
1

HDhuman: High-quality Human Novel-view
Rendering from Sparse Views

Tiansong Zhou†, Jing Huang†, Tao Yu, Ruizhi Shao, Kun Li∗

Abstract—In this paper, we aim to address the challenge of novel view rendering of human performers who wear clothes with complex
texture patterns using a sparse set of camera views. Although some recent works have achieved remarkable rendering quality on
humans with relatively uniform textures using sparse views, the rendering quality remains limited when dealing with complex texture
patterns as they are unable to recover the high-frequency geometry details that are observed in the input views. To this end, we
propose HDhuman, which uses a human reconstruction network with a pixel-aligned spatial transformer and a rendering network with
geometry-guided pixel-wise feature integration to achieve high-quality human reconstruction and rendering. The designed pixel-aligned
spatial transformer calculates the correlations between the input views and generates human reconstruction results with
high-frequency details. Based on the surface reconstruction results, the geometry-guided pixel-wise visibility reasoning provides
guidance for multi-view feature integration, enabling the rendering network to render high-quality images at 2k resolution on novel
views. Unlike previous neural rendering works that always need to train or fine-tune an independent network for a different scene, our
method is a general framework that is able to generalize to novel subjects. Experiments show that our approach outperforms all the
prior generic or specific methods on both synthetic data and real-world data. Source code and test data will be made publicly available
for research purposes at http://cic.tju.edu.cn/faculty/likun/projects/HDhuman/index.html.

Index Terms—Image-based rendering, neural rendering, human reconstruction, transformer, visibility reasoning

✦

1 INTRODUCTION

Realistic free-viewpoint rendering of human performers is
in increasing demand with the development of AR/VR.
Neural radiance fields (NeRF) [1] is the most promising way
that render photo-realistic images on novel views. However,
NeRF needs a lot of input views to produce photo-realistic
novel-view images. When the input views are highly sparse,
the rendering quality of NeRF will degrade dramatically.

To render novel-view images of human performers from
sparse views, neural body [2] integrates SMPL model [3]
to the NeRF framework, in which they anchor a latent
code on each vertex of SMPL model to integrate the obser-
vations over video frames. However, as the SMPL model
does not contain any geometry details such as clothing
folds, neural body is difficult to capture high-frequency
details of human performers, making its rendering quality
remain limited when dealing with human performers that
wear loose clothes with complex texture patterns. Moreover,
neural body [2] needs to train an independent network for
each human and the training procedure is extremely time-
consuming (at least 10 hours for each subject), which further
limits its applications.

In this work, we propose HDhuman, a general method
that is able to render high-quality human images at 2k
resolution using sparse views. The used camera views are
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Fig. 1. High-quality reconstruction and rendering of a challenging human
performer that wears a long dress with complex texture patterns from
only 6 input views, without any fine-tuning.

no more than 8 views in a uniformly distributed circle
arrangement. As shown in Fig. 1, we are able to handle chal-
lenging human subjects wearing long dresses with complex
texture patterns. HDhuman uses a reconstruction-rendering
pipeline to achieve the goal of high-quality novel-view
rendering from sparse views, demonstrating that recovering
geometry details observed in the input views significantly
helps to improve the rendering quality. Firstly, We design
a reconstruction network to reconstruct highly-detailed hu-
man models, recovering the geometry details of human
performers, such as clothing folds. Then, based on the
reconstruction results, we propose a rendering network to
render high-quality images on novel views at 2k resolution.

For human reconstruction from sparse views, the key
is to fuse the geometry details that are observed in the
input multi-view images. Instead of using a naive averaging
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pooling operation for multi-view feature fusion in PIFu
[4], we present a pixel-aligned spatial transformer in the
reconstruction network. The proposed transformer is able
to automatically calculate different fusion weights for each
input view. In this way, we are able to preserve the geometry
details such as clothing folds that are observed in the input
images, resulting in highly-detailed reconstruction.

To achieve the goal of high-quality rendering from
sparse views, the core is to solve the severe occlusion
problems caused by the sparsity of input views. If we
warp all the pixels of source views to the novel view, the
occlusion will cause artifacts and blurring in the rendering
results, as many pixels are invisible in the novel view. To
solve this problem, we propose geometry-guided pixel-wise
feature integration in the rendering network. Based on the
reconstruction results from the reconstruction network, the
proposed integration method will perform visibility reason-
ing and find the visible source views for each pixel of the
novel view, enabling us to solve the occlusion problems and
get high-quality rendering images.

Unlike the neural-network-based rendering works that
need to train or fine-tune an independent network for each
scene or human [1], [2], [5], [6], the proposed HDhuman
is a general rendering framework. Benefiting from the gen-
eralization ability of pixel-aligned spatial transformer and
geometry-guided feature integration, our method is able to
perform high-quality reconstruction and rendering for novel
subjects without any fine-tuning. Experiments show that
our general approach significantly improves the rendering
quality compared with all the existing generic and specific
works.

