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Deep Sketch-guided Cartoon Video
Inbetweening

Xiaoyu Li, Bo Zhang, Jing Liao, and Pedro V. Sander

Abstract—We propose a novel framework to produce cartoon videos by fetching the color information from two input keyframes while
following the animated motion guided by a user sketch. The key idea of the proposed approach is to estimate the dense cross-domain
correspondence between the sketch and cartoon video frames, and employ a blending module with occlusion estimation to synthesize
the middle frame guided by the sketch. After that, the input frames and the synthetic frame equipped with established correspondence
are fed into an arbitrary-time frame interpolation pipeline to generate and refine additional inbetween frames. Finally, a module to
preserve temporal consistency is employed. Compared to common frame interpolation methods, our approach can address frames
with relatively large motion and also has the flexibility to enable users to control the generated video sequences by editing the sketch
guidance. By explicitly considering the correspondence between frames and the sketch, we can achieve higher quality results than
other image synthesis methods. Our results show that our system generalizes well to different movie frames, achieving better results
than existing solutions.

Index Terms—2D cartoon animation, sketch-guided synthesis, frame interpolation
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1 INTRODUCTION

C REATING cartoon animations can be partitioned into
three main steps: drawing keyframes, inbetweening,

and painting. First, an experienced animator draws the
keyframes that capture the primary motion. Once com-
pleted, inbetweeners draw the inbetween frames for com-
pleting the motion, followed by a painter to fill the
color in these sketches. Drawing and painting this large
amount of inbetween frames is usually a specialized and
time-consuming job, requiring intensive human labor from
skilled professional artists, thus increasing the production
cost. Therefore, we propose a system to alleviate this sit-
uation by automatically completing the inbetween frames
including both the motion and color by only requiring
some sketches for guidance, while maintaining the current
animation workflow.

Research attempts have been made in helping users
produce cartoon animations more easily. Sykora et al. [1]
propose an interactive tool which simplifies the sketch col-
orization process by filling the color within a region, but
it still requires significant manual labor. Whited et al. [2]
present the BetweenIT system for the user-guided automa-
tion of tight inbetweening. Their methods mainly reduce
the workload of drawing inbetween frames but not the
painting process. We focus on completing the whole video
considering both the motion and color. Some methods also
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utilize a hand-drawn sketch [3] or a color-coded skeleton [4]
to guide synthetic animations, but Dvorožnák et al. [4] focus
on one specific category of object and Zhu et al. [3] produce
more free drawing animation but cannot handle motions
with occlusions.

Furthermore, some related techniques can potentially
be applied to assist the cartoon animation production, but
many challenges restrict their direct use. One straightfor-
ward solution is to apply the state-of-the-art frame interpo-
lation methods to two keyframes directly. However, these
methods mainly focus on live-action (photorealistic) videos
which makes it challenging to get satisfying results due to
the large differences between live-action videos and cartoon
animations [5], [6]. More importantly, the artists hope to
control the inbetweening by drawing rather than use the
deterministic result from interpolation. Recent image syn-
thesis methods, either for general purpose [7], [8] or specif-
ically for sketch colorization [9], [10], support automatically
colorizing sketches with given frames as the reference. But
without establishing the correspondence between the sketch
and the frame, color bleeding artifacts may appear and the
temporal consistency may also be hard to maintain.

The reason why it is hard to produce good results is that
the problem of synthesizing videos from a sketch and car-
toon keyframes is highly challenging. First, a cross-domain
cartoon-to-sketch correspondence needs to be established.
However, the cartoon frames are usually texture-less and
the features in cartoon frames are unique and different from
photographs, which is the target domain most previous
matching methods are designed for. The situation is even
worse for sketches, which makes establishing cartoon-to-
sketch correspondence difficult. Second, the cartoon anima-
tions are more choppy and vigorous than live-action videos,
which usually have unique object shape deformations and
make occlusion estimation more difficult. Moreover, the
unique contours in 2D cartoon frames can be easily de-
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I0 I1 S3/6 (rough) S3/6 (simplified)

Î1/6 Î2/6 Î3/6 Î4/6 Î5/6

Fig. 1. Our method synthesizes the frame Î3/6 using two input keyframes {I0, I1} and a guided sketch S3/6 which was simplified from a rough input
sketch drawn by artists. Furthermore, the approach can automatically interpolate additional inbetween frames {Î1/6, Î2/6, Î4/6, Î5/6} producing a
smooth video with motion prescribed by the user-given sketch. ©B&T.

stroyed by operations such as warping or resampling. It
remains an open problem to generate cartoon frames with-
out causing color bleeding or contour blurring. Finally, the
valid frame rate (by removing the duplicated frames) of 2D
cartoon animation is often low, i.e. 8-12 FPS, making it more
challenging to achieve smooth interpolation results.

To address the above challenges and help users to au-
tomatically complete the inbetween frames, we propose a
novel sketch-guided video synthesis system that can gen-
erate a sequence of inbetween frames controlled by one
user-input sketch. Since the initial sketches from artists
usually are very rough, casual, and potentially stylized, a
pre-processing sketch cleanup needs to be performed to
convert rough sketches into simplified clean line drawings.
Then, the simplified sketches that contain the main contours
or outlines of the objects are taken as the input guidance.
To solve the cross-domain correspondence between a sketch
and a cartoon frame, we first fill the large empty regions
in the sketch with meaningful details by a transformation
module conditioned on two keyframes. Then, two indepen-
dent feature extractors are used to map the cartoon and
sketch features into a common space that can be used to
estimate the correspondence directly while maintaining the
semantics of the original images. For occlusion handling, we
estimate the occlusion mask by checking flow consistency
and use a blending module to dynamically select and com-
bine the pixels from two keyframes with these masks. Once
the correspondence is established and the sketch frame is
synthesized, an arbitrary-time frame interpolation module
is used to generate and refine more inbetween frames.
Finally, a temporal processing step is applied to further
improve the result. Considering that the frame rate of 2D
cartoon animation is low, we leverage the 3D cartoon movies
which have smooth motions in nature to help training the
interpolation and temporal processing module to produce
temporally smooth 2D cartoon video results.

We demonstrate that our system can generate high-
quality results in a broad range of scenes even containing
some relatively large motions and works for cartoon movies
with different styles. Moreover, with the sketch as guidance,

our system allows the users to easily control the motion
trajectory of the generated video by drawing sketches,
thus increasing the flexibility. One example can be seen in
Figure 1. Our major contributions can be summarized as
follows:

1) A system to resolve the demand in inbetweening
by allowing users to specify the motion by drawing
the sketch in a way that is compatible with the tra-
ditional animation workflow. We propose this new
scenario and show that our method outperforms
these existing possible solutions by a large margin.

2) A cross-domain correspondence estimation method
for sketches and cartoon frames matching, achiev-
ing more accurate flow results than current optical
flow estimation methods finetuned for this problem.

3) A blending method with a novel contour loss that
better leverages the motion boundary clue to alle-
viate color bleeding, and an occlusion estimation
module using flow consistency checking which is
robust to the errors in estimated flows and occlusion
masks.

4) An arbitrary-time frame interpolation pipeline and
temporal processing module to produce and refine
more inbetween frames with temporal coherence
learned from 3D cartoon movies.

