without direction
information. Taking the road segments between intersections A and B
in Fig. 7(right) for an example, A is more accessible to the green POI
since A is colored green, while B is more accessible to the purple POI.
One can also figure out that the road segment on the right side is from
B to A, while the one on the left side is from A to B, by checking either
colors of the road segments or taper directions.

In summary, our topology density map surpasses the performance
of NKDE in presenting the density fields over 2D space and depicting
road directions.

6 CASE STUDIES AND EXPERT INTERVIEW

We conduct two case studies to verify whether the topology density map
satisfies the requirements discussed in Sec. 3.2. We select the Futian
district in Shenzhen, China as the study area. The area is presented as
the main view in Fig. 1. Feedbacks from three independent domain
experts are presented at the end.

6.1 Study 1: Analyzing the Influence of Road Topology
and Traffic Conditions on Accessibility

We first verify whether the topology density map can present the density
fields accurately (requirement R1 as in Sec. 3.2), by taking both road
topology and traffic conditions into consideration.
Road Topology. We first zoom in to the selected region shown in
Fig. 1(a). The two different colors indicate that this region is easily
accessible to two POIs denoted as H1 (red color) and H2 (blue color). In
Fig. 1(a), Regions 1 (BCDE) and 2 (ABEF) are easily accessible to both
H1 and H2, while Region 3 (DFGI) is fully covered by POI H2. From
the density distribution along the road segments, we can find reasons
for the phenomena: intersections A, B, and C are easily accessible
to POI H1, while intersections D, E, and F are easily accessible to
POI H2. Moreover, H2 propagates along paths F-E-B and E-D-C. To
explore the influence of road topology, we generate a new density map
by removing paths F-E and E-D. Fig. 1(b) shows the result, which
is the same region as that in Fig. 1(a). The comparison of Figs. 1(b)
with 1(a) indicates the changes in density field distribution. Region
1, which is easily accessible to both H1 and H2 in Fig. 1(a), is now
fully covered by POI H1 in Fig. 1(b). In contrast, Region 3, which is
previously only covered by POI H2 in Fig. 1(a), is now accessible to
both H1 and H2 in Fig. 1(b).

Removing paths F-E and E-D makes path F-E-D inaccessible, yield-
ing changes to road topology. Therefore, the previous path H2-F-E-D
with the shortest access time is no longer available, changing the most
accessible POI at intersection D from H2 to H1, and that at intersection
E from H2 to H1. This affects the construction of the topology density
map in terms of estimating the density propagation from POIs and deter-
mining the source POI (Sec. 5.2). Hence, the resulting topology density
map can also reflect the changes. In contrast, Euclidean distances be-
tween arbitrary locations in the regions and POIs are unaffected by road
topology change, resulting in unchanged planar KDE.
Traffic Condition.
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Fig. 8. Topology density map built from existing hospitals (b), after adding a new hospital in region 1 with low density (a), and after adding a hospital
in region 2 with high density (c). Region 1 is a preferred location, as density field is more evenly distributed in (a) than in (c).

We then zoom in to the selected region shown in Fig. 1(c). The
figure illustrates that the region is easily accessible to two POIs denoted
as H3 (orange color) and H4 (green color). Region 4 is accessible to
both H3 and H4, while Region 5 is fully covered by POI H4. In general,
the density field distribution shows a trend of continuous accessibility
propagation toward the outbound of the district. However, when focus-
ing on the green region (H4), we notice some unusual patterns. A very
narrow green part can be observed in Region 4, while the green part
increases again in Region 5. The variation of the density fields along
the road segments reveals that path M-N-O connects Regions 4 and 5.
We obtain the average speeds of these road segments (M-N and N-O),
and find that these segments exhibit high average speeds, reducing the
access time through path M-N-O even though the Euclidean distance is
long.