Overall, thanks to the pixel-aligned spatial transformer
for highly-detailed human reconstruction and the geometry-
guided pixel-wise feature integration for solving the occlu-
sion problems, we are able to achieve the goal of high-
quality human novel-view rendering from sparse views. In
summary, our main contributions are:

• We propose a new general neural rendering frame-
work capable of rendering novel views of human
performers with complex texture patterns at 2k im-
age resolution from a sparse set of camera views.

• A pixel-aligned spatial transformer that is able to
perform efficient multi-view feature fusion in human
reconstruction, enabling us to reconstruct highly-
detailed human models from sparse views.

• A geometry-guided pixel-wise feature integration
method for efficiently solving the severe occlusion
problems that are caused by the sparsity of input
views.

• We demonstrate significant rendering quality im-
provements of our method compared to prior works,
especially for humans with loose clothes or complex
texture patterns.

2 RELATED WORK

2.1 Human Reconstruction

Human reconstruction has a long and overlapping history in
both computer vision and graphics. In earlier years, multi-
view stereo (MVS) is the most widely used method for

human reconstruction. Liu et al. [7] proposes a continuous
depth map estimation method for improving the perfor-
mances of MVS.

Over the past decade, benefiting from the development
of hardware, many works [8], [9], [10], [11] take single or
multi RGBD views as input to get amazing real-time high-
fidelity human reconstruction and rendering. However, the
relied depth sensors are only able to capture humans or
objects that are near to the sensors. When humans move
far from the sensors (farther than 3m), the depth sensors
will fail to capture depth streams, which greatly limits their
applications.

In recent years, human reconstruction from only a single
RGB camera [4], [12], [13], [14], [15], [16], [17], [18] draws
great research attention. The most promising method for
single-view human reconstruction is the pixel-aligned im-
plicit function (PIFu) [4]. PIFu takes a single color image as
input and encodes the image to generate pixel-aligned im-
age features. Based on the pixel-aligned features that contain
the geometry details in the input image, it learns an implicit
function over the 3D space. Following PIFu, PIFuHD [15]
introduces a multi-level framework for high-fidelity 3D
reconstruction of clothed humans. It uses an additional
image translation network to predict normal maps from
original color images. The predicted normal maps enable it
to reconstruct more geometry details, such as clothing folds.
Moreover, a fine level is used in PIFuHD to recover more
subtle details from the high-resolution input images. Video-
based methods [16], [17], [19] reconstruct dense, space-time
coherent deforming geometry of dynamic humans from
monocular videos, but they need a pre-captured template
mesh.

For multi-view human reconstruction, PIFu uses a naive
average pooling operation for multi-view feature fusion,
which is not efficient enough to fuse the geometry details
that are observed in the multi-view input images. Zins
et al. [20] use an attention-based fusion method to auto-
matically weight the input views for multi-view human
reconstruction. But they use an additional local 3D context
encoding layer to make the network aware of the local 3D
context around each querying point. This layer makes the
reconstruction more robust but it increases the computation
and memory consumption of the networks. In our obser-
vation, we found that directly predicting the SDF value of
each point without any “local information” is also able to
produce high-quality reconstruction results, helping us to
strike a good balance between reconstruction quality and
computation consumption. Zheng et al. [21] use SMPL
as the geometry prior to solve the occlusion problem in
multi-person reconstruction, but the usage of SMPL not only
makes the reconstruction results might be pixel-misaligned,
but also makes it unable to reconstruct the human cases with
loose clothes, such as long dresses. In contrast, benefiting
from the proposed pixel-aligned spatial transformer, we
are able to produce highly-detailed reconstruction results
without any human template prior such as SMPL, and we
are able to handle human performers that wear loose clothes
with complex texture patterns.
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Fig. 2. Architecture of our reconstruction network. For memory efficiency, we only use a single level for reconstruction. The pixel-aligned spatial
transformer enables us to preserve the geometry details that are observed in the input views, resulting in highly-detailed reconstruction. Our
framework doesn’t use any geometry prior, and hence our reconstruction results are fully pixel-aligned.

2.2 Human Novel-view Rendering

Many works [22], [23], [24] use the traditional image-based
rendering or view synthesis pipeline for novel view ren-
dering, i.e., proxy geometry reconstruction, warping, and
blending. To bridge the gap between reconstruction and ren-
dering, Liu et al. [25] present a point-cloud-based method to
improve the multi-view stereo algorithm for more realistic
free-view synthesis (FVV). Benefiting from the significant re-
search progress of deep learning in recent years, some works
[22], [26] use neural networks to blend the novel views from
the warped source views. However, these warping-based
works need dense camera views as input to warp the source
views to the novel view. If the input camera views are highly
sparse, the performances of this classic method will degrade
dramatically as the wide camera baselines will cause severe
occlusion problems. To tackle this problem, Suo et al. [27]
proposes a neural blending scheme with neural geometry
prior for novel-view rendering of human performers.