2 RELATED WORK

While there is no prior work that also tries to guide the
synthesis of the whole 2D cartoon video using only one
sketch, there are several techniques that can potentially
be used to achieve this goal. In this section, we give an
overview of those methods as well as the related works in
cartoon animation.

2.1 Sketch-guided Image Synthesis

Sketches have been used to depict the visual world since
prehistoric times and are deemed as a convenient art form
to all humans [11]. Due to its simplicity, it can serve as
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a user-friendly control input for image synthesis. How to
convert these easily acquired sketches to colorful images
is thus a significant problem in both computational pho-
tography and cartoon animation. Chen et al. [12] compose
a realistic picture from a freehand sketch annotated with
text labels, which is realized by stitching several text-related
photographs discovered online. Eitz et al. [13] and Bansal
et al. [14] adopt a similar approach which composite in-the-
wild shapes and parts. However, methods in this category
are not suitable to synthesize complex images due to the
limited image database, and may often produce disharmo-
nious results as it is hard to unify the style of different parts.
Recently, with the emergence of deep learning, sketches can
be directly mapped to realistic photographs by learning
from data [15]–[17]. Yet these works typically overfit a
certain type of scene and usually produce low-resolution
results with noticeable artifacts. Portenier et al. [18] present
a sketch-guided image editing system that is specialized
for faces. Moreover, recent image to image translation tech-
niques can also be used to translate sketches to cartoon
images [7], [8], [19]. However, applying these methods di-
rectly to our video task cannot give satisfactory result as the
appearance of the output may deviate from the user-given
keyframe and the generated video may introduce temporal
flickering due to the nature of frame-by-frame processing.
Furthermore, these methods are incapable to synthesize the
frame at arbitrary intermediate time as in our approach.

There are methods specifically designed for cartoon gen-
eration. Sykora et al. [1] propose the first interactive tool
that fills colors for sketch images. Zhang et al. [9] and Liu
et al. [10] use deep neural networks to colorize sketches,
but these methods target single images rather than video
frames, and do not consider spatio-temporal consistency.
The method proposed by Xing et al. [20] is similar to our
scheme, which utilizes an artist-drawn sketch to animate a
cartoon image. Nonetheless, they only consider 2D deforma-
tion to warp the input frame, and fail to address occlusions.
We use two successive frames as input and can leverage
richer information to address the issue. Dvorožnák et al. [4]
also attempt to animate the cartoon frames, but their work
is specialized to body skeletons, which limits their appli-
cation to cartoon characters rather than the general genre.
Instead of using a user-drawn image as guidance, Whited
et al. [2] propose to interpolate two keyframes by asking
users to interactively match the outlines of input frames
and manually adjust the motion trajectories. The method
can achieve impressive results. However, the correspon-
dence between frames has to be established manually, and
the interpolated uniformly varying motion is not flexible
enough. In comparison, our solution is more compatible
to the cartoon inbetweening workflow and provides more
freedom for artists to create desired motions.

2.2 Cross-domain Correspondence

While significant advances have been made to estimate the
optical flow for temporally adjacent frames [21]–[24], the
semantic dense correspondence for general images remains
challenging. Liu et al. [25] and Yang et al. [26] rely on
manually-crafted features to obtain the correspondence of
scenes under large appearance variation. Ben-Zvi et al. [27]

and Yang et al. [28] study the matching for stroke cor-
respondence. Zhu et al. [3], on the other hand, identify
region correspondence between consecutive cartoon frames
by solving a graph problem. However, this method assumes
that the cartoon frame is composed of multiple flat regions
with homogeneous color, and is thus not suitable to con-
temporary cartoon movies that usually contain complex
shading and textures. There have been works that use deep
neural networks for semantic correspondence. Liao et al. [29]
perform PatchMatch [30] in a deep feature pyramid to
compute the semantic dense correspondence. Aberman et
al. [31], on the other hand, focus on finding reliable sparse
correspondence. However, both of them rely on a pre-
trained classification model, e.g. VGG network, as feature
extractor, and cannot capture semantics for sketch images.
In our case, we wish to densely match the frame with
the sketch image, where the latter lacks textures in most
parts and only has semantic clues around the outlines. We
solve this cross-domain correspondence problem in a self-
supervised manner.

Recently image translation methods provides the ability
to translate the images across multiple domains by learning
the domain-invariant representation from data [32]–[35]. Liu
et al. [32] map images in different domains to a latent code in
a sheared-latent space. Huang et al. [33] decomposes the im-
age representation into a domain-invariant content code and
a domain-specific style code. Liuet al. [34] propose a model
to learn disentangled features for describing cross-domain
data to perform continuous cross-domain image translation
and manipulation. All of these methods also inspire us to
map the features of sketch image and cartoon frames to
a domain-invariant space for correspondence estimation or
alignment.

2.3 Video Frame Interpolation

Video frame interpolation increases the video frame rate
by inferring smooth motion and can be used for frame
recovery in video streaming [36], [37] and slow motion
effects [5]. Classic frame interpolation algorithms are based
on optical flow [38], [39] and the quality of frame interpo-
lation heavily depends on the flow accuracy. These meth-
ods usually require computationally expensive optimization
and well-designed regularization [40]. Recently, deep neural
networks were proven to be a powerful hammer for frame
interpolation and outperforms traditional methods in both
quality and speed. Long et al. [41] first attempt to use
deep neural network to directly synthesize the intermediate
frames. Liu et al. [42] propose to learn a 3D optical flow in
the space-time domain for frame warping and can support
both frame interpolation and extrapolation. Many other
learning strategies including interpolation kernels [43]–[45],
context maps [46], and incorporation of depth informa-
tion [6] can effectively improve the interpolation quality.
Other methods focus on novel interpolation scenarios such
as multi-frame interpolation for high frame rate videos [5],
high resolution frame interpolation [47] and the interpola-
tion under camera shake [48]. Yet all these methods can
only produce deterministic results that appear plausible
without any user control. In this work, we allow the user to
explicitly control the motion path by drawing sketch, which
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we believe is the most convenient way for artist interaction.
Since motion ambiguity is greatly reduced, our method
demonstrates superior quality especially when processing
long interval keyframes.

3 SKETCH-GUIDED VIDEO SYNTHESIS

We propose a sketch-guided cartoon video synthesis that
utilizes one user-input sketch between a pair of keyframes
to guide the motion in generated videos. Figure 2 shows
an overview of our method. Given two consecutive cartoon
keyframes {I0, I1} ∈ RH×W×3 (H and W are image height
and width respectively) and a sketch image St ∈ RH×W at
the time t ∈ (0, 1), we first seek to synthesize an inbetween
frame Ît that is geometrically aligned with the structure in
St and photometrically consistent with the input keyframes.
Occlusions are also properly handled for Ît at this stage.
Then, we use the estimated flow in the first stage to gener-
ate more inbetween frames at arbitrary intermediate times.
Finally, a temporal processing network further reduces the
artifacts by considering all the synthesized frames in spatio-
temporal space, and finally produce smooth video results.
We subsequently elaborate on each module.

3.1 Sketch Simplification and Generation

Since the sketches drawn by artists can be rough and casual,
developing a generic approach to process them directly is
challenging. Therefore, a sketch simplification or cleanup
is required as a pre-processing procedure, which removes
superfluous details of sketches and leaves a clean line
drawing to characterize the motion. In this work, we adopt
existing simplification algorithms [49], [50] which are robust
in producing good sketch simplification for unseen styles by
leveraging unsupervised data during training. In our work,
we use simplified sketches as the network input and focus
more on video synthesis. We will use the term sketches to
refer to the simplified ones which have a clean line drawing
style unless otherwise specified.