To explore the influence of traffic conditions on density fields, we
reduce the average speeds of road segments M-N and N-O manually.
The density field changes correspondingly, as illustrated in Fig. 1(d).
The easiest accessible POI in Region 4 shows no change. However, it
changes from H4 to H3 in Region 5 and the density fields decrease as
well, caused by lower speeds of road segments M-N and N-O. This
phenomenon indicates that although the Euclidean distances between
intersections remain unchanged, dynamic traffic conditions can lead to
variations in shortest paths on a road network and ultimately alter the
density distribution on a 2D planar surface.

6.2 Study 2: Finding the Optimal Location of a New Public
Service Facility

Next, we demonstrate the intuitiveness of topology density map in
presenting density distribution (requirement R2 as in Sec. 3.2), which
facilitates the process of finding the optimal location of a new public
service facility. Here, we use hospitals in Futian District crawled from
Baidu Map Service as targeting public service facilities, and access time
to measure accessibility to those hospitals. Fig. 8(b) presents density
field of accessibility measured from the hospitals, which is unbalanced
in the district as currently the hospitals are concentrated in the east part
of Futian District. The government decides to build a new hospital and
tries to find a suitable location for the hospital.

A critical consideration here is that the hospital should make the
distribution of medical service more balanced. In other words, to
maximize the increase of hospital accessibility for the whole district.
Two possible options for the hospital location are available.

• First, we can put the new hospital in Region 1 where density
is low. The topology density map is updated correspondingly
and presented in Fig. 8(a). Obviously, the density field in the
southwest part increases, especially that in Region 1. This intu-
itively depicts how much the region can benefit from a new public
service facility. Moreover, because the density first propagates
along the road network, and then propagates to a 2D planar sur-
face, the change in density distribution on the road segments is

obvious. In short, putting the new hospital in Region 1 balances
the accessibility to medical service.

• Second, we can place the hospital in Region 2 where the density
is already high. The updated topology density map is shown
in Fig. 8(c). Overall, both densities in the selected region and
along the surrounding road segments increase. However, this
arrangement does not improve the southwest part with low den-
sity. Hence, building a new hospital in Region 2 worsens the
unbalanced distribution of medical service.

The study clearly demonstrates that the topology density map gen-
erates intuitive visualizations that can facilitate problem identification
and decision making.

6.3 Expert Interview
To evaluate our topology density map, we interviewed three indepen-
dent domain experts. The first expert (Expert A) is an assistant professor
in University S specializing in smart city related research. The second
expert (Expert B) is a Ph.D. candidate in University H whose research
focuses on data-driven urban planning. The third expert (Expert C)
is a practitioner working in an urban planning institute. Before the
interview, we first made a brief introduction of our method, and then
explained the details of the two case studies. We collected feedbacks
in terms of the feasibility, usability, and effectiveness of our topology
density map from the experts in the end. All experts provided valuable
feedbacks based on their own background. The detailed feedbacks are
summarized below.

Feasibility & Usability. All three experts agreed that using a density
map to reveal accessibility of POIs in an urban area is a good choice.
Our topology density map can really help in their research and work.
Expert A mentioned that “topology density map takes road topology
and traffic conditions into consideration, which fits the reality very
well. If the method is applied in my research, it will help me a lot on
decision making.” Expert B said that “topology density map is of great
research value because it considers road structure, and covers the whole
city.” They all agreed that our method visualizes density field intuitively.
Expert B commented that “from the cases you introduced, I can see that
topology density map does provide an intuitive visualization, especially
in case study 2. Through topology density map, I can quickly find that
the current distribution of hospitals, that is, accessibility to medical
resources, is indeed unbalanced. After you manually add a new hospital
at two different places, the new density maps show the difference
intuitively and definitely help me make a decision.”