More recently, volume rendering is another method to
achieve photo-realistic rendering. It uses volumes to rep-
resent the shape and appearance of a scene. Multi-plane
images (MPIs) [28] is one of the most promising ways for
this volumetric representation, which computes a separate
RGBα image for each depth plane. The α channel and the
RGB channels represent the shape and appearance of the
scene respectively. Based on the MPIs-representation, Soft3D
[29] introduces a soft 3D representation of the scene geome-
try. This representation enables it to handle the depth uncer-
tainty of the scene. Benefiting from the significant research
progress on neural networks, Flynn et al.and Mildenhall et
al. [30], [31] use neural networks to predict the MPIs for each
input view.

Another promising research direction for volume render-
ing is neural radiance fields (NeRF) [1], which uses a multi-
layer perceptron (MLP) to represent the density and color
fields of a scene and thus it is well-suited for differentiable
rendering. Based on NeRF, Liu et al. [32] propose neural
sparse voxel structure for faster training and inference.
However, both MPIs-based and NeRF-based [1], [32] works

need dense camera views as input and always need to train
or fine-tune an independent network of each scene.

For human rendering from sparse views, some works
[33], [34], [35], [36], [37] use SMPL template as a prior,
which helps to constrain the motion space and improve
the rendering quality. However, as the SMPL model does
not contain any geometry details such as clothing folds,
it is difficult for them to capture high-frequency details
of human performers, which limits their rendering quality
when dealing with human performers with complex tex-
ture patterns. In contrast, the proposed pixel-aligned spatial
transformer in our work enables us to capture the geometry
details that are observed in the input views, which helps
improve the rendering quality on the areas with complex
geometry patterns, such as loose clothes or clothing folds.
Another line of works [38], [39] use a deformation field to
render human performers from single or multi-view videos,
in which they use an MLP to map all the frames of the video
to a canonical space and perform free-view rendering using
NeRF on the canonical space. However, as the capacity of a
deformation field (MLP) is restricted, the deformation field
is only able to handle a limited number of frames. When
dealing with a long sequence with complex human motions,
the deformation field will be “overwhelmed”, resulting in
rendering failures. Instead of using a deformation field,
we treat each frame as an independent subject to process
dynamic cases, enabling us to handle videos with arbitrary
lengths. Experiments show that we are able to produce
spatial-temporal coherent rendering results naturally when
dealing with dynamic human performers.

3 APPROACH

To achieve the goal of rendering high-quality human novel
view images, we first propose a reconstruction network
to reconstruct highly-detailed human models from sparse
views (Sec. 3.1.2). Based on the reconstruction results, we
propose our rendering network to render high-quality im-
ages at 2k resolution on novel views (Sec. 3.2).
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Fig. 3. Architecture of our rendering network. The geometry-guided pixel-wise feature integration enables us to solve the severe occlusion
problems caused by the sparsity of input views, resulting in high-quality novel view rendering.

3.1 Human Reconstruction
3.1.1 Preliminary
PIFu [4] introduces a pixel-aligned implicit function to re-
construct the underlining 3D human geometry from single
or multi-view images. The proposed pixel-aligned implicit
function consists of a convolutional image encoder g and
a continuous implicit function f that is represented by a
multi-layer perceptron. Concretely, the human surface is
defined as

f(g(I(x)), z(X)) = s : s ∈ R, (1)

where X is the given 3D point, x = π(X) is its orthogonal
2D projection, g(I(x)) is the bilinear sampled image feature
at x. During the inference, 3D space is uniformly sampled
to infer the occupancy and the final iso-surface is extracted
with a threshold of 0.5 using marching cube algorithm [40]
(where the occupancy value s smaller than 0.5 is inside and
s greater than 0.5 is outside).

To achieve high-fidelity 3D reconstruction of a clothed
human from a single image, recovering detailed information
such as clothing folds, PIFuHD [15] proposes a coarse-
to-fine framework for 3D clothed human reconstruction
using images with resolution of 1024 × 1024. It uses an
additional network to predict normal maps from the input
color images. Compared with PIFu, the predicted normal
maps enable it to recover more details as the geometry
information in normal maps is more explicit. Moreover, a
fine level is used in PIFuHD to recover details from high-
resolution images. Specifically, the fine level can be denoted
as

fH(gH(IH , FH , BH , xH),Ω(X)) = s : s ∈ R, (2)

where IH , FH , BH are the input color images and the pre-
dicted front and back normal maps at the resolution of
1024×1024. Ω(X) is the feature extracted from the coarse
level.

For multi-view reconstruction, PIFu [4] uses a naive
average pooling operation to fuse multi-view features.

TABLE 1
Quantitative reconstruction results on Twindom dataset. For each
model, we use 6 views for reconstruction. Our reconstruction results

outperform neural body by a large margin.