In order to conduct supervised learning, we create a
video dataset which contains cartoon frames {It} and
the corresponding synthetic sketch images {St}. It is well
known that deep neural networks tend to overfit the train-
ing data and may generalize poorly to images that slightly
deviate from the training samples. Therefore, it is crucial to
generate synthetic data as close as the hand-drawn sketches
as possible. Our sketch generation procedure mostly follows
Portenier et al. [18]. Specifically, we first extract contour
maps using the holistically-nested contour detection (HED)
method [51], which provides multi-level contour map pre-
dictions. We choose the second level of its predictions as
we empirically find that this level of output demonstrates
good visual resemblance to real simplified sketches while
maintaining high contour completeness. We further remove
short contours by performing morphological operations.
Additionally, we fit splines for the contour maps using
Potrace [52] and smooth the curvature by manipulating
control points as suggested in Portenier et al. [18]. Such
curve smoothing is essential for improving the general-
ization since it allows better tolerance to the potentially
inaccurate sketch simplification and helps the network to

learn the synthesis based on rough contour locations. We
show two examples of synthetic sketches in Figure 3. One
can see that the synthetic sketches outline the major content
in the cartoon frame and closely mimic the simplified sketch
used during inference.

3.2 Sketch-guided Frame Synthesis

Given a simplified sketch St, we now aim to hallucinate
the corresponding frame Ît which is also conditioned on
the content images {I0, I1}. The framework of this sketch-
guided frame synthesis is illustrated in Figure 4. We first es-
tablish the dense correspondence between the sketch image
and each of the input frames. Unlike conventional optical
flow methods, we are trying to densely match images of
distinct types. Then, we explicitly estimate a mask which
accounts for the occluded region due to the foreground
movement. This occlusion mask will guide the network to
properly choose the non-occluded pixels from the warped
frames and finally produce the blended result. Note that we
learn these tasks in a self-supervised manner without any
external labeling.

3.2.1 Cartoon-to-sketch Correspondence

Learning the cartoon-to-sketch correspondence is a non-
trivial problem. As we will show in our experiments, di-
rectly using or fine-tuning an established flow estimation
model fails to give accurate flow estimation since the sketch
is a sparse representation and the correspondence for large
areas of blank regions is essentially ill-posed. To accomplish
reliable dense correspondence, both the sketch and the
cartoon frame are expected to be mapped to a space where
feature maps demonstrate detailed structures. To help the
sketch to add these structures, we use cartoon frames as
conditional inputs when extracting the features of sketch
image. Specifically, we propose a transformer network with
input St and {I0, I1} to hallucinate the missing structures of
the sketch. After enhancing the structure of the sketch, we
compute the correspondence in the deep features extracted
from two independent mapping functions. We introduce
this transformer only at the sketch branch, so the correspon-
dence network has two asymmetric branches as shown in
Figure 4.

3.2.1.1 Architecture: The transformer consists of
several dilated residual layers [53] so that the receptive field
is large enough to accommodate displacement between St

and I0 (or I1). After transforming the sketch image to a
proper feature space, we adopt PWC-Net [21] as the flow
estimator. This approach is capable of dealing with large
motion by coarse-to-fine matching. Specifically, the PWC-
Net estimates the flow in a feature pyramid, where the low-
level flow is refined from a higher-level estimation. Here we
initialize the feature extractor of PWC-Net with pre-trained
weights but let the two branches independently update
during training. The network computes the correlation in
the cost volume [21] and estimates the bidirectional flow
ft↔0 and ft↔1 for the two cartoon-sketch pairs.

3.2.1.2 Loss Functions: The ground truth flows are
not available in our dataset, and flows computed by off-the-
shelf flow estimation models may introduce errors. Instead,
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ሼ𝑆௧, 𝐼, 𝐼ଵሽ

Sketch-guided 
Frame Synthesis

Blended 
Image 𝐼መ௧

Arbitrary-time 
Frame Interpolation

Temporal 
Processing 

Interpolated Video Final Video

Optical Flows

Fig. 2. Our sketch-guided cartoon video synthesis consists of three stages. We first establish the correspondence between the sketch St and
keyframes {I0, I1} and synthesize a blended image Ît corresponding to St. Then, we use the estimated flow from the first stage to interpolate
additional inbetween frames and produce video results with an arbitrary frame rate. Finally, a temporal processing module is used to improve
temporal consistency of the video.

Video Frames Synthetic Sketches

Fig. 3. Two synthetic sketch examples. The synthetic sketches outline
the major content in the cartoon frame. ©B&T.

we use warping loss Lwarping which calculates the `1 dif-
ference between the ground truth and the warped frames
according to the flow estimation. Albeit slight errors within
occlusion, this loss suffices to serve as a rough guidance for
flow training. The warping loss is defined as:

Lwarping =
∥∥It − w(I0, ft→0)

∥∥
1
+

∥∥It − w(I1, ft→1)
∥∥
1

+
∥∥I0 − w(It, f0→t)

∥∥
1
+

∥∥I1 − w(It, f1→t)
∥∥
1

(1)
where w(·, ·) denotes the backward warping function.

3.2.2 Consistency Checking
The foreground objects may undergo large displacements in
two adjacent keyframes and inaccurate flows in the occlu-
sion may severely degrade the warping quality. To alleviate
this, we perform occlusion estimation by flow consistency
checking. Occluded points cannot find corresponding coun-
terparts in the other image, so the cyclic mapping will
unlikely map them back to the original location. Formally,
we use the spatial Euclidean distance to measure such
consistency. Therefore the mask Ot→0 ∈ RH×W accounting
for the visibility in I0 can be computed as:

Ot→0(p) = 2σ
(
||v(v(p, ft→0), f0→t)− p||2

)
− 1 (2)

where σ denotes the sigmoid function which is used to map
the value in occlusion mask to (0, 1), and v is the mapping

function: v(p, f) = p+f(p). The visibility of I1 is computed
similarly. Since the mask calculation is differentiable, it
will in turn improve the flow prediction in the subsequent
blending network.

3.2.3 Blending
We propose a blending network which predicts a soft blend-
ing mask M ∈ RH×W and fuses the warped cartoon frames
It→0 and It→1 accordingly:

Ît =M � It→0 + (1−M)� It→1 (3)

where It→0 = w(I0, ft→0), It→1 = w(I1, ft→1), and �
denotes the Hadamard product. The network takes as in-
put the warped cartoon frames {It→0, It→1}, the occlusion
masks {Ot→0, Ot→1}, and the sketch guidance St, and im-
plicitly predicts the mask M during the final blending. The
blending mask should range in [0, 1] so it can be regarded as
an attention map which properly selects from either frames.
This blending mask not only considers the occlusion, but
also resolves the blending artifacts due to the flow error.
As each pixel in the blended image rigorously comes from
the content frames, the output appears sharper than using a
network that directly predicts a blended image.

3.2.3.1 Architecture: As the occlusion masks serve
as a rough estimate, the network can predict the blending
mask with a local receptive field. We determined that three
convolutional layers are sufficient for a good estimation.