Effectiveness. All experts thought that the topology density map is
an effective tool for urban analysis. Expert C shared her own experience
in identifying suitable locations for new public service facilities. In
daily work, her team often need to place a certain number of public
service facilities evenly around a few residential blocks, but they do not
have an intuitive and easy-to-use tool that could assist them in finding
optimal locations. Currently, the team rely on manual approaches: they
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Fig. 9. Parameter selection: (a) to (e) are Gaussian kernel function
with different bandwidths, and (f) to (j) are Sigmoid kernel function with
different bandwidths.

first mark streets that are close to the residential area, then measure
distance from the residential area to each street, and finally draw contour
lines based on the measured distances. The process is rather ineffective,
and often leads to unsatisfactory results since the distance measurement
omits traffic conditions. Moreover, they also find it is difficult to share
the planning with others, and would be impossible for others to make
modifications. She believes that the topology density map is the right
tool they are looking for, not only for finding locations of public service
facilities, but also for comparing various planning strategies.

Suggestions. The experts also gave fruitful suggestions on how to
improve the topology density map. Both Experts A and C commented
that developing our method into a mature software that supports inter-
active planning would be great. As potential end users, urban planners
typically have little knowledge of programming. Expert B pointed out
that the unavailability of non-uniform travel speeds in a road segment
affects the accuracy of our method in density estimation. She suggested
that if we get more detailed data, we can consider connecting POIs to
road segments directly, rather than to the nearest intersection because
the vehicle speeds on a single road segment can vary dramatically.
Expert A also suggested that after solving the problem of insufficient
and inaccurate data, we can consider some demographic factors, such
as population distribution, which are important elements to be consid-
ered in urban analysis. For instance, in case study 2, a more practical
strategy is to consider population distribution over space as well.

7 DISCUSSION

We next discuss parameter selection (Sec. 7.1), computation efficiency
(Sec. 7.2), and alternative designs (Sec. 7.3) for the topology density
map. We then discuss the limitations, and summarize the future work
in the end (Sec. 7.4).

7.1 Parameter Selection
As discussed in Sec. 5.2, a kernel function is used as a decay factor when
we estimate density on a 2D planar surface. Therefore, a reasonable
decay function is particularly important for topology density map. A
reasonable decay effect can not only yield an intuitive visualization, but
also help users understand the density distribution in urban areas and
facilitate decision-making. In contrast, a slow or fast decay parameter
will increase the difficulty of observing the density distribution.

Two key parameters in KDE, i.e., kernel function K, and bandwidth r,
affect the decay speed. Many studies [3,28,29,32] suggest that choosing
a proper bandwidth is more important than a kernel function. Therefore,
we only compare two widely used kernel functions − Gaussian and
Sigmoid. For each kernel function, we further compare five equally
spaced bandwidths from 0.001 to 0.005. Bandwidth r corresponds to the
accessibility value as in Equation 3 measured between the target point
on the 2D planar surface and the source POI. We compute the density
estimation when the accessibility value is within the range; otherwise,
we set the density value to 0. We aim to find a good combination of
kernel function and bandwidth for this study.

The comparison result is shown in Fig. 9. Each sub-figure presents
the density field of the region enclosed by the rectangle. The vertices of

the rectangle represent intersections, and edges represent road segments
in a road network. In each rectangle, two different POIs are positioned
at the top-left (green POI) and bottom-right (purple POI) vertices. Here,
we only compare differences of density distribution within the planar
surface computed from different parameters, so the density distribution
on road segments is not taken into consideration. Fig. 9 indicates that
for the same POIs and road topology, different combinations of kernel
function and bandwidth produce different visual effects. In Fig. 9(a,b,f),
the density decay is too fast, making it difficult to observe the density
change, especially for points in the middle of each rectangle. Conse-
quently, it is difficult for users to perceive accessibility differences. In
Fig. 9(d,e,h,i,j), the density decay is too slow to distinguish the density
values. The results suggest to discard these parameter combinations.
In addition, both Gaussian and Sigmoid kernels show similar trends
of decaying too slow with small bandwidths, whilst too fast with big
bandwidths. The results reveal that different kernel functions have no
significant impact on density estimation, but different bandwidths do.
This finding is consistent with those of previous studies [3, 28, 29, 32].

On the basis of the results in Fig. 9, we eventually choose Gaussian
as the kernel function and 0.003 as the bandwidth. All experiments
and case studies in this work are conducted using these parameters.
Nevertheless, the visual effects are also determined by many factors,
including accessibility measurement, color perception, and study areas.
Different application scenarios may have different requirements for
decay effect. The purpose of this paper is to illustrate an accurate and
intuitive method for density map generation. Users can make their own
choices in different cases.