P2S Chamfer
Ours Neural body [2] Ours Neural body [2]

Model1 0.1866 0.9299 0.1968 0.7030
Model2 0.2604 0.8902 0.3817 0.6753
Model3 0.1718 0.6639 0.1840 0.5410
Model4 0.3858 1.8421 0.4070 1.5791
Model5 0.1660 0.6104 0.1794 0.5164
Average 0.2698 0.8030 0.2341 0.9873

The average pooling operation in PIFu is not efficient
enough to aggregate geometry details that are observed in
the input images, as it regards each view equally, resulting
in losing subtle geometry details and limiting the rendering
quality. Therefore, we need to find a way that is able to cal-
culate the correlations between the input views, providing
high-level information for feature aggregation and enabling
us to preserve the subtle details.

3.1.2 Pixel-aligned Spatial Transformer
To solve the above limitations of the prior works, we pro-
pose a pixel-aligned spatial transformer in the reconstruc-
tion network. See Fig. 2 for an illustration.

Following PIFuHD [15], we first predict frontal normal
maps from color images and encode each view’s color
image and normal map using an hourglass encoder g. Our
observation is that in multi-view reconstruction, the coarse
level network in PIFuHD [15] is enough to reconstruct high-
frequency details with frontal normal maps as input. There-
fore, for memory efficiency, we only use a single level for
reconstruction and the input images of the reconstruction
network are at a resolution of 512 × 512.

To efficiently preserve the geometry details that are
observed in the input views, we use a spatial transformer
to calculate the correlations between the input multi-view
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TABLE 2
Quantitative rendering results on Twindom dataset. ”NB” means neural body. ”D+S3D” means Soft3D with our depth maps as input. ”NT”

means neural texture. ”SA-NeRF” means Surface-Aligned NeRF. For each model, we use 6 views as input and 30 views for evaluation. ↑ means
higher is better and ↓ means lower is better.

LPIPS ↓ SSIM ↑ PSNR ↑
Ours NB D+S3D NT SA-NeRF Ours NB D+S3D NT SA-NeRF Ours NB D+S3D NT SA-NeRF

Model1 0.146 0.266 0.180 0.295 0.294 0.876 0.842 0.831 0.790 0.795 25.32 24.63 23.84 22.96 20.62
Model2 0.196 0.290 0.252 0.391 0.360 0.782 0.731 0.701 0.612 0.633 17.53 17.81 16.26 11.23 15.89
Model3 0.122 0.213 0.179 0.320 0.289 0.865 0.832 0.793 0.712 0.732 21.75 21.81 19.49 13.37 13.23
Model4 0.230 0.425 0.265 0.438 0.475 0.610 0.469 0.560 0.501 0.417 18.53 14.35 17.52 15.16 13.23
Model5 0.130 0.274 0.172 0.304 0.320 0.794 0.745 0.739 0.696 0.684 21.76 21.33 20.30 17.66 18.21
Average 0.165 0.293 0.210 0.349 0.348 0.785 0.724 0.725 0.662 0.652 20.98 20.03 19.48 16.08 16.48

TABLE 3
Quantitative rendering results on our multi-view video dataset. For each frame, we use 8 views as input and 16 views for evaluation. Each

sequence has a length of 150 frames.

LPIPS ↓ SSIM ↑ PSNR ↑
Ours NB D+S3D NT SA-NeRF Ours NB D+S3D NT SA-NeRF Ours NB D+S3D NT SA-NeRF

Sequence1 0.122 0.278 0.177 0.267 0.281 0.823 0.732 0.722 0.687 0.720 24.14 21.05 21.11 17.61 19.50
Sequence2 0.162 0.350 0.206 0.329 0.354 0.787 0.659 0.671 0.649 0.650 22.36 20.60 19.13 17.11 19.51
Sequence3 0.119 0.236 0.1723 0.234 0.243 0.887 0.831 0.811 0.790 0.815 25.04 22.76 22.10 19.81 21.14
Sequence4 0.129 0.247 0.186 0.245 0.251 0.872 0.832 0.797 0.796 0.815 26.90 25.35 24.42 22.88 23.75
Sequence5 0.116 0.243 0.174 0.259 0.246 0.880 0.822 0.800 0.751 0.809 26.47 24.32 23.45 17.59 22.11
Average 0.129 0.271 0.183 0.267 0.275 0.850 0.775 0.760 0.735 0.761 24.98 22.82 22.04 19.00 21.20

pixel-aligned features. Specifically, for a 3D point X , given
N views encoded features, we stack them together to
get Φmv ∈ RN×D, where D is the feature dimensions.
Then, we embed it with three learnable different linear
layers: Φq = ΦmvWq,Φk = ΦmvWk,Φv = ΦmvWv , where
Wq,Wk,Wv ∈ RD×dk and Φq,Φk,Φv ∈ RN×dk . dk is the
embedded feature dimension. After that, a spatial trans-
former will be applied:

Φmv att = Transformer(Φq,Φk,Φv)

= softmax(
ΦqΦk

T

√
dk

)Φv,
(3)

where Φmv att ∈ Rdk is the transformer-aware multi-view
features. To counter the gradient vanishing problem caused
by the softmax operation, we scale the dot-product opera-
tion by 1√

dk
. Different from the feature before transformer

calculation, which only contains the geometry details that
are observed in a single view, the transformer-aware feature
contains all the geometry details that are observed in multi-
view images. Compared with the average pooling oper-
ation in PIFu [4], the transformer-based fusion operation
calculates the correlations between the multi-view features,
which provides high-level information for fusion, allowing
the network to preserve more geometry details.