3.2.3.2 Loss function: The blending network needs
to output It, so we introduce a blending loss to penalize the
photometric `1 error:

Lblend =
∥∥∥Ît − It∥∥∥

1
(4)

The blended image, however, may still miss the contours
that differentiate the neighboring color blocks, making the
results appear blurry. This is because the contours are too
thin to be penalized by the pixel-wise `1 loss. In order to
improve the perceptual sharpness and maintain the cartoon
style, we propose to promote the contours by adopting a
contour loss based on Chamfer matching. A similar loss
function has previously been adopted for artist drawing
synthesis [54]. The idea is to transform the target contour
maps into distance maps through Euclidean distance trans-
form, where each pixel value stores the distance to the
closest contour, e.g., a larger value in the distance map
means a further distance to the contours. LetE(Ît) ∈ RH×W
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Fig. 4. Overview of the sketch-guided frame synthesis pipeline, including cartoon-to-sketch correspondence estimation, occlusion handling by flow
consistency checking and frame blending.

Flows
(0 ↔ �)

Flow
Interpolation

Arbitrary Time �

Flows
(0 ↔ �, � ↔ �)

Refined Flows
(0 ↔ �, � ↔ �)

Consistency
Checking

Warping

{��, ���}

Warping

Warped Frames {��, ��, ���}

Occlusion 
Masks

Warped Sketch & 
Frames

Blended 
Image ���

BlendingRefinement

{��, ��, ��}

Transformation Mapping

Features

Mapping

Features{��, ��}

Flows
(0 ↔ �, � ↔ 1)

Warped Frames

Consistency
Checking

Occlusion 
Masks

�� Blended 
Image ���

Warping

Flow Estimation
Blending

Fig. 5. Overview of the arbitrary-time frame interpolation pipeline, including flow interpolation, flow refinement, occlusion handling by flow
consistency checking and frame blending.

be the detected contour map of Ît, and D ∈ RH×W be
the distance map of the ground truth contours. In order
to match contours to the ground truth, (1 − E(Ît)) should
always sample small values in D. Formally, we penalize:

Lcontour =
∥∥∥(1− E(Ît))�D

∥∥∥
1

(5)

If Ît fails to produce contours at the expected location, it will
induce a higher contour loss. In our implementation, we use
HED [51] to detect contours for the outputs and the ground
truth. Since the contour extraction E is differentiable, the
contour loss can guide the blending network to improve Ît.

So far, we have shown how to synthesize Ît, by cartoon-
sketch correspondence, occlusion handling by flow consis-
tency checking, and frame blending as shown in Figure 4.
The overall objective function to train the entire synthesis
network is:

Lsyn = Lblend + λ1Lwarping + λ2Lcontour (6)

where we empirically set λ1 = 0.5 and λ2 = 0.01.

3.3 Arbitrary-time Frame Interpolation
At this stage, the guided sketch frame has been synthesized
and the correspondences have been established through
the synthesis pipeline. Next, we will leverage this informa-
tion in order to automatically interpolate more inbetween

frames. We note that not all motions in cartoon animation
can be interpolated this way due to the free drawing na-
ture of cartoon frames. Thus, for more complex and larger
motions, additional frames with guided sketches should be
synthesized before performing interpolation. Nonetheless,
frame interpolation in 2D cartoon video is very useful in
many scenarios and simply using methods for live-action
videos does not achieve satisfactory results. Instead we can
directly leverage the already obtained flow information as
well as some of the building blocks used for consistency
checking and blending in the cartoon synthesis stage to
produce a more accurate final result.

The interpolation pipeline for generating a frame at an
arbitrary intermediate time is shown in Figure 5. Without
loss of generality, we illustrate the interpolation of Ik at
time k ∈ (0, t). We assume linear motion within (0, t), so
we approximate the bidirectional flow f0↔k and fk↔t at
time k by scaling f0↔t proportionally. These flows are then
refined so as to suppress the motion artifacts near the object
boundaries. Equipped with the estimated flow, the cartoon
frame at that time can be synthesized with a procedure
similar to that in Section 3.2.
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3.3.1 Flow Interpolation
Since we assume linear motion from I0 to It, for an arbitrary
intermediate time k, the flow can be estimated by

f0→k =
k

t
f0→t, ft→k =

t− k
t

ft→0 (7)

Solving for the flows fk→0 and fk→t in opposite directions,
however, is more problematic. Inspired by the work of Jiang
et al. [5], we assume the optical flow is locally smooth. To
compute the flow at time k, we can borrow the flow at
the same position at time 0 and t, and scale the magni-
tude proportionally. This way, we have the following two
approximations:

f0k→t ≈
t− k
t

f0→t, f1k→t ≈ −
t− k
t

ft→0 (8)

Given these, we can combine them according to the tempo-
ral distance:

fk→t =
t− k
t

f0k→t+
k

t
f1k→t ≈

(t− k)2

t2
f0→t−

k(t− k)
t2

ft→0

(9)
Similarly, we derive the estimation of fk→0 as

fk→0 ≈ −
k(t− k)

t2
f0→t +

k2

t2
ft→0 (10)

One advantage of such interpolation scheme is that we can
ensure the interpolated motion is temporally smooth.

3.3.2 Flow Refinement
The flow approximation works well for smooth motion, but
may fail when points undergo non-linear motion or lie near
motion boundaries. Thus, we train a flow refinement net-
work to improve the flow estimation as shown in Figure 5.
Specifically, the network takes as input the warped frames
{I0→k, It→k} and the rough flow estimation {f0↔k, fk↔t},
and learns the flow residual for correction. Such residual
learning helps to accelerate convergence and improve the
flow quality. This flow refinement network adopts a U-Net
structure [55] that has a broader receptive field for flow
refinement and thus gives globally consistent prediction.

3.3.3 Frame interpolation
As shown in Figure 5, frame interpolation also performs
consistency checking and final blending. The blending net-
work shares the same weights those used for sketch-guided
synthesis (Section 3.2). One should notice that we use the
warped sketch St, i.e., St→k. This sketch information also
improves this interpolation stage, as it helps to produce
sharp results with clearly defined contours.

3.4 Temporal Processing
The inbetween outputs are generated independently frame-
by-frame. In order to further improve temporal consistency,
we propose to optimize them using a temporal process-
ing network that considers the entire space-time volume.
Specifically, we use Unet [55] to digest the concatenation
of all the inbetween frames {Ik} and provide a video
output with improved consistency. This processing network
adopts deformable convolutions [56] since the convolutional
filters are performed on displaced grid points with learnable

offsets, which can compensate the spatial misalignment of
input video frames. We consistently observed improved loss
curves using deformable convolution for temporal process-
ing. The network is optimized to reduce the `1 loss between
the ground truth and the generated video. Later we will
see that this processing step also helps reduce the spatial
artifacts, since the networks can rely on motion trajectory
to propagate more information to regions with unreliable
colors.

4 TRAINING

We next present how we construct the dataset and some
strategies we adopt for training, both of which play an
important role in our methods.

4.1 Data Preparation

We first extract all the frames in a 2D cartoon movie called
Spirited Away, a 24fps HD animated film with a variety of
different scenes. Since the movie usually has some repeated
frames or frames with only subtle variations that have lim-
ited contribution to learning the model, we prune neighbor
frames with an SSIM of 0.95 or higher. Finally, we produce a
temporally downsampled movie with an average frame rate
of approximately 8fps.