Table 1. Running time (in milliseconds) comparison for topology density
map and planar KDE by different number of POIs and image size.

Image Size
10 POIs 50 POIs 100 POIs

Topology Planar Topology Planar Topology Planar
1920×1200 2010.75 99.41 1992.04 144.21 2134.92 192.20
1280×800 962.55 51.25 971.14 78.49 991.41 116.29
640×400 353.87 18.98 381.97 24.33 347.03 32.70

7.2 Computation Efficiency
NKDE only estimates the density along a 1D road network, and often
the density fields are estimated using average travel speeds of road
segments. In contrast, topology density map and planar KDE provide
density estimation over an entire 2D planar surface. Hence, NKDE
would require much less computation time than topology density map
and planar KDE. For fairness, we only compare the computation ef-
ficiency of our approach with planar KDE and not with NKDE. The
experiment runs on a MacBook Pro 2.5 GHz Core i7 with a Radeon R9
M370X graphics card, and the density maps are rendered in a front-end
web interface using Javascript. To avoid interference of other factors,
we adopt the same study area, traffic data, and POIs in both density
maps. Our topology density map takes pre-computed DAGs (Sec. 5.1)
starting from each POI to all intersections using Dijkstra shortest path
algorithm as additional input.

Table 1 shows the running times (in milliseconds) of the topology
density map and planar KDE under different numbers of POIs and
image sizes. Overall, the table shows that the computation efficiency
for planar KDE is affected by both image size and number of POIs,
while that for the topology density map is mainly affected by image size.
This is consistent with our expectation, as planar KDE needs to measure
density fields for 2D space (i.e., the image size) based on input POIs
(see Equation 1). Instead, computation cost for the topology density
map is mainly spent on extending density fields from road network to
2D space (see Equation 4), and the process is dependent on the number
of intersections rather than number of POIs. Moreover, with the same
image size and number of POIs, planar KDE requires much less running
time than the topology density map, especially when the number of
POIs is small. This is because there are in total 273 intersections in the
study area, which is much more than that of POIs, and for each point
in a region, we need to compute density fields extended from multiple
neighboring intersections.



Note that the running time for the topology density map is measured
scratch, which is much slower than that for planar KDE. Nevertheless,
in many real-world scenarios (e.g., case study 2), we can pre-compute
a density estimation for an entire area based on existing POIs, then we
only need to re-compute the density fields for a small region affected by
a new POI. This process can be finished in real-time since the number
of intersections to be updated is small.

(a) (c)(b)
Fig. 10. Alternative designs to visualize density distribution: (a) topology
density map used in this study, (b) a contour-based design, and (c)
density map without showing density on roads.

7.3 Alternative Design
Two alternative designs for visualizing scalar fields distributed in a 2D
space are considered. Fig. 10(b) is our first attempt, which employs
tapered lines with line thickness to visualize the density propagation
along roads, and a contour map to visualize the density distribution in
a 2D planar surface. Each contour represents the region that can be
accessed within a certain time. However, after discussing the design
choice with a domain expert (Expert C), she pointed out that a contour
map can only depict discrete access times. As in Fig. 10(b), there are
only three time intervals, and one can only retrieve which places can
be accessed within these three different time intervals. We can increase
the number of time intervals, but the contour map will become chaotic
when contours are dense. Consequently, finding useful information
becomes difficult. Moreover, visualizing the density fields is difficult
for contour map when multiple POIs exist. Fig. 10(c) is another design
that adopts density map to visualize density fields in a 2D planar surface.
The density map is constructed in the same way as our topology density
map. However, the design adopts only straight lines to reflect road
connections, rather than tapered lines to visualize density propagation
along road segments. Without tapered lines, density propagation along
roads is difficult for users to follow.

Therefore, we choose topology density map coupled with tapered
lines (Fig. 10(a)) as our final design.