To query the depth value of point X with the encoded
features, we need to normalize the depth value for each
view. Given multi-view human images and the correspond-
ing calibrated camera parameters as input, we will estimate
each view’s human 2D skeleton using Openpose [41], and
then obtain 3D skeleton Sw ∈ R3×J in world space through
triangulation. J is the number of joints. We use the hip
position Hw ∈ R3 and neck position Nw ∈ R3 to normalize
the depth. Specifically,

Hi
c = RiHw + ti = (Hi

cx , H
i
cy , H

i
cz ), (4)

Xi
c = RiX + ti = (Xi

cx , X
i
cy , X

i
cz ), (5)

zi(X
i
cz ) =

Xi
cz −Hi

cz

λ∥Hw −Nw∥2
, (6)

where Hi
c, X

i
c are the hip position and the point X position

in view i’s camera space respectively. Ri, ti are camera i’s
rotation and translation. λ is a constant value to make sure
that the normalized depth always lies in (0, 1), and we set it
to 4

√
3 in all our experiments.

Finally, we use a multi-layer perceptron to predict the 3D
occupancy and use marching cube algorithm to extract the
surface from the predicted occupancy, resulting in the final
reconstructed mesh.

3.2 Novel View Rendering

To achieve the goal of high-quality novel view rendering
from sparse views, the core problem is to solve the occlusion
problems caused by the sparsity of input views. Based on
the highly-detailed reconstructed results from the recon-
struction network, we propose geometry-guided pixel-wise
feature integration to perform efficient visibility reasoning
for solving the occlusion problems.

Concretely, given a sparse set of input images
{I1, ..., IN}, the corresponding calibrated camera parame-
ters and the reconstructed meshes, we use a rendering net-
work to render high-quality novel-view images of human
performers. The architecture of the rendering network is
shown in Fig. 3. In summary, we use an encode-integration-
render framework for novel view rendering, which mainly
consists of three parts: 1) encoding each input image to
feature space using an encoder-net e, 2) pixel-wise visibility
reasoning and feature integration using the reconstructed
human geometry, and 3) rendering the novel view image
using a render-net r.

Image encoding. For each input image In ∈ RH×W×3, we
firstly encode it to high-dimensional feature space and get
feature map Fn = e(In) ∈ RH×W×D at the same resolution.
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Fig. 4. Qualitative results of reconstruction. The top two rows are the results on the Twindom dataset, with 6 views as input. The bottom two
rows are the results on real-world data, with 8 views as input. We strongly recommend that readers zoom in on the pages for a better visualization
of the reconstructed details.

Following Riegler et al. [42], the encoder e uses a Res-
UNet architecture, where the encoding part is an ImageNet-
pretrained ResNet [43] and the decoding part upsamples the
feature map using nearest-neighbor interpolation, concate-
nating it with the corresponding feature map (of the same
resolution) from the encoding part.

Geometry-guided pixel-wise feature integration. Tradi-
tional image-based rendering methods always use warping
operation to map the source views to the novel view, in
which the warping operation will warp the pixels or areas
that are not visible in the novel view, resulting in rendering
artifacts or blurring. Therefore, we argue that this warping
operation is not suitable for solving the occlusion problems
and propose our geometry-guided pixel-wise feature inte-
gration. For each pixel in a novel view, the visible input
views are different. Therefore, we perform visibility reason-
ing and get the visible source views for each pixel in the
novel view. Then, we only integrate the features from visible
source views to the novel view pixel, the source views that
are not visible will be abandoned.

Concretely, given the calibrated camera parameters
(intrinsic and extrinsic parameters) of input views
{C1, ..., CN}, the novel view camera Cnovel and the
reconstructed human mesh, we will render depth maps
of the input views {D1, ..., DN} and novel views Dnovel

using OpenGL or Taichi. Then, for each pixel p ∈ R2 with
valid depth value (drender > 0) in the novel view, we will
inversely project it to the world space, getting point P ∈ R3,
and then project it to the image space of each input view
using the corresponding cameras, getting the re-projected
pixel, re-projected depth and rendered depth in each view
{(preproj1 , dreproj1 , drender1), ..., (preprojN , dreprojN , drenderN )}:

(preprojn , dreprojn , drendern) = Cn(C
−1
novel(p, drender)), (7)

where drendern = Dn(preprojn). If the difference between
the rendered depth and the reprojeted depth is lower than a
threshold, we will regard view n to be visible for pixel p:

|drendern − dreprojn | < λ ·min(drendern , dreprojn), (8)

where λ is a hyper-parameter and we set it to 0.01 in all our
experiments.
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Fig. 5. Novel view rendering on Twindom dataset. We use 6 views as input. Results show that our method significantly outperforms all other
methods qualitatively, especially in the areas that have complex details.