We then sort these frames by scenes. However, not all
scenes are applicable for frame synthesis. Scenes without
distinct semantic correspondences like rainfall and rising
smoke are very challenging. Keeping these examples in the
training data reduces the training performance. As such,
we calculate matching costs for each pixel with its corre-
sponding pixels at adjacent frame to filter the scenes. More
specifically, we divide each scene into multiple triples of
frames. In every triple, the first and third frames are warped
to the second frame using optical flow PWC-Net [21]. We
select the pixels which are closer to the second frame based
on `1 error to form the final warped second frame. We then
calculate the number of pixels which have a `1 error less
than 5% of the color range between the final warped frame
and the ground truth frame. Finally, the scenes with a pixel
matching rate of less than 65% will be removed from the
data. These selective frames will be used to generate their
corresponding sketch images using the method described in
Section 3.1.

For arbitrary-time frame interpolation pipeline and tem-
poral processing, smaller smooth motion videos are re-
quired. Unfortunately, the common 2D cartoon animations
can not meet these requirements. Because “one-shot three
frames” or “one-shot two frames” are used for saving cost,
most 2D animations are limited animated to 8-12 fps if the
repetitive frames are removed. Therefore, it can not be used
as the dataset to help our system to generate the video with
an arbitrary high frame rate. To address this problem, we
create a smooth motion dataset based on 3D cartoon videos.
We explored with different options and used a 3D cartoon
called The Octonauts, which is a 25fps full animated video.
Next, we introduce how we use these two datasets to train
the system.
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4.2 Training Procedure

The entire system can be trained end-to-end by optimizing
the networks from scratch in a single stage. However, it
is difficult to get a good result in practice due to a large
number of components and intermediate results. Moreover,
recent works [6], [9], [57] have shown that multi-stage train-
ing and pre-trained models can be beneficial in this scenario.
Therefore, we adopt a two-stage training to optimize the
full model, which is shown to be more effective in our
ablation study. We first train the frame synthesis pipeline
with the correspondence network and the blending network
as the two tasks mutually benefit each other using our 2D
cartoon dataset and loss function in Equation 6. Then, we
jointly train all the modules using the 3D dataset and `1 loss
between generated video and the ground truth video. For
the first stage, we use 3 consecutive frames as one sample to
synthesize the middle frame. For the second stage, we use
7 consecutive frames as a sample to synthesize one middle
frame and interpolate the remaining four middle frames.
During inference, we can interpolate an arbitrary number of
frames.

Our method is implemented in PyTorch [58] and the
code will be made publicly available. We utilize approx-
imately 36,000 2D cartoon frames and 10,000 3D cartoon
frames for training. While all the frames come from one 2D
cartoon movie and one 3D cartoon teleplay, we will show
that it has the ability to generalize to many different movies
and cartoon styles. We train our network on frames with
resolution of 384× 576 using the Adam optimizer [59] with
β1 = 0.9 and β2 = 0.999, a learning rate of 0.0001 without
any decay schedule, and batch size of 4 samples. It takes
approximately 60 epochs to converge for the first stage and
100 epochs for the jointly trained second stage. The entire
training procedure takes approximately three days on 4x
Tesla M40 GPUs.

5 RESULTS

We next present ablation studies to verify the benefits of
key components of our method, followed by comparisons to
related techniques, including flow estimation, frame inter-
polation, and image synthesis methods. Finally, we present
additional results to show the generalization ability of our
method.

5.1 Model Analysis

We construct two test datasets for our ablation study. For 2D
Cartoon Clips, we collect 30 cartoon clips from 2D cartoon
animations which are not seen during training. These clips
cover different styles and scenes. We also downsample these
clips temporally and generate a sketch for each middle
frame of each triple as we did for training data preparation.
Finally, we get approximately 500 triples for testing in this
dataset. For 3D Cartoon Clips, we use 20 cartoon clips from a
different 3D TV animation to evaluate final generated videos
with a smooth transition. We take every 7 consecutive
frames as a group and only generate one sketch in the
middle frame for each group having a total of 120 groups.
We use PSNR, SSIM, and `1 between the estimated frames
and the ground truth frames as the evaluation criteria.

TABLE 1
Ablation study for the first stage (frame synthesis pipeline).

Model 2D Cartoon Clips

`1 Loss PSNR SSIM

w/o sketch image 0.0219 25.97 0.871
w/o transformer 0.0101 32.40 0.945
w/o occlusion mask 0.0104 32.02 0.944
w/o warping loss 0.0107 31.74 0.937
w/o contour loss 0.0102 32.19 0.945

full synthesis model 0.0095 32.70 0.950

TABLE 2
Ablation study for joint training the entire framework.

Model 3D Cartoon Clips

`1 Loss PSNR SSIM

w/o joint training 0.0113 29.90 0.949
w/o refinement 0.0106 30.04 0.951
w/o temporal processing 0.0104 30.11 0.952

full model 0.0102 30.11 0.953

We first conduct an ablation study to determine the opti-
mal settings for our sketch-guided frame synthesis pipeline
in the first stage of training. The second stage that jointly
trains all the modules starts from the first stage results by
utilizing its synthetic middle frame and established cor-
respondences. Therefore, the key empirical observation is
that the better results the first stage can achieve, the better
performance we get from the joint training of the second
stage. We verify the effectiveness of four components in
the first stage: transformer, occlusion mask, warping loss
and contour loss. We also do an ablation study without
the sketch image as the guidance. To keep all the other
modules intact, we remove the sketch image by using a
blank one. As shown in Table 1, the best results are achieved
in terms of `1 loss, EPE and PSNR when the full synthesis
model is used. Removing any of them causes performance
degradation of varying degrees. An image example from
the test dataset is shown in Figure 6. In this example, our
method can produce results that have fewer visible artifacts
and a high-quality synthesis result. The small deviation
from the ground truth frame It is due to the guided sketch
St does not follow the edges of It accurately. We find that
warping loss and occlusion masks can increase the overall
performance by a relatively large margin. The transformer
can improve the region without dense guided strokes and
contour loss can help maintain boundaries. Without the
sketch as the guidance, the network has difficulty learning
the motion in the 2D cartoon animation correctly, resulting
in misalignment with respect to the ground truth.

Next, we evaluate the training strategies and key com-
ponents for the second stage in which we jointly train all
the modules after initialing the parameters trained from
stage one. As the first experiment, we load the parameters
of the first stage but do not update them and only train
the interpolation network and temporal processing network
(referred to as w/o joint training). Then we selectively remove
the flow refinement and temporal processing stage to show
their effect in results. Finally, we show the results using the
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I0 I1 St It (ground truth) w/o sketch image

w/o occlusion mask w/o transformer w/o warping loss w/o contour loss synthesis model

Fig. 6. Sample frames for the ablation study of frame synthesis stage. Removing any of the components causes performance degradation of varying
degrees. ©B&T.

I0 I1 S3/6 I3/6 (ground truth)

Î1/6 Î2/6 Î3/6 Î4/6 Î5/6

Fig. 7. Example results comparing the model without refinement and temporal processing (second row) with our full model with joint training of
the entire framework (third row). We can see that the full model can produce higher quality results equipped with the refinement and temporal
processing. ©B&T.

full model. All of the results are summarized in Table 2.
Note that the full model outperforms all the other settings.
An image example is shown in Figure 7. We can see that
with the refinement and temporal processing, our method
can produce higher quality and more temporally coherent
results.