7.4 Limitations and Future Work
Limitations. The case studies (Secs. 6.1 & 6.2) and expert feedbacks
(Sec. 6.3) confirm that topology density map satisfies the correctness
and intuitiveness requirements (Sec. 7.4). Nevertheless, improvement
can still be made. First, our current implementation does not include
the efficiency of generating the density map as the first priority. We
need to compute the density value for each pixel in the screen, which is
rather time-consuming. Several promising directions for improving the
computing efficiency can be taken, such as GPU-based implementation
of density computation [24] and space partition using weighted Voronoi
diagram [15]. Second, in the case studies, we assume that vehicles drive
on a road segment at a constant speed, which is impossible in reality.
We make this simplified assumption because a more detailed traffic
data is unavailable. As suggested by domain experts, we would like
to produce a more accurate density estimation with fine-grained speed
information on roads. Third, due to the lack of building and walkway
data in each zone, we only consider the direct connection between a
location and its surrounding intersections when extending the density
estimation from the road network to a planar surface, which again leads
to inaccurate estimation. For example, if a zone (e.g., a campus or
housing estate) possesses only one entrance, the density estimation
for a location in the zone shall include the location’s distance to the
entrance and the entrance’s distance to road network. We would like to
fuse other kinds of urban data, such as land use and building types, to
generate more accurate density estimation.

Future Work. In addition to improving the efficiency and accuracy of
the topology density map construction, many fruitful directions for
future work can be taken. First, we would like to integrate topology
density map into many real-world applications, e.g., a real-time risk
monitoring system. The system can provide interactive visualization
for POI accessibility analysis under real-time traffic conditions. We
anticipate that such a system can assist policy makers in making ap-
propriate decisions in case of emergency, such as to improve fire truck
scheduling strategies in case of fire. Second, providing temporal in-
formation in the context of a map view is a always challenging task in
geographical information system. Many studies adopt isochrone map,
which however can only depict discrete temporal information; see the
comparison of topology density map with contour map above. For an
example, Zeng et al. [49] used isochrone maps to depict accessible
regions within 30 and 60 minutes using public transportation system.
However, detailed travel times can only be depicted with an additional
isotime flow map view. We plan to integrate temporal information on
a map seamlessly using topology density map. Last but not least, this
work employs access time as the indicator to reflect POI accessibility.
In fact, topology density map can be applied in various scenarios as
long as the analyses rely on certain topological structures, e.g., net-
work connectivity. We would like to exploit the potential of applying
topology density map in those scenarios.

8 CONCLUSION

In this paper, we have introduced Topology Density Map, a new method
for density estimation in the context of an urban environment. Topology
density map surpasses the performance of conventional planar KDE
and NKDE in satisfying two specific requirements for urban data vi-
sualization and analysis: First, the density fields estimation should be
correct, in order to support urban analysis and assist decision-making;
Second, the visualization should be intuitive that depicts density fields
over an entire 2D space instead of only 1D road network. The correct-
ness requirement is achieved by including complex road topology and
dynamic traffic conditions into consideration, while the intuitiveness
requirement is achieved by extending accessibility to arbitrary points
in the 2D space.

To facilitate the construction process of topology density map, we
first construct a series of DAGs for input POIs, of which a DAG propa-
gates nonlinear accessibility from the source POI to all intersections
in a road network. Next, to extend density field estimation from road
network to the entire planar surface, we identify key vertices in each
DAG, compute and compare density field for every point assorted with
each POI, and finally color code every point according to the computed
density field and corresponding POI. Topology density maps exhibit a
weighted Voronoi diagram-like visual effect, which divides the 2D pla-
nar surface into different regions in accordance with POI accessibility.
Various parameters and alternative designs have been considered, and
we choose an optimal setting that meets the intuitiveness requirement.
Two case studies of exploring hospital accessibility based on real-world
traffic data in an urban area, together with positive feedbacks from
three independent domain experts, approved the topology density map
in terms of feasibility, usability, and effectiveness.
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