After the visibility reasoning, we will sample features
from all the visible views using bilinear sampling. i.e.,
fn = Fn(preprojn), and getting {f1, ..., fK}, where K is
the number of visible source views for pixel p. Then, a
direction average operation will be performed to integrate
source view features into the novel view pixel:

ffusion =
1

W

K∑
k=1

max(0, cos⟨dirnovel, dirk⟩) · fk, (9)

where dirnovel, dirk are the novel view direction and
the visible source view k’s direction respectively. The
fused novel view feature is divided by W =∑K

k=1 max(0, cos⟨dirnovel, dirk⟩) for normalization.

Novel view rendering. After getting the feature map Fnovel

of the novel view, we will use a convolutional render-net r to
render the novel view’s color image i.e., Inovel = r(Fnovel).

4 EXPERIMENTS

4.1 Training
Dataset. We collect 1700 high-quality textured human
meshes from Twindom [44] as a large-scale dataset for the
training and evaluation of our reconstruction network and
rendering network. The collected models have a wide range

of clothing, poses and shapes. We randomly split the models
into a training set of 1500 subjects and a testing set of 200
subjects.

Reconstruction network training. For each subject in the
dataset, we generate 360 virtual perspective cameras in the
yaw axis (1 camera for each degree) and each camera has
a random pitch angle. Then, we render 360 images at a
resolution of 512 × 512 using Taichi. During training, we
randomly pick 4 views over the 360 images as the input for
each iteration. We use Adam [45] optimizer with a learning
rate of 1 × 10−4 and train the reconstruction network for
nearly 300000 iterations for convergence. The training pro-
cedure costs nearly 3 days with a batch size of 1 in a single
Nvidia TitianXp GPU.

Rendering network training. The rendering network needs
reconstructed meshes as input, but we didn’t use the
ground-truth geometry. Instead, we randomly pick 5 views
over the 360 images and use the reconstruction network to
generate a coarse mesh for each subject. With the coarse
mesh as input, the rendering network will have greater gen-
eralization ability and have more robust performances. We
use the generated perspective cameras to render 360 images
and depth maps at a higher resolution of 1024 × 1024 for
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Fig. 6. Novel view rendering on our captured multi-view videos dataset. We use 8 views as input. We strongly recommend the readers to zoom
in the pages for a better visualization of the rendered details.

TABLE 4
Quantitative evaluation for ablation study on Twindom dataset.

Lpips ↓ SSIM ↑ PSNR ↑
Full model 0.1647 0.7853 20.98

Average pooling 0.1880 0.7610 19.82
No visibility reasoning 0.1865 0.7720 20.46

each subject in our dataset. We divide the yaw axis degrees
into 6 parts, each part has a range of 60 degrees. During
training, we randomly pick one view in each part, resulting
in 6 images as input. Then, we randomly select one view
as the novel view and the other views are the source views.
We use Adam optimizer with a learning rate of 1 × 10−4

and train for nearly 400000 iterations for convergence. The
training procedure costs nearly 2 days with a batch size of 1
using a single Nvidia RTX3090 GPU.

4.2 Evaluation Settings

In this section, we will introduce our evaluation metrics,
compared methods and the settings for each compared
method. The evaluation will be performed both on static
human performers (synthetic data) and dynamic human
performers (real-world data). We highly recommend readers
to refer to the supplemental video for a better visualization
of the reconstruction and rendering results.

Metrics. For reconstruction, we use Chamfer distance and
Point-to-Surface distance (P2S) for quantitative evaluation.
For rendering, we quantitatively evaluate our method using

the three most widely-used metrics: peak signal-to-noise
ratio (PSNR), structural similarity index (SSIM) and learned
perceptual image patch similarity (LPIPS).

Compared methods. As our final goal is human novel-
view rendering, we compare our method with both generic
and specific rendering methods [2], [6], [29], [35]: 1) Neural
texture [6] introduces differentiable latent neural texture
maps for novel view rendering. It needs to train an in-
dependent network for a different subject. Note that, to
evaluate neural texture on dynamic humans, topologically
consistent reconstruction of human performers is necessary.
Therefore, we simply track the reconstructed results and get
a topologically consistent mesh sequence for each dynamic
human; 2) Soft3D [29] is an MPI-based method for view
synthesis, which uses multi-plane images (MPI) to handle
the uncertainty of depth maps. It is a generic view synthesis
method that doesn’t need to train any network. Note that
Soft3D doesn’t use any geometry prior, and hence it needs
to use MPI to estimate an initial depth map for each input
image, which is extremely coarse, making the quality of
synthetic images very low. For fairness, we use the rendered
depth maps in our method as the initial depth maps for an
additional input of Soft3D, which improves its performance;
3) Neural body [2] proposes a NeRF-based implicit neu-
ral representation for human novel-view rendering, which
needs to train a separate network for each human. Note
that reconstruction results are only available on neural body,
and hence we will perform comparisons with it for recon-
struction evaluation. 4) Surface-Aligned NeRF [35] builds
neural radiance fields on the surfaces of SMPL meshes, in
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Fig. 7. Comparisons with average pooling operation. Compared with
the average pooling operation for multi-view feature fusion that was
introduced in PIFu, our proposed spatial transformer is able to generate
higher-quality results.