5.2 Comparison to Flow Estimation Methods
We first compare our cartoon-to-sketch correspondence
method to recent advanced flow estimation methods PWC-
Net [21]. Since the ground truth optical flows for 2D cartoon
animations are unavailable, we use the warping loss to
train and evaluate the flows in 2D cartoon clips. More
specifically, we use the estimated flows to warp one frame
to another and calculate the `1 loss between warped frames
and ground truth frames. We also use the MPI Sintel Flow

Dataset [60] which is used for the evaluation of optical
flow derived from the open-source 3D animated short film,
Sintel. Notice that this dataset has a significantly different
style from the training set. Since the clips from this dataset
already have large motion, we do not temporally down-
sample the clips and only generate the sketch to provide
it as input. The Sintel dataset contains 341 triples for our
testing. Because the ground truth flow is available, we also
use the endpoint error (EPE) as a metric. For each pair of
frames, we take a frame image and a sketch image from the
other frame as inputs to estimate their optical flow. We use
our sketch generation method in Section 3.1 to generate the
corresponding sketch images.

We first directly adopt PWC-Net [21] to estimate the
cartoon-to-sketch correspondence. In the second experi-
ment, we fine-tune their model in our training set with
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TABLE 3
Quantitative evaluation of cartoon-to-sketch correspondence estimation

with different methods.

Model Sintel 2D Cartoon Clips

EPE `1 Loss `1 Loss

PWC-Net [21] 22.55 0.0596 0.0336
PWC-Net (fine-tune) 10.93 0.0265 0.0112

our model 10.52 0.0247 0.0104

I0 St It (ground truth)
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PWC-Net PWC-Net Ours
[21] (fine-tune)

Fig. 8. Comparison of different flow estimation methods. Our method can
handle movement in the presence of sparse sketches or empty regions.
©B&T.

cartoon sketch pairs as input and keep the network structure
and the mechanism unchanged. For our model, we remove
the consistency checking and blending in the synthesis
pipeline and only keep the cartoon-to-sketch correspon-
dence network. The warping loss is utilized for both of these
experiments. The quantitative results are shown in Table 3
and one example can be found in Figure 8. As the results
show, our cartoon-to-sketch flow estimation method outper-
forms the common flow method by addressing challenging
issues in texture-less cartoon frames and sketches with large
empty regions.

5.3 Comparison to Frame Interpolation Methods
We next compare our method with some recent frame in-
terpolation techniques that have source code available and
are also able to interpolate arbitrary intermediate frames.
These are the slow motion method by Jiang et al. [5] (SloMo)
and the depth-aware interpolation method by Bao et al. [6]
(DAIN). For a fairer comparison with these learning meth-
ods, we fine-tune their model on our training set. We use
the 3D Cartoon Clips temporally downsampled to different
frame rates as inputs for testing.

The original frame rate for the clips is 24fps. We show
results reconstructing the 24fps video using the input video
temporally downsampled to different rates. The other in-
terpolation methods will take two adjacent frames of the
downsampled video as input. For our method, in addition
to the two input frames, we also utilize the sketch gener-
ated from the middle frame as additional guidance. The
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Fig. 9. Quality comparison of our approach with other methods at
different input frame rates. Lower frame rate means larger displacement
between successive frames. Our method outperforms all other methods
by a large margin by taking advantage of the guided sketch.
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Fig. 10. Example results comparing our method (fourth row) with other
frame interpolation approaches: Jiang et al. [5] (second row) and Bao et
al. [6] (third row). Compared to off-the-shelf methods, our method tends
to better preserves the image content. ”Ave.” represents average input
frames and ”GT” represents ground truth frame. ©B&T.

quantitative results measuring PSNR and SSIM are shown
in Figure 9. Results show that our method outperforms all
other methods by a large margin since it can take advantage
of the sketch for guidance. The advantage is even more
obvious when we interpolate frames with longer intervals.
We also show a qualitative comparison in Figure 10, where
our method takes {I0, S3/6, I1} as input to synthesize I3/6
and interpolate four more frames {I1/6, I2/6, I4/6, I5/6}, and
the other two methods take the two input frames {I0, I1} to
interpolate these five frames directly. We can see that both
Jiang et al. [5] and Bao et al. [6] cannot always get satisfactory
results due to the specific situations in cartoon frames,
like large motion, texture-less style, unique contours. Our
method takes advantage of the sketch as guidance, thus
improving the the result by a large margin and also fol-
lowing the real-life workflow of cartoon animation. More
importantly, the artists hope to control the inbetweening
by drawing rather than using the deterministic result from
interpolation. The sketch input provides the flexibility to
control the interpolation result. We also shows an example
of our results with different input frame rates in Figure 11
and it indicates that the lower the input frame rate, the lower
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I0 I2 I4 I8 I16 I32

Î1 (Ave.) Î2 (Ave.) Î4 (Ave.) Î8 (Ave.) Î16 (Ave.)

Î1 Î2 Î4 Î8 Î16

Fig. 11. Example results with different input frame rates (deformation ranges). For each result Îk in the third row, I0 and I2k from the first row are
used as inputs. We also show the averaged input frames for reference in the second row. As the interval between input frames increases, artifacts
begin to appear due to the larger motion. ©2:10 AM Animation.

TABLE 4
Quantitative evaluation of frame interpolation only, providing ground

truth to previous methods.

Method PSNR SSIM

Averaged frames 33.09 0.952
Jiang et al. [5] 29.85 0.955
Bao et al. [6] 36.03 0.977

Ours 36.64 0.971

the resulting quality.
The additional sketch input of our method provides an

advantage when we do the comparisons to earlier work,
showing the need for such a sketch in order to achieve the
artist’s intent. However, this is an advantageous comparison
since the previous methods do not use a sketch and are just
focused on interpolation. Thus, we provide another exper-
iment to test just the interpolation ability of our method
in a disadvantageous condition to our approach. We use
the 3D Cartoon Clips in Section 5.1 as the test data for this
experiment. For these clips, we take every 7 consecutive
frames I0/6 to I6/6 as a sample. We use {I0, S3/6, I1} to
interpolate {I1/6, I2/6, I4/6, I5/6} for our method and use
{I0, I3/6, I1} to interpolate {I1/6, I2/6, I4/6, I5/6} for the
two interpolation methods. We also compared the averaged
input frames. The result is shown in Table 4. We can see that
even if this experiment is disadvantageous for our method
since we only have S3/6 while the others have ground
truth I3/6 for interpolation, our method can still produce
competitive results in terms of interpolation ability.

5.4 Comparison to Image Synthesis Methods
We compare our method with recent image generation
or synthesis techniques. More specifically, we compare it
with pix2pixHD [8], a state-of-the-art conditional generative
adversarial networks and a sketch colorization method [9]
which also targets cartoon images and utilizes two-stage

training strategy. For the pix2pixHD, we use the sketch im-
age as the input and two cartoon frames as the image trans-
lation condition. The model is trained using our training set
until convergence. For the sketch colorization method, we
directly use their pre-trained model for inference as their
method is trained on a large-scale cartoon dataset. We show
two results of their method. One is to use the manually
selected color hints to colorize the sketch. Another is to use
the cartoon frame as the reference to colorize the sketch.

As shown in Figure 12, the sketch colorization method is
unable to handle the complex color styles and tends to use a
relatively smooth color within a region even using many
color hints as additional inputs. Moreover, their method
does not utilize the temporal information of the video, thus
produce a relatively low-quality result. Due to the nature
of colorization, it faithfully follows edges from the input
sketch but cannot recover any structure details that are
missing the sketch. Our method has the ability to address
such variations, such as the shadow on the clothes in the
second example. On the other hand, pix2pixHD suffers
from bleeding artifacts in the regions with large motion.
Furthermore, it severely overfits the cartoon style in the
training set: when we test on a movie beyond the training
set, it suffers from color shifting.

5.5 Generalization Ability and Flexibility
We try to maximize the generalization of our method by
constructing a dataset containing diverse scenes and large
motions. Furthermore, we attempt to synthesize simplified
sketches as realistically as possible. Though ultimately we
trained the network solely using the training samples from
only one 2D cartoon movie and one 3D cartoon animations,
our method can still perform well on frames in movies with
different styles, even a 3D cartoon that does not have obvi-
ous contours and 2D animations as shown in Figure 13. Our
training set only contains one single sketch style synthesized
by our algorithm. However, it still has the capability to
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I0 I1 St and hints (only
for Zhang et al. [9])

Zhang et al. [9] by
using hints

Zhang et al. [9] by
using references

Wang et al. [8] Ours

Fig. 12. Example results comparing image synthesis methods with our approach. ©B&T.

{I0, I1} St Ît {I0, I1} St Ît

Fig. 13. Results from hand-drawn sketches with different cartoon and drawing styles. ©B&T, 2:10 AM Animation, SAFS.

Fig. 14. Our system can synthesize different middle frames by drawing different guided sketches. In this example, the proposed method takes two
input frames (first column) and synthesizes the cartoon frames (second row) guided by the corresponding user’s sketches (first row). ©B&T.
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{I0, I1} First level Second level Third level

Fig. 15. Results using sketches with different levels of detail. In this
example, the proposed method takes two input frames (first column)
and synthesizes the cartoon frames (second row) guided by the corre-
sponding sketches (first row). ©B&T.

generalize to rough sketches after simplification (Figure 1)
or hand-drawn sketches (Figure 13, 14). Furthermore, our
method has the flexibility to generate different results by
providing different guided sketches as shown in Figure 14.
Users can choose to automatically interpolate the whole
video by just drawing one middle sketch if the motion is
relatively simple, or drawing more sketches to synthesize
frame by frame if the motion is complex and can not be
interpolated. The user can also use a combination of the two
approaches. In Figure 15, we use an example to show how
the level of detail affects the output of our result. To do so,
we progressively remove some lines from the first level of
the real sketch and show their results in the second row.
Note that our method can still produce reasonable results
when omitting some lines (e.g. remove the shadow of the
hair on the face or change the nose according to the lines).
But artifacts may appear if some important lines indicating
the motion are omitted. The model can produce a better
result if more details are provided in the sketch. Moreover,
due to the fully convolutional networks we use, our method
can address video frames with different resolutions without
a drop in performance. One example can be found in Fig-
ure 13, whose original frames come from different movies
at different resolutions (e.g., 480p, 720p, and 1080p).

The capabilities of our method can be summarized as
follows:

1) It generalizes to different cartoon styles;
2) It generalizes to sketches with some variations;
3) It supports the generation of different video results

from the same input by drawing different sketches;
4) It supports drawing and synthesizing one (or more)

sketch and interpolating the remaining frames;

6 LIMITATIONS AND CONCLUSION

In conclusion, we present a novel framework that synthe-
sizes cartoon videos by using the color information from
two input frames while following the animated motion
guided by a sketch. Our approach first estimates the dense
cross-domain correspondence between a sketch and video
frames by transforming the cartoon and sketch into feature
representations in the same domain, followed by apply-
ing a blending module for occlusion handling considering
flow consistency. Then, the inputs and the synthetic frame
equipped with established correspondence is fed into an

I0 I1 St It (ours) It (ground
truth)

Fig. 16. Examples where our approach did not yield satisfactory results,
including pixels being occluded in both two input frames, unclear se-
mantic correspondence, and artifacts due to the incomplete sketch for
indicating motion. ©B&T.

arbitrary-time interpolation pipeline to generate and refine
more inbetween frames. Finally, a video temporal process-
ing approach is used to further improve the result. We
perform several experiments to verify each component of
our system, show side-by-side comparisons with related
methods, and demonstrate the generalization ability and
flexibility of our system. Our results show that our sys-
tem generalizes well to different scenes and produce high-
quality results.

However, there are some cases that our method cannot
handle perfectly. First, our method is based on warping and
blending. If the pixels in the middle frame are occluded in
both two input frames, artifacts will appear as shown in
the first example of Figure 16. Second, some scenes in a 2D
cartoon without accurate semantic correspondence, such as
the waves in Figure 16 which can appear and disappear
suddenly with different shapes, also cannot be addressed
by our method. Third, when the contours that are vital to
indicate motion are missing in the sketch image, it is hard
for our method to infer that information from the two input
frames accurately, e.g., the fins of the dolphin in the third
example of Figure 16. To address this limitation, our method
allows the user to interactively drawing more strokes in the
sketch. It would be worthwhile to explore how to solve these
artifacts automatically.
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Fuzzy topology preserving stroke correspondence,” in Computer
Graphics Forum, vol. 37, no. 8. Wiley Online Library, 2018, pp.
125–135.

[29] J. Liao, Y. Yao, L. Yuan, G. Hua, and S. B. Kang, “Visual
attribute transfer through deep image analogy,” arXiv preprint
arXiv:1705.01088, 2017.

[30] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman,
“Patchmatch: A randomized correspondence algorithm for struc-
tural image editing,” in ACM Transactions on Graphics (ToG),
vol. 28, no. 3. ACM, 2009, p. 24.

[31] K. Aberman, J. Liao, M. Shi, D. Lischinski, B. Chen, and D. Cohen-
Or, “Neural best-buddies: Sparse cross-domain correspondence,”
ACM Transactions on Graphics (TOG), vol. 37, no. 4, p. 69, 2018.

[32] M.-Y. Liu, T. Breuel, and J. Kautz, “Unsupervised image-to-image
translation networks,” in Advances in neural information processing
systems, 2017, pp. 700–708.

[33] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz, “Multimodal
unsupervised image-to-image translation,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 172–189.

[34] A. H. Liu, Y.-C. Liu, Y.-Y. Yeh, and Y.-C. F. Wang, “A unified feature
disentangler for multi-domain image translation and manipula-
tion,” in Advances in neural information processing systems, 2018, pp.
2590–2599.

[35] A. Gonzalez-Garcia, J. Van De Weijer, and Y. Bengio, “Image-to-
image translation for cross-domain disentanglement,” in Advances
in neural information processing systems, 2018, pp. 1287–1298.

[36] X. Huang and S. Forchhammer, “Cross-band noise model re-
finement for transform domain wyner–ziv video coding,” Signal
Processing: Image Communication, vol. 27, no. 1, pp. 16–30, 2012.

[37] J. Wu, C. Yuen, N.-M. Cheung, J. Chen, and C. W. Chen, “Modeling
and optimization of high frame rate video transmission over
wireless networks,” IEEE Transactions on Wireless Communications,
vol. 15, no. 4, pp. 2713–2726, 2015.

[38] J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of
optical flow techniques,” International journal of computer vision,
vol. 12, no. 1, pp. 43–77, 1994.

[39] M. Werlberger, T. Pock, M. Unger, and H. Bischof, “Optical flow
guided tv-l 1 video interpolation and restoration,” in International
Workshop on Energy Minimization Methods in Computer Vision and
Pattern Recognition. Springer, 2011, pp. 273–286.

[40] D. Mahajan, F.-C. Huang, W. Matusik, R. Ramamoorthi, and P. Bel-
humeur, “Moving gradients: a path-based method for plausible
image interpolation,” in ACM Transactions on Graphics (TOG),
vol. 28, no. 3. ACM, 2009, p. 42.

[41] G. Long, L. Kneip, J. M. Alvarez, H. Li, X. Zhang, and Q. Yu,
“Learning image matching by simply watching video,” in Euro-
pean Conference on Computer Vision. Springer, 2016, pp. 434–450.

[42] Z. Liu, R. A. Yeh, X. Tang, Y. Liu, and A. Agarwala, “Video
frame synthesis using deep voxel flow,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 4463–4471.

[43] S. Niklaus, L. Mai, and F. Liu, “Video frame interpolation via
adaptive convolution,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 670–679.

[44] ——, “Video frame interpolation via adaptive separable convolu-
tion,” in Proceedings of the IEEE International Conference on Computer
Vision, 2017, pp. 261–270.

[45] W. Bao, W.-S. Lai, X. Zhang, Z. Gao, and M.-H. Yang, “Memc-net:
Motion estimation and motion compensation driven neural net-



LI et al.: DEEP SKETCH-GUIDED CARTOON VIDEO INBETWEENING 15

work for video interpolation and enhancement,” IEEE transactions
on pattern analysis and machine intelligence, 2019.

[46] S. Niklaus and F. Liu, “Context-aware synthesis for video frame
interpolation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 1701–1710.

[47] T. Peleg, P. Szekely, D. Sabo, and O. Sendik, “Im-net for high
resolution video frame interpolation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
2398–2407.

[48] J. Choi and I. S. Kweon, “Deep iterative frame interpolation for
full-frame video stabilization,” arXiv preprint arXiv:1909.02641,
2019.

[49] E. Simo-Serra, S. Iizuka, K. Sasaki, and H. Ishikawa, “Learning to
simplify: fully convolutional networks for rough sketch cleanup,”
ACM Transactions on Graphics (TOG), vol. 35, no. 4, pp. 1–11, 2016.

[50] E. Simo-Serra, S. Iizuka, and H. Ishikawa, “Mastering sketching:
adversarial augmentation for structured prediction,” ACM Trans-
actions on Graphics (TOG), vol. 37, no. 1, pp. 1–13, 2018.

[51] S. Xie and Z. Tu, “Holistically-nested edge detection,” in Proceed-
ings of the IEEE international conference on computer vision, 2015, pp.
1395–1403.

[52] P. Selinger, “Portrace,” vol. 6, no. 7, 2015. [Online]. Available:
http://potrace.sourceforge.net

[53] F. Yu, V. Koltun, and T. Funkhouser, “Dilated residual networks,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 472–480.

[54] R. Yi, Y.-J. Liu, Y.-K. Lai, and P. L. Rosin, “Apdrawinggan: Gener-
ating artistic portrait drawings from face photos with hierarchical
gans,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 10 743–10 752.

[55] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International
Conference on Medical image computing and computer-assisted inter-
vention. Springer, 2015, pp. 234–241.

[56] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei,
“Deformable convolutional networks,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 764–773.

[57] M. Xia, X. Liu, and T.-T. Wong, “Invertible grayscale,” in SIG-
GRAPH Asia 2018 Technical Papers. ACM, 2018, p. 246.

[58] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch:
An imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems, 2019, pp. 8024–
8035.

[59] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[60] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A naturalistic
open source movie for optical flow evaluation,” in European Conf.
on Computer Vision (ECCV), ser. Part IV, LNCS 7577, A. Fitzgibbon
et al. (Eds.), Ed. Springer-Verlag, Oct. 2012, pp. 611–625.

Xiaoyu Li received a Bachelor of Engineer-
ing degree in Electronic Information Engineer-
ing from Huazhong University of Science and
Technology, in 2017. He is currently pursuing a
Ph.D. degree with the Electronic and Computer
Engineering, Hong Kong University of Science
and Technology. His research interests include
computer vision and deep learning with an em-
phasis on computational photography.

Bo Zhang received his Ph.D. degree with the
Department of Electronic and Computer Engi-
neering at the Hong Kong University of Science
and Technology at 2019. Prior to that, he re-
ceived a Bachelor of Engineering degree at Zhe-
jiang University. Now he is a researcher at visual
computing group of Microsoft research asia. His
research interests involve low-level computer vi-
sion, image synthesis, computational photogra-
phy and imaging system.

Jing Liao is an Assistant Professor with the De-
partment of Computer Science, City University
of Hong Kong (CityU) since Sep 2018. Prior to
that, she was a Researcher at Visual Comput-
ing Group, Microsoft Research Asia from 2015
to 2018. She received the B.Eng. degree from
Huazhong University of Science and Technology
and dual Ph.D. degrees from Zhejiang Univer-
sity and Hong Kong UST. Her primary research
interests fall in the fields of Computer Graphics,
Computer Vision, Image/Video Processing, Dig-

ital Art and Computational Photography.

Pedro V. Sander received a Bachelor of Sci-
ence in Computer Science from Stony Brook
University, and Master of Science and Doctor
of Philosophy degrees from Harvard University.
He was a senior member of the Application Re-
search Group of ATI Research, where he con-
ducted real-time rendering and general-purpose
computation research with latest generation and
upcoming graphics hardware. Currently, he is a
Professor in the Department of Computer Sci-
ence and Engineering at the Hong Kong Univer-

sity of Science and Technology. His research interests lie mostly in real-
time rendering, graphics hardware, geometry processing, and imaging.

http://potrace.sourceforge.net

	1 Introduction
	2 Related Work
	2.1 Sketch-guided Image Synthesis
	2.2 Cross-domain Correspondence
	2.3 Video Frame Interpolation

	3 Sketch-guided Video Synthesis
	3.1 Sketch Simplification and Generation
	3.2 Sketch-guided Frame Synthesis
	3.2.1 Cartoon-to-sketch Correspondence
	3.2.2 Consistency Checking
	3.2.3 Blending

	3.3 Arbitrary-time Frame Interpolation
	3.3.1 Flow Interpolation
	3.3.2 Flow Refinement
	3.3.3 Frame interpolation

	3.4 Temporal Processing

	4 Training
	4.1 Data Preparation
	4.2 Training Procedure

	5 Results
	5.1 Model Analysis
	5.2 Comparison to Flow Estimation Methods
	5.3 Comparison to Frame Interpolation Methods
	5.4 Comparison to Image Synthesis Methods
	5.5 Generalization Ability and Flexibility

	6 Limitations and Conclusion
	References
	Biographies
	Xiaoyu Li
	Bo Zhang
	Jing Liao
	Pedro V. Sander