which it injectively maps a spatial point to a surface-aligned
representation that consists of a projected surface point and
a signed height to the mesh surface.

4.3 Results on Synthetic Data
We select 5 models in the test set of Twindom for the
evaluation on synthetic data. For each model, we render
36 images in a circle arrangement at a resolution of 2048
× 2048. We use 6 uniformly distributed views as input
and the remaining 30 views for evaluation. Table 1 shows
the quantitative reconstruction comparisons of our method
with neural body [2]. For both P2S distance and Chamfer
distance, our method outperforms neural body by extremely
large margins. Some qualitative reconstruction results are
shown in the top two rows of Fig. 4. The reconstruction
results are produced with only 6 views as input, showing
that our method is able to perform highly-detailed recon-
struction of challenging humans using only a sparse set of
camera views.

For novel-view rendering, quantitative and qualitative
comparisons are illustrated in Table 2 and Fig. 5 respectively,
showing that our method is able to render high-quality
images of challenging humans with complex patterns or
loose clothes, such as long dresses

4.4 Results on Real-World Data
To evaluate our method’s performance on real-world data,
we create a multi-view dataset, which captures 5 dynamic
human videos at a resolution of 2660 × 2300 using a multi-
camera system that has 24 calibrated synchronized cameras
in a circle arrangement. In contrast to the dataset of neural
body [2], which only captures humans with relatively uni-
form textures, we capture human performers with complex
texture patterns or loose clothes. We select 8 uniformly
distributed cameras as the source input views and use the
remaining 16 camera views for testing. All sequences have
a length of 150 frames.

Some qualitative results are shown in the bottom two
rows of Fig. 4. Compared with neural body, our recon-
struction results have more high-frequency details, such
as clothing folds. Achieving great performances on real-
world data means that the proposed pixel-aligned spatial
transformer is robust and efficient.

Full Model No Visibility 
Reasoning

Full Model No Visibility 
Reasoning

Fig. 8. Impact of pixel-wise visibility reasoning. If we warp all the
source view pixels to the target view, the rendering results will suffer
from severe occlusion problems caused by the wide camera baselines,
resulting in blurring and artifacts.

The quantitative results are shown in Table 3. Our
method outperforms all other methods on all the mea-
sured metrics. Fig. 6 illustrates some qualitative results.
The novel views rendered by our method contain more
texture details compared with other methods. Benefiting
from the geometry-guided pixel-wise feature integration,
we efficiently solve the occlusion problems caused by the
sparsity of input views, resulting in robust high-quality
rendering on real-world data.

4.5 Ablation Studies

Impact of the pixel-aligned spatial transformer. For com-
parison, we train a reconstruction network using average
pooling operation for multi-view feature fusion. Then, we
use the reconstruction results generated by the average
pooling operation and our proposed transformer as the
input of the rendering network separately. Note that the
reconstruction network with average pooling operation can
be regarded as a multi-view PIFuHD method. Quantitative
evaluation results on the Twindom dataset are illustrated
in the second and third rows of Table 4, showing that
the spatial transformer used in our method outperforms
average pooling operation on all three metrics. Fig. 7 shows
that benefiting from the inner-product operation, our pro-
posed spatial transformer is able to calculate the correlations
between input views, resulting in rendering results with
higher quality compared with the average pooling opera-
tion.

Impact of the pixel-wise visibility reasoning. We de-
sign a pixel-wise visibility reasoning module to solve the
occlusion problems caused by the sparsity of input views.
To figure out the strength of this module, we evaluate our
method’s performance without visibility reasoning. Quan-
titative comparisons on the Twindom dataset are shown in
the second and fourth rows of Table 4, showing that without
visibility reasoning, rendering results will degrade on all
three metrics. Qualitative comparisons are illustrated in
Fig. 8, showing that without pixel-wise visibility reasoning,
occluded pixels in the source views will be warped to the
target view, resulting in rendering artifacts and blurring.

Impact of the number of input views. The quanti-
tative evaluation on the Twindom dataset with different



10

3DTexture
(6 views)

3DTexture
(10 views)

3DTexture + Inpainting 
(10 views)

Ours
(6 views)

Fig. 9. Our rendering network vs. 3DTexture [46]. Compared with
3DTexture that directly ”colorizes” the reconstructed mesh, our render-
ing network is able to render the occluded areas that are invisible in the
input views.

Failure Reconstruction Failure Rendering General Rendering Fine-tuned Rendering

Fig. 10. Failure cases of our proposed method. The first and second
columns show that failure reconstruction results will cause rendering
artifacts. The third and fourth columns show that fine-tuning is not an
efficient way to improve the rendering quality as we are unable to refine
the geometry in the process of fine-tuning.

numbers of input views is illustrated in Table 5, showing
that increasing the number of input views only has slight
improvement on the rendering results. Therefore, we can
draw a conclusion that our method works well when the
input views are highly sparse.

Rendering network vs. texture mapping. To compare
with the traditional texture mapping methods and figure
out why the rendering network is needed, we use the state-
of-the-art texture mapping method 3DTexture [46] to “col-
orize” the reconstructed mesh and use OpenGL to render
novel-view images. Qualitative comparisons are illustrated
in Fig. 9, showing that 3DTexture fails to render the oc-
cluded areas that are invisible in the input views, resulting
in ”black holes” in the invisible areas. We also compare
an inpainted version for 3DTexture by using an inpainting
technique [47] to fill the holes. It can be seen that the
hole filling cannot deal with all the artifact problems, while
our method is able to produce more reasonable rendering
results. Our rendering network can be regarded as a texture
prior, which helps to complete these invisible areas.

Quantitative evaluation on the Twindom dataset is re-
ported in Table 6, showing that even with less input views,
our rendering network is able to outperform the state-of-

TABLE 5
Quantitative evaluation of different number of input views.

SSIM ↑ PSNR ↑
6 view 8 view 10 view 6 view 8 view 10 view

Subject1 0.876 0.884 0.885 25.32 25.58 25.63
Subject2 0.782 0.794 0.796 17.53 17.77 17.82
Subject3 0.865 0.873 0.874 21.75 21.97 22.03
Subject4 0.610 0.626 0.625 18.53 18.70 18.70
Subject5 0.794 0.804 0.803 21.76 21.90 21.88
Average 0.785 0.796 0.797 20.98 21.18 21.21

TABLE 6
Quantitative comparisons with 3DTexture [46].

PSNR ↑ SSIM ↑ LPIPS ↓
Ours (6 views) 20.78 0.856 0.141

3DTexture (6 views) 19.60 0.822 0.160
3DTexture + Inpainting (6 views) 19.70 0.824 0.158

3DTexture (10 views) 19.77 0.829 0.149
3DTexture + Inpainting (10 views) 19.80 0.832 0.145

the-art texture mapping method. Besides, when dealing
with dynamic cases (real-world dataset), as shown in the
supplementary video, 3DTexture seems to be sensitive to the
reconstruction results. Experiments show that slight flicking
of the reconstruction results will lead to incoherence of the
rendering results. Moreover, in the areas that suffer from
reconstruction errors, the flicking problems will get worse.
In contrast, our method is able to produce more stable
results on 4D rendering.

4.6 Limitations
As our rendering network needs to use the reconstruction
results to perform geometry-guided feature integration, the
rendering quality heavily relies on the reconstruction re-
sults. If the reconstruction network fails in some parts of the
human performer, it will result in rendering artifacts in these
parts. The first and second columns of Fig. 10 demonstrate
that failure reconstruction will cause rendering artifacts in
the corresponding parts.

To improve the rendering quality in the parts where
the reconstruction network fails, a straightforward way is
to fine-tune the rendering network to a specific human
performer. However, the geometry representation we used
is mesh, and hence the geometry-guided pixel-wise feature
integration used in our method is indifferentiable to the
reconstructed geometry, making us unable to refine the
geometry in the process of fine-tuning. Thus, fine-tuning
will cause burring in the parts that suffer from rendering
artifacts. The third and fourth columns of Fig. 10 show the
rendering results that are rendered with the general model
and the fine-tuned model, respectively. It can be seen that
fine-tuning is unable to solve the rendering artifacts caused
by reconstruction failure and will result in blurring in these
parts.

5 CONCLUSION AND DISCUSSION

In this paper, we introduce HDhuman, a generic method
that uses pixel-aligned spatial transformer and geometry-
guided pixel-wise feature integration for high-quality hu-
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man reconstruction and rendering using sparse views. Ex-
periments show that our rendering quality significantly
outperforms both the prior generic and specific methods.
Our work demonstrates that high-quality human rendering
in sparse views is possible without any network fine-tuning,
which can serve as an important baseline in the area of
human rendering.

In future, a research direction that is worthy to explore
is to use a geometry representation that is differentiable in
our framework. For example, we could encode the recon-
structed mesh to a volume, and then perform differentiable
geometry-guided visibility reasoning for each voxel and
finally use volume rendering techniques to render novel
views. In this way, the geometry will be differentiable,
enabling us to refine the geometry in the process of fine-
tuning.
